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A recently developed variational resummation technique, incorporating renormalization group proper-
ties consistently, has been shown to solve the scale dependence problem that plagues the evaluation of
thermodynamical quantities, e.g., within the framework of approximations such as in the hard-thermal-loop
resummed perturbation theory. This method is used in the present work to evaluate thermodynamical
quantities within the two-dimensional nonlinear sigma model, which, apart from providing a technically
simpler testing ground, shares some common features with Yang-Mills theories, like asymptotic freedom,
trace anomaly and the nonperturbative generation of a mass gap. The present application confirms that
nonperturbative results can be readily generated solely by considering the lowest-order (quasiparticle)
contribution to the thermodynamic effective potential, when this quantity is required to be renormalization
group invariant. We also show that when the next-to-leading correction from the method is accounted for,
the results indicate convergence, apart from optimally preserving, within the approximations here
considered, the sought-after scale invariance.
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I. INTRODUCTION

The theoretical description of the quark-gluon plasma
phase transition requires the use of nonperturbative meth-
ods, since the use of perturbation theory (PT) near the
transition is unreliable. Indeed, it has been observed that
when successive terms in the weak-coupling expansion are
added, the predictions for the pressure fluctuate wildly and
the sensitivity to the renormalization scale, M, grows
(see, e.g., Ref. [1] for a review). Due to the asymptotic
freedom phenomenon PT only produces convergent
results at temperatures many orders of magnitude larger
than the critical temperature for deconfinement. At the
same time, the development of powerful computers and
numerical techniques offers the possibility to solve non-
perturbative problems in silico by discretization of the
space-time onto a lattice and then performing numerical
simulations employing the methods of lattice quantum
chromodynamics (LQCD).
So far, LQCD has been very successful in the description

of phase transitions at finite temperatures and near vanish-
ing baryonic densities, generating results [2] that can be
directly used for interpreting the experimental outputs from
heavy ion collision experiments, envisaged to scan over this
particular region of the phase diagram. However, currently,
the complete description of compressed baryonic matter
cannot be achieved due to the so-called sign problem [3],
which is an unfortunate situation, especially in view of the
new experiments, such as the Beam Energy Scan program

at the Relativistic Heavy-Ion Collider facility. In this case,
an alternative is to use approximate but more analytical
nonperturbative approaches. One of these is to reorganize
the series using a variational approximation, where the
result of a related solvable case is rewritten in terms of a
variational parameter, which in general has no intrinsic
physical meaning and can be viewed as a Lagrangian
multiplier that allows for optimal (nonperturbative) results
to be obtained.
In the past decades nonperturbative methods based on

related variational methods have been employed under
different names, such as the linear delta expansion
(LDE) [4], the optimized perturbation theory (OPT)
[5,6], and the screened perturbation theory (SPT) [7,8].
The application of these methods starts by using a peculiar
interpolation of the original model. For instance, taking the
λϕ4 scalar theory as an example, the basic idea is to add a
Gaussian term ð1 − δÞm2ϕ2 to the potential energy density,
while rescaling the coupling parameter as λ → δλ. One then
treats the terms proportional to δ as interactions, using δ as a
bookkeeping parameter to perform a series expansion
around the exactly solvable theory represented by the “free”
term, m2ϕ2. At the end, the bookkeeping parameter δ is set
to its original value (δ ¼ 1), while optimally fixing the
dependence upon the arbitrary mass m (that remains at any
finite order in such a modified expansion) by an appropriate
variational criterion. The idea is to explore the easiness of
perturbative evaluations (including renormalization) to get
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higher order contributions that usually go beyond the
topologies considered by traditional nonperturbative.1 tech-
niques, such as the large-N approximation. This technique
has been used to describe successfully a variety of different
physical situations, involving phase transitions in a variety
of different physical systems, such as in the determination
of the critical temperature for homogeneous Bose gases
[9,10], determining the critical dopant concentration in
polyacetylene [11], obtaining the phase diagram of mag-
netized planar fermionic systems [12], in the analysis of
phase transitions in general [13], in the evaluation of quark
susceptibilities within effective QCD inspired models [14],
as well as in other applications related to effective models
for QCD [15]. Of course, due to gauge invariance issues,
one cannot simply consider a gluonic local mass when
applying SPTor OPT to QCD. Nevertheless this procedure
can be done in a gauge-invariant manner by applying it on
the previously well-defined gauge-invariant framework of
hard thermal loop (HTL) [16], and it resummation, HTLpt,
was developed over one decade ago [17,18]. Recently, this
approximation has been evaluated up to three-loop order in
the case of hot and dense quarkmatter [19], giving results in
reasonable agreementwith LQCD for the pressure and other
thermodynamical quantities. The SPT method has even
been pushed to four-loop order in the scalar ϕ4 model [20].
However, the results of resummed HTLpt exhibit a strong
sensitivity to the arbitrary renormalization scale M used in
the regularization procedure. This is highly desirable to be
reduced if one wants to convert these available high order
HTLpt results into much more precise and reliable non-
perturbative ones and, likewise, to be consistent with
expected renormalization group invariance properties.
One could hope that the situation would improve by
considering higher order contributions, but exactly the
opposite has been observed to occur. As recently illustrated
in Refs. [17–19], at three loop order HTLpt predicts results
close to LQCD simulations for moderate T ≳ 2Tc at the
“central” energy scale value M ¼ 2πT, such that large
logarithmic terms are minimized, but this nice agreement is
quickly spoiled when varying the scale even by a rather
moderate amount.
A solution to this problem has been recently proposed,

by generalizing to thermal theories a related variational
resummation approach, renormalization group optimized
perturbation theory (RGOPT). Essentially the novelty is
that it restores perturbative scale invariance at all stages of
the calculation, in particular when fixing the arbitrary mass
parameter from the variational procedure described above,
where it is induced by solving the (mass) optimization
prescription consistently with the renormalization group

equation. The RGOPT was first developed at vanishing
temperatures and densities in the framework of the Gross-
Neveu (GN) model [21], then within QCD to estimate the
basic scale (ΛMS[22], or equivalently the QCD coupling
αS). At three-loop order it gives accurate results [23],
compatible with the αS world averages. The method has
also given a precise evaluation of the quark condensate
[24]. More recently some of the present authors have
shown, in the context of the λϕ4 scalar model, that the
RGOPT is also compatible with the introduction of control
parameters such as the temperature [25,26]. The RGOPT
and SPT predictions for the pressure have been compared,
showing how the RGOPT indeed drastically improves over
the generic scale dependence problem of thermal pertur-
bation theories at increasing perturbative orders.
We also remark that within more standard variational

approaches such as OPT, SPT and HTLpt, the optimization
process can allow for multiple solutions, including
complex-valued ones, as one considers higher and higher
orders. Accordingly, in some cases, one is forced to
obtain optimal results by using an alternative criterion,
for example, by replacing the variational mass with a purely
perturbative screened mass [8,18,19], but at the expenses of
potentially loosing valuable nonperturbative information.
As shown in Refs. [21,23], the RGOPT may also avoid this
serious problem, by requiring asymptotic matching of the
optimization solutions with the standard perturbative
behavior for small couplings.
Various approaches have been made earlier to improve

the higher order stability and scale dependence of thermal
perturbation theories. For instance the nonperturbative RG
(NPRG) framework (see e.g. [27] for the ϕ4 model) should
in principle give exactly scale invariant results by con-
struction, if it could be performed exactly. But solving the
relevant NPRG equations for thermal QCD beyond approx-
imative truncation schemes appears very involved. Other
more perturbative attempts have been made to improve the
perturbative scale dependence of thermodynamical QCD
quantities, not necessarily relying on a variational or HTLpt
resummation framework: rather essentially using RG prop-
erties of standard thermal perturbation theories (see, e.g.,
[28,29]). Our approach also basically starts from standard
perturbative expressions, and perturbative RG properties
(which is one advantage since many already available
higher order thermal perturbative results can be exploited).
But it is very different from the latter approaches, due to the
crucial role of the variational (optimization) procedure,
rooted within a massive scheme. An additional bonus
provided by our procedure, as we will illustrate here, is
that some characteristic nonperturbative features are
already provided at the lowest (“free gas”) order.
In this work we apply the RGOPT to the nonlinear sigma

model (NLSM) in 1þ 1 dimensions at finite temperatures
in order to pave the way for future applications concerning
other asymptotically free theories, such as thermal QCD.

1In the present context in the following by “nonperturbative”
we mean its specific acceptance as a method giving a non-
polynomial dependence in the coupling well beyond standard
perturbative expansion, like the 1=N expansion typically.
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Apart from asymptotic freedom, the NLSM and QCD have
other similarities, like the generation of a mass gap and
trace anomaly. In the previous RGOPT finite temperature
application [25,26], the numerical results for the pressure
were mainly expressed as functions of the coupling, as
done in the usual SPT applications to scalar theories. Here,
on the other hand, we perform an investigation more
reminiscent of typical HTLpt applications to hot QCD
(see, e.g., Refs. [17–19]), by mainly concentrating on the
(thermodynamically) more appealing P-T plane. Another,
more technical but welcome feature of considering the
NLSM is that, up to two-loop order, the relevant thermal
integrals are simple and exactly known (at least for the
pressure and derived quantities), which allows for a rather
straightforward study of the full temperature range with our
method. As a simple model that has been studied many
times before in the context of its critical properties and
renormalization group results, the NLSM makes then a
perfect test ground for benchmarking the RGOPT when
compared to other nonperturbative methods.
It is worth mentioning that for HTLpt applied to QCD at

two-loop order and beyond, results [18] are only available
in the high-T approximation regime, not to mention the
rather involved gauge-invariance framework required by
the method. At three-loop order the NLSM starts to involve
more complicated integrals, but this is beyond the present
scope, and two-loop order RGOPT, that we will carry out in
the present work, will be enough to illustrate the RGOPT
efficiency. Although, to the best of our knowledge, SPT
(or its high-T expansion variant more similar to HTLpt)
has not been applied previously in the NLSM framework,
we found it worth to derive and compare in some detail
such SPT/HTLpt results with the RGOPT results in the
present model. This is useful in order to emphasize the
improvements of RGOPT that are generic enough to be
appreciated in view of QCD applications. In this work, we
also investigate how the RGOPT performs with respect to
other thermodynamical characteristics, like the Stefan-
Boltzmann limit and the trace anomaly, among others,
which were not investigated in Refs. [25,26].
As we will illustrate, the scale invariant results obtained

in the present application give further support to the method
as a robust analytical nonperturbative approach to thermal
theories. Bearing in mind that the RGOPT is rather recent,
we will also perform the basic derivation in a way that the
present work may also serve as a practical guide for further
applications in other thermal field theories.
This paper is organized as follows. In Sec. II we briefly

review the NLSM. Then, in Sec. III, we perform the
perturbative evaluation of the pressure to the first nontrivial
order and discuss the perturbative scale invariant construc-
tion. In Sec. IV we modify the perturbative series in order to
make it compatible with the RGOPT requirements. The
optimization procedure is carried out in Sec. V for arbitrary
N up to two-loop order, where we also derive the large-N

approximation, the standard perturbation (PT), and the
SPT/HTLpt alternative approaches, also up to two-loop
order for comparison. Our numerical results are presented
and discussed in Sec. VI, where we compare the previous
different approximations as well as the next-to-leading
(NLO) order of the 1=N-expansion [30], for N ¼ 4, which
is a physically appealing choice beyond the more tradi-
tional N ¼ 3 continuum limit of the Heisenberg model.
Then we also compare our RGOPT results with lattice
simulation results, apparently only available for N ¼ 3
[31]. Finally, in Sec. VII, we present our conclusions and
final remarks.

II. THE NLSM IN 1+ 1-DIMENSIONS

The two-dimensional NLSM partition function can be
written as [32,33]

Z¼
Z YN

i¼1

DΦiðxÞexp
�
1

2g0

Z
d2xð∂ΦiÞ2

�
δ

�XN
i¼1

ΦiΦi−1

�
;

ð2:1Þ

where g0 is a (dimensionless) coupling and the scalar
field is parametrized as Φi ¼ ðσ; π1;…; πN−1Þ. In two-
dimensions the theory is renormalizable [32] and also,
according to the Mermin-Wagner-Coleman theorem
[34,35], no spontaneous symmetry breaking of the global
OðNÞ symmetry can take place (at any coupling value). The
action is invariant under OðNÞ but using the constraint,
σðxÞ ¼ ð1 − π2i Þ1=2, in order to define the perturbative
expansion, breaks the symmetry down to OðN − 1Þ. This
is accordingly an artifact of perturbation theory, and truly
nonperturbative quantities, when calculable, should exhibit
the actually unbroken OðNÞ symmetry [33], as shown by
the nonperturbative exact mass gap at zero temperature
[36]. Thus the perturbation theory describes at first N − 1
Goldstone bosons, and one may introduce, for later
convenience, an infrared regulator, m2

0, coupled to σ. In
this case the partition function becomes

ZðmÞ ¼
Z

dπiðxÞ½1 − π2i ðxÞ�−1=2 exp½−Sðπ; mÞ�; ð2:2Þ

where the (Euclidean) action is Sðπ; mÞ ¼ R
d2xL0 and,

upon rescaling πi →
ffiffiffiffiffi
g0

p
πi, the bare Lagrangian density is

L0 ¼
1

2
ð∂πiÞ2 þ g0ðπi∂πiÞ2

2ð1 − g0π2i Þ
−
m2

0

g0
ð1 − g0π2i Þ1=2: ð2:3Þ

The above Lagrangian density can be expanded to order-g0
yielding

L0 ¼
1

2
½ð∂πiÞ2 þm2

0π
2
i � þ

g0m2
0

8
ðπ2i Þ2 þ

g0
2
ðπi∂πiÞ2 − E0;

ð2:4Þ
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where for later notational convenience we designate as
E0≡m2

0=g0 the field-independent term, originating at low-
est order from expanding the square root in Eq. (2.3). At
first, one may think that such field-independent “zero-
point” energy term could be dropped innocuously (as is
indeed sometimes assumed in the literature [37]). However,
as we will examine below it is important to keep this
term since it plays a crucial role for consistent perturbative
RG properties.
In Euclidean spacetime the Feynman rules of the model

can be found, e.g., in Refs. [33,38]. The Euclidean four-
momentum, in the finite temperature Matsubara’s formalism
[39], is p0;Eucl ≡ ωn, where ωn ¼ 2πnT are the bosonic
Matsubara frequencies (n ¼ 0;�1;�2 � � �) and T is the
temperature. In this work, the divergent integrals are regu-
larized using dimensional regularization (within the minimal
subtraction scheme MS), which at finite temperature and
d ¼ 2 − ϵ dimensions, can be implemented by using

Z
d2p
ð2πÞ2 → T

XZ
p
≡ T

�
eγEM2

4π

�
ϵ=2 Xþ∞

n¼−∞

Z
d1−ϵp
ð2πÞ1−ϵ ;

ð2:5Þ

where γE is the Euler-Mascheroni constant andM is the MS
arbitrary regularization energy scale. At finite temperatures
this model has been first studied by Dine and Fischler [40] in
the context of the PT and also in the large N approximation.

III. PERTURBATIVE PRESSURE
AND SCALE INVARIANCE

Considering the contributions displayed in Fig. 1, one
can write the pressure up to order Oðg0Þ as

P ¼ P0ðm0Þ þ P1ðm0; g0Þ þ E0ðm0; g0Þ þOðg20Þ; ð3:1Þ

where the (one-loop) zeroth-order term represents the usual
free gas type of term and it is given by

P0ðm0Þ ¼ −
ðN − 1Þ

2
I0ðm0; TÞ; ð3:2Þ

where

I0ðm0; TÞ ¼ T
XZ

p
ln ðω2

n þ ω2
pÞ; ð3:3Þ

with the dispersion relation, ω2
p ¼ p2 þm2

0.
At two-loop order the pressure receives the contribution

from the Oðg0Þ term

P1ðm0; g0Þ ¼ −ðN − 1Þ ðN − 3Þ
8

m2
0g0I1ðm0; TÞ2; ð3:4Þ

where I1ðm0; TÞ ¼ ∂I0ðm0; TÞ=∂m2
0, as well as from the

counterterm insertion contributions in the one-loop pres-
sure. To this perturbative order, one has g0 ¼ Zgg≡ g and
thus just a mass counterterm insertion contribution in the
one-loop pressure to deal with. It leads to a counterterm
PCT
0 that can be readily obtained by replacingm0 ¼ Zmm in

P0 and expanding it up to first-order, P0ðm0 ¼ ZmmÞ ¼
P0ðmÞ þ PCT

0 ðm; gÞ, where explicitly

PCT
0 ðm; gÞ ¼ ðN − 1ÞðN − 3Þ

8πϵ
m2gI1ðm; TÞ; ð3:5Þ

upon using [33,41] (our convention is d ¼ 2 − ϵ)

Zm ¼ 1 −
g
8π

ðN − 3Þ 1
ϵ
þOðg2Þ: ð3:6Þ

Then, when performing the sum over the Matsubara’s
frequencies within the MS scheme one obtains for the loop
momentum integrals I0 and I1 appearing in the above
expressions, the explicit results

I0ðm0; TÞ ¼
m2

0

2π

�
1

ϵ
þ 1

2
− ln

�
m0

M

�

þϵ

�
1

4
þ 1

2
ln

�
m0

M

��
ln

�
m0

M

�
− 1

���

þ T2
2

π
J0ðm=TÞ; ð3:7Þ

and

I1ðm; TÞ ¼ 1

2π

�
1

ϵ
− ln

�
m
M

�
þ ϵ

2

�
ln2

�
m
M

�
þ π2

24

��

−
1

π
J1ðm=TÞ; ð3:8Þ

where, in the above expressions, the thermal integrals J0ðxÞ
and J1ðxÞ read, respectively,

J0ðxÞ ¼
Z

∞

0

dz ln ð1 − e−ωzÞ; ð3:9Þ

and

J1ðxÞ ¼
Z

∞

0

dz
1

ωzð1 − eωzÞ ; ð3:10Þ

where we have defined the dimensionless quantity ω2
z ¼

z2 þ x2, with z ¼ jpj=T and x ¼ m=T.

FIG. 1. Feynman diagrams contributing to the perturbative
pressure at OðgÞ. The first term represents P0ðm0Þ, the second,
P1ðm0; g0Þ, the third term represents the self-energy counterterm
PCT
0 [obtained from expanding Zm to first order in P0ðm0 ¼

ZmmÞ], while the fourth term represents the zero point contri-
bution E0ðg0Þ to Eq. (3.1).
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Putting all together in Eq. (3.1), inserting I1ðm; TÞ into
Eqs. (3.4), (3.5) and expanding to Oðϵ0Þ, one may isolate
the possibly remaining divergences contributing to the
pressure (after mass and coupling renormalization having
been performed), as

P ¼ −
ðN − 1Þ

2
Ir0ðm; TÞ

− ðN − 1Þ ðN − 3Þ
8

m2g½Ir1ðm; TÞ�2

− ðN − 1Þ m2

ð4πÞϵ
�
1 − g

ðN − 3Þ
2ð4πÞϵ

�

þm2

g
Z2
mZ−1

g ; ð3:11Þ

where we have defined the finite quantities

Ir0ðm; TÞ ¼ m2

2π

�
1

2
− ln

�
m
M

��
þ T2

2

π
J0ðm=TÞ; ð3:12Þ

and

Ir1ðm; TÞ ¼ −
1

2π
ln

�
m
M

�
−
1

π
J1ðm=TÞ: ð3:13Þ

Then, renormalizing finally the zero-point energy
E0ðm0; g0Þ, last term in Eq. (3.11), gives:

m2

g
Z2
mZ−1

g ¼ m2

g
Z−1=2
π

¼ m2

g

�
1þ ðN − 1Þ

4πϵ
g −

ðN − 1ÞðN − 3Þ
2ð4πÞ2ϵ2 g2

þOðg3Þ
�
; ð3:14Þ

where we used the exact NLSM relation [32] Z2
mZ−1

g ¼
Z−1=2
π with π20 ¼ Zππ

2 and the two-loop order [41] Zπ

counterterm expression. Accordingly, (3.14) acts as a
vacuum energy counterterm, exactly cancelling the remain-
ing divergences in Eq. (3.11), so that one can write the
renormalized two-loop pressure in the compact form

P ¼ m2

g
−
ðN − 1Þ

2

�
Ir0ðm; TÞ þ ðN − 3Þ

4
m2g½Ir1ðm; TÞ�2

�
:

ð3:15Þ

Before we proceed, we should stress that those vacuum
energy (pressure) renormalization features in the MS-
scheme are peculiar to the NLSM: in contrast for a general
massive model the vacuum energy (equivalently pressure)
is not expected to be renormalized solely from the mass and
coupling counterterms, such that one needs additional

proper vacuum energy counterterms. Here the latter are
provided for free, by retaining consistently the field-
independent zero-point energy E0ðm0; g0Þ already present
in the Lagrangian. Omitting this term would force to
introduce new minimal counterterms [i.e., cancelling solely
the divergent terms shown explicitly in (3.14)], however
missing thus the finite lowest order m2=g term that remains
in the renormalized pressure Eq. (3.15). Moreover, not
surprisingly the latter term is crucial to ensure perturbative
RG invariance of the renormalized pressure. More pre-
cisely, consider the renormalization group (RG) operator,
defined by

M
d
dM

≡M
∂
∂M þ β

∂
∂g −

n
2
ζ þ γmm

∂
∂m : ð3:16Þ

Applying the latter to the pressure (zero-point vacuum
energy) one has n ¼ 0, so that one only needs to consider
the β and γm functions. At the two-loop level,

β ¼ −b0g2 − b1g3 þOðg4Þ; ð3:17Þ

and

γm ¼ −γ0g − γ1g2 þOðg3Þ; ð3:18Þ

where the RG coefficients in our normalization are [41]:

b0 ¼ ðN − 2Þ=ð2πÞ; ð3:19Þ

b1 ¼ ðN − 2Þ=ð2πÞ2; ð3:20Þ

γ0 ¼ ðN − 3Þ=ð8πÞ; ð3:21Þ

γ1 ¼ ðN − 2Þ=ð8π2Þ: ð3:22Þ

It is now easy to check that applying (3.16) to Eq. (3.15)
gives

M
dP
dM

¼ Oðg2Þ; ð3:23Þ

i.e. RG invariance up to higher order (three-loop here)
neglected terms. This is a quite remarkable feature of the
NLSM, that one can trace to the nonlinear origin of the
mass term in (2.3) (footprint of the decoupled σ field, once
expressed in terms of πi fields). Accordingly this contri-
bution contains much more than mere πi mass terms, in
particular the RG properties of the finite remnant m2=g
piece in Eq. (3.15) lead to Eq. (3.23). In contrast, for other
models with linear mass terms (like in the ϕ4 model
typically), the naive (perturbative) vacuum energy gener-
ally badly lacks RG invariance, already at lowest order.
To further appreciate these features, suppose now that

we had dropped the peculiar NLSM zero-point term
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E0 ¼ m2
0=g0 in (2.3) from the perturbative calculation of the

pressure, which is exactly the situation one generally deals
with in other (linear) models, where such terms are simply
absent from the start. In this case the remaining divergences
in Eq. (3.11) have to be minimally cancelled by appropriate
counterterms. Next applying (3.16) to the resulting finite
pressure Eq. (3.15) (but now missing the very first term),
since β and γm are at least of order-g, one obtains

M
dP
dM

¼ −ðN − 1Þm
2

4π
þOðgÞ; ð3:24Þ

which explicitly shows the lack of perturbative scale-
invariance, the remnant term being of leading order
Oðm2Þ. Such remnant terms generally occur in any massive
model and are nothing but the manifestation that the
vacuum energy of a (massive) theory has a nontrivial
anomalous dimension in general. In this case, to restore RG
invariance one needs to add finite contributions, perturba-
tively determined from RG properties (see e.g. [25,26] in
the thermal context, or for earlier similar considerations at
vanishing temperature, [42]). Thus (once having minimally
renormalized the remaining divergences of the pressure),
one is lead to (re)introduce an additional finite contribution
in E0 which, upon acting with the RG operator Eq. (3.16),
precisely compensates the remnant anomalous dimension
terms like the lowest order one in Eq. (3.24). Still
pretending to ignore the initially present NLSM E0 term
(or when absent like in other model cases), one can add a
finite contribution of the generic form m2fðgÞ=g (which in
minimal subtraction schemes cannot depend explicitly on
the temperature, nor on the renormalization scale M, since
it is entirely determined from (integrating) the RG anoma-
lous dimension). Following [25,26] one can write the finite
zero-point energy contribution, ERG

0 :

ERG
0 ¼ m2

X
k≥0

skgk−1; ð3:25Þ

and determine the coefficients sk by applying (3.16)
consistently order by order. In the present NLSM, one
can easily check that it uniquely fixes the relevant coef-
ficients up to two-loop order, s0, s1, as

s0 ¼
ðN − 1Þ

4πðb0 − 2γ0Þ
¼ 1; ð3:26Þ

and

s1 ¼ ðb1 − 2γ1Þ
s0
2γ0

¼ 0; ð3:27Þ

(which vanishes as b1 ¼ 2γ1 in the NLSM).
Thus from perturbative RG considerations, Eq. (3.25)

with (3.26), (3.27) reconstructs consistently the NLSM first
term of (3.15), originally present in our original NLSM

derivation above. While this derivation was unnecessary for
the NLSM, it illustrates the procedure needed for an
arbitrary massive model, where such finite vacuum energy
terms are generally absent and can be reconstructed
perturbatively in such a way. As we will see in Sec. IV,
the presence of this finite vacuum energy piece induces a
nontrivial mass gap solution already at lowest order, in
contrast with other related variational approaches. Its
presence will be crucial to obtain some essentially non-
perturbative features of the model already at lowest order.
We remark in passing that the result s1 ¼ 0 [equivalently
the original NLSM expression (3.15)] is a consequence of
the peculiar RG properties of the NLSM. We anticipate that
this affects the properties of the RGOPT solution at two-
loop order, as will be examined below in Sec. V. In other
models those perturbative subtraction coefficients are
a priori all nonvanishing, as is the case in various other
scenarios explored so far [23–26].
To conclude this section, we stress that the vacuum

energy terms as in Eq. (3.25), generally required in massive
renormalization schemes based on dimensional regulariza-
tion, have been apparently ignored in many thermal field
theory applications, in particular in the SPT and resummed
HTLpt construction [17,18], essentially based on adding a
(thermal) mass term. In contrast our construction maintains
perturbative RG invariance at all levels of the calculation:
first, by considering generically for any model the required
perturbative finite subtraction (3.25) (although already
present from the start in the peculiar NLSM case, as above
explained). In a subsequent step, RG invariance is main-
tained (or more correctly, restored) also within the more
drastic modifications implied by the variationally opti-
mized perturbation framework, as we examine now.

IV. RG OPTIMIZED PERTURBATION THEORY

To implement next the RGOPTone must first modify the
standard perturbative expansion by rescaling the infrared
regulator m and coupling:

m → ð1 − δÞam; g → δg; ð4:1Þ

in such a way that the Lagrangian interpolates between a
free massive theory (for δ ¼ 0) and the original massless
theory (for δ ¼ 1) [22]. This procedure is similar to the one
adopted in the standard SPT/OPT [4,6,7] or HTLpt
applications, except for the crucial difference that within
the latter methods the exponent is rather taken as a ¼ 1=2
(for scalar mass terms) or a ¼ 1 (for fermion mass terms),
reflecting the intuitive notion of “adding and subtracting” a
mass term linearly, but without deeper motivations. In
contrast, as we will recall now, the exponent a in our
construction is consistently and uniquely fixed from requir-
ing the modified perturbation, after performing (4.1), to
restore the RG invariance properties, which generally
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makes it different from the above linear values a ¼ 1=2 for
a scalar term2.
Before we proceed, let us first remark that since the mass

parameter is being optimized by using the variational
stationary mass optimization prescription [4–6] (as in
SPT/OPT),

∂PRGOPT

∂m
				
m¼m̄

¼ 0; ð4:2Þ

the RG operator acquires the reduced form

�
M

∂
∂M þ β

∂
∂g

�
PRGOPT ¼ 0: ð4:3Þ

which is indeed consistent for a massless theory.
Then, performing the aforementioned replacements

given by Eq. (4.1) within the pressure Eq. (3.15), con-
sistently re-expanding to lowest (zeroth) order in δ, and
finally taking δ → 1, one gets

PRGOPT
1L ¼ −

ðN − 1Þ
2

Ir0ðm; TÞ þm2

g
ð1 − 2aÞ: ð4:4Þ

Now to fix the exponent a we require the RGOPT pressure,
Eq. (4.4), to satisfy the reduced RG relation, Eq. (4.3). This
uniquely fixes the exponent to

a ¼ γ0
b0

¼ ðN − 3Þ
4ðN − 2Þ ; ð4:5Þ

where the first generic expression in terms of RG coef-
ficients coincides with the value found for the similar
prescription applied to the scalar λϕ4 theory [25,26] and
also to QCD (up to trivial normalization factors). We indeed
recall that, as discussed in Refs. [22–26], the exponent a is
universal for a given model as it only depends on the first-
order RG coefficients, which are renormalization scheme
independent. Furthermore, at zero temperature, Eq. (4.5)
greatly improves the convergence of the procedure at
higher orders: considering only the first RG coefficients
b0 and the γ0 dependence (i.e., neglecting higher RG orders
and non-RG terms), it gives the known exact nonperturba-
tively resummed result at the very first order in δ and also at
any successive order [23]. This is not the case for a ¼ 1=2
(for a scalar model), where the convergence appears very
slow, if any3.

With the exponent a determined, one can write the
resulting one-loop RGOPT expression for the NLSM
pressure as

PRGOPT
1L ¼ −

ðN − 1Þ
2

Ir0ðm; TÞ þ ðN − 1Þ m2

ð4πÞgb0
: ð4:6Þ

In the same way, the two-loop standard PT result obtained
in the previous section gets modified accordingly to yield
the corresponding RGOPT pressure at the next order of
those approximation sequences. After performing the sub-
stitutions given by Eq. (4.1), with a ¼ γ0=b0 within the
two-loop PT pressure Eq. (3.15), expanding now to first
order in δ, next taking the limit δ → 1, gives

PRGOPT
2L ¼ −

ðN − 1Þ
2

Ir0ðm; TÞ þ ðN − 1Þ
�
γ0
b0

�
m2Ir1ðm; TÞ

− gðN − 1Þ ðN − 3Þ
8

m2½Ir1ðm; TÞ�2

þ ðN − 1Þ
4π

m2

gb0

�
1 −

γ0
b0

�
: ð4:7Þ

V. RG INVARIANT OPTIMIZATION
AND THE MASS GAP

To obtain the RG invariant optimized results, as a general
recipe at a given order of the (δ-modified) expansion, one
expects a priori to solve the mass optimization prescription
(dubbed MOP below), Eq. (4.2), and the reduced RG
relation, Eq. (4.3), simultaneously, thereby determining the
optimizedm≡ m̄ and g≡ ḡ “variational” fixed point values
[21,23]. However, at the lowest nontrivial δ0 order, apply-
ing the reduced RG operator (4.3) to the (δ-modified) one-
loop pressure according to (4.1) with (4.5), gives a
vanishing result, by construction. Therefore, the only
remaining constraint that one can apply at this lowest
order is the MOP, Eq. (4.2).

A. One-loop RGOPT mass gap and pressure

Considering thus the MOP, Eq. (4.2), as giving the mass
as a function of the other parameters g, T,M, it gives a gap
equation for the optimized mass m̄ðTÞ,

fð1LÞMOP ¼ 1 − 2πgb0Ir1ðm; TÞ≡ 0; ð5:1Þ

or more explicitly, defining x̄≡ m̄=T, and using Eq. (3.13),

ln
m̄
M

þ 2J1ðx̄Þ þ
1

b0gðMÞ ¼ 0: ð5:2Þ

For T ≠ 0 Eq. (5.2) gives an implicit function of m̄, due to
the nontrivial m-dependence in the thermal integral. At
T ¼ 0, Eq. (5.2) immediately leads to

2Nonlinear interpolations with a ≠ 1=2 and fixed by other
consistency requirements had also been sometimes considered
previously[9,10,43].

3Notice also that, while in many other models, the simple
linear interpolation with a ¼ 1 for a fermions mass (a ¼ 1=2 for
a boson mass) is recovered in the large-N limit (like typically for
the GN model [21] and the scalar ϕ4 model [26]), this is not the
case here for the NLSM, where a → 1=4 for N → ∞.
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m̄ð0Þ ¼ M exp

�
−

1

b0gðMÞ
�
: ð5:3Þ

It is instructive to remark that the above optimized mass gap
is dynamically generated by the (nonlinear) interactions
and reflects dimensional transmutation, with nonperturba-
tive coupling dependence. Accordingly the formerly per-
turbative Goldstone bosons get a nonperturbative mass,
indicating the restoration of the full OðNÞ symmetry
(although within our limited one-loop RG approximation,
at least at the same approximation level as the large-N limit
[30,33]). The Eq. (5.3) moreover fixes the optimized mass
m̄ to be fully consistent with the running coupling gðMÞ as
described by the usual one-loop result,

g−1ðMÞ ¼ g−1ðM0Þ þ b0 ln
M
M0

; ð5:4Þ

in terms of an arbitrary reference scale, M0.
Now replacing the mass gap expression, Eq. (5.2), within

the one-loop pressure, Eq. (4.6), leads to a more explicit
and rather simple expression. Namely,

PRGOPT
1L ¼ −

ðN − 1Þ
π

T2

�
J0

�
m̄
T

�

þ 1

8

�
m̄
T

�
2
�
1þ 4J1

�
m̄
T

���
; ð5:5Þ

where m̄≡ m̄ðg;M; TÞ is given by the solution of
Eq. (5.2)4.
For completeness, we also give the corresponding

pressure at zero-temperature, that we will use to subtract
from Eq. (5.5) in the numerical illustrations to be given in
Sec. VI, such as to obtain a conventionally normalized
pressure, PðT ¼ 0Þ≡ 0. From Eq. (5.5) one obtains

PRGOPT
1L ðT ¼ 0Þ ¼ −

ðN − 1Þ
8π

m̄2ð0Þ; ð5:6Þ

where the T ¼ 0 mass-gap is given in Eq. (5.3).
From the above expressions, one may anticipate that

Eqs. (5.2) and (5.5) exhibit “exact” scale invariance (of
course exact upon neglecting higher order terms at this
stage), as it will be further illustrated by the numerical
evaluations performed in Sec. VI.

B. Large-N mass gap and pressure

Before deriving the RGOPT results at the next (two-
loop) order, for completeness we consider the large-N (LN)
limit of the model, as it can be directly obtained from the
previous one-loop RGOPT result and it will be also studied

for comparison purposes in the sequel. The LN limit is
straightforwardly generated from the usual procedure of
rescaling the coupling as

g≡ gLN=N; ð5:7Þ

and then taking the limitN → ∞ in the relevant expressions
above, such that typically any (N − 1), (N − 2), … factors
in Eq. (4.6), or previous related expressions reduce to N,
while higher orders terms are 1=N-suppressed.5 Therefore,
the LN limit of the RGOPT pressure expression (4.6) takes
the explicit form

PLN ¼ −
N
2
Ir0ðm; TÞ þ N

m2

2gLN
: ð5:8Þ

Note that Eq. (5.8) is fully consistent with the first order of
the nonperturbative two-particle irreducible (2PI) CJT
formalism [44] result given in Ref. [31] (the Eq. (2.42)
in that reference), upon further subtracting PðT ¼ 0Þ from
Eq. (5.8), with the large-N limit of the mass gap m̄,
Eq. (5.3), b0g → gLN=ð2πÞ, also consistent with the
Eq. (2.44) of Ref. [31]. The authors of Ref. [31] have
explained the reasons for the strict equivalence of their first
order CJT approximation with the large-N results [30].
The similarities between RGOPT at one-loop order and

the first nontrivial order of 2PI results were already noticed
in the context of the scalar ϕ4 model [26]. Hence, at large-N
the rather simple RGOPT lowest (one-loop) order pro-
cedure is equivalent to resumming the leading order
temperature dependent terms for the mass self-consistently
and this result remains valid at any temperature.
Note also that within the standard nonperturbative LN

calculation framework, the last term in Eq. (5.8) arises
when this approximation is implemented with, e.g., the
traditional auxiliary field method [30], and is crucial to
maintain consistent RG properties. Accordingly, the LN
pressure will also exhibit “exact” scale invariance, at this
approximation level. However, as we will examine explic-
itly below, the pressure at the NLO in the 1=N expansion,
although an a priori more precise nonperturbative quantity,
is not exactly scale invariant, exhibiting a moderate residual
scale dependence.
The LN pressure (5.8) now scales as ∼N. Thus, to

compare this LN approximation in a sensible manner with
the true physical pressure (i.e. for a given physical Nphys

value), in the numerical illustrations to be performed in
Sec. VI, we will adopt the standard convention to take the

4Notice that the term proportional to g−1 in Eq. (4.6) has been
absorbed upon using Eq. (5.2), such that there are no particular
problems for g → 0 in Eq. (5.5).

5One must note one subtlety: the second term of Eq. (3.15),
formally not vanishing after using (5.7) forN → ∞, should not be
included, as it would be double-counted, since such term (and all
higher order LN terms) is actually consistently generated from
using the LN limit of the mass gap Eq. (5.2) within the LN
pressure Eq. (5.8).
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overall N factor of the LN pressure (5.8) as N → Nphys

(typically Nphys ¼ 3; 4; � � � in our numerical illustrations).

C. Two-loop RGOPT mass gap and pressure

Going now to two-loop order, the mass optimization
criterion Eq. (4.2) applied to the RGOPT-modified two-loop
pressure Eq. (4.7) can be cast, after straightforward algebra,
in the form (omitting some irrelevant overall factors):

fð2LÞMOP ≡ f3N − 5 − b0ðN − 3Þg½1þ Y þ 2x2J2ðxÞ�g

×m

�
1

b0g
þ Y

�
¼ 0; ð5:9Þ

where, we have defined for convenience the following
dimensionless quantity [compare with Eq. (3.13)],

Y ≡ ln
m
M

þ 2J1ðxÞ ¼ −2πIr1ðm; TÞ; ð5:10Þ

and the thermal integral, xJ2ðxÞ≡ ∂xJ1ðxÞ reads

J2ðxÞ ¼
Z

∞

0

dz
½eωzð1þ ωzÞ − 1�
ω3
zð1 − eωzÞ2 : ð5:11Þ

Alternatively, the reduced RG equation (4.3), using the exact
two-loop β-function Eq. (3.17), yields

fð2LÞRG ≡m2

�
g
ð3N − 5Þ

2π
þ ðN − 3Þ

×

�
1þN − 2

π
gY

�
1þN − 2

4π
g

�
1þ g

2π

�
Y

���
¼ 0:

ð5:12Þ

When considered as two alternative (separate) equations,
(5.9) and (5.12), apart from having the trivial solution
m̄ ¼ 0, also have a more interesting nonzero mass gap
solution, m̄ðg; T;MÞ, with nonperturbative dependence on
the coupling g. It is convenient to solve Eq. (5.12) first
formally as second-order algebraic equations for Y, as
function of the other parameters, and solving (numerically)
the mass gap m̄ðg; T;MÞ using Eq. (5.10). To get more
insight on those implicit self-consistent equations for
mðg; TÞ, let us first observe that the MOP Eq. (5.9)
factorizes, with the first factor recognized as the one-loop
MOP Eq. (5.2). Now it is easily seen that the other
nontrivial solution, given by cancelling the second factor
in Eq. (5.9), gives at T ¼ 0 a behavior of the coupling (or
equivalently, of the mass gap), asymptotically of the form,
when M ≫ m,

gðm;M; T ¼ 0Þ⟶M≫m
�
5 − 3N
N − 3

�
1

b0 lnM
m

; ð5:13Þ

which badly contradicts the asymptotic freedom (AF)
property of the NLSM, the coefficient of the right-hand
side of Eq. (5.13) having the opposite sign of AF for any

N > 3. We therefore unambiguously reject this solution,6

which means that at two-loop order, the correct g → 0 AF-
compatible physical branch solution of Eq. (5.9) for the
mass gap is unique and formally the same as the one-loop
solution from Eq. (5.2). But more generally one expects
both the mass optimization and the RG solution of (5.12) to
differ quite drastically from the one-loop solution, obvi-
ously since incorporating higher order RG-dependence. For
the NLSM one also immediately notices that the case
N ¼ 3 is very special, as could be expected, since the two-
loop original perturbative contribution in Eq. (3.15) van-
ishes. Once performing the δ-expansion at two-loop order,
even if that gives extra terms, as can be seen by comparing
Eqs. (4.6) and (4.7), these also vanish for N → 3, since
γ0ðN ¼ 3Þ ¼ 0, see Eq. (3.21). Moreover, if using only
Eq. (5.9), it reduces for N ¼ 3 to the last factor, identical to
the one-loop MOP Eq. (5.2). Thus, if using the latter MOP
prescription for N ¼ 3, one would only recover the one-
loop mass gap solution Eq. (5.2), which implies no possible
improvement from one- to two-loop order. However, using
instead the full RG equation Eq. (3.16), as we will specify
below, gives a nontrivial two-loop mass gap solution m̄ðgÞ
that is intrinsically different and goes beyond the one-loop
solution Eq. (5.2) even for N ¼ 3. It thus implies that
the final RGOPT pressure, considered as a function of the
coupling, Pðm̄ðgÞÞ, will nevertheless be different from
the one-loop Eq. (5.5). In that way, even for N ¼ 3, where
the purely perturbative two-loop term cancels, the RGOPT
procedure allows a different (and a priori improved)
approximation from one- to two-loop order. We will see
that those differences between one- and two-loop RGOPT
expressions happen to be maximal for N ¼ 3 (which is
intuitively expected since it is the lowest possible physical
value for the interacting NLSM). This is a quite sensible
feature in view of the fact that we will compare the RGOPT
one- and two-loop results with nonperturbative lattice
simulations [31], which are, however, only available for
N ¼ 3 at present.
Now forN > 3, in principle it would be desirable to find a

simultaneous (combined) solution of Eqs. (5.9) and (5.12),
such as to obtain the approximate optimal “fixed point” set
fm̄; ḡg, as was done in some T ¼ 0 models [21–24]. For
T ≠ 0 it would leave a given pair (T, M) as the only input
parameters. But for the present NLSM, a rather unexpected
feature happens: as easily derived, e.g., by solving the correct
AF physical solution of Eq. (5.9) first for Y, and substituting
in Eq. (5.12), after some straightforward algebra the latter
readily reduces to

gm2 ¼ 0: ð5:14Þ

6This illustrates another advantage of the RGOPT construc-
tion, namely that by simply requiring [23] AF-compatible branch
solutions for g → 0 one often can select a unique optimized
solution at a given perturbative order.
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Thus, at two-loop order there is no such nontrivial RG and
MOP combined solution in the NLSM. This is not an
expected result in general for other models, but that one
can easily trace back to the specific renormalization proper-
ties of theNLSMvacuum energy inMS-scheme as discussed
in Sec. III. (Equivalently the subtraction coefficient s1 in
Eq. (3.27) vanishes due to the peculiar NLSM b1 ¼ 2γ1
relations between two-loop RG coefficients for any N.7 It is
thus a peculiar feature of the NLSM, unlikely to occur in a
large class of other models. It simply means that at two-loop
order theNLSMpressure has a too simple (m, g) dependence
to provide such a nontrivial intersecting optimal solution of
the two relevant, RG and MOP equations. Nontrivial
combined RG and MOP solutions should most likely exist
for the NLSM at the next three-loop order, which is however
beyond the scope of the present analysis. Therefore, restrict-
ing ourselves to the two-loop order for simplicity, for N > 3
we have to select either Eq. (5.9), or Eq. (5.12) to give the
mass gap, then fixing the couplingmore conventionally from
its more standard perturbative behavior. Besides these
peculiar NLSM features, the latter prescription is also more
transparent to compare with former similar SPT or HTLpt
available results for other models, where the (mass) opti-
mization or other used prescriptions only provide a mass gap
as a function of the coupling, and the coupling is not fixed by
other procedures, thus generally chosen as dictated by the
standard (massless) perturbative behavior [7,17,18].
Now Eq. (5.12) alone happens to have real solutions only

at large-N, in contrast with Eq. (5.9), which has real
solutions for any N > 2. But since the correct NLSM
AF branch of the mass optimization solution of Eq. (5.9)
behaves accidentally very much like at one-loop order, as
explained above, we do not expect to gain much from it
when going to the two-loop order. A more promising
alternative is to use instead the complete RG equation,
which combine Eq. (5.9) and Eq. (5.12) in the form
(omitting irrelevant overall factors):

fð2LÞfull RG ≡ fð2LÞRG þ 2mγmf
ð2LÞ
MOP ¼ 0; ð5:15Þ

where γm consistently includes two-loop Oðg2Þ terms, see
Eq. (3.18). Not only this contains the maximal RG
“information”, in contrast with the simpler mass optimi-
zation Eq. (5.9), but since the RG equation is considered
alone, ignoring its possible combination with the mass
optimization (4.2), Eq. (5.15) is more appropriate than the
reduced RG Eq. (5.12), which is obtained only after using
Eq. (4.2). The input parameters are now fT;M; gðMÞg and
Eq. (5.15) allows to fix m̄. Moreover, Eq. (5.15) does give
real solutions for any value of N and for small to

moderately large couplings. In addition, as mentioned
above, for the very special case N ¼ 3 it also gives a mass
gap solution that is intrinsically different from the one-loop
solution (5.2), a very welcome feature. (This happens
because of the additional coupling dependence within γm
in Eq. (5.15), which turns the otherwise trivial RG solution
of Eq. (5.12) alone, for N ¼ 3, into a nontrivial solution).
All the previous considerations therefore impose Eq. (5.15)
as the most sensible and unique prescription, that we follow
from now on. For very strong couplings and N > 3 the
solutions of (5.15) become complex, nevertheless, if
needed, this region can still be explored by solving the
less stringent condition given by Eq. (5.9)8.
We emphasize that when using Eq. (5.15) to determine

the optimized pressure results, one may consider that the
coupling runs in the way dictated by the standard pertur-
bative approximation. Hence, apart from the one-loop
running in Eq. (5.4), we also need the two-loop running
coupling, with exact expression given e.g. in [26], which
can be approximated as follows with sufficient accuracy [as
long as g remains rather moderate g ∼Oð1Þ],

g−1ðMÞ≃ g−1ðM0Þ þ b0Lþ ðb1LÞgðM0Þ

−
�
1

2
b0b1L2

�
g2ðM0Þ

−
�
1

2
b21L

2 −
1

3
b20b1L

3

�
g3ðM0Þ

þOðg4Þ; ð5:16Þ

where L ¼ lnðM=M0Þ. As it is standard, one can compare
the scale dependence of the different approximations by
settingM ¼ αM0, whereM0 is an arbitrary reference scale,
and varying α in a given range from Eq. (5.4) or Eq. (5.16),
at one- and two-loop orders, respectively.

D. Comparison with PT pressure and
Debye screening pole mass

In order to compare our results with the standard
(massless) perturbation theory (PT) in the present NLSM
model, it is appropriate to consider the high-T expansion of
the relevant expressions. This is also relevant for a (merely
qualitative) comparison with HTLpt results [17] in other
models, since the latter proceeds with expansions in powers
of x ¼ m=T. We will see in this subsection that Eqs. (5.2),
or equivalently, Eqs. (5.9) and (5.15) at two-loop order,
have relatively simple mass gap solutions given in this case

7More precisely, if s1 ≠ 0, as it happens in other models, the
two-loop MOP Eq. ([5]) does not factorize like in Eq. (5.9) with
the one-loop solution factor. Therefore, a nontrivial combined
solution does exist.

8When none of the RG and MOP equations give real solutions,
one may attempt an additional prescription, performing pertur-
bative renormalization scheme changes, which may recover real
solutions, as was done at T ¼ 0 in Ref. [23]. The generalization
of this extra procedure to T ≠ 0 in the present context appears
however numerically more involved and beyond the scope of the
present paper.
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as a systematic perturbative expansion in powers of the
coupling.
It is thus useful to consider the well known high-T

expansions, where x ¼ m=T ≪ 1, for the thermal integrals
[39],

J0ðxÞ ¼ −
π2

6
þ π

2
xþ

�
x
2

�
2
�
ln

�
xeγE

4π

�
−
1

2

�
þOðx4Þ;

ð5:17Þ

J1ðxÞ ¼ −
π

2x
−
1

2
ln
�
xeγE

4π

�
þOðx4Þ: ð5:18Þ

We also introduce the Stefan-Boltzmann (SB) limit of the
renormalizedNLSMpressure,whichwill enter as a reference
pressure in many of the numerical examples to be given
below in Sec. VI,

PSB ¼ ðN − 1Þ π
6
T2; ð5:19Þ

which is obtained by taking the massless, or high-T limit, of
Eq. (5.17) of the one-loop perturbative result Eq. (3.2). This
gives for the one-loop RGOPT pressure Eq. (5.5),

PRGOPT
1L

PSB
¼ 1 −

3

π
x̄ −

3

2π2
x̄2
�
LT −

1

b0g

�
þOðx̄4Þ; ð5:20Þ

where we have defined LT ¼ ln½MeγE=ð4πTÞ�.
Next, the optimized mass solution, obtained from

Eq. (5.2), can be expressed as function of the coupling:

x̄≡ m̄
T
¼ πb0gðMÞ

1 − b0gðMÞLT
; ð5:21Þ

or that simply gives, when expanding to the lowest
perturbative order,

m̄ðTÞ≃ πb0gðMÞT þOðg2Þ: ð5:22Þ

Note that using the optimized mass gap solution (5.21)
within Eq. (5.20), the latter takes a much simpler expres-
sion (in the high-T limit here considered),

PRGOPT
1L

PSB
¼ 1 −

3

2π
x̄þOðx̄4Þ

≃ 1 −
3

2

b0gðMÞ
1 − b0gðMÞLT

¼ 1 −
3

2
b0g

�
4πT
eγE

�
; ð5:23Þ

using Eq. (5.4) in the last term. At the next two-loop order,
one obtains in the high-T approximation a relatively
compact expression of the RGOPT pressure Eq. (4.7):

PRGOPT
2L

PSB
¼ 1 −

3x̄
4π

�
3N − 5

N − 2

��
1 −

x̄
ðN − 2Þg

�

−
3x̄2

4π2

�
N − 1

N − 2

�
LT −

3gðN − 3Þ
16π3

ðπ þ LTx̄Þ2;

ð5:24Þ
where the correct (i.e. AF) solution m̄≡ x̄T of the full RG
Eq. (5.15) is given simply by one of the roots of a quadratic
equation. m̄ is in general different from the one-loop
solution (5.21), as expected since it now involves two-
loop order RG coefficients b1, γ1: indeed it has a rather
involved dependence on g that we refrain to give explicitly.
But once perturbatively reexpanded, it coincides at first
order with (5.21) (for any N > 3), which is a nontrivial
perturbative consistency check of our construction.
Replacing this exact two-loop m̄ as a function of g within
the two-loop pressure (5.24), one obtains an expression that
differs from the one-loop pressure, Eq. (5.23), by higher
order perturbative terms, starting at Oðg3Þ:
PRGOPT
2L

PSB
¼ 1 −

3

2

b0gðMÞ
1 − b0gðMÞLT

þ 3g3ðMÞ
π3

ðN − 2Þ4
ðN − 3Þ2ð3N − 5Þ þOðg4Þ; ð5:25Þ

valid strictly only for N > 3. Accordingly the extra terms in
Eq. (5.25) illustrate rather simply (perturbatively) the addi-
tionnal contributions from two-loop RGOPTwith respect to
the one-loop pressure (5.23). One should keep in mind,
however, that the exact two-loop pressure (4.7), including
full g- and T-dependence from the exact m̄ðg; TÞ (which we
illustrate numerically below mainly for N ¼ 4) has a much
more involved, nonperturbative dependence on the coupling
(and temperature). In particular, while Eq. (5.25) is a
relatively good approximation for moderate g and N ≥ 4,
it is not valid for the very special case N ¼ 3, for which the
exact pressure Pðm̄ðgÞÞ actually does not show any singular
behavior, since both the original expression Eq. (5.24) and
m̄ðgÞ are regular forN ¼ 3. The singularity atN ¼ 3 seen in
Eq. (5.25) is thus unphysical, being only an artifact of having
perturbatively reexpanded m̄ðgÞ, which exhibits a 1=ðN − 3Þ
terms at order g2. (Therefore for the caseN ¼ 3 some care is
needed in the numerics to take the limit N → 3 before
possibly expanding in perturbation, which is however not
needed). Still, Eq. (5.25) indicates crudely that the difference
between one- and two-loop RGOPT should be maximal for
N ¼ 3, which is also true for the exact (regular) expression,
and was intuitively expected, since N ¼ 3 is the lowest
physically nontrivial value. At the other extreme forN → ∞,
one can easily check that the two-loop optimized mass and
pressure tend towards the corresponding one-loop quantities,
i.e. the LN results like the pressure Eq. (5.8).
To compare the previous RGOPT results with the

standard PT ones, one can start by deriving the PT pressure
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directly from Eq. (3.15) in the massless limit, which at this
two-loop order is well defined. It gives

PPT

PSB
¼ 1 −

3

2
γ0gðMÞ þOðg2Þ: ð5:26Þ

Another quantity of interest is the purely perturbative
thermal Debye (pole) mass: at one-loop order it can be
derived starting from the self-energy [32,33],

Γð2Þðp2Þ¼p2ð1þg0I1Þþm2
0

�
1þðN−1Þ

2
g0I1

�
þOðg2Þ;

ð5:27Þ

where I1 is the (Euclidean) one-loop integral given by
Eq. (3.8) in MS renormalization scheme, with the thermal
part J1ðxÞ having the high-T expansion (5.18). Taking,
thus, the pole mass p2 ≡ −m2

D in Eq. (5.27), after mass
renormalization, it gives, in the massless limit m → 0
relevant for the pure thermal one-loop mass, the result

m1L
D ¼ N − 3

8
gðMÞT ≡ πγ0gðMÞT: ð5:28Þ

Equation (5.28) can be contrasted with the more non-
perturbative RGOPT result (5.22). Accordingly, note that
the RGOPT optimized mass (5.22) appears to have a
different perturbative behavior than the Debye pole mass
(5.28): Namely, with γ0 → b0, and similarly for the
pressure, comparing the RGOPT result Eq. (5.20) with
the PT pressure (5.26), the slopes of both masses at the
origin as a function of g are different. However, one should
not be surprised by these differences. First, in contrast with
the physical one-loop Debye (pole) mass, the optimized
mass (5.22) is only an intermediate unphysical quantity in
the optimization procedure, aimed to enter the final
pressure to make it a (nonperturbative) function of g only.
Second, the resulting PRGOPTðgÞ, obtained by such a
construction, has a priori more nonperturbative content.
Thus, it has no reason to generate a function that exactly
matches the one generated by the standard PT. This is
similar to the fact that the pressure, in the nonperturbative
LN approximation, also is a function of g that is intrinsi-
cally different from the purely PT pressure,

PLN

PSB
¼ N

N − 1

�
1 −

3

2
gLN

�
þOðg2LNÞ: ð5:29Þ

Thus, at this stage the coupling value is an essentially
arbitrary input, being not fixed from a physical input at a
given scale, in both PT, LN and RGOPT approximation
cases, and a physical input would fix a priori different
values of the coupling in different approximation schemes.
However, the perturbative and physical consistency of the
RGOPT pressure result can be checked by appreciating
that, once the arbitrary mass in Eq. (5.20) is replaced with
the physical thermal mass mD Eq. (5.28), one consistently

recovers the standard PT pressure as function of g,
Eq. (5.26). In other words, when expressed in terms of
physical quantities (like here the Debye pole mass) the
RGOPT results are consistent with standard PT for g → 0
(see, e.g., Ref. [26] for a detailed discussion of similar
results for the scalar ϕ4 model).

E. Comparison with standard SPT/OPT

For completeness, let us review how the more standard
OPT (or SPT) approximation is obtained and derive it for
the NLSM, for useful comparison purpose with the RGOPT
results. In this case, one starts back again with Eq. (3.1), but
as already emphasized above, there are two important
differences with the previously derived RGOPT construc-
tion. First, the standard SPT/OPT, as was considered in
various models, generally ignored the finite vacuum energy
subtraction terms like in Eq. (3.25), required to restore the
perturbative RG invariance as we have discussed. The
second difference regards the Gaussian term when perform-
ing the interpolation, Eq. (4.1), since in the standard OPT
case the exponent a is fixed in an ad hoc way as a ¼ 1=2.
While it should be clear from the above RGOPT con-
struction that such prescription will therefore lack explicitly
RG invariance, we nevertheless follow exactly the pro-
cedure as it was applied in various other models, to
illustrate the differences in properties of corresponding
thermodynamical quantities as compared to the RGOPT, in
particular concerning their residual scale dependence.
It is thus straightforward to obtain the SPT/OPT two-

loop pressure from the RGOPT result, Eq. (4.7): upon first
omitting the finite contribution to E0, given by the last term
in Eq. (4.7), furthermore upon replacing the RGOPT
exponent a ¼ γ0=b0 by the standard a ¼ 1=2 in the second
term. These modifications lead to

PSPT
2L ¼ −

ðN − 1Þ
2

Ir0ðm; TÞ þ ðN − 1Þ
2

m2Ir1ðm; TÞ

− gðN − 1Þ ðN − 3Þ
8

m2½Ir1ðm; TÞ�2: ð5:30Þ

One should first appreciate that, contrary to the RGOPT
case, the SPT/OPT does not provide a nontrivial (i.e.
coupling-dependent) optimized mass gap result when only
the (one-loop) quasiparticle contribution, given by the first
two terms on the right-hand side of Eq. (5.30), is accounted
for. This is a general feature, not specific to the NLSM.
Applying thus the mass optimization Eq. (4.2) to the
complete two-loop PSPT

2L result, one obtains a second-order
equation quite analogous to Eq. (5.9),

fð2LÞSPT ¼ ½1 − γ0gð1þ YÞ� − 2γ0gx2J2ðxÞ ¼ 0; ð5:31Þ
where the quantity Y was defined in Eq. (5.10). However,
this equation has no real solution for any N. Moreover,
upon taking its high-T approximation, it gives an unphys-
ical solution, as it no longer depends on the mass. This last
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feature is an unusual situation within the SPT/OPT/HTLpt
applications since, at least for other models considered in
the literature, these approximations often provide real
results at the first nontrivial order. And, in particular, they
usually recover the LN result when N → ∞ [45] as, for
example, in the case of the λϕ4 scalar theory [46,47]. In this
situation, a frequently used alternative prescription to
nevertheless define a mass in SPT (or similarly HTLpt)
[18] is to employ the purely perturbative NLSM Debye
pole mass, as given by Eq. (5.28). Since we are interested in
the complete temperature range and not solely in the high-T
regime, we could rather derive m̄SPT as the solution of the
full one-loop self-consistent mass gap equation obtained
from Eq. (5.27),

m̄≡ lim
m→0

m½1þ 2πγ0gIr1ðm̄; TÞ þOðg2Þ�: ð5:32Þ

But, at this perturbative order, the physical solution of
Eq. (5.32) is nothing but the high-T one-loop Debye mass
mD, already given in Eq. (5.28).
For completeness and later use, we also give the

expression of the two-loop SPT pressure Eq. (5.30) in
the high-T approximation, upon using its mass-gap sol-
ution Eq. (5.28), therefore becoming only a function of
gðMÞ ∼ gðTÞ,

PSPT;high T
2L

PSB
¼ 1 −

3

2
γ0g −

3

2
γ0gð1þ γ0gLTÞ2: ð5:33Þ

In particular, the previous expression is more appropriate
for a (very qualitative) comparison with the two-loop
HTLpt QCD (pure gluodynamics) pressure [18], which
is only available in the small m=T (high-T) expansion
approximation.

VI. NUMERICAL RESULTS

Before proceeding to numerical comparisons of the
different approximation methods previously considered,
we should specify how to fix the relevant input parameters,
which we discuss next.

A. Input parameter choice

As already mentioned, at this stage the coupling g in all
previous RGOPT, PT, SPT approximations of the pressure
is to be considered an arbitrary input. Ideally, if we had
experimental data for some physical observable, like for
other models, we could fix g typically at some scale and/or
temperature. Accordingly it is clear that the resulting gðTÞ
values would be a priori different within different approx-
imations. Specially, since the LN approximation neces-
sarily implies to rescaling the coupling, Eq. (5.7), the
rescaled coupling gLN value could be substantially different
from those for other approximations, for the same observ-
able input given at some physical scale for a finite N value.

Now, apart from comparing with other available non-
perturbative results (like the NLO 1=N expansion [30]
or lattice simulations for N ¼ 3[31]), our purpose is also
mainly to illustrate the RGOPT scale dependence improve-
ment as compared to the standard PT and the SPT
approximation. For the latter comparison it is more sensible
to compare scale dependences of the different results for the
same “reference” coupling values. But since we also
compare the different thermodynamical quantities with
the LN ones, one aims to choose gLN input values in a
range that is a priori comparable with other approxima-
tions. It is clear from Eq. (5.5) and (5.8) that the one-loop
RGOPT and LN approximations are essentially equivalent,
only up to a rescaled coupling (5.7): indeed, the correct LN
result was derived from Eq. (5.5). Thus we find it sensible
to compare the results for a given finite Nphys input by
taking

gLNðM0Þ≃ ðNphys − 2ÞgðM0Þ ð6:1Þ

When satisfying exactly this relation, the LN and (one-
loop) RGOPT describe essentially the same physics: if one
would fix gðM0Þ for the different approximations by
comparing those to real data, one would expect to obtain
something close to Eq. (6.1), except for the other difference
being the N − 1 → N overall factor in the LN pressure.9

Concretely, the numerical illustrations below will be mainly
for the case of Nphys ¼ 4, gðM0Þ ¼ 1 ¼ gLNðM0Þ=2, where
M0 is the arbitrary reference scale, or for Nphys ¼ 3,
gðM0Þ ¼ gLNðM0Þ when comparing with the lattice results.
To investigate and compare the scale variation behavior

of the different approximations in our analysis below, as it
is customary, we set the arbitrary MS scale asM ¼ αM0 ¼
2πTα and consider 0.5 ≤ α ≤ 2 as representative values
of scale variations. Note however that this formal identi-
fication of the arbitrary renormalization scale M with a
temperature is only justified strictly at high temperature [1],
while the genuine nonperturbative arbitrary T-dependence
of the coupling is in general not known. Accordingly for the
SPT Eqs. (5.30), (5.33) and PT Eq. (5.26), we impose the
standard prescription gðM ∼ 2πTÞ with the running dic-
tated e.g. at one-loop by Eq. (5.4). This guarantees the
correct SB limit of (5.26) and Eq. (5.33) at very high T, and
is often adopted in the literature even for relatively low T
values. In contrast for the RGOPT pressures Eqs. (4.6) or
Eq. (4.7), the running gðM ∼ TÞ as dictated by Eqs. (5.4),
(5.16) is consistently embedded (although only approx-
imately at two-loops), as is explicit e.g. from Eq. (5.23) in
the high-T approximation. This is a consequence of the
(perturbative) RG invariance-restoring subtraction terms in
the pressure expressions, and it automatically gives the SB

9Accordingly PSB has a higher value in LN. Hence, one can
anticipate that the LN results will overestimate the true SB limit,
as given by Eq. (5.19), at high temperatures [31].
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limit at (very) high T. Alternatively, as already emphasized
previously, if a nontrivial combined RG and MOP solution
of Eq. (5.9) and (5.12) would be available at the two-loop
order in the present model (which unfortunately is not the
case), this solution would effectively provide an approxi-
mate “nonperturbative” ansatz for the T-dependent cou-
pling, likely departing much from Eqs. (5.4), (5.16) at
low T.
Having previously derived that the one-loop RGOPT

(and LN similarly) pressure is exactly scale invariant for
any coupling value, we will illustrate the moderate residual
scale dependence at the two-loop RGOPT order and those
of the other approximation schemes, for a moderately
nonperturbative coupling choice, gðM0Þ≃ 1. It is clear
that due to the perturbative running, for a very large input
coupling the scale dependence drastically increases (except
for the one-loop RGOPT result being exactly scale invari-
ant for any g) and, thus, the choice gðM0Þ≃ 1 appears to be
a reasonable compromise. Note that in the two-dimensional
NLSM, a coupling of order gðM0Þ≃ 1 may be naively
compared with a relatively strong four-dimensional QCD
coupling αS ∼ 1, which is well within the nonperturbative
T ∼ Tc QCD regime.

B. The T = 0 results

We start by considering the optimization solutions at
T ¼ 0 and N ¼ 4.
In Fig. 2 we compare for N ¼ 4 the optimized mass

m̄ð0Þ obtained with the one-loop RGOPT solution from
([5]), given explicitly by Eq. (5.3) in the T → 0 limit, with

the similar T → 0 two-loop RG solution of fð2LÞfull RG given by
Eq. (5.15), and the LN mass, as functions of the renor-
malized coupling at the central reference scale α ¼ 1. [The
T ¼ 0 mass gap for the SPT is not shown as it is trivially
vanishing from Eq. (5.32)]. The results in Fig. 2 show that
at one-loop order the RGOPT has real solutions for all
values of g. In contrast, the two-loop RGOPT mass, using

fð2LÞfull RG, Eq. (5.15), becomes complex beyond a rather high
coupling value, for N ¼ 4, gðM0Þ ≈ 4.27, which is a value
high enough for our purposes. This g value, beyond which
the RG solution is complex, slightly decreases as N
increases, but for N ¼ 3 one recovers a real solution for
any g. It can be verified that Eq. (5.15) gives actually two
branch solutions. We select unambiguously the one which
correctly reproduces the SB result as the physical solution
in all subsequent evaluations. That is, as already mentioned
concerning the other solution from the mass optimization,
Eq. (5.9), our criterion to select m̄ is to choose the root
which reproduces the perturbative results for small g. The
other nonphysical solution, not shown in Fig. 2, has an anti-
AF behavior, similarly to the other nonphysical solution of
Eq. (5.9), which is given by Eq. (5.13). (NB the (real part of
the) physical branch solution is not plotted beyond the
coupling value where it starts to be complex, that is why it
appears to end abruptly).

C. The T ≠ 0 results

When considering the finite temperature case, we show
in Fig. 3 the one-loop RGOPT mass gap from Eq. (5.2), the
two-loop similar result from Eq. (5.15), which now are
functions of the temperature, fixing gðM0Þ ¼ 1 and varying
the scaleM ¼ αM0, with 0.5 ≤ α ≤ 2, corresponding to the
shaded bands in Fig. 3. We then see from Fig. 3 that the
one-loop RGOPT mass is exactly scale independent, as it
was anticipated from its expression, given by Eq. (5.2) in
the previous section. This is the case because, by con-
struction, it satisfies both the RG and the OPT equations
simultaneously, Eqs. (4.3) and (pms), respectively, which
lead to Eq. (5.2). The two-loop RGOPT and SPT appear,
however, not scale invariant. The reasons for this are as

FIG. 2. Normalized zero temperature optimized masses,
m̄ð0Þ=M0, as a function of gðM0Þ, for N ¼ 4 and at the central
reference scale α ¼ 1, in the RGOPTat one- and two-loops and in
the LN approximations.

RGOPT 2L

RGOPT 1L

SPT

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

T M0

m
T

M
0

FIG. 3. Thermal masses as a function of the temperature (both
quantities normalized by the reference scale M0) for scale
variations 0.5 ≤ α ≤ 2, N ¼ 4 and gðM0Þ ¼ gLNðM0Þ=2 ¼ 1.
We compare the results for the RGOPT (one- and two-loop
cases) and the SPT. (NB for this coupling choice the LN thermal
mass is identical to the RGOPT one-loop one). Within the two-
loop RGOPT and SPT, the shaded bands have the lower edge for
α ¼ 0.5 and the upper edge for α ¼ 2. The thin line inside the
shaded bands is for α ¼ 1.
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follows. First, the residual scale dependence of the SPT
mass is not surprising, since its construction lacks RG
invariance from the beginning, as already explained
previously. Here this is very screened by the smallness
of the perturbative mass Eq. (5.28) used for SPT. While the
two-loop RGOPT mass residual scale dependence has a
different origin: because the (perturbatively RG-invariant
by construction) mass obtained from any of the possible
defining Eqs. (5.9) or (5.15), for arbitrary temperature,
cannot match exactly the running of the coupling
Eq. (5.16), dictated by the purely perturbative behavior
at zero-temperature. Note that the scale dependence indeed
increases for increasing T=M0 in Fig. 3 (but this is
artificially enhanced by showing m̄ ∼ T rather than m̄=T,
which rather decreases with T). The two-loop RGOPT
scale dependence appears much larger than the SPT one,
but this is essentially due to the intrinsically much larger
m̄=T values in the RGOPT than in the SPT case, therefore
within the m̄=T > 1 regime for intermediate T=M0, where
the implicitly high-T regime justifying the use of the
perturbative running (5.16) is no longer quite valid.
However, as we will see below, this sizable scale depend-
ence of the RGOPT mass gets largely damped within the
RGOPT pressure, giving an overall scale dependence much
more moderate than for the SPT pressure.
The RGOPT mass m̄ðTÞ clearly starts from a nonzero

value at T ¼ 0, since the mass gap solution is nontrivial at
T ¼ 0 [Eq. (5.3)], then bends and reaches, as expected by
using basic dimensional arguments, a straight line for large
temperatures, where it behaves perturbatively as m̄ ∼ gT.
As observed in Ref. [31], this behavior is reminiscent of
that of the gluon mass in the deconfined phase of Yang-
Mills theories [48–50], where, at high-T, the gluon mass
can be parametrized by T= lnT. The bending of the thermal
masses can be better appreciated in Fig. 4, which shows that
the changing of behavior occurs at rather low temperatures.

One should recall, as already emphasized, that m̄ is only
used at intermediate steps and does not represent a direct
physical observable (see Refs. [25,26] for further discus-
sions on this issue). In this framework, physical quantities,
like the pressure, are obtained upon substituting into these
m̄ðgÞ, which carries the nonperturbative coupling depend-
ence. Next, we compare the results for the pressure
obtained from the different schemes considered, namely,
the RGOPT, PT, SPT and LN.
In Fig. 5 we show the (subtracted) pressure, P ¼

PðTÞ − Pð0Þ, normalized by PSB, for the scale variations
M ¼ αM0, 0.5 ≤ α ≤ 2 and N ¼ 4. It illustrates how the
one-loop RGOPT pressure is exactly scale invariant, while
the two-loop result displays a (small) residual scale
dependence for the reasons already discussed above when
considering the mass and concerning the interpretation of
the results shown in Fig. 3. Note that despite the fact that
the optimum mass m̄ðTÞ has a non negligible scale
dependence for the RGOPT two-loop case, even compared
to SPT, the RGOPT pressure itself exhibits a substantially
smaller scale dependence than the corresponding SPT
approximation, at moderate and low T=M0 values, as
can be seen on Fig. 5.
While the improvement as compared with SPT may

appear not very spectacular at the two-loop order here
illustrated, the important feature is that the RGOPT con-
struction is expected on general grounds to systematically
improve the perturbative scale dependence at higher orders,
as explained in Refs. [25,26]. Being built on perturbative
RG invariance at order k for arbitrary m, the mass gap
exhibits a remnant perturbative scale dependence as
mðMÞ ∼ gT½1þ � � � þOðgkþ1 lnMÞ�, such that the (domi-
nant) scale dependencewithin the vacuum energy (pressure),
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RGOPT 2L
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FIG. 4. The normalized thermal optimized masses,
m̄ðTÞ=m̄ð0Þ, as a function of the temperature T (normalized
by M0) for N ¼ 4, gðM0Þ ¼ 1 ¼ gLNðM0Þ=2, and at the central
scale choice α ¼ 1, in the RGOPT at one- and two-loop cases.
(NB for this coupling choice the LN thermal mass is identical to
the RGOPT one-loop one).
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FIG. 5. P=PSB as function of the temperature T (normalized by
M0) for N ¼ 4 and gðM0Þ ¼ 1 ¼ gLNðM0Þ=2, with scale varia-
tion 0.5 ≤ α ≤ 2. Within the two-loop RGOPT and SPT, the
shaded bands have the lower edge for α ¼ 0.5 and the upper edge
for α ¼ 2. The thin line inside the shaded bands is for α ¼ 1. (NB
the line thickness of one-loop RGOPT and LN is only for
visibility at the figure scale and does not correspond to any
actual scale dependence since those approximations are exactly
scale invariant.)
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coming from the leading term ∼m2=g, should be of pertur-
bative order gkþ2. This feature can easily be checked
explicitly in the above two-loop case: taking the high-T
perturbative expression of the pressure, Eq. (5.25), replacing
g there by its two-loop running, Eq. (5.16), and tracing only
the M scale dependence, after a straightforward expansion
one can check that it appears first at perturbative order g3,
thus formally four-loop order:

PRGOPT
2L

PSB
≃ 1 −

3

2
b0gðM0Þ þOðg2ðM0ÞÞ þOðg3 lnMÞ:

ð6:2Þ

Of course the scale-dependence of the two-loop RGOPT
pressure illustrated in Fig. 5 reflects more than this naive
perturbative behavior, since the exact pressure was used
to describe correctly the low-T regime, where m̄ has no
longer a simple perturbative expansion expression. In con-
trast, a completely different behavior happens for SPT, or
similarly the HTLpt. In analogy with the scalar model [25],
in the NLSM the unmatched leading order remnant terms,
∼m2 lnM from Eq. (3.24), remain partly screened up to
two-loop, since perturbatively m̄2

spt ∼Oðg2Þ, but those
uncancelled terms unavoidably resurface at the perturbative
three-loop order g2. Apart from improving the residual scale
dependence, the very different properties implied by
Eq. (4.5) and the m2=g term in Eqs (4.6), (4.7) also explain
the very different shape (and lower values) of the RGOPT
one- and two-loop pressures as compared with SPT, which
also does not include PðT ¼ 0Þ.
One can also guess from Fig. 5 that the LN pressure

overestimates the SB limit, clearly from the changing
N − 1 → N overall factor implicit in the LN approxima-
tion, which results in a difference by a factor 4=3 for the
pressures when N ¼ 4. Both the one- and two-loop
RGOPT pressures reach (very slowly, logarithmically with
T=M0) the SB limit, that one cannot see on the scale of the
figure.

D. High-T approximation and comparison
with standard PT

Let us now illustrate the high-T approximation, still for
N ¼ 4, and a scale variation with a factor 1=2 < α < 2. In
Fig. 6 we show P=PSBðT=T0Þ for a fixed reference
coupling, gð2πT0Þ ¼ 1, for the one and two-loop
RGOPT cases in high-T expansion approximation,
Eqs. (5.23) and (5.25), as compared with the standard
PT result, given by Eq. (5.26), and with two-loop SPT
result Eq. (5.33). (NB lattice results are not available in this
high-T regime). This clearly displays again the exact scale
invariance of the one-loop RGOPT pressure, while the two-
loop RGOPT result has a moderate remnant scale depend-
ence in comparison to the slightly more sizable SPT and
standard PT scale dependences (for high T). Notice that the

scale dependence of SPT is somewhat more important than
the standard PT one. Concerning the RGOPT, these results
are just a straightforward restriction to the high-T regime of
the more complete arbitrary T-dependent features illus-
trated in Fig. 5, except that here the unshown low T=T0 ≲ 1
behavior [which for N ¼ 4 and gð2πT0Þ ¼ 1 corresponds
roughly to m̄=T ≳ 1 for the central scale α ¼ 1 choice, see
Eq. (5.21)] is, therefore, not valid due to the intrinsic
limitation of the high-T expansion. This also explains why
the RGOPT scale dependence improvement does not
appear spectacular in the low T-regime, as compared with
PT and SPT, while it was more drastic for the exact T-
dependence on Fig. 5. The fact that the one- and two-loop
RGOPT pressure are still different for relatively large
T=T0, i.e., small gðT=T0Þ, is clear from the two-loop extra
terms comparing Eq. (5.23) with Eq. (5.25). It is also clear
from their latter analytical expressions that both the one-
and two-loop RGOPT pressures tend logarithmically
towards the SB limit for T=T0 → ∞ (even if not obvious
from Fig. 6), while the PT and SPT pressures reach this
limit more rapidly.
As explained above in Sec. V D, this visible difference as

a function of g of the one- or two-loop RGOPT pressures as
compared to the PT results, is actually perturbatively
consistent for g → 0. The correct matching appearing once
considering the RGOPT in terms of the physical input,
which is like replacing the pole mass Eq. (5.28) within
Eq. (5.23), which then gives the same perturbative expan-
sion, Eq. (5.26). Or equivalently, if expressing both the PT
Eq. (5.26) and RGOPT pressures as a function of the mass
mB=T rather than the coupling, they have the very same
slope for small m=T, see Eq. (5.23), while the RGOPT
pressure departs at larger m=T from the PT one Eq. (5.26)
due to the exact m=T dependence in Eq. (5.5).
The main interest in Fig. 6 is that it compares (quali-

tatively) more directly with the results of QCD HTLpt
[17,18], where at two-loop order and beyond, due to the
quite involved gauge-invariant HTL framework, only the
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FIG. 6. P=PSBðT=T0Þ in high-T approximation for N ¼ 4,
gðM0 ¼ 2πT0Þ ¼ 1, and scale variation 1=2 < α < 2. Pink
range: PT; blue range: SPT; black: LN; orange range: two-loop
RGOPT; green dashed line: one-loop RGOPT.
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high-T expansion approximation has been worked out for
the QCD HTLpt. In this respect, it is instructive to compare
our results in Fig. 6 with those obtained, e.g., in Ref. [18]
and shown in Figs. 7–8 in that reference. In particular, we
observe that the shape and behavior of the SPT pressure is
quite similar with the one- or two-loop HTLpt QCD
pressures, not departing much from the SB limit even
for T=T0 ∼ 1. However the HTLpt results have a very
different behavior at three-loops [18], departing very much
from the SB limit at moderate and low T values, and
showing good agreement with lattice data for the central
renormalization scale choice.
In contrast, the one- and two-loop RGOPT pressures

appear to have a different, more nonperturbative behavior,
in the sense that the RGOPT pressures show a more rapid
bending to lower values for decreasing T=T0 values,
similarly to the 3-loop HTLpt results. This behavior is
also roughly more qualitatively comparable to the lattice
QCD simulation results for the pressure [51,52]. Therefore,
we anticipate that a RGOPT application to QCD HTLpt is
likely to give similar features as the present NLSM RGOPT
pressure results that we have just obtained. Indeed, we will
illustrate below the rather good agreement of the RGOPT
NLSM pressure with lattice simulations [31] for N ¼ 3.

E. Comparison with next-to-leading 1=N expansion

Next, since the RGOPT incorporates finite N, it is of
interest to also compare our results with the ones obtained
from the nonperturbative 1=N expansion at NLO [30].
Since the 1=N NLO exact solution in Ref. [30] is rather
involved, to make the comparison simpler we consider the
1=N NLO pressure in the high-T approximation only. It
reads [30]

P1=Nnlo ≈ T2
π

6
ðN − 1Þ − T

4
ðN − 2Þm1=Nnlo; ð6:3Þ

where

m1=Nnlo ≈ Tπ

��
2π

gLN
−
ln 4
N

��
1þ 2

N

�

− γE − ln

�
M
4πT

��
−1
; ð6:4Þ

where the (rescaled) coupling has the same meaning as the
LN one, Eq. (5.7). First, notice that already the one-loop
RGOPT mass gap, Eq. (5.21), upon expanding it in 1=N,
has a quite similar expression as (6.4), only missing the
ln 4=N term. In Fig. 7 we show the pressure, all evaluated in
the high-T limit and obtained with the different approx-
imations, with the scale dependence illustrated as previ-
ously, for 1=2 < α < 2. It clearly displays how, from one to
two-loop, the RGOPT pressure appears to converge rather
well to the NLO 1=N result. Note also that the non-
perturbative NLO 1=N pressure exhibits a residual, though
moderate, scale dependence: this comes from the fact that
the exact NLO 1=N running coupling [30], which is given
by Eq. (5.4) upon rescaling the coupling from Eq. (5.7),
does not perfectly match the scale dependence of Eq. (6.4).
This is analogous to the origin of the residual scale
dependence of the two-loop RGOPT pressure, already
explained above, which indeed appears in Fig. 7 to be
of a similar range as the NLO 1=N scale dependence.

F. Further improving residual scale dependence

We have previously explained why, despite the explicit
perturbatively RG invariant RGOPT construction, there is a
moderate residual scale dependence within the two-loop
results. Now, given that we restricted our analysis at the
two-loop order, one may wonder generally if it is possible
to further improve the RGOPT scale invariance at this
order. As mentioned in the introductory part of Sec. V, if we
could obtain a simultaneous solution of both Eqs. (5.9) and
(5.12), therefore getting rid of using the perturbative
(massless) running from Eq. (5.16), we could intuitively
expect a further reduced, minimal scale dependence (but
still not expecting perfect scale invariance at a given finite
order of the RGOPT modified expansion, which obviously
remains as an approximation to the truly nonperturbative
result). But since in the NLSM such nontrivial solution
does not exist at two-loop order, an interesting question that
we address now is whether the scale dependence may be
further improved nevertheless, by using some alternative
procedure.
In fact it is only the combination of the exact two-loop

mass optimization prescription (MOP) Eq. (5.9) with the
exact RG Eq. (5.12), which leads to the trivial solution
g ¼ 0, Eq. (5.14). Now, since RGOPT is still a perturba-
tively constructed approximation, it is perhaps too con-
trived to require such exact solutions at two-loop order.
Thus, one possible trick is to bypass the actual triviality of
the combined solution by simply approximating one of the
two equations. Typically, the simplest procedure is to keep
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FIG. 7. P=PSBðT=M0Þ in high-T approximation for N ¼ 4,
gðM0Þ ¼ 1 ¼ gLNðM0Þ=2 and scale variation 1=2 < α < 2. Same
captions as in Fig. 6, with added comparison to 1=N NLO
pressure (green range).
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the RG Eq. (5.12) as exact, giving the mass gap mðgðTÞÞ
just as previously, while considering the other exact
physical solution of Eq. (5.9), given by Eq. (5.2), as
defining an effective temperature-dependent coupling
gðTÞ, but approximating the latter by truncating the thermal
mass to its purely perturbative first order high-T expres-
sion, Eq. (5.22). This gives the result

b0geffðm;MÞ ¼
�
ln
M
m

− 2J1

�
m
T

��
−1

≃
�
ln

�
2M

ðN − 2ÞgT
�
− 2J1

�ðN − 2Þg
2

��
−1
:

ð6:5Þ

There is one minor subtlety at this stage: while the standard
perturbative running, e.g., Eq. (5.4) at one-loop order, is
calibrated such that the central value α ¼ 1 corresponds
exactly to M ¼ 2πT, this has no reason to be the case for
the running coupling (6.5), having a more nonperturbative
dependence. Thus, to get a sensible comparison of scale
dependence, namely for identical central coupling values
gðM0Þ, we have to match M0 such that geffðM ¼ αM0Þ≡
gðM0Þ for α ¼ 1, which is obtained for an appropriate
central value α upon setting M≡ 2πα in Eq. (6.5). More
precisely, for gðM0Þ ¼ 1 this matching happens for
α≃ 2e−γE=2≃ 1.12, a very moderate shift of renormaliza-
tion scale calibration.
Now, by combining the approximate solution Eq. (6.5)

with the Eq. (5.12), we do obtain a nontrivial coupled
fḡ; m̄g solution, and Eq. (6.5) has sound properties of an
effective coupling, being consistent (at least at one-loop
order) with the standard running coupling (5.4). Morever,
we stress that Eq. (6.5) is not put by hand, but it is a direct
consequence of Eq. (5.2), at a minimal extra work cost,
since one already knows all the ingredients from the above
calculations at this stage. Using Eq. (6.5), one can examine
the resulting scale dependence that follows from this
alternative procedure. This is illustrated for the pressure,
as compared with the previous results using the purely
perturbative running (5.16), in Fig. 8. One observes a
definite further improvement, by a factor two roughly,
specially in the intermediate T=M0 zoomed in region,
where the previous scale dependence was the largest.
We have tried to pursue this construction by trun-

cating the RGOPT thermal mass m at the next two-loop
order, but the scale dependence does not further improve,
rather worsening. This “incompressible,” minimal residual
scale dependence beyond one-loop order is actually
expected from general perturbative arguments, since one
cannot expect to have exact scale invariance at two-
loop order or beyond. Note, moreover, that if one would
push farther such approximations of Eq. (5.2), including
more and more perturbative terms in the thermal mass
expansion, one would progressively see the combined

solution unavoidably reach the exact trivial one,
Eq. (5.14), geff → 0. Therefore, Eq. (6.5) appears to be a
relatively simple and optimal effective prescription to
minimize the scale dependence. Remark also that
Eq. (6.5) has essentially a one-loop running form, when
comparing with Eq. (5.4), but the arbitrary T-dependence
that it involves allows us to consider a more nonperturba-
tive coupling g regime, as we will illustrate next, when
comparing with lattice results.
Now, as we have already emphasized before, since at

two-loop RGOPT order the correct AF branch mass gap
solution behaves perturbatively essentially like the one-
loop solution, Eq. (5.2), it is not too surprising that Eq. (6.5)
appears as an optimal running. But we must emphasize that
this feature is very peculiar to the NLSMmodel at two-loop
order, as already explained previously, with the factorized
form of the two-loop mass gap solution (5.9) due to the
specific renormalization properties of the NLSM vacuum
energy. More generally for other models, the running
coupling at a n-loop order should be optimal for the
RGOPT at n-loop order.

G. Comparison with lattice simulations

We will now compare the RGOPT results with lattice
simulation ones. Apart from the early work in [53], to the
best of our knowledge the only available lattice thermo-
dynamics simulation of the NLSM is the one of Ref. [31],
which was performed for N ¼ 3.10 To complete this
comparison, we need a priori to fix an appropriate coupling
value at some scale M0, recalling that the simulation in
Ref. [31] was performed at relatively strong lattice coupling
values. As required in lattice simulations, the authors

RGOPT 2L, RG optimized running

RGOPT 2L, perturbative running
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FIG. 8. P=PSB (zoomed in Fig. 5) for the two-loop RGOPT
pressure, comparing using the perturbative two-loop running
coupling Eq. (5.16), or the truncated RG optimized running
coupling Eq. (6.5). For the latter, for T=M0 ≳ 0.17 the lower
border of the range corresponds to the lower scale choice α ¼ 0.5,
and the upper border corresponds to the higher scale choice
α ¼ 2. While for T=M0 ≲ 0.17 it is the opposite.

10We thank the authors of Ref. giacosa for providing us their
lattice data for the pressure.
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consider a sequence of different (bare) lattice couplings for
different T=M0 ranges, in order to best control the approach
to the continuum. Our analytical result is evidently aimed
for fixing a gðM0Þ input choice (its running with the scale
being determined from RG properties). Moreover the
RGOPT approximation effective coupling, in the MS
scheme, has no reasons to coincide with the lattice coupling
definition. As already explained above, the combined two-
loop solution for the RG Eq. (5.12) and the MOP Eq. (5.9),
if it would exist at two-loop order, would determine besides
the optimal mass similarly an optimal T-dependent cou-
pling ḡðM;TÞ, thus giving a compelling choice for com-
paring with lattice results. In absence of such optimal
two-loop coupling for the NLSM two-loop results, there is,
however, one other remarkable coupling value gðM0Þ (at
two-loop order), namely such that ln m̄ð0Þ=M0 ¼ 0 exactly
(i.e. such that the zero-temperature mass gap coincides with
the scaleM0, with no further corrections). This happens for
gðM0Þ ¼ 2π (a value coincidentally analogous to the one
obtained in the GN model [21] for the exact optimal
coupling). It thus appears to be a sensible input choice
to compare with lattice, as it is also in the nonperturbative
regime. In Fig. 9 we thus compare the one- and two-loop
RGOPT and the LN pressure for gðM0Þ ¼ 2π with the
lattice data for N ¼ 3, as function of the temperature, now
normalized by the T ¼ 0 mass gap m̄ð0Þ, consistently with
the lattice results normalization [31].
Our LN pressure exactly coincides analytically and

numerically with the one in Ref. [31]). The one-loop
RGOPT and LN pressure are exactly scale independent
for any g, as already pointed out before (remarking again
that the only difference between one-loop RGOPT and LN
is the N − 1 → N overall factor). It is also worth noting
that, once expressed as PðT=m̄ð0ÞÞ, both the one-loop

RGOPT and LN pressures are actually independent of the
input coupling value gðM0Þ: the reason for this is that the
one-loop pressure Eq. (5.5) (and therefore also its large-N
limit) do not depend explicitly on g, while the gðMÞ
dependence is entirely absorbed within m̄ð0Þ from the
mass gap Eq. (5.2). (Accordingly the one-loop and LN
pressures in Fig 9 do not get closer nor farther from the
lattice data for other gðM0Þ choices).
But this remarkable feature holds only approximately at

two-loop order, due to the no longer matched gðMÞ-
dependence between the pressure Eq. (4.7) and the two-
loop mass gap equation. Moreover this mismatch is
strongly enhanced in the peculiar N ¼ 3 limit in the
NLSM, due to the vanishing of the two-loop g-dependence
in the pressure Eq. (4.7). Consequently, for N ¼ 3 the two-
loop RGOPT pressure happens to be accidentally much
sensitive to the gðM0Þ input choice. An additional draw-
back is that for such large reference coupling gðM0Þ ∼ 2π,
the unavoidable residual two-loop RGOPT scale depend-
ence, which had remained very moderate for gðM0Þ≲ 2, is
now substantially enhanced. We thus use the further
improved alternative running coupling, determined by
Eq. (6.5), but the residual scale variation appears quite
sizable. Nevertheless, when we compare the RGOPT
results with the scale dependence of other approximations,
such as the PT or SPT for N ≠ 3 (which for such large
coupling values is well beyond any reasonable variation),
the much better performance of the RGOPT is quite visible.
(Remark that we do not illustrate PT and SPT here for
N ¼ 3, since at two-loop order the SPT mass gap solution
(5.28) trivially vanishes for N ¼ 3, consequently giving in
Eq. (5.30), (5.33) a trivial (constant) pressure equal to the
SB limit for any temperature).
Within this sizeable scale variation uncertainty, the two-

loop RGOPT pressure shows a reasonably good agreement
with lattice results for T ≳ m̄ð0Þ, but not so good, at least
for the central renormalization scale, for low 0.2≲
T=m̄ð0Þ≲ 1 values. However, due to the above explained
important sensitivity of the two-loop pressure to the input
coupling for N ¼ 3, the value gðM0Þ ¼ 2π has to be
considered more a reasonably good “fit” of the lattice data
from the two-loop results, coincidentally, than a genuine
prediction of RGOPT. It is intriguing that this value has
other independent motivations, but it is probably more
correct to conclude that this reasonable agreement is largely
coincidental.
Another rather striking result is the extremely good

agreement of lattice data with LN for small to moderate
T=mð0Þ≲ 1. While for very large T values the lattice (and
also the two-loop RGOPT) pressures are consistent with the
true SB limit of the model Eq. (5.19), PSB ∼ ðN − 1Þ. This
visible difference between the low- and high-T regimes of
the NLSM model is an important nonperturbative cross-
check: at sufficiently low T, nonperturbative results should
reflect the unbroken OðNÞ with actually N degrees of
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FIG. 9. P=PSB as a function of the temperature T (normalized
by the T ¼ 0 mass gap m̄ð0Þ) for N ¼ 3: LN, one- and two-loop
RGOPT for gðM0Þ ¼ gLNðM0Þ ¼ 2π and scale variation
1=2 ≤ α ≤ 2, when using RG optimized running given by
Eq. (6.5), compared with lattice simulations (taken from
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vertical axis from P=T2 in Ref [31] to P=PSB (i.e., for N ¼ 3 this
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freedom. In the RGOPT framework, similarly to the LN
approximation, as we have explained the constant vacuum
energy piece m2=g (footprint of a σ field term), plays a
crucial role in obtaining a mass gap with these expected
features of the low-T nonperturbative NLSM properties.
While at asymptotically high-T one reaches the free theory
g → 0 limit of the NLSM model, thus describing a gas of
N − 1 non-interacting pions, while the non-kinetic m2=g
contribution becomes negligible. The RGOPT two-loop
results roughly exhibit this overall nonperturbative behav-
ior from low- to high-T regime (although not perfectly at
very low temperatures).

H. The trace anomaly

It is also of interest to investigate the behavior of
some other thermodynamical quantities evaluated in the
RGOPT scheme and how they compare with the same
quantities evaluated in the SPT and LN approximations.
For example, the interaction measure11 Δ ¼ ðE − PÞ=T2 ≡
T∂T ½PðTÞ=T2�, which is the trace of the energy-momentum
tensor normalized by T2. The interaction measure can be
readily obtained from the pressure by using the definitions
for the entropy density,

S ¼ d
dT

Pðm̄ðg; T;MÞ; T;MÞ; ð6:6Þ

and for the energy density, E ¼ −Pþ ST.
One subtlety rooted in the optimized perturbation, is that

one should evaluate the entropy according to Eq. (6.6),
namely only after the mass gap m̄ðg; TÞ, which is explicitly
T-dependent, had been replaced within the pressure expres-
sion,which, thus, becomes only a function of gðT=MÞ; T=M.
While the partial derivative calculated for fixed (arbitrary)m,
ignoring the mass gap (which would give the correct result
for the trulymassive theory), is generally different andwould
lead to physically inconsistent results in the present case.
Actually, at the one-loop RGOPT order, since the mass
gap is defined by the constraint given by ([5]) and that
results in Eq. (5.2), the two expressions coincide. This
here is simply because in dPðmðTÞ; TÞ=dT ¼ ∂P=∂T þ
ð∂m=∂TÞð∂P=∂mÞ the last term vanishes by definition due
to Eq. (4.2). While for the two-loop RGOPT, our mass gap
prescription that guarantees real solutions is given by the
RG Eq. (5.15), which is obviously not equivalent to
Eq. (4.2). Likewise, the SPT mass gap, since it can only
be real-defined at this order as the Debye mass (5.28), is also
very different from the optimizedmass (4.2). At the one-loop
RGOPT order, we easily obtain simple compact analytical

expressions for the entropy and trace anomaly, given,
respectively, by

SRGOPT1L ¼ −T
ðN − 1Þ

π
½2J0ðx̄Þ þ x̄2J1ðx̄Þ�; ð6:7Þ

and

ΔRGOPT
1L ðTÞ − Δð0Þ ¼ ðN − 1Þ

4π
½x̄2ðTÞ − x̄2ð0Þ�; ð6:8Þ

where it is understood that x̄≡ m̄ðTÞ=T is given
by the solution of Eq. (5.2).12 Note that we normalize
Δ by subtracting its T ¼ 0 expression, consistently
with the pressure normalization, Δð0Þ≡ −2Pð0Þ=T2 ¼
ðN − 1Þm̄2ð0Þ=ð4πT2Þ. The corresponding LN expressions
are very similar to Eq. (6.7) and (6.8), being obtained by the
appropriate LN rescaling (5.7) and overallN − 1 → N usual
changing.
The two-loop SPT interaction measure has also a

relatively simple expression, due to the SPT mass gap
being the perturbative pole mass (5.28) at this order,
with T-dependence such that m̄0

sptðTÞ ¼ mspt=Tð1 − b0gþ
Oðg2ÞÞ. (note also that ΔsptðT ¼ 0Þ trivially vanishes).
We obtain

ΔSPT
2L ðTÞ ¼ gðN − 1Þ

16π2
x̄2
�
4πb0ð1þ 2x̄2J2ðx̄ÞÞ

−ðN − 3Þ
�
1 − b0g

�
1þ 2x̄2J2ðx̄Þ þ

3

2
Y

��
Y

�
;

ð6:9Þ
where x̄spt ¼ πγ0gðTÞ from (5.28) and Y was defined in
Eq. (5.10). Thus its main feature is that Eq. (6.9) is
substantially smaller, at high and moderate T values,
relative to e.g. (6.8), being suppressed by the small SPT
mass gap ∼x2spt, and has an essentially monotonic depend-
ence on T.
As concerns the two-loop RGOPT, the exact analytical

expressions of S and Δ are rather involved and not very
telling, due to the more involved nonperturbative mass gap
m̄ðg; TÞ expression, which we recall is obtained by solving
Eq. (5.15). Thus, we refrain ourselves from writing down
explicitly its full expression and we will only present its
corresponding numerical result. As we will illustrate,
however, its shape as function of T=M is to a good
approximation roughly similar to the simple one-loop
RGOPT in (6.8).
In Fig. 10 we show the dependence of the interaction

measure as a function of the temperature in the one- and
two-loop RGOPT, two-loop SPT, and LN cases, for the
same choice of N ¼ 4 and g ¼ 1 ¼ gLN=2, as in the
previous pressure plots shown in Figs. 2-5.

11As a rather trivial remark, one notes that this differs from the
usual expression quoted in the literature simply because here we
are working in 1þ 1-dimensions, while in 3þ 1-dimensions the
pressure obviously appears multiplied by a factor 3. Likewise, the
normalization here is only T2, instead of T4 in 3þ 1-dimensions.

12Note that despite the overall negative sign of expression
(6.7), this entropy remains positive definite for any x, as expected.
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We notice from the RGOPT results shown in Fig. 10 how
the inflection before the peak of Δ occurs approximately at
the temperature value wheremðTÞ bends (see Fig. 4), which
is an interesting feature if one recalls that in QCD the
inflection occurs at Tc. It is worth to trace more precisely
the origin of the peak of the RGOPT interaction measures.
First, note that x̄2ðT=M0Þ ¼ m̄2ðT=M0Þ=T2, as determined
from Eq. (5.2), is monotonically decreasing. Thus the
peak only originates from its interplay with the subtracted
zero-temperature reduced (squared) mass gap x̄2ð0Þ≡
m̄2ð0Þ=T2 in Eq. (6.8). It is easy to take the derivative
with respect to T of (6.8), upon having first determined,
from Eq. (5.2), that

m̄0ðTÞ ¼ 2x̄3
J2ðx̄Þ

1þ 2x̄2J2ðx̄Þ
; ð6:10Þ

to trace analytically that (6.8) has an inflection point, and
then a maximum at a given tm ≡ Tm=M0 value, determined
from the solution of

x̄2ð0Þ≡ e−
2

b0g

t2m
¼ x̄2ðtmÞ

1þ 2x̄2ðtmÞJ2ðx̄ðtmÞÞ
: ð6:11Þ

For N ¼ 4, gðM0Þ ¼ 1, it gives tm ≃ 0.029, x̄ðtmÞ≃ 1.95,
which corresponds exactly to the peak position in Fig. 10.
(Note that the peak position is the same for the LN trace
anomaly, for this choice of couplings). One also easily
derives the peak value as

ΔRGOPT
1L ðtmÞ − Δð0Þ ¼ ðN − 1Þ

2π

e−
2

b0g

t2m
x̄2ðtmÞ

× J2ðx̄ðtmÞÞ ð6:12Þ
which gives≃0.38, like is seen in Fig. 10. For the two-loop
RGOPT interaction measure, it is more difficult to trace
analytically but this quantity follows similar features,

except that the bending of m̄ is delayed to larger T=M0

(see again Fig. 4), so are the corresponding inflection point,
and subsequent peak in Fig. 10. Thus, although there is no
phase transition in two dimensions, the trace anomaly has a
nontrivial structure with an inflection point followed by a
peak, due to the occurrence of a mass gap, signaling the
breakdown of scale invariance already at T ¼ 0, and the
nontrivial T-dependence of this mass gap: since m̄ð0Þ in
Eq. (5.3) reflects dimensional transmutation, (6.8) (or
similarly its two-loop generalization) involve nonperturba-
tive power contributions. Note also that the RGOPT
prediction is that E − P≡ ΔT2 grows quadratically with
T at high temperatures, up to lnT terms, as easily
established from the high-T expression of (6.8) using
x̄ðTÞ from Eq. (5.21): ΔðT ≫ M0Þ≃ 1= lnðT=M0Þ. This
behavior may be viewed as the two-dimensional analog,
and qualitatively compared with four-dimensional Yang-
Mills theory where a quadratic behavior has been found in
the LQCD evaluations performed in Ref. [51], and ana-
lytically supported by convincing arguments in [29,54].
Another interesting feature shown by the results in

Fig. 10 is that the two-loop RGOPT predicts that after
the “transition” (inflection) the system interacts in a much
stronger way than predicted by the LN and the one-loop
RGOPT, which have smaller thermal masses (see Fig. 3). In
this respect, it is again instructive to compare our results for
the interaction measure, given by Fig. 10, with those
obtained in Ref. [18] and shown in Fig. 12 in that reference.
While the leading-order (LO) and next-to-leading order
(NLO) HTLpt results show an essentially perturbative
behavior, the three-loop (NNLO) HTLpt interaction mea-
sure is closer to the LQCD simulations [51,52] (although
not reproducing the lattice data peak). From this compari-
son one can appreciate that the two-loop RGOPT inter-
action measure has a shape similar to the one obtained in
the LQCD simulations. In contrast the two-loop SPT
interaction measure looks qualitatively more similar to
the three-loop HTLpt results [18], which we understand as
originating from the accessible exact low T dependence in
the NLSM case. It is a monotonic function of T with no
peak at any T=M0 [as we also checked from Eq. (6.9) and
going further below the T=M0 values shown in Fig. 10].

VII. CONCLUSIONS

We have applied the recently developed RGOPT non-
perturbative framework to investigate thermodynamical
properties of the asymptotically free OðNÞ NLSM in
two dimensions, and illustrate results for N ¼ 3 and
N ¼ 4. Our application shows how simple perturbative
results can acquire a robust nonperturbative predictive
power by combining renormalization group properties with
a variational criterion used to fix the (arbitrary) “quasipar-
ticle” RGOPT mass.
In particular, a nontrivial scale invariant result was

obtained by considering the lowest order contribution to
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FIG. 10. The interaction measure Δ as a function of the temper-
ature T (normalized by M0) for N ¼ 4 and gðM0Þ ¼ 1 ¼
gLNðM0Þ=2, with scale variation 0.5 ≤ α ≤ 2, using the standard
two-loop running coupling given by Eq. (5.16). Within the two-
loop RGOPT and SPT, the shaded bands have the lower edge for
α ¼ 0.5 and the upper edge for α ¼ 2. The thin line inside the
shaded bands is for α ¼ 1. (Logarithmic scale is used).
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the pressure, which represents a remarkable result if one
considers that the whole large-N series can be readily
reproduced upon taking the N → ∞ limit within the
RGOPT. In addition, at realistic finite N values and high
temperatures, the lowest order RGOPT pressure converges
to the correct Stefan-Boltzmann limit, while the LN result
overshoots it. Next, in accordance with other previous finite
temperature applications [25,26], the NLO (two-loop)
order RGOPT results display a very mild residual scale
dependence when compared to the standard SPT/OPT
results. The much reduced residual scale dependence is
due to the explicitly RG invariant construction at all stages,
as we recall: first from retaining (or reintroducing, if
absent) appropriate finite vacuum energy subtraction,
Eq. (3.25), to restore perturbative RG invariance of the
vacuum energy of the model. Second, by maintaining RG
invariance while modifying the perturbative series with a
generalized RG-dictated interpolation, Eq. (4.1) with (4.5).
In contrast in related variational SPT or HTLpt approaches,
the vacuum energy subtraction are omitted, and the simpler
linear interpolation is used. One should remark however
that in thermal theories, the omission of additional vacuum
energy term is essentially innocuous at lowest order, since
the thermal mass mT has itself a perturbative origin: here
for the two-dimensional NLSM, mT ∼ gT þOðg2Þ, [see
Eq. (5.28)], such that, if uncancelled, the remnant term
(3.24) is formally of higher Oðg2Þ order. These features are
completely similar in four-dimensional models [26], where
the vacuum energy involves m4 terms, while the thermal
mass behaves for small g as m2

T ∼ gT. Therefore the SPT or
HTLpt formal lack of scale invariance at one-loop order is
essentially “screened” by thermal masses, at least as long as
g takes perturbative values. But conversely it essentially
explains why a more dramatic scale dependence is seen to
resurface at higher orders, in particular at three-loop order
in resummed HTLpt [18].
We also obtain a reasonable agreement of the RGOPT

pressure with known lattice results for N ¼ 3, in the full
temperature range, with the expected nonperturbative
behavior of the NLSM from low- to high-T regime (but
the agreement with lattice results is not quite good at low
temperature). However, this agreement is largely accidental
at two-loops, coincidentally for a somewhat large input
coupling choice gðM0Þ≃ 2π. We remark that these rather
odd properties of the two-loop NLSM RGOPT results
essentially originate from the perturbative two-loop pres-
sure contribution vanishing for N ¼ 3, see Eq. (4.7), there-
fore inducing a severe mismatch in the good scale
invariance properties otherwise verified for any other
N > 3. We can speculate an a priori much better behavior
at three-loops for N ¼ 3, having simply determined from

lower orders, using solely RG invariance properties, that
the three-loop pressure contribution does not vanish for
N ¼ 3, but a more precise investigation is well beyond our
present scope.
The NLSM thermodynamical observables obtained from

two-loop RGOPT display a physical behavior that is more
in line with LQCD predictions for pure Yang-Mills four-
dimensional theories, as compared with the two-loop order
SPT. Perhaps the most striking result, also in view of
applications to QCD, is that the one- and two-loop RGOPT
interaction measure Δ exhibit some characteristic non-
perturbative features somewhat similar to the QCD inter-
action measure. Although as previously explained the
underlying physics is very different since in two dimen-
sions there is no phase transition, and the inflection and
peak in the NLSM interaction measure reflect simply the
broken scale invariance from a mass gap. Yet the under-
lying mechanism appears here simpler but somewhat
similar to the one advocated for QCD [29,54,55], in the
sense that this peak originates from an interplay between
thermal perturbative and nonperturbative T ¼ 0 (power)
contributions, present in RGOPT results. One may quali-
tatively compare these features with the HTLpt interaction
measure, which is much closer to the lattice QCD results at
three-loops [18], but does not show a transition peak. While
this is made possible in the present NLSM case due to the
rather simple structure of the model, giving an analytical
handle to the full temperature dependence up to two-loop
order. Apart from such possible technical limitations for a
similar application to thermal QCD, the present NLSM
results nevertheless confirm that the recently proposed
RGOPT approach stands as a robust analytical tool to treat
renormalizable theories at extreme conditions.
Finally it would be of much interest to compare our

NLSM thermodynamical results with other lattice simu-
lation results for other N values, but unfortunately to our
knowledge no such simulations at finite temperature are
available up to now for N > 3.
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