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The evolution of electromagnetic and thermodynamic fields in a nonideal fluid is studied in the
framework of ultrarelativistic transverse magnetohydrodynamics (MHD), which is essentially charac-
terized by electric and magnetic fields being transverse to the fluid velocity and translational invariance in
the transverse plane. Extending the method of self-similar solutions of relativistic hydrodynamics to the
case of nonconserved charges, the differential equations of nonideal transverse MHD are solved, and two
novel sets of self-similar solutions are derived. The first set turns out to be a boost-invariant and exact
solution, which is characterized by nonrotating electric and magnetic fields. The second set is a nonboost-
invariant solution, which is characterized by rotating electric and magnetic fields. The rotation occurs with

increasing rapidity η, as the angular velocity is defined by ω0 ≡ ∂ζ
∂η ¼ ∂ϕ

∂η, with ζ and ϕ being the angles of

local electric and magnetic vectors with respect to a certain fixed axis in the transverse plane. For both sets
of solutions, the electric and magnetic fields are either parallel or antiparallel to each other in the local rest
frame of the fluid. Performing a complete numerical analysis, the effects of finite electric conductivity as
well as electric and magnetic susceptibilities of the medium on the evolution of rotating and nonrotating
MHD solutions are explored, and the interplay between the angular velocity ω0 and these quantities is
scrutinized. The lifetime of electromagnetic fields and the evolution of the temperature of the electro-
magnetized fluid are shown to be affected by ω0.
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I. INTRODUCTION

One of the most significant achievements of relativistic
hydrodynamics (RHD) in recent years is in the ability to
reproduce experimental data from relativistic heavy ion
collisions (HICs) at the Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC). In particular,
the elliptic flow data of low to intermediate transverse
momenta for almost all particle species and for various
centralities, beam energies, and colliding nuclei are suc-
cessfully described by RHD model calculations, performed
with realistic initial conditions and the equation of state
(EoS) for relativistic HICs [1,2]. These studies have already
led to the RHIC discovery that the quark-gluon plasma
(QGP) created in relativistic HICs is a strongly coupled
nearly perfect fluid [3–6] (for a review see, e.g., [7]).
The nonlinear differential equations describing RHD are

remarkably complex. Their major characteristic is, how-
ever, that they do not contain any internal scale. Using this
special feature, a large class of exact, self-similar solutions
of relativistic hydrodynamics has been found in recent
years. Motivated by the seminal work by Landau [8,9]
and Khalatnikov [10], who presented the first exact one-
dimensional implicit solution of RHD, R. C. Hwa [11] and
J. D. Bjorken [12] found independently an explicit analytic

solution for RHD equations in the ultrarelativistic limit.
This solution, referred to as Bjorken flow, represents a
one-dimensional, longitudinally boost-invariant solution of
relativistic ideal hydrodynamics (RIHD). Other analytic
and self-similar exact solutions of RIHD are presented in
[13] and [14,15], where, in particular, a three-dimensional
expanding Gaussian fireball is described, which exhibits a
Hubble-type linear radial flow. These solutions are then
generalized to one- and three-dimensional solutions, exhib-
iting various cylindrical, spheroidal, and ellipsoidal sym-
metries. They describe, in particular, the evolution of the
fireball with or without rotation and acceleration (for a
recent review see [16] and references therein). In combi-
nation with the EoS, arising from lattice quantum chromo-
dynamics (QCD), the main goal is, among others, to
describe various physical observables in relation with
HIC experiments by these exact analytical solutions.
They therefore reflect various symmetry properties of
HICs before and at hadrochemical freeze-out stage [17].
An important feature of noncentral HICs is the gener-

ation of very strong magnetic fields in the early stage of the
collisions. Depending on the impact parameter and colli-
sion energy, their strengths are estimated to be eB ∼ 1.5m2

π

at the RHIC and eB ∼ 15m2
π at the LHC [18,19], with the

pion mass mπ ¼ 0.14 GeV.1 The magnetic field created
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1eB ¼ 1 GeV2 corresponds to a magnetic field strength
B ∼ 1.7 × 1020 Gauß.
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at HICs is time dependent, and rapidly decays after
τ ∼ 1–2 fm=c. However, as it is argued in [20–22], due
to the relatively large electric conductivity of the QGP
medium, the external magnetic field is essentially frozen,
and its decay is thus substantially delayed. Most theoretical
studies deal therefore with the idealized limit of constant
and homogeneous magnetic fields.2

One of the possibilities to explore the dynamics of
external electromagnetic fields is the relativistic magneto-
hydrodynamics (MHD). Recently, MHD methods are used
to study the effect of magnetic fields created in HICs on
the evolution of the energy density of QGP. A one-
dimensional, longitudinally boost-invariant solution of
ultrarelativistic ideal MHD is presented in [33,34]. Here,
the external magnetic field is assumed to be transverse to
the fluid velocity. In [33], it is found that in the ideal MHD
limit, where, in particular, the electric conductivity of the
medium is assumed to be infinitely large, the (proper) time
evolution of the energy density is the same as in the case
without any magnetic field. This remarkable result can be
best understood by the well-known “frozen-flux theorem”
[35], which states that the ratio B=s, with B being the
magnetic field and s the entropy density, is conserved,
and the magnetic field is thus advected with the fluid,
and evolves therefore as BðτÞ ∝ τ−1 with τ≡ ðt2 − z2Þ1=2
being the proper time. The deviation from the frozen-flux
theorem is also imposed in [33,34] by a parametrized
power-law (PL) ansatz for the evolution of the magnetic
field, BðτÞ ∝ τ−a, where a is an arbitrary free parameter. It
is shown that the decay of the energy density depends on
whether a > 1 or a < 1. The additional effect of a constant
(temperature-independent) magnetic susceptibility on the
energy density of QGP is studied within the same ideal
transverse MHD framework in [34]. In [36], the afore-
mentioned power-law decay ansatz of B is generalized to a
power-law decay of magnetic fields with spatial inhomo-
geneity, characterized by a Gaussian distribution in one of
the transverse directions.
It is the purpose of this paper to study the dynamics

of electromagnetic and thermodynamic fields within a
one-dimensional ultrarelativistic nonideal MHD frame-
work with electric and magnetic fields being transverse
to the fluid velocity (hereafter nonideal transverse MHD).
We present novel nonboost-invariant, self-similar solutions
for electromagnetic and thermodynamic fields, appearing
in nonideal transverse MHD with finite electric conduc-
tivity σ and electric as well as magnetic susceptibilities, χe
and χm. Using the method presented in, e.g., [37], where a

certain self-similar, nonaccelerating exact solution of RIHD
is presented, we first show that the boost-invariant solution
BðτÞ ∝ τ−1, derived in [33,34], is a self-similar exact
solution that naturally arises in ideal transverse MHD.
Here, apart from the exact solution for B, satisfying the
aforementioned frozen-flux theorem, self-similar, exact,
and nonboost-invariant solutions for thermodynamic fields,
such as temperature T, entropy, and number densities, s and
n, arise. To go beyond the ideal limit of infinite electric
conductivity [33,34], we extend the method used in [37] to
the case of nonconserved charges. We solve the corre-
sponding MHD equations, combined with homogeneous
and inhomogeneous Maxwell equations. By appropriately
parametrizing these equations in terms of the magnitudes of
the electromagnetic fields, E and B, as well as the angles ζ
and ϕ of E and B with respect to a certain fixed axis in
transverse plane, we show that two series of solutions
arise, which are particularly characterized by vanishing and
nonvanishing angular velocity of E and B, ω0, defined by
ω0 ≡ dζ

dη ¼ dϕ
dη. Here, η≡ 1

2
ln tþz

t−z is the rapidity.
For vanishing angular velocity, nonrotating (NR), boost-

invariant, self-similar, and analytic solutions for B and E
are derived. They are shown to be either parallel or
antiparallel with respect to each other in the local rest
frame (LRF) of the fluid. Their magnitude is given by
BðτÞ ∝ τ−1 and E ∝ τ−1 exp ð−fðσ; χeÞτÞ, where f is a
certain (positive) function of σ and χe. As concerns the case
of nonvanishing angular velocity of the magnetic and
electric vectors, we derive approximate analytical as well
as numerical solutions forB andE. This is done by solving
a second-order and quadratic differential equation for a
certain function MðτÞ, describing, in particular, the
deviation of the dynamics of the magnetic field from the
frozen-flux theorem. It arises in our method of self-similar
solutions for nonconserved charges (see below). We show
that a power-law solution BðτÞ ∝ τ−a, similar to the one
previously used in [33,34],3 naturally arises as one of the
approximate analytical solutions to this differential equa-
tion, where, in particular, the ratio E=B is assumed to be
constant in τ. Here, the power a in BðτÞ ∝ τ−a is shown to
be expressed in terms of the angular velocity ω0, which, by
its part, turns out to be a function of σ; χe, and χm. A second
series of approximate analytical solutions to the above-
mentioned nonlinear differential equation for M is also
derived. It eventually leads to slowly rotating (SR) B and
E fields. We present the corresponding self-similar and
nonboost-invariant solutions to the temperature T in these
approximations. As concerns the nonboost invariance of
the solutions for E and B, it is shown that in contrast to the
nonboost invariance of T, which reflects itself in the

2See [23,24] for a complete analysis of the effect of constant
magnetic fields on QCD phase diagram, including magnetic
catalysis [25,26] and inverse magnetic catalysis effects [27], and
[28–30] in relation with the effect of constant magnetic fields on
various particle production rates in HICs. See also [31,32] for
recent reviews on the effect of constant magnetic fields on quark
matter.

3In contrast to the power-law solution that is derived in the
present paper, the power-law decay ansatz used in [33,34] turns
out to be a solution of transverse MHD, where, in particular,
σ → ∞, and thus E → 0.
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appearance of an η-dependent scale factor, the nonboost
invariance of electromagnetic fields is particularly charac-
terized by the dependence of the angles ζ and ϕ on the
rapidity η.
We also numerically solve the aforementioned differ-

ential equation forM. The aim is to quantitatively study the

effects of free parameters σ; χe; χm, and σ0 ≡ B2
0

ϵ0
on B, E,

and T. Here, B0 and ϵ0 are the magnetic field and energy
density of the fluid at the initial (proper) time. The effects of
the angular velocity ω0 on the evolution of B, E, T, and the
interplay between ω0 and other free parameters is further
scrutinized. We, in particular, show that the evolution of
thermodynamic fields T is strongly affected by rotating and
nonrotating solutions to nonideal transverse MHD equa-
tions, as well as the magnetic susceptibility of the medium.
The organization of this paper is as follows: In Sec. II,

we first apply the method presented in [37] on ideal
transverse MHD, and derive self-similar, boost-invariant,
and exact solutions for the number density n, temperature
T, energy density ϵ, and magnetic field B. Then, we extend
the method from [37] to nonideal transverse MHD, where
we are, in particular, faced with inhomogeneous continuity
equations with the generic form ∂μðfuμÞ ¼ fDλ for B, E,
and T. The corresponding inhomogeneity functions for
f ¼ fB;E; Tg in ∂μðfuμÞ ¼ fDλ are denoted in the rest
of this paper by λ ¼ fM;N ;Lg, respectively. In Sec. III,
after presenting the necessary definition of the nonideal
transverse MHD with finite σ, χe, and χm, we derive the
corresponding differential equations of MHD and Maxwell
equations in terms of variables B, E, and ζ;ϕ as well as free
parameters σ; χe, and χm (Sec. III A). Assuming the boost
invariance of p, B, and E in a uniformly expanding fluid,
and using the formal self-similar solutions to the inhomo-
geneous continuity equations for B, E, and T, arising from
our generalized self-similar method for nonconserved
charges (Sec. III B), we then combine, in Sec. III C, the
aforementioned differential equations for nonideal trans-
verse MHD, and arrive, in particular, at the corresponding
differential equations to M. We show that M satisfies
either dM

du ¼ 0 with u≡ lnð ττ0Þ or a second-order nonlinear
differential equation. Solutions to these differential equa-
tions play a major role in determiningN and L, and thus in
determining rotating and nonrotating solutions for B, E,
and T. In Secs. IVA and IV B, we introduce the exact and
approximate analytical, self-similar nonrotating and rotat-
ing solutions of B, E, and T. Numerical solutions of the
second-order, nonlinear differential equation corresponding
to M are presented in Sec. V. In Sec. VA, we qualitatively
compare the space-time evolutions of B, E, and T in ideal
MHD with their nonrotating and rotating solutions in
nonideal MHD. In Sec. V B, the reliability of approximate
analytical solutions from Sec. III C is quantitatively stud-
ied. The effects of free sets of parameters σ; χe; χm, as well
as ω0, σ0, and β0 ≡ E0=B0 on the evolution of B, E, and T

are studied in Sec. V C. Here, E0 and B0 are the electric
and magnetic fields at initial proper time. Although for the
choice of free set of parameters, we have strongly oriented
ourselves to sets that may be relevant for QGP, the
considerations in this paper are quite general, and can be
applied to every magnetized fluid with finite electric and
magnetic susceptibilities. Section VI is devoted to a
summary of the results and a number of concluding
remarks. A number of useful proofs and a general analysis
of the solutions of the nontrivial differential equation forM
are presented in Appendixes A and B.

II. SELF-SIMILAR SOLUTIONS OF
RELATIVISTIC IDEAL HYDRODYNAMICS AND
THE METHOD OF NONCONSERVED CHARGES

As aforementioned, self-similar solutions of RHD are
generalizations of the Hwa-Bjorken flow [11,12]. They
provide the possibility of nonboost-invariant temperature
profiles [37], and are naturally generalized to 3þ 1
dimensions [38]. In this section, we briefly review these
solutions in 1þ 1 dimensions. In this setup, one assumes
that the fluid is expanding in time and only one spatial
dimension, which, without loss of generality, can be taken
to be the z-direction. The system is also assumed to
possess translational invariance in the transverse plane,
i.e., the x-y plane. The latter assumption implies that the
hydrodynamical fields, such as four-velocity uμðxÞ ¼
γð1; vÞ and entropy density sðxÞ, are independent of the
transverse coordinates [39].4 Here, γ ¼ ð1 − v2zÞ−1=2 is the
Lorentz factor. The equations of RIHD, consisting of
conservation laws of the energy-momentum tensor of
the fluid Tμν ¼ ðϵþ pÞuμuν − pgμν, and entropy density
current suμ, read

∂μTμν ¼ 0; ð2:1Þ

∂μðsuμÞ ¼ 0: ð2:2Þ

In Tμν, ϵ and p are the energy density and pressure of the
fluid, respectively. In what follows, we introduce the
method used in [37], where, in particular, general self-
similar solutions for the above hydrodynamical fields
are found.
To this purpose, let us first consider an arbitrary con-

tinuity equation

∂μðfuμÞ ¼ 0: ð2:3Þ

Here, fðt; zÞ is a conserved quantity such as the entropy
density s. To determine the self-similar solution to (2.3),
one introduces the scaling parameter ZðtÞ and the scaling
variable Θðz; ZÞ, such that

4Here, gμν ¼ diagð1;−1;−1;−1Þ and uμuμ ¼ 1.
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(i) if fðt; zÞ is a solution to Eq. (2.3), then fðt; zÞF fðΘÞ
is also a solution to the same equation. Here, F f

is any differentiable function of the parameter Θ,
which is defined below. In addition, if fðt; zÞ is a
positive quantity, then F f must be positive as well,

(ii) the longitudinal velocity obeys a Hubble-like ex-
pansion law as vz ¼ HðtÞz with HðtÞ ¼ _Z

Z.
Assumption (i) requires

DΘ ¼ 0: ð2:4Þ

Here, D≡ uμ∂μ is the conductive derivative. Assumption
(ii) can be used to solve (2.4) as

Θ ¼
�
z
Z

�
α

; ð2:5Þ

where α is a parameter, which is fixed later. Having these in
hand, the most general self-similar solution of (2.3) reads

fðt; zÞ ¼ f0

�
Z0

γZ

�
F fðΘÞ; ð2:6Þ

with Z0 ¼ Zðt0Þ and f0 ¼ fðt0; 0Þ. In (2.6), F f is nor-
malized as F fð0Þ ¼ 1.
Let us consider again the RIHD equations (2.1) and

(2.2). These equations can be closed by incorporating a
thermodynamic EoS, which is assumed to be

ϵ ¼ κp; ð2:7Þ

with κ ¼ const.5 Plugging (2.7) into the longitudinal
component of (2.1),

Dϵþ ðϵþ pÞθ ¼ 0; ð2:8Þ

and exploiting the entropy conservation of RIHD from
(2.2), leads to the following continuity equation for the
temperature T,

∂μðTκuμÞ ¼ 0: ð2:9Þ

Here, the thermodynamic relation ϵþ p ¼ Ts is used.6

According to (2.6), the solutions for T, s, and p then
read [37]

sðt; zÞ ¼ s0

�
Z0

Zγ

�
SðΘÞ; ð2:10Þ

Tðt; zÞ ¼ T0

�
Z0

Zγ

�
1=κ

T ðΘÞ; ð2:11Þ

pðt; zÞ ¼ p0

�
Z0

Zγ

�
1þ1=κ

T ðΘÞSðΘÞ; ð2:12Þ

where p0 ¼ T0s0
1þκ . As concerns the power α in (2.5), we

put (2.12) into the Euler equation

Duμ ¼
1

ϵþ p
∇μp; ð2:13Þ

which arises from Δμν∂ρTρν ¼ 0, with ∇μ ≡ Δμν∂ν and
Δμν ≡ gμν − uμuν, and arrive at an expression for Z̈ in terms
of Z, _Z, and Θ. The requirement that Z̈ is finite leads to
α ¼ 2.7 Moreover, the fact that Z is Θ independent leads
to Z̈ðΘ;…Þ ¼ Z̈ð0;…Þ. This, for its part, translates into a
second-order equation for _Z2 whose coefficients are only
functions of Θ. It thus has a solution of the form8

_Z2 ¼ _Z2ðΘÞ: ð2:14Þ

Exploiting, at this stage, the Θ independence of Z requires
_Z to be constant, and thus Z̈ ¼ 0. This immediately results
in vanishing of the proper acceleration, Duμ ¼ 0, and the
emergence of the Hwa-Bjorken velocity profile vz ¼ z=t.
Since Dγ ¼ ∂γ

∂τ ¼ 0, one is able to introduce new scaling
functions

UðΘÞ ¼ SðΘÞ
γ2

; ð2:15Þ

VðΘÞ ¼ T ðΘÞ
γ2=κ

: ð2:16Þ

Using Duμ ¼ 0, we arrive at the boost invariance
(η independence) of p and automatically at UV ¼ 1. If
the process is isentropic [40], then s and the number density
n share the same scaling function, and the ideal gas
equation p ¼ nT holds.9 The latter can then be used to
give the final results for n, T, and p,

n ¼ n0

�
τ0
τ

�
U
�
tanh2η
_Z2
0

�
; ð2:17Þ

T ¼ T0

�
τ0
τ

�
1=κ

U−1
�
tanh2η
_Z2
0

�
; ð2:18Þ

5For our purposes, it is enough that Dκ ¼ 0.
6The system is assumed to be baryon free [40].

7This result is in line with [37], where α ¼ 2 is a priori
assumed.

8The functional form of _ZðΘÞ does not matter.
9The ideal gas equation that was used as an assumption in the

original derivation of the solutions in [37] seems not to be
required for the case of baryon-free RIHD.
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p ¼ p0

�
τ0
τ

�
1þ1=κ

: ð2:19Þ

Here, we have introduced the Milne coordinates z¼ τsinhη
and t ¼ τ cosh η, with τ ¼ ðt2 − z2Þ1=2 and η ¼ 1

2
ln tþz

t−z
being the proper time and space-time rapidity, respec-
tively.10 To derive (2.17)–(2.19), ZðtÞ ¼ _Z0t is used. The
evolution of the energy density ϵ is determined by plugging
(2.19) into (2.8). It is given by

ϵ ¼ ϵ0

�
τ0
τ

�
1þ1=κ

; ð2:20Þ

with ϵ0 ¼ κp0. Let us note that although the velocity and
pressure profile are the same as the Hwa-Bjorken solution,
the temperature, number, and entropy densities have an

arbitrary rapidity dependence through the factors Uðtanh2 η_Z2
0

Þ.
It is also worth mentioning that although in deriving (2.9) κ
was only assumed to have vanishing conductive derivative,
the treatment of the Euler equation was based on κ being a
constant.
Transverse MHD was previously studied in [33,34].

It is found that the Hwa-Bjorken solution for the energy
density (and temperature profile) is also valid for 1þ 1-
dimensional ideal MHD.11 This is not surprising since ideal
MHD has no extra energy dissipation channel in addition to
RIHD, and the energy equation (2.8) still holds. Therefore
any solution of the RIHD energy density holds in ideal
MHD as well. It thus seems that self-similar solutions of
thermodynamic fields in RIHD are automatically general-
ized to the case of ideal MHD. However, the boost
invariance needs extra care. As it is shown in the following
sections, in the transverse MHD setup [33] electrical charge
density vanishes. The inspection of the equation of motion
for the fluid parcels shows that proper acceleration gains
therefore no contribution from electromagnetic fields.
Since the equation of motion is linear, one can take the
proper acceleration to remain 0 by superposition. As we
show, any additive term in the Euler equation becomes
boost invariant when proper acceleration Duμ vanishes.
The results of self-similar solutions of thermodynamic
fields in RIHD are thus generalized to the case of ideal
MHD.
However, in the treatment of MHD one is not only

concerned about the evolution of hydrodynamical fields,
but also wants to know how the electromagnetic fields
evolve as observed in the LRF of the fluid. As it turns out,
the frozen-flux theorem of ideal transverse MHD [33] is

translated into another continuity equation for the magni-
tude of the local magnetic field, B,12

∂μðBuμÞ ¼ 0: ð2:21Þ

The most general self-similar solution of B is therefore
given by

B ¼ B0

�
τ0
τ

�
B
�
tanh2 η

_Z2
0

�
: ð2:22Þ

Here, as in the case of pressure in the RIHD case, the
η-dependent scaling factor B ¼ 1, because, by inspecting
the Euler equation, it turns out that an additional term B2

appears on the rhs of the Euler equation (2.13) (see also
Sec. III). The fact that Duμ ¼ 0 thus leads to the boost
invariance (η independence) of B, or equivalently to B ¼ 1.
In nonideal transverse MHD, when one relaxes the

assumption of infinite conductivity, things becomes more
complicated. The frozen flux (2.21) and the continuity
equation for the temperature (2.9) are then violated, and the
evolution of the electric field becomes also important. In
this case, we have found it useful to introduce a method
to solve the nonideal MHD equations, which for further
convenience is referred to as the method of nonconserved
charges. Here, one basically considers a nonconserved
charge fðt; zÞ, which satisfies

∂μðfuμÞ ¼ fDλ; ð2:23Þ

with λ ¼ λðt; zÞ being a differentiable function of space and
time. From (2.23), one finds

∂μðfuμ exp ð−λÞÞ ¼ 0; ð2:24Þ

leading to

fðt; zÞ ¼ f0

�
Z0

γZ

�
exp ðλ − λ0ÞFfðΘÞ; ð2:25Þ

with λ ¼ λðt; zÞ and λ0 ¼ λðt0; 0Þ. One can add any
function gðt; zÞ to λ as long as Dg ¼ 0. Specifically, any
differentiable function ofΘ can be added to λ. The resulting
factor exp ðg − g0Þ can however be absorbed into Ff, as a
purely η-dependent function. In a uniformly expanding
fluid, where vz satisfies the Hwa-Bjorken profile vz ¼ z

t, the
final result of the nonconserved charge f can thus be given
in terms of τ and η as

10Let us note that in these coordinates D ¼ uμ∂μ, θ≡ ∂μuμ,
and ∇μ translate into D ¼ ∂

∂τ, θ ¼ 1
τ, and ∇μ ¼ − 1

τ ðsinh η; 0;
0;− cosh ηÞ ∂

∂η.11In ideal MHD, apart from hydrodynamical dissipative
effects, the resistivity of the medium is assumed to vanish.

12To show (2.21), let us consider the homogeneous Maxwell
equation ∂μ

~Fμν ¼ 0, which for Eμ ¼ 0 in ideal MHD reads
∂μðBμuν − BνuμÞ ¼ 0. Using ∂ · B ¼ B · ∂ ¼ 0 in transverse
ideal MHD (see below) and using B · B ¼ −B2, we arrive after
some work at the frozen-flux theorem (2.21) in transverse ideal
MHD. Here, a · b≡ aμbμ.
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fðτ; ηÞ ¼ f0

�
τ0
τ

�
exp ðλ − λ0ÞU

�
tanh2 η

_Z2
0

�
; ð2:26Þ

where λ ¼ λðτÞ and λ0 ¼ λðτ0Þ. Without loss of generality,
we set λ0 ¼ 0 in the rest of this work. In the next sections,
we apply this method to nonideal MHD, and, in particular,
find a master equation that governs the deviation of an
electromagnetized nonideal fluid from the frozen-flux
theorem. The latter leads to the solutions of the equations
of transverse MHD in some specific cases. We show that
the η dependence of the relative angle of the B field with a
certain axis in the LRF of the fluid may distinguish between
various solutions of this master equation.

III. RELATIVISTIC
MAGNETOHYDRODYNAMICS

In this section, we first focus on transverse MHD in
1þ 1 dimensions, and introduce the main definitions
and a number of useful relations (Sec. III A). To be brief,
we only consider the case of nonideal magnetized fluid
with finite magnetization M, electric polarization P, and
electric conductivity σ. Taking the limit σ → ∞ as well as
M;P → 0, the case of ideal MHD can be retrieved. We
compare the results of ideal and nonideal fluid whenever
necessary. Apart from energy and Euler equations, we
consider the homogeneous and nonhomogeneous Maxwell
equations. Combining these equations, we derive in
Sec. III C the aforementioned master equation, whose
solutions are explored in Sec. IV. The aim is to use the
method of nonconserved charges in order to determine the
space-time evolution of thermodynamic quantities n, T, p,
ϵ as well as those of electric and magnetic fields Eμ and Bμ.
Formal self-similar solutions to these fields are presented
in III B.

A. Transverse MHD: Definitions
and useful relations

A locally equilibrated relativistic fluid in 1þ 1 dimensions
is characterized by the four-velocity uμ ¼ γð1; 0; 0; vzÞ,
which is defined by the variation of the four coordinate
xμ ¼ ðt;xÞ with respect to proper time τ ¼ ðt2 − z2Þ1=2 and
satisfies uμuμ ¼ 1. Continuity equations

∂μðnuμÞ ¼ 0; ∂μTμν ¼ 0; ∂μJμ ¼ 0 ð3:1Þ

then govern the dynamics of the fluid. Here, n is the baryonic
number density and Tμν and Jμ are the total energy-momen-
tum tensor and electric current, respectively.
In the presence of electromagnetic fields, Tμν is given by

a combination of the fluid and electromagnetic energy-
momentum tensor, Tμν

F and Tμν
EM, as

Tμν ¼ Tμν
F þ Tμν

EM; ð3:2Þ

with13

Tμν
F ¼ ðϵþ pÞuμuν − pgμν −

1

2
ðMμλFλ

ν þMνλFλ
μÞ;
ð3:3Þ

and

Tμν
EM ¼ −FμλFν

λ þ
1

4
FρσFρσgμν: ð3:4Þ

The antisymmetric field strength and polarization tensors,
Fμν and Mμν, are defined by

Fμν ¼ Eμuν − Eνuμ − ϵμναβBαuβ;

Mμν ¼ −χeðEμuν − EνuμÞ − χmϵ
μναβBαuβ; ð3:5Þ

where ϵμναβ is the totaly antisymmetric Levi-Civita sym-
bol,14 and the four-vector of electric and magnetic fields is
given by Eμ ≡ Fμνuν and Bμ ≡ 1

2
ϵμναβFναuβ. They satisfy

EμEμ ¼ −E2 and BμBμ ¼ −B2. In the LRF of the fluid,
with uμ ¼ ð1; 0Þ, we have Eμ ¼ ð0;EÞ and Bμ ¼ ð0;BÞ.
Moreover, using the definitions of Eμ and Bμ in terms
of Fμν, we arrive at uμEμ ¼ 0 and uμBμ ¼ 0. Combining
these relations with v · E ¼ 0 as well as v · B ¼ 0,
which are valid in 1þ 1-dimensional transverse MHD,
we have, in particular, Eμ ¼ ð0; Ex; Ey; 0Þ as well as
Bμ ¼ ð0; Bx; By; 0Þ. In what follows, we strongly use the
above properties of transverse MHD leading to ∂ · E ¼ 0;
∂ · B ¼ 0; E · ∂ ¼ 0; B · ∂ ¼ 0.15

For later convenience, we parametrize Eμ and Bμ in
terms of the magnitudes of the fields, E and B, as well as
the relative angles of E and B fields with respect to the
x-axis in the LRF of the fluid, ζ and ϕ,

Eμ ¼ ð0; E cos ζ; E sin ζ; 0Þ;
Bμ ¼ ð0; B cosϕ; B sinϕ; 0Þ: ð3:6Þ

The antisymmetric polarization tensor Mμν in Sec. (3.4)
describes the response of the system to an applied electro-
magnetic field. Assuming a linear response from the
medium, the electric and magnetic susceptibilities χe and
χm are defined by χe ≡ P=E and χm ≡M=B, where P and
M are given by P2 ¼ −PμPμ and M2 ¼ −MμMμ, with the
electric polarization Pμ ≡ −Mμνuν and magnetization

13Apart from electric conductivity, other dissipative effects,
such as shear and bulk viscosities, will not be considered in this
paper.

14Here, ϵ0123 ¼ −ϵ0123 ¼ 1.
15In Appendix A 2, we present a number of results by making

use of the assumption of translational invariance of the system in
the transverse plane as well as the aforementioned properties of
transverse MHD.
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Mμ ≡ 1
2
ϵμναβMναuβ. In this paper, ∂μχe ¼ 0 and ∂μχm ¼ 0

as well as χe ≠ −1 are assumed.
The electromagnetic field strength tensor satisfies the

homogeneous Maxwell equation

∂μ
~Fμν ¼ 0; ð3:7Þ

with ~Fμν ≡ 1
2
ϵμναβFαβ, or equivalently,

~Fμν ¼ Bμuν − Bνuμ þ ϵμναβEαuβ; ð3:8Þ

and the inhomogeneous Maxwell equation

∂μFμν ¼ Jν; ð3:9Þ

with the electromagnetic current

Jμ ¼ ρeuμ þ ∂ρMρμ þ σEμ: ð3:10Þ

Here, ρe is the electric charge density, and ∂ρMρμ is the
magnetization current. Differentiating (3.9) with respect
to xν leads to the third continuity equation ∂νJν ¼ 0 in
(3.1). Contracting further (3.9) with uν leads to ρe ¼ 0 (see
Appendix A 1 for a more rigorous proof of ρe ¼ 0).
Let us consider at this stage the Euler equation arising

from Δμν∂ρTρν ¼ 0, with Tμν defined in (3.2). It reads

Duμ ¼
∇μptot − Cμ

ðϵþ pþ ð1 − χmÞB2 þ ð1þ χeÞE2Þ ; ð3:11Þ

where

ptot ≡ p − χmB2 þ 1

2
ðE2 þ B2Þ;

Cμ ≡ χ½θEλBλμ þ ΔμνDðEλBλνÞ þ EλBλρ∂ρuμ�; ð3:12Þ

with Bμν ≡ ϵμναβBαuβ and χ ≡ 1
2
½ð1þ χeÞ þ ð1 − χmÞ�.

Assuming Duμ ¼ 0 and the boost invariance of p, E,
and B, or equivalently ∇μptot ¼ 0, (3.12) yields Cμ ¼ 0.
To determine the time evolution of the electromagnetic
and thermodynamic fields, we later derive a number of
constituent equations, arising from the homogeneous
and inhomogeneous Maxwell equations as well as
Δμν∂ρT

ρν
EM ¼ ΔμνJρFρν. We show that the combination

of these equations with Cμ ¼ 0 leads among others to
sin δ ¼ 0, where δ≡ ϕ − ζ. It turns out that in the LRF
of the fluid, the electric and magnetic fields E and B are
either parallel or antiparallel to each other (see Secs. III B
and III C).
More complicated solutions for the evolution of

electromagnetic and thermodynamic fields in a uniformly
expanding fluid with Duμ ¼ 0 arise by turning off the
assumption of the boost invariance of p, E, and B. In this
case, Duμ ¼ 0 is guaranteed once the numerator of (3.11)

vanishes. Using D ¼ 1
τ ; θ ¼ 1

τ, and ∇μ ¼ − 1
τ ðsinh η; 0; 0;

− cosh ηÞ ∂
∂η as well as

uμ ¼ ðcosh η; 0; 0; sinh ηÞ; ð3:13Þ

and

∂
∂t ¼ þ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η ;

∂
∂z ¼ − sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η ; ð3:14Þ

the resulting expression ∇μptot ¼ Cμ translates into

1

τ

∂ptot

∂η þ χ

� ∂
∂τ þ

2

τ

�
ðEB sin δÞ ¼ 0: ð3:15Þ

In the present work, we exclusively assume the boost
invariance of p, E, and B. Other more complicated
solutions corresponding to (3.15) in combination with
other constituent equations of electromagnetic and thermo-
dynamic fields are presented elsewhere [41].
In what follows, we derive a number of useful relations,

which help us to determine the space and time evolution of
n, T, p, ϵ as well as E and B. To do this, let us first consider
the homogeneous Maxwell equation (3.7). Plugging the
definition of ~Fμν from (3.8) into this equation, and using the
fact that in a nonaccelerating expansion uμ is given by
(3.13), we arrive for ν ¼ 1 and ν ¼ 2 at

∂μðBuμÞ cosϕ − B sinϕ
∂ϕ
∂τ −

E
τ
cos ζ

∂ζ
∂η ¼ 0;

∂μðBuμÞ sinϕþ B cosϕ
∂ϕ
∂τ −

E
τ
sin ζ

∂ζ
∂η ¼ 0; ð3:16Þ

respectively. Here, the parametrization (3.6) for the
electromagnetic fields and (3.14) are used. Combining
the relations arising in (3.16), we arrive at

∂μðBuμÞ −
E
τ
cos δ

∂ζ
∂η ¼ 0;

B
∂ϕ
∂τ þ

E
τ
sin δ

∂ζ
∂η ¼ 0; ð3:17Þ

where δ ¼ ϕ − ζ the relative angle between E and B. As
concerns the inhomogeneous Maxwell equation, plugging
Fμν from (3.5) into the lhs of (3.9), we arrive for Jμ from
(3.10) first at

ð1þ χeÞ∂νðEμuνÞ − ð1 − χmÞϵ0μν3
1

τ

∂Bν

∂η þ σEμ ¼ 0.

ð3:18Þ
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Here, we have, in particular, used ∂ · E ¼ 0, ∂ · B ¼ 0
as well as E · ∂ ¼ 0, and B · ∂ ¼ 0, which are valid in
1þ 1-dimensional transverse MHD. For μ ¼ 1 and μ ¼ 2,
(3.18) then yields

ð1þ χeÞ∂μðEuμÞ cos ζ − ð1þ χeÞE sin ζ
∂ζ
∂τ

þ ð1 − χmÞ
B
τ
cosϕ

∂ϕ
∂η þ σE cos ζ ¼ 0;

ð1þ χeÞ∂μðEuμÞ sin ζ þ ð1þ χeÞE cos ζ
∂ζ
∂τ

þ ð1 − χmÞ
B
τ
sinϕ

∂ϕ
∂η þ σE sin ζ ¼ 0. ð3:19Þ

Combining these two equations results in

ð1þ χeÞE
∂ζ
∂τþð1− χmÞ

B
τ
sinδ

∂ϕ
∂η ¼ 0;

ð1þ χeÞ∂μðEuμÞþ ð1− χmÞ
B
τ
cosδ

∂ϕ
∂η þ σE¼ 0. ð3:20Þ

Using, at this stage, the previously assumed boost invari-
ance of p, E, and B in transverse MHD in combination with
Δμν∂ρT

ρν
EM ¼ ΔμνJρFρν, we also obtain

½χe∂μðEuμÞ þ σE� sin δ ¼ χeE cos δ
∂ζ
∂τ : ð3:21Þ

Another useful relation, which is used later to determine the
evolution of thermodynamic quantities T, p, and ϵ arises
from uν∂μT

μν
F ¼ −uνJμFμν, and reads

D

�
ϵþ 1

2
χeE2

�
þ θðϵþ p − χmB2Þ

¼ σE2 − χm
EB
τ

cos δ
∂ϕ
∂η : ð3:22Þ

Here,

ϵ0μν3Eμ
∂Bν

∂η ¼ EB cos δ
∂ϕ
∂η ð3:23Þ

is used. The full energy equation

D

�
ϵþ

�
1

2
þ χe

�
E2 þ 1

2
B2

�

þ θ½ϵþ pþ ð1þ χeÞE2 þ ð1 − χmÞB2� ¼ 0 ð3:24Þ

is derived from uν∂μTμν ¼ 0. In the next section, we use the
relations (3.17), (3.20), and (3.21) to derive a differential
equation, whose solution yields the space and time
dependence of the E and B vectors. In particular, the
evolution of the magnitude of these fields, E ¼ jEj and

B ¼ jBj, as well as their relative angles ζ and ϕ with
respect to the x-axis in the LRF of the fluid, is determined
as functions of independent coordinates τ and η. Moreover,
the method of self-similar solutions for nonconserved
charges, introduced in Sec. II, is used to determine the
space-time evolution of thermodynamic quantities n, T, p,
and ϵ.

B. Formal self-similar solutions for electromagnetic
and thermodynamic quantities in nonideal

transverse MHD

In nonideal transverse MHD, the dynamics of the electro-
magnetic fields B and E as well as the thermodynamic
quantities n, T, p and ϵ are governed by the following
homogeneous and inhomogeneous differential equations:

∂μðnuμÞ ¼ 0; ð3:25Þ

∂μðTκuμÞ ¼ TκDL; ð3:26Þ

∂μðBuμÞ ¼ BDM; ð3:27Þ

∂μðEuμÞ ¼ EDN ; ð3:28Þ

where functions L, M, and N are to be determined. Here,
the baryonic current ∂μðnuμÞ is assumed to be conserved.
This leads to (3.25). Whereas the last two equations (3.27)
and (3.28) are only assumed to be valid at this stage, the
second equation (3.26) arises by assuming the ideal gas
equation p ¼ nT, as in the previous Sec. II, and by plugging
the EoS (2.7), with κ satisfying Dκ ¼ 0, into (3.22). Using
(3.25), we thus obtain (3.26) with

DL ¼ 1

p

�
σE2 − χeE

∂E
∂τ þ χmB2θ − χm

EB
τ

cos δ
∂ϕ
∂η

�
:

ð3:29Þ

As expected, in ideal MHD, with σE2 → 0 and
χe ¼ χm ¼ 0, we haveDL ¼ 0. In this case, the self-similar
solution of the resulting equation ∂μðTκuμÞ ¼ 0 is given
by (2.18).
Following the method presented in the previous section,

the self-similar solution of n reads

nðτ; ηÞ ¼ n0

�
τ0
τ

�
U
�
tanh2η
_Z2
0

�
ð3:30Þ

[see (2.17)]. Here, U is an arbitrary η-dependent scaling
factor. Using further the method of nonconserved charges
from Sec. II, the formal solution of (3.26) reads

Tðτ; ηÞ ¼ T0

�
τ0
τ

�
1=κ

e
L
κV

�
tanh2η
_Z2
0

�
ð3:31Þ
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[see (2.26)]. Here, V ¼ U−1 guarantees the boost invariance
of p, whose formal solution can be derived from the ideal
gas equation p ¼ nT,

p ¼ p0

�
τ0
τ

�
1þ1

κ

e
L
κ : ð3:32Þ

Here, p0 ¼ n0T0. Using further the EoS ϵ ¼ κp, the formal
solution of the energy density is given by

ϵ ¼ ϵ0

�
τ0
τ

�
1þ1

κ

e
L
κ ; ð3:33Þ

with ϵ0 ¼ κp0. To determine L explicitly from (3.29) the
space-time evolutions of B and E are first to be determined.

Using the boost invariance of E and B, which arises from
the Euler equation (3.11) in a uniformly expanding fluid
withDuμ ¼ 0, the formal solutions of B and E are given by

BðτÞ ¼ B0

�
τ0
τ

�
eM; ð3:34Þ

EðτÞ ¼ E0

�
τ0
τ

�
eN : ð3:35Þ

Here, M and N are functions of τ, and M0 and N 0 are
chosen to be M0 ¼ Mðτ0Þ ¼ 0 and N 0 ¼ N ðτ0Þ ¼ 0.
Plugging finally (3.32), (3.34), and (3.35) into (3.29), we
arrive at

e
L
κ ¼ 1þ σE2

0

ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
1−1

κ

e2N þ χeE2
0

ϵ0τ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
2−1

κ

e2N −
χeE2

0

ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
1−1

κ

e2N
dN
dτ0

þ χmB2
0

ϵ0τ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
2−1

κ

e2M −
χmE0B0

ϵ0τ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
2−1

κ

eMþN cos δ
∂ϕ
∂η : ð3:36Þ

Here, δ ¼ ϕ − ζ. To have the full τ dependence of T, p, ϵ
as well as B and E, the τ dependence of M and N as well
as the η dependence of ϕ and δ are to be determined. This is
done in the following section.

C. Master equation forM in nonideal transverse MHD

Let us start by considering (3.17), (3.20), and (3.21).
These are a set of five constituent equations, whose solutions
lead to ðτ; ηÞ dependence of M, N as well as ϕ and ζ. To
arrive at these solutions, the following assumptions in the
nonideal transverse MHD setup are essential:
(1) The system is translational invariant in the transverse

plane, i.e., in our setup no quantity depends on x
and y.16

(2) The system evolves uniformly at all times,
i.e., Duμ ¼ 0; ∀ t.

(3) The pressure p and the magnitude of electric and
magnetic fields E ¼ jEj and B ¼ jBj are boost
invariant, i.e., in general we have ∂ptot∂η ¼ 0, where
ptot is defined in (3.12). According to our arguments
above this assumption together with Duμ ¼ 0 leads
automatically to Cμ ¼ 0.

The outline of our method is as follows.
(i) We first show that a combination of these equations

leads automatically to sin δ ¼ 0. Mathematically,
sinδ¼0 leads to δ¼ϕ−ζ¼nπ with n¼0;1;2;….
Physically, this would mean that in a uniformly

expanding fluid, where a transverse MHD setup is
applicable, the electric and magnetic vectors, E and
B, are either parallel or antiparallel with respect to
each other in the LRF of the fluid. Moreover, since
the relative angle, δ, of these fields remains constant
in τ and η, if at τ0 they are parallel/antiparallel, they
remain so at any later time τ > τ0 and for any
η ¼ −∞;…;∞. Let us notice that the fact that
electric and magnetic fields are either parallel or
antiparallel leads to vanishing local Poynting vector
S ¼ E ×B, and consequently to vanishing electro-
magnetic energy flow between fluid parcels. This
result is fully consistent with Cμ ¼ 0, where Cμ is
defined in (3.12).

(ii) By solving these equations, we, in particular, show
that ϕ and η evolves as

ϕðηÞ ¼ ω0ηþ ϕ0; ζðηÞ ¼ ω0ηþ ζ0; ð3:37Þ

with ϕðηÞ − ζðηÞ ¼ ϕ0 − ζ0 ¼ δ ¼ nπ. Here, ω0 ¼∂ϕ
∂η ¼ ∂ζ

∂η ¼ const. A nonvanishing ω0 implies a ro-
tation of B and E vectors around an axis parallel to
the z-axis. It can also be regarded as the source for
nonboost invariance (η dependence) of rotating
solutions in nonideal transverse MHD.

(iii) Finally, by combining these equations, we show that
M either satisfies

dM
du

¼ 0; ð3:38Þ16See Appendix A 2 for more discussions concerning the
symmetry properties in transverse MHD.
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where u≡ lnð ττ0Þ, or the following second-order
nonlinear differential equation:

d2M
du2

þ dM
du

�
dM
du

þ στ0eu

1þ χe

�
þ ω2

0

ð1 − χmÞ
1þ χe

¼ 0.

ð3:39Þ

Here, ω0 ¼ ∂ϕ
∂η ¼ ∂ζ

∂η, being part of the initial con-
dition, remains constant for all τ and η. We show
that (3.38) corresponds to ω0 ¼ 0, which leads,
using (3.37), to constant ϕ and ζ. Physically, this
corresponds to nonrotating vectors E and B. More-
over, for M satisfying (3.38), we have M ¼ 0.
Using (3.27), this leads to frozen-flux relation
∂μðBuμÞ ¼ 0, even in the nonideal MHD with
nonvanishing magnetization and electric polariza-
tion. In addition, any solution of (3.39) leads to a
deviation from frozen-flux theorem in such a
medium. Since for the derivation of (3.39), ω0 is
assumed to be nonzero, these solutions correspond
to rotating E and B fields.

Let us finally notice that wheneverMðτÞ and ϕðτ; ηÞ are
computed, it is then easy to determine N ðτÞ from the
second equation in (3.20) in combination with the ansatz
(3.28). The τ dependence of T arises then from (3.36) in
combination with the formal self-similar solution (3.31) of
T. Important self-consistency checks concerning the evo-
lution of E0, Ez as well as B0, Bz with τ and η are presented
in Appendix A 2. We, in particular, show that apart from
Ei ¼ Bi ¼ 0, ∂Ei∂τ ¼ ∂Ei∂η ¼ 0, and ∂Bi∂τ ¼ ∂Bi∂η ¼ 0; i ¼ 0; z are
always valid. This guarantees the persistence of the afore-
mentioned conditions of transverse MHD during the uni-
form expansion of the fluid.
Proofs:
(i) In order to show that sin δ ¼ 0, let us consider the

first equation in (3.20). Plugging

χeE
∂ζ
∂τ ¼ −E

∂ζ
∂τ − ð1 − χmÞ

B
τ
sin δ

∂ϕ
∂η ;

from this equation into the rhs of (3.21), we arrive, in
particular, at

½χe∂μðEuμÞ þ σE� sin δ

¼ −E cos δ
∂ζ
∂τ − ð1 − χmÞ sin δ cos δ

B
τ

∂ϕ
∂τ :

ð3:40Þ

From the second equation in (3.20), we then have

χe∂μðEuμÞþ σE¼−∂μðEuμÞ− ð1− χmÞcosδ
B
τ

∂ϕ
∂η :

ð3:41Þ

Plugging (3.40) into the lhs of (3.41) results in

E cos δ
∂ζ
∂τ ¼ ∂μðEuμÞ sin δ; ð3:42Þ

which together with (3.21) leads to

σE sin δ ¼ 0: ð3:43Þ

In nonideal transverse MHD, where σE ≠ 0, (3.43)
leads to sin δ ¼ 0, and consequently to δ ¼ nπ with
n ¼ 0; 1; 2;…, and l≡ cos δ ¼ �1. Here, the plus
and minus signs correspond to parallel and antipar-
allel orientation of E and B fields with respect to
each other.

(ii) Let us now reconsider the relations from (3.17),
(3.20), and (3.21) with sin δ ¼ 0 and cos δ ¼ �1. In
this case, (3.21) leads to

∂ζðτ; ηÞ
∂τ ¼ 0; ∀ τ; η: ð3:44Þ

This is also compatible with the first equation of
(3.20). From the second equation of (3.17), we also
obtain

∂ϕðτ; ηÞ
∂τ ¼ 0; ∀ τ; η: ð3:45Þ

Introducing at this stage u ¼ lnð ττ0Þ, the first equation
in (3.17) leads to

∂ζðτ; ηÞ
∂η ¼ l

BðτÞ
EðτÞ

dMðuÞ
du

: ð3:46Þ

Here, (3.27) is used. Let us note that since
δ ¼ ϕ − ζ ¼ const., we also have

∂ζðτ; ηÞ
∂η ¼ ∂ϕðτ; ηÞ

∂η : ð3:47Þ

Bearing in mind that the electromagnetic fields, E
and B, are boost invariant (η independent), and that
M depends only on τ, the rhs of (3.46) turns out to
be independent of η. We thus have

∂2ζðτ; ηÞ
∂η2 ¼ 0; ∀ τ; η; ð3:48Þ

and upon using (3.47),

∂2ϕðτ; ηÞ
∂η2 ¼ 0; ∀ τ; η: ð3:49Þ

The last two relations together with (3.47) lead
first to
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ϕðτ; ηÞ ¼ ωðτÞηþ ϕ0ðτÞ;
ζðτ; ηÞ ¼ ωðτÞηþ ζ0ðτÞ: ð3:50Þ

Using then

∂
∂τ

�∂ϕ
∂η

�
¼ ∂

∂τ
�∂ζ
∂η

�
¼ 0; ð3:51Þ

arising from (3.44) and (3.45), we obtain

∂ζ
∂η ¼ ∂ϕ

∂η ≡ ω0 ¼ const:; ð3:52Þ

as well as

ϕ0ðτÞ≡ ϕ0 ¼ const:;

ζ0ðτÞ≡ ζ0 ¼ const: ð3:53Þ

Plugging the above results into (3.50), we arrive at
(3.37), as claimed.

(iii) To derive the differential equation (3.39) for M, we
use (3.37) together with (3.46), and arrive at

dM
du

¼ lω0

E
B
; ð3:54Þ

which, upon using (3.27) and (3.28), yields

dM
du

¼ lω0β0eN−M; ð3:55Þ

with β0 ≡ E0

B0
. For ω0 ¼ 0, (3.55) leads to (3.38). For

ω0 ≠ 0, we use the second equation of (3.20),
together with (3.28) and (3.55), and arrive, for
χe≠−1 and dM

du ≠ 0, at the differential
equation (3.39).

As aforementioned, the solutions of (3.38) and (3.39)
correspond to nonrotating and rotating electromagnetic
fields, respectively. In the next section, we present exact
and approximate solutions to these equations.

IV. ANALYTICAL SOLUTIONS
OF (3.38) AND (3.39)

A. Nonrotating electric and magnetic fields

As we have argued in the previous section, in nonideal
transverse MHD with nonvanishing electric field, the case
dM
du ¼ 0 corresponds to ω0 ¼ 0. This implies constant
angles of B and E fields with respect to a certain x-axis
in the transverse plane, i.e.,

ϕðτ; ηÞ ¼ ϕ0 ¼ const: and ζðτ; ηÞ ¼ ζ0 ¼ const:

ð4:1Þ

[see (3.37)]. To determine the magnitude of the electric and
magnetic fields, let us consider dM

du ¼ 0, or equivalently,
DM ¼ 0. Using (3.27) and M0 ¼ 0, we have

M ¼ 0: ð4:2Þ
Plugging this relation into (3.27), it turns out that B satisfies
(2.21), as in the ideal case. In other words, the fluxes are, as
in the case of ideal MHD, frozen. Bearing in mind that
B ¼ jBj is η independent, the most general self-similar
solution of B reads

BðτÞ ¼ B0

�
τ0
τ

�
ð4:3Þ

[see (3.34)]. Using, at this stage, the second relation in
(3.20) with ∂ϕ

∂η ¼ 0, we arrive at

∂μðEuμÞ ¼ −E
σ

1þ χe
; ð4:4Þ

which, upon comparing with (3.28), leads to

N ¼ −
σðτ − τ0Þ
1þ χe

: ð4:5Þ

Hence, according to (3.35), EðτÞ evolves as

EðτÞ ¼ E0

�
τ0
τ

�
e−

σðτ−τ0Þ
1þχe : ð4:6Þ

The ideal transverse MHD limit E → 0 is thus recovered
for σ

1þχe
≪ 1

τ−τ0
. Let us notice that in the ideal MHD, where

E is assumed to vanish, dM
du ¼ 0 leads also to (4.3).

Combining now (4.3) and (4.6), we also arrive at

E
B
¼ β0e

−σðτ−τ0Þ
1þχe ; ð4:7Þ

with β0 ¼ E0

B0
.

In Fig. 1, the spatial components of nonrotating
Bμ ¼ ð0;BÞ and Eμ ¼ ð0;EÞ fields with

B
B0

¼
�
τ0
τ

�
ðcosϕ0; sinϕ0; 0Þ;

E
E0

¼
�
τ0
τ

�
e−

σðτ−τ0Þ
1þχe ðcos ζ0; sin ζ0; 0Þ; ð4:8Þ

are plotted in an η vs τ=τ0 plane. Here, ϕ0 ¼ π
6
and ζ0 ¼ 7π

6
.

Moreover, τ0 ¼ 0.5 fm=c, σ ¼ 4 MeVc, and χe ¼ 0 are
assumed. In this case, δ ¼ ϕ0 − ζ0 ¼ π. This corresponds
to antiparallel B (blue arrows) and E (red arrows) vectors.
As it is shown, whereas B ¼ jBj and E ¼ jEj decrease with
increasing τ, the orientations of magnetic and electric fields
remain constant in the η direction.

NOVEL SELF-SIMILAR ROTATING SOLUTIONS OF … PHYSICAL REVIEW D 96, 116008 (2017)

116008-11



Plugging, at this stage, M and N from (4.2) and (4.5)
into (3.36), and performing the integration over τ0 by
making use of

Z
τ

τ0

dτ0
�
τ0
τ0

�
n−1

κ

e−
mσðτ0−τ0Þ

1þχe

¼ τ0

�
mστ0
1þ χe

�
n−1

κ−1
e
mστ0
1þχe

�
Γ
�
1

κ
− nþ 1;

mστ0
1þ χe

�

− Γ
�
1

κ
− nþ 1;

mστ

1þ χe

��
;

which arises from

Z
τ2

τ1

dtta−1e−t ¼ Γða; τ1Þ − Γða; τ2Þ; ð4:9Þ

we obtain

e
L
κ ¼ 1þ ð1þ 2χeÞE2

0

2ϵ0

�
2στ0
1þ χe

�
1−c2s

e
2στ0
1þχe

×

�
Γ
�
c2s ;

2στ0
1þ χe

�
− Γ

�
c2s ;

2στ

1þ χe

��

þ χeE2
0

ϵ0

�
2στ0
1þ χe

�
1−c2s

e
2στ0
1þχe

×

�
Γ
�
c2s − 1;

2στ0
1þ χe

�
− Γ

�
c2s − 1;

2στ

1þ χe

��

−
χmB2

0

ϵ0ð1 − c2sÞ
��

τ0
τ

�
1−c2s

− 1

�
: ð4:10Þ

Here, c2s ≡ κ−1 is the sound velocity and ϵ0 ¼ κp0. In
Sec. V, we use (4.10) to demonstrate the evolution of
thermodynamic fields T, p, and ϵ, whose self-similar
solutions are presented in (3.31)–(3.33). In particular, we
compare the evolution of these fields for nonrotating and
rotating electromagnetic fields, characterized by ω0 ¼ 0
and ω0 ≠ 0, respectively. The latter case is discussed as a
next step.

B. Rotating electric and magnetic fields:
Approximate analytical solutions

In this section, we present approximate analytical sol-
utions to (3.39). We consider two different cases,

Case 1∶
E
B
∼
E0

B0

�
τ0
τ

�
n

for n ≠ 0 and n ¼ 0;

Case 2∶ Smallω0 with MðτÞ ∼ ω0fðτÞ:

In both cases, B and E are either parallel (l ¼ þ1) or
antiparallel (l ¼ −1), and rotate gradually with increasing
η. The angular velocity is given by ω0 ¼ const. The τ
dependence of the magnitudes of the electromagnetic fields
turns out to be given by any nonvanishing solution of
(3.39), which, in particular, represents a deviation from
frozen-flux theorem. Apart from the evolution of B and E,
we are interested in the evolution of T, p, and ϵ. To this
purpose, we insert the correspondingM andN from these
two cases into (3.36), and arrive at expðLκÞ, which, upon
insertion into (3.31)–(3.33) leads to the evolution of T, p,
and ϵ, respectively.

1. Case 1: E
B ∼

E0
B0
ðτ0τ Þn for n ≠ 0 and n = 0

Plugging E
B ¼ E0

B0
ðτ0τ Þn into the rhs of (3.54), we arrive

first at

MðuÞ ¼ −
lω0β0

n
ðe−nu − 1Þ; ð4:11Þ

with u ¼ lnð ττ0Þ. Then, using the formal solution of BðτÞ
from (3.34), arising from the method of nonconserved
charges introduced in Sec. II, the most general self-similar
solution for B ¼ jBj reads

BðτÞ ¼ B0

�
τ0
τ

�
e−bnðτ;ω0Þ; ð4:12Þ

with

bnðτ;ω0Þ≡ lω0β0
n

��
τ0
τ

�
n
− 1

�
: ð4:13Þ

To determineN , we insert (4.13) into the rhs of (3.55). We
obtain

FIG. 1. Nonrotating B
B0

and E
E0

from (4.8) are plotted in an η vs
τ=τ0 plane. Blue (red) arrows correspond to the magnetic
(electric) vector field. Here, ϕ0 ¼ π=6 and δ ¼ π, i.e., B and
E are antiparallel. For E, σ ¼ 4 MeVc and τ0 ¼ 0.5 fm=c.
Whereas the magnetic flux is frozen, ∂μðBuμÞ ¼ 0, the electric
field satisfies (4.4).
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N ðuÞ ¼ MðuÞ − nu

¼ −
lω0β0

n
ðe−nu − 1Þ − nu; ð4:14Þ

which leads, upon using (3.35), to

E ¼ E0

�
τ0
τ

�
1þn

e−bnðτ;ω0Þ; ð4:15Þ

with bnðτ;ω0Þ from (4.13). As concerns the evolution of ϕ
and ζ, the relative angles of B and E with respect to the
x-axis in the LRF of the fluid, they are, as before, given by
(3.37), where the constant angular velocity of these fields
ω0 can be fixed from the master equation (3.39) evaluated
at u ¼ 0 (or equivalently τ ¼ τ0). To this purpose, we use
(3.54), which for M from (4.11) yields

dM
du

����
u¼0

¼ lω0β0;

d2M
du2

����
u¼0

¼ −nlω0β0: ð4:16Þ

Plugging these expressions into (3.39), and setting u ¼ 0,
we obtain

~ω0 ¼
lβ0½nð1þ χeÞ − στ0�
1 − χm þ β20ð1þ χeÞ

: ð4:17Þ

We are, in particular, interested in the evolution of B and E
in the limit n → 0. Using (4.12) and (4.15), and taking the
limit n → 0, we arrive at the power-law solutions

B ¼ B0

�
τ0
τ

�
a
; E ¼ E0

�
τ0
τ

�
a
; ð4:18Þ

with a≡ 1 − lω0β0 and

ω0 ¼ −
lβ0στ0

1 − χm þ β20ð1þ χeÞ
; ð4:19Þ

which arises from (4.17) by taking the limit n → 0. Let us
notice, at this stage, that the power-law solution (4.18) for
the B field is similar to the power-law decay ansatz that was
previously introduced in [33]. In contrast to our method, the
authors took the ansatz BðτÞ ∼ τ−a, with a being an
arbitrary constant free parameter, as the starting point of
their analysis, without bringing the power a into relation
with ω0 and β0. Let us note that according to (4.19), two
cases of a > 1 and a < 1, discussed in [33,34], are
controlled by

χm < 1þ β20ð1þ χeÞ;
χm > 1þ β20ð1þ χeÞ;

leading to lω0 < 0 and lω0 > 0, respectively.
In Fig. 2, we have demonstrated the spatial components

of rotating magnetic and electric fields Bμ ¼ ð0;BÞ and
Eμ ¼ ð0;EÞ with

B
B0

¼
�
τ0
τ

�
e−bnðτ; ~ω0ÞðcosϕðηÞ; sinϕðηÞ; 0Þ;

E
E0

¼
�
τ0
τ

�
1þn

e−bnðτ; ~ω0Þðcos ζðηÞ; sin ζðηÞ; 0Þ: ð4:20Þ

Here, bnðτ; ~ω0Þ is defined in (4.13) and ~ω0 in (4.17). The
angles ϕðηÞ and ζðηÞ are given in (3.37) with ω0 replaced
by ~ω0. In Figs. 2(a) and 2(b), the vectors corresponding
to B=B0 [blue arrows in Fig. 2(a)] and E

E0
[red arrows in

Fig. 2(b)] are plotted for the set of free parameters
fn; σ; β0;ϕ0; χe; χm;lg ¼ f4; 400; 1; π

3
; 0; 0;þ1g in an η

(a) (b) (c)

FIG. 2. B=B0 (a) and E=E0 (b) from (4.20) are plotted for the set of free parameters fn; σ; β0;ϕ0; χe; χm;lg ¼ f4; 400; 1; π
3
; 0; 0;þ1g

in an η vs τ=τ0 plane. The magnetic and electric vectors, indicated by blue (a) and red (b) vectors, are parallel. This implies a clockwise
rotation of B and E vectors while η increases. This is demonstrated with gray stream lines. The angular velocity ~ω0 is given in (4.17).
(c) B=B0 (blue arrows) and E=E0 (red arrows) from (4.20) are plotted for the set of free parameters fn; σ; β0;ϕ0; χe; χm;lg ¼
f4; 400; 1; π

6
; 0; 0;−1g in an η vs τ=τ0 plane. In this case, B and E are antiparallel, and rotate counterclockwise while η increases. The

electric field decreases much faster than the magnetic field with increasing τ=τ0.
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vs τ=τ0 plane. The gray stream lines are plotted to
demonstrate the rotation of B and E vectors, which are,
in this case, parallel to each other (l ¼ þ1).17 Here, the
rotation turns out to be clockwise while η increases. The
magnitudes of the fields B and E decrease with increasing
τ. Because of an additional power n of τ0

τ , E decays much
faster than B with increasing τ [see (4.20)].
In Fig. 2(c), B (blue arrows) and E (red arrows) are

antiparallel (l ¼ −1).18 In this case, a counterclockwise
rotation occurs with increasing η. Here, the set of free
parameters is chosen to be fn; σ; β0;ϕ0; χe; χm;lg ¼
f4; 400; 1; π

6
; 0; 0;−1g. As in the previous case, with

increasing τ, E decreases much faster than B.
In Fig. 3, we have plotted the spatial components

of rotating magnetic and electric fields Bμ ¼ ð0;BÞ and
Eμ ¼ ð0;EÞ,

B
B0

¼
�
τ0
τ

�
a
ðcosϕðηÞ; sinϕðηÞ; 0Þ;

E
E0

¼
�
τ0
τ

�
a
ðcos ζðηÞ; sin ζðηÞ; 0Þ; ð4:21Þ

with a ¼ 1 − lω0β0 and ϕðηÞ as well as ζðηÞ from (3.37).
Here, ω0 from (4.19) are to be inserted into a, ϕðηÞ,
and ζðηÞ. Let us recall that for n ¼ 0, E

B ¼ E0

B0
¼ const.

Hence B and E decrease with the same slope as τ increases.
In Fig. 3(a), where the set of free parameters is chosen to be
fσ; β0;ϕ0; χe; χm;lg ¼ f400; 1; π

6
; 0; 0;þ1g, B and E are

parallel, and a clockwise rotation occurs with increasing η.

In Fig. 3(b), B (blue arrows) and E (red arrows) are
antiparallel. As expected, a counterclockwise rotation
occurs with increasing η, and B as well as E decrease
with increasing τ with the same slope. Here, we have
worked with fσ; β0;ϕ0; χe; χm;lg ¼ f400; 1; π

6
; 0; 0;−1g.

As concerns e
L
κ from (3.36), in the limit n → 0, it is

given by

e
L
κ ¼ 1þ στ0E2

0

ðc2s − 2ða − 1ÞÞϵ0

��
τ0
τ

�
−c2sþ2ða−1Þ

− 1

�

þ aðχeE2
0 þ χmB2

0Þ
ðc2s þ 1 − 2aÞϵ0

��
τ0
τ

�
−c2s−1þ2a

− 1

�
; ð4:22Þ

where a ¼ 1 − lω0β0 with ω0 given in (4.19). Plugging
this expression into (3.31)–(3.33), we arrive at the evolu-
tion of thermodynamic fields T, p, and ϵ in the case, where
B and E evolve as presented in (4.21).

2. Case 2: Slowly rotating E and B fields

In this case, the angular velocity ω0 is assumed to be
small (ω0 ≪ 1). Consequently, M may be approximated
by

MðuÞ ∼ ω0fðuÞ; ð4:23Þ

with fðuÞ satisfying the differential equation

f00ðuÞ þ Aeuf0ðuÞ ¼ 0: ð4:24Þ

Here, A≡ στ0
1þχe

. This differential equation arises by
inserting the ansatz (4.23) into the master equation (3.39),
and neglecting terms proportional to ω2

0. To solve (4.24),
we use the first relation in (4.16), and arrive for f0ðuÞ at

(a) (b)

FIG. 3. (a)B=B0 from (4.21) is plotted for the set of free parameters fσ; β0;ϕ0; χe; χm;lg ¼ f400; 1; π
6
; 0; 0;þ1g in an η vs τ=τ0 plane.

The electric field vectors are parallel to the magnetic field vectors (denoted by blue arrows), and are not demonstrated in this plot. A
clockwise rotation is set up with increasing η. The angular velocity is given by (4.19). (b) B=B0 (blue arrows) and E=E0 (red arrows)
from (4.21) are plotted for the set of free parameters fσ; β0;ϕ0; χe; χm;lg ¼ f400; 1; π

6
; 0; 0;−1g in an η vs τ=τ0 plane. The rotation turns

out to be counterclockwise while η increases.

17l¼þ1 corresponds to δ¼ϕ0−ζ0¼2nπ with n¼0;1;2;….
18l ¼ −1 corresponds to δ ¼ ϕ0 − ζ0 ¼ ð2nþ 1Þπ with

n ¼ 0; 1; 2;….
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f0ðuÞ ¼ lβ0e−Aðe
u−1Þ: ð4:25Þ

The final result for MðτÞ then reads

MðτÞ ∼ ω0fðτÞ ¼ lω0β0e
στ0
1þχe

×

�
Γ
�
0;

στ0
1þ χe

�
− Γ

�
0;

στ

1þ χe

��
:

ð4:26Þ

To perform the integration over τ, (4.9) is used. Using
(3.55) together with (4.25), N is given by

N ðτÞ ¼ MðτÞ − σðτ − τ0Þ
1þ χe

; ð4:27Þ

with M from (4.26). The proper time evolution of the
magnetic and electric fields thus reads

B ¼ B0

�
τ0
τ

�
eMðτÞ; E ¼ E0

�
τ0
τ

�
eN ðτÞ; ð4:28Þ

with M and N from (4.26) and (4.27), respectively. The
ratio E=B is then given by

E
B
¼ β0e

−σðτ−τ0Þ
1þχe ; ð4:29Þ

with β0 ¼ E0=B0. The above results can be studied in
two different limits σðτ − τ0Þ ≪ ð1þ χeÞ and σðτ − τ0Þ ≫
ð1þ χeÞ, by using

Γð0; zÞ ≈z→0
− γE − ln zþ z; Γð0; zÞ ≈

z→∞ e−z

z
: ð4:30Þ

For small conductivity, σ ≪ ð1þχeÞ
τ−τ0

, we thus arrive at

B ≈ B0

�
τ0
τ

�
a
�
1 −

σð1 − aÞ
1þ χe

�
τ0 ln

�
τ0
τ

�
þ ðτ − τ0Þ

��
;

ð4:31Þ

and

E ≈ E0

�
τ0
τ

�
a
�
1 −

σ

1þ χe

�
ð1 − aÞτ0 ln

�
τ0
τ

�

þ ð2 − aÞðτ − τ0Þ
��

; ð4:32Þ

with a ¼ 1 − lω0β0, as in the previous case. Hence, as it
turns out, (4.31) and (4.32) represent a deviation from the
power-law solution (4.18).
In the case of large conductivity, σ ≫ ð1þχeÞ

τ−τ0
, the mag-

netic field behaves as

B ≈ B0

�
τ0
τ

��
1þ lω0β0ð1þ χeÞ

στ0

�
; ð4:33Þ

while, as expected, the electric field vanishes,

E ¼ Bβ0e
−σðτ−τ0Þ

1þχe → 0: ð4:34Þ

In Fig. 4, we have plotted the spatial components of
rotating magnetic and electric fields Bμ ¼ ð0;BÞ and
Eμ ¼ ð0;EÞ,

(a) (b)

FIG. 4. (a) B=B0 from (4.35) is plotted for the set of free parameters fσ;ω0; β0;ϕ0; χe; χm;lg ¼ f40; 0.1; 0.1; π
6
; 0; 0;þ1g in an η vs

τ=τ0 plane. The electric field vectors are parallel to the magnetic field vectors (denoted by blue arrows), and are not demonstrated in this
plot. A slow rotation sets up with increasing η. (b) B=B0 (blue arrows) and E=E0 (red arrows) from (4.35) are plotted for the set of free
parameters fσ;ω0; β0;ϕ0; χe; χm;lg ¼ f40; 0.1; 0.1; π

6
; 0; 0;−1g in an η vs τ=τ0 plane. A slow rotation sets up with increasing η.
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B
B0

¼
�
τ0
τ

�
eMðτÞðcosϕðηÞ; sinϕðηÞ; 0Þ;

E
E0

¼
�
τ0
τ

�
eN ðτÞðcos ζðηÞ; sin ζðηÞ; 0Þ; ð4:35Þ

with M and N from (4.26) and (4.27), respectively.
The angles ϕðηÞ and ζðηÞ are given in (4.34). In
Fig. 4(a), the vectors of B=B0 (blue arrows) are plotted
with the set of free parameters fσ;ω0; β0;ϕ0; χe; χm;lg ¼
f40; 0.1; 0.1; π

6
; 0; 0;þ1g. The electric vectors E=E0 are

parallel to B=B0, and are not demonstrated in this plot. The
vectors are slowly rotating with increasing η. In Fig. 4(b),
antiparallel vectors B=B0 (blue arrows) and E=E0 (red
arrows) are plotted with the set of free parameters
fσ;ω0;β0;ϕ0;χe;χm;lg¼f40;0.1;0.1;π

6
;0;0;−1g. A slow

rotation is set up with increasing η.

V. NUMERICAL RESULTS

As it is demonstrated in previous sections, the combi-
nation of five partial differential equations (3.17), (3.20),
and (3.21), arising from the energy conservation law and
Maxwell equations of motion, leads to two different series
of solutions for the evolution of electromagnetic and
thermodynamic fields. They are essentially characterized
by dM

du ¼ 0 and dM
du ≠ 0. Here, nonvanishing M describes

the deviation from frozen-flux theorem ∂μðBuμÞ ¼ 0 of
ideal transverse MHD [see (3.27) and the most general
solution of the magnetic field B in nonideal transverse
MHD from (3.34)]. Whereas the solution corresponding to
dM
du ¼ 0 leads to nonrotating parallel or antiparallel electric
and magnetic fields, the solutions corresponding to dM

du ≠ 0

describe rotating B and E fields. The proper time evolution
of the magnitudes of these fields is shown to be determined
by exact and approximate analytical solutions to (3.38) and
(3.39). We have, in particular, shown that, apart from B and
E, the proper time evolution of thermodynamic fields T, p,
and ϵ is also affected by vanishing or nonvanishing M.
In this section, we use the numerical solution to the

master equation (3.39), and numerically determine the time
evolution of E ¼ jEj; B ¼ jBj and T.19 To demonstrate the
effect of rotation, we qualitatively compare the space-time
evolution of rotating and NR solutions of nonideal trans-
verse MHD for E, B, and T [Sec. VA]. The cases of
vanishing and nonvanishing susceptibilities are discussed
separately. In Sec. V B, we present a quantitative analysis
on the reliability of approximate solutions corresponding to
(3.39) presented in Sec. IV B. This is done by comparing
the PL and SR solutions from (4.21) and (4.28) with the
numerical solutions for B, E, and T arising from (3.39) and

(3.55), from which we particularly determineM andN , in
combination with (3.34)–(3.36).
In Sec. V C, we study the effect of various free

parameters fΩ0; σ; χmg on the proper time evolution of
electromagnetic and thermodynamic fields B, E, and T. We
focus on potentially different effects ofΩ0 > 0 andΩ0 < 0,
as well as χm < 0 and χm > 0, corresponding to dia- and
paramagnetic fluids. We show that with our specific
choices of free parameters,20 Ω0 > 0 leads to negative
E=E0, and is therefore unphysical. We therefore consider
only the case of Ω0 < 0 along with other free parameters.

The effect of σ0 ≡ B2
0

ϵ0
, with B0 ¼ Bðτ0Þ and ϵ0 ¼ ϵðτ0Þ, on

the proper time evolution of T is also discussed in detail.
Reformulating σ0 in terms of eB0=m2

π , with the pion mass
mπ ∼ 0.140 GeV, it is then possible to plot T=T0 in terms
of eB0=m2

π , and compare, in this way, the effect of B0 on
T=T0 at the RHIC and LHC. We choose different sets of
fχe; χmg as well asΩ0, and scrutinize the interplay between
these parameters on the gradient of temperature once eB0

increases from its value at the RHIC (eB0 ∼ 1.5m2
π) to its

value at the LHC (eB0 ∼ 15m2
π).

A. Space-time evolution of E, B, and T

In Sec. II, we studied the proper time evolution of ideal
transverse MHD. We argued that in this case, B evolves as
(2.22) with B ¼ 1, while E ¼ 0. We have also shown that
the evolution of T is given by (2.18). Using these relations,
we have presented, in Fig. 5, the contour plots of B=B0

[Fig. 5(a)] and T=T0 [Fig. 5(b)] with U ¼ 1. A qualitative
comparison shows that the magnetic field decays much
faster than the temperature.21 It declines within t ¼ 5 fm=c
down to 10 percent of its original value at τ0 ¼ 0.5 fm=c.
In Figs. 6(a)–6(i), the contour plots of B=B0

[Figs. 6(a)–6(c)], E=E0 [Figs. 6(d)–6(f)], and T=T0

[Figs. 6(g)–6(i)] are demonstrated for nonrotating and
rotating electromagnetic fields. The results for NR solu-
tions, characterized by vanishing dM=du, are demon-
strated in Figs. 6(a), 6(d), and 6(g). They correspond to
(4.8) and (3.31) with expðLκÞ from (4.10) and V ¼ 1. Here,
the set of free parameters is chosen to be

fσ0; σ; β0; χe; χmg ¼ f10; 400 MeVc; 0.01; 0; 0g: ð5:1Þ

To plot the space-time evolution of the numerical solutions
for B=B0, E=E0, and T=T0, denoted by “NumIso” B=B0,
E=E0, and T=T0, the set of free parameters

fσ0; σ;Ω0; β0; χe; χmg
¼ f10; 400 MeVc;−1.5; 0.01; 0; 0g ð5:2Þ

19The time evolution of p and ϵ is similar to that of T, and is
not presented here.

20Free parameters are chosen particularly with regard to the
realistic example of QGP.

21This is related with the fact that cs < 1.
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[Figs. 6(b), 6(e), and 6(h)] as well as

fσ0; σ;Ω0; β0; χe; χmg
¼ f10; 400 MeVc;−1.5; 0.01; 0.01; 0.01g ð5:3Þ

[Figs. 6(c), 6(f), and 6(i)] are used. First, using these
parameters, the master equation (3.39) is numerically
solved. Plugging then M arising from this equation into
(3.55), N is determined. The space-time evolution of
B=B0, E=E0, and T=T0 is then determined by plugging
M and N into (3.34)–(3.36). The latter leads, in combi-
nation with (3.31) with V ¼ 1, to the numerical solution
of T=T0.
A comparison between NR result for the space-time

evolution B=B0 from Fig. 6(a) shows that the magnetic field
decays faster in the case of nonvanishing dM

du (rotating
electromagnetic fields) with vanishing [Fig. 6(b)] and
nonvanishing susceptibilities [Fig. 6(c)]. In all these cases
B=B0 decays monotonically with t to values of B ≪ B0. In
contrast, the numerical results for E=E0 and T=T0 exhibit a
completely different behavior. Qualitatively, E=E0 and

T=T0 increase rapidly with increasing t ≤ 2 fm=c to values
of E and T larger than their original values E0 and T0.
Then, in the interval 2≲ t≲ 5 fm=c, they decay slowly to
values that are still larger than E0 and T0 [see Sec. V C and
Appendix B]. Nonvanishing susceptibilities do not affect
this qualitative picture too much.
In Sec. V C, we present, among others, a careful

quantitative analysis of the effect of Ω0 and χm on the
proper time evolution of B=B0, E=E0, and T=T0.

B. Reliability of analytical solutions of the master
equation (3.39): A qualitative analysis

In Sec. IV B, two approximate analytical solutions for
the master equation (3.39) have been presented. The first
case, for which E

B ∼
E0

B0
was assumed, leads to PL, and the

second one, for which ω0 was assumed to be small, leads to
SR solutions for the proper time evolution of B, E, and T.
In this section, we quantitatively determine the deviation

of these approximate analytical solutions from the numeri-
cal solutions of these fields. This deviation is determined
from

Error in%

≡
���� approx analytical − numerical solution

numerical solution

���� × 100:

ð5:4Þ

The τ dependence of these errors for B=B0 and E=E0 is
presented in Fig. 7. The sets of free parameters

fτ0; σ0; σ;Ω0; β0; χe; χmg
¼ f0.5 fm=c; 0.1; 40 MeVc;−0.1; 0.1; 0; 0g; ð5:5Þ

and

fτ0; σ0; σ;Ω0; β0; χe; χmg
¼ f0.5 fm=c; 10; 40 MeVc;−0.1; 0.1; 0; 0g; ð5:6Þ

are used in Figs. 7(a) and 7(b), respectively. As it turns out
from the results of Fig. 7, for B=B0, the SR approximate
solution (red dashed curves) is more reliable than the PL
solution (red solid curves). On the contrary, for E=E0, the
errors for PL solutions (black solid curves) in the whole
range of τ ∈ ½0; 10� fm=c are smaller than those for the SR
solution (black dashed curves) in the same proper time
interval. Except for the deviation of PL from numerical
solutions for E=E0 in Fig. 7(a) for σ0 ¼ 0.1 (black solid
curve), the errors increase with increasing τ. Moreover, in
contrast to the deviations of B=B0 from the numerical
solutions, which are in general lower than 20%, the
deviations of E=E0 are larger, and, depending on the
choice of free parameters raise up to 80%. Increasing σ0

(a)

(b)

FIG. 5. Space-time evolution of B and T in ideal transverse
MHD. (a) Isomagnetic fluxes of B=B0; (b) isothermal fluxes of
T=T0.
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from σ0 ¼ 0.1 to σ0 ¼ 10 does not change this picture
too much.
In Fig. 8, the τ dependence of the deviation of PL (solid

curves) and SR (dashed curves) solutions of T=T0 from its
numerical solution is plotted for two set of free parameters

Aset∶ fτ0;σ0;σ;Ω0;β0;χe;χmg
¼ f0.5 fm=c;0.1;4MeVc;−0.1;1;0;0g;

Bset∶ fτ0;σ0;σ;Ω0;β0;χe;χmg
¼ f0.5 fm=c;0.1;40MeVc;−0.1;0.1;0;0g; ð5:7Þ

in Fig. 8(a), and

Aset∶ fτ0;σ0;σ;Ω0;β0;χe;χmg
¼ f0.5 fm=c;10;4MeVc;−0.1;1;0;0g;

Bset∶ fτ0;σ0;σ;Ω0;β0;χe;χmg
¼ f0.5 fm=c;10;40MeVc;−0.1;0.1;0;0g; ð5:8Þ

in Fig. 8(b). The green (blue) solid and dashed curves
correspond to A (B) sets defined in (5.7) and (5.8).
Comparing with the errors of B=B0 and E=E0, presented

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

FIG. 6. Contour plots for B=B0, E=E0, and T=T0 arising from NR [(a), (d), and (g)] and numerical solutions of rotating
electromagnetic fields [(b) and (c), (e) and (f), and (h) and (i)]. The set of free parameters (5.1), (5.2), and (5.3) is chosen to determine the
NR [(a), (d), and (g)] and rotating solutions corresponding to vanishing [(b), (e), and (h)] and nonvanishing [(c), (f), and (i)]
susceptibilities. Qualitatively speaking, nonvanishing ω0 affects the space-time evolutions of B, E, and T. Moreover, nonvanishing
electric and magnetic susceptibilities, χe and χm, slightly affect the numerical rotating solutions for B, E, and T fluxes.
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in Fig. 7, the errors for T=T0 are much smaller. They
increase with increasing τ, and strongly depend on the
choice of free parameters, especially σ0 [compare Figs. 8(a)
with 8(b)] and fσ; β0g pairs (compare the results for A and
B sets). In general, similar to the case of E=E0, the PL
solution for T=T0 is more reliable than the SR solution.
In summary, the above analysis shows that the deviation

of analytical PL and SR solutions to (3.39) from the
numerical solution to the same equation depends strongly
on the choice of the set of free parameters fτ0; σ0; σ;Ω0;
β0; χe; χmg. In what follows, we focus solely on B, E, and
T, arising from numerical solution of (3.39).

C. Effects of Ω0, σ, χm, and σ0 on B, E, and T fields

In this section, we study the dependence of numerical
results for B, E, and T on the angular velocity Ω0 ¼ lω0,
the electric conductivity σ, the magnetic susceptibility χm,

and σ0 ¼ B2
0

ϵ0
. The latter is originally introduced in [33],

and is a measure for the strength of the magnetic field at τ0.
We focus on the effects of these parameters on the τ

dependence of electromagnetic fields B, E, and temperature
T. We also study the effect of Ω0; σ; χm, and σ0 on the
behavior of B=B0; E=E0, and T=T0 for fixed proper time
points. As aforementioned, for the choice of free param-
eters, we have strongly oriented ourselves to sets that may
be relevant for QGP.

1. Ω0 dependence of B, E, and T

Let us start by exploring the effect of angular velocity
Ω0 on B, E, and T. In Fig. 9, the τ dependence of B=B0

[Fig. 9(a)], E=E0 [Fig. 9(b)], and T=T0 [Fig. 9(c)] is
plotted for four different sets of free parameters with fixed
fτ0; σ0; σ; β0; χe; χmg and different Ω0 s. The Ω0 sets,
denoted by O sets in Fig. 9, are characterized by

fτ0; σ0; σ;Ω0; β0; χe; χmg
¼ f0.5 fm=c; 10; 400 MeVc;Ω0; 0.01; 0; 0g; ð5:9Þ

with

(b)

(a)

FIG. 8. The τ dependence of the deviation of PL and SR
approximate analytical solutions of T=T0 from the corresponding
numerical solutions to T=T0 is plotted for two sets of free
parameters (5.7) (a) and (5.8) (b). The green (blue) solid and
dashed curves correspond to A (B) sets defined in (5.7) and (5.8).
As expected, the deviations of PL and SR solutions from
numerical solution for T=T0 are strongly affected by the choice
of parameters.

(a)

(b)

FIG. 7. The τ dependence of the deviation of PL and SR
approximate analytical solutions of B=B0 (red solid and dashed
curves) and E=E0 (thin black solid and dashed curves) from the
corresponding numerical solutions is plotted for two sets of free
parameters (5.5) (a) and (5.6) (b). The results for these deviations
are strongly affected by the choice of free parameters, and
increase, in general, with increasing τ. For B (E), the SR (PL)
solution is more reliable than the PL (SR) solution.
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8>>><
>>>:

O set 1∶ Ω0 ¼ −0.1;
O set 2∶ Ω0 ¼ −0.5;
O set 3∶ Ω0 ¼ −1.0;
O set 4∶ Ω0 ¼ −1.5:

ð5:10Þ

We exclusively work with negative Ω0 ¼ lω0, because, as
it turns out, positive Ω0 leads to unphysical negative
amplitudes for E=E0 [see, in particular, Fig. 11(b) and
our explanations in Appendix B]. Assuming ω0 to be
positive,Ω0 < 0 corresponds to antiparallelB andE fields.
As it is shown in Fig. 9(a), for our specific choice of free
parameters, B=B0 monotonically decreases with increasing
τ, while E=E0 exhibits a certain peak in the proper time
interval 0.5 < τ < 2 fm=c, and rapidly decreases for
τ ≥ 2 fm=c [see Fig. 9(b)]. As concerns the effect of Ω0

on the lifetime of B=B0 and E=E0, it turns out that the
lifetime of B=B0 increases with increasing Ω0, or equiv-
alently decreasing ω0, while faster rotating electric fields,
with larger ω0, have larger lifetimes. The position and
amplitude of E-peaks depend also on ω0; as it is shown in
Fig. 9(b), for larger ω0, the E-peaks arise with larger
amplitudes at later proper times.
As concerns the τ dependence of T=T0, demonstrated in

Fig. 9(c), T-peaks arise only for ω0 ≥ 0.5. In contrast to
E-peaks, T-peaks occur at τ ≥ 2 fm=c. Similar to E-peaks,
the positions and amplitudes of T-peaks are affected by ω0;
for larger ω0, the T-peaks arise with larger amplitude at
later proper times. After these peaks, T decreases slowly at
τ ≥ 3 fm=c to T ≈ T0. The slope of this temperature
decrease is slightly affected by ω0. However, since T-peaks
are higher for larger ω0, the system remains hot longer for
faster rotating B and E fields, e.g., for ω0 ¼ 1.5, T ∼ 1.5T0

at τ ∼ 10 fm=c, while for ω0 ¼ 0.5, T ∼ 0.5T0 at the same
τ ∼ 10 fm=c. The fact that in the realistic QGP the temper-
ature decreases to values T < T0 within τ ∼ 10 fm=c
indicates that ω0 either vanishes or is small (ω0 ≈ 0.1).
Let us notice that this conclusion is only true for transverse
MHD within our above-mentioned approximations. In
Appendix B, we analyze the general behavior of the

solutions of (3.39), and present a detailed discussion on
E and T repeaking.
To study the effect of susceptibilities, χe and χm, the τ

dependence of T=T0 is plotted in Fig. 10 for the set of free
parameters

fσ0; σ; β0; χeg ¼ f10; 400 MeVc; 0.01; 0.01g; ð5:11Þ

with three different sets of χm,

χm ¼ 0 ðthick solid curvesÞ;
χm ¼ þ0.01 ðthin solid curvesÞ;
χm ¼ −0.01 ðdashed curvesÞ;

ð5:12Þ

andΩ0 ¼ −0.2 [Fig. 10(a)] andΩ0 ¼ −1 [Fig. 10(b)].22 As
expected from the results of Fig. 9(c), T-peaks appear only
for large ω0 ¼ 1 [Fig. 10(b)]. Moreover, it turns out that
for a fixed τ, T=T0 increases (decreases) for positive
(negative) χm. The shape of T=T0 is, however, not affected
by nonvanishing susceptibilities. The results presented in
Fig. 10, arising within our aforementioned approximations,
thus show that whereas T remains high longer in a
paramagnetic fluid, with χm > 0, a diamagnetic fluid, with
χm < 0, cools faster. This result is independent of the
choice of Ω0.
In Figs. 11(a)–11(c), the Ω0 dependence of B=B0; E=E0,

and T=T0 is plotted for fixed τ ¼ 1 fm=c (blue curves)
τ ¼ 2 fm=c (green curves). Here, we have used the set of
free parameters

fτ0; σ0; σ; β0; χeg
¼ f0.5 fm=c; 10; 400 MeVc; 0.01; 0.01g; ð5:13Þ

with three different sets of χm,

(a) (b) (c)

FIG. 9. The τ dependence of B=B0 (a), E=E0 (b), and T=T0 (c), arising from the numerical solution of (3.39), is plotted. The O set i’s,
i ¼ 1, 2, 3, 4 correspond to Ω0 sets from (5.9) and (5.10). Nonvanishing Ω0 strongly affects the τ dependence and the lifetime of B, E,
and T.

22We later show that the effect of χm on the τ dependence of
B=B0 and E=E0 can be neglected. This is why we have focused,
at this stage, only on the effect of susceptibilities on T=T0.
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χm ¼ 0 ðthick solid curvesÞ;
χm ¼ þ0.01 ðthin solid curvesÞ;
χm ¼ −0.01 ðdashed curvesÞ:

ð5:14Þ

These plots show that B=B0 and T=T0 are even inΩ0, while
E=E0 changes its sign by flipping the sign of Ω0 from
negative to positive. This behavior originates from the fact
that E is essentially determined by E ¼ B

Ω0

dM
du [see (3.54)].

Bearing in mind that M arises from the master equa-
tion (3.39), which is even in Ω0,

23 E turns out to be odd in
Ω0, as it is shown in Fig. 11(b). Let us notice that since
E ¼ jEj is always positive, the regime Ω0 > 0, where
E=E0 becomes negative, is to be excluded [see also
Appendix B for a more detailed analysis of rotating
solutions for B, E, and T]. A comparison between the
curves for positive and negative Ω0 shows that for negative
Ω0, whereas B=B0 increases with decreasing ω0, E=E0 and
T=T0 increase with decreasing ω0. The dependence of

B=B0 and E=E0 on Ω0 < 0, described above, is indeed
expected, because the larger the ω0, the faster the B and E
rotate in a medium with temperature T. In this case,
whereas the magnitude of the magnetic field B decreases,
E becomes larger, and the energy is thus pumped into the
medium whose temperature increases consequently.
As it is shown in Fig. 10, the effects of χm on B=B0 and

T=T0 are similar, and differ from the effect of χm on E=E0:
For Ω0 < 0, at each fixed proper time, the amplitudes of
B=B0 and T=T0 become larger for χm > 0 (paramagnetic
fluid) and smaller for χm < 0 (diamagnetic fluid). On the
contrary, the amplitude of E=E0 becomes larger for χm > 0
(paramagnetic fluid) and smaller for χm < 0 (diamag-
netic fluid).
Let us notice that in some specific regions of Ω0 and for

some specific choices of χm, T=T0 becomes unphysically
negative [see Fig. 11(c), where T=T0 becomes negative for
χm ¼ −0.2 in the regime −0.5;Ω0 < þ0.5].24 This regime
of parameters is to be excluded from the parameter space.
We also notice that Ω0 ¼ 0 is to be excluded from the plots
of Fig. 11, because, as it is argued in Sec. IV, this case
corresponds to dM

du ¼ 0 from (3.38), and leads to non-
rotating parallel or antiparallel B and E fields. The
analytical solution of (3.38), as well as the τ and η
evolutions of B and E, is already presented in that section.
In Fig. 11, we have exclusively demonstrated the results
arising from numerical solutions to (3.39), which lead to
rotating parallel or antiparallel B and E fields with Ω0 ≠ 0.

2. σ dependence of B, E, and T

In this part, we focus on the σ dependence of B, E, and T.
In Fig. 12, the τ dependence of B=B0 [Fig. 12(a)],
E=E0 [Fig. 12(b)], and T=T0 [Fig. 12(c)] is plotted for
four different sets of free parameters with fixed
fτ0; σ0;Ω0; χe; χmg and different fσ; β0g. The latter are
chosen in a way that σβ0 ∼ 4MeVc. The σ sets, denoted by
S sets in Fig. 12, are characterized by

fτ0; σ0;Ω0; χe; χmg ¼ f0.5 fm=c; 10;−0.2; 0; 0g; ð5:15Þ

with

8>>><
>>>:

S set 1∶ σ ¼ 4 MeVc; β0 ¼ 1;

S set 2∶ σ ¼ 40 MeVc; β0 ¼ 0.1;

S set 3∶ σ ¼ 400 MeVc; β0 ¼ 0.01;

S set 4∶ σ ¼ 4000 MeVc; β0 ¼ 0.001.

ð5:16Þ

As it is demonstrated in Fig. 12(a), for our specific
choice of free parameters, B=B0 monotonically decreases
to B ≪ B0. For fixed τ, B=B0 essentially increases with
increasing σ. However, no significant difference occurs

(a)

(b)

FIG. 10. The τ dependence of T=T0 arising from the numerical
solution of (3.39) is plotted for the set of free parameters (5.11)
with χm ¼ 0 (thick solid curve), χm ¼ þ0.01 (thin solid curve),
and χm ¼ −0.01 (dashed curve), and Ω0 ¼ −0.2 (a) as well as
Ω0 ¼ −1 (b). As it turns out, a diamagnetic fluid cools faster than
a paramagnetic fluid.

23In (3.39), ω2
0 ¼ l2Ω2

0 ¼ Ω2
0.

24This does not happen for more relevant values of
χm ∼ −0.01.
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between the curves corresponding to S set 2 (green dashed
curve), S set 3 (thick blue curve), and S set 4 (thin black
curve). They almost coincide. For larger values of
σ ≥ 40 MeVc, the lifetime of B=B0 becomes larger, as
the slopes of the curves corresponding to S set i, i ¼ 2, 3, 4
are smaller than those corresponding to S set 1. This is in
contrast to the τ dependence of E=E0, demonstrated in
Fig. 12(b). Whereas certain peaks occur in E=E0 for large
σ ¼ 400, 4000 MeVc (thick blue and thin black curves) in
the interval 0.5 < τ < 2 fm=c, for small σ ¼ 4, 40 MeVc
(green and red dashed curves), E=E0 monotonically
decreases. The positions of the peaks are slightly affected
by σ. However, the peaks become sharper for large σ ¼
4000 MeVc and β0 ¼ 0.001. The lifetime of E=E0 is
smaller for smaller values of σ. The τ dependence of
T=T0 is demonstrated in Fig. 12(c). As it turns out, T=T0

decreases monotonically for all σ sets (5.16). Moreover,
for a fixed τ, T=T0 decreases with increasing σ, and, as it
turns out, a fluid with smaller electric conductivity remains
hot longer, as the slope of the curves corresponding to
small σ is significantly smaller than the slopes of curves
corresponding to larger σ.
In Figs. 13(a), 13(b), and 14, the σ dependence of B=B0,

E=E0, and T=T0 for τ ¼ 1 fm=c (blue curves), τ ¼ 2 fm=c
(green curves), and τ ¼ 3 fm=c is plotted. To determine the

amplitudes of B, E, and T in Figs. 13 and 14, we used the
following sets of free parameters:

fτ0; σ0;Ω0g ¼ f0.5 fm=c; 10;−0.2g; ð5:17Þ

with σ ∈ ½4; 40� MeVc, β0 ¼ 4=σ and

fχe; χmg ¼ f0; 0g;
fχe; χmg ¼ f0.01;þ0.2g;
fχe; χmg ¼ f0.01;−0.2g: ð5:18Þ

The amplitude of B=B0 for each fixed τ is almost not
affected by σ [see Fig. 13(a)]. It increases with σ in the
regime σ ≤ 10 MeVc, and then remains almost constant.
Different choices of fχe; χmg have also no effects on the σ
dependence of B=B0, as the curves corresponding to the
sets (5.18) exactly coincide. This is in contrast to the
behavior of E=E0 for different sets of parameters (5.17)
and (5.18), as it is demonstrated in Fig. 13(b). Here, thick
solid curves correspond to fχe; χmg ¼ f0; 0g, thin solid
curves to fχe; χmg ¼ f0.01;þ0.2g, and dashed curves to
fχe; χmg ¼ f0.01;−0.2g. The amplitudes of E=E0 essen-
tially increase with increasing σ. For a fixed σ, E=E0

(a) (b) (c)

FIG. 12. The τ dependence of B=B0 (a), E=E0 (b), and T=T0 (c) arising from the numerical solution of (3.39) is plotted. The S set i’s,
with i ¼ 1, 2, 3, 4 correspond to σ sets from (5.15) and (5.16). Nonvanishing σ affects the τ dependence and the lifetime of B, E, and T.

(a) (b) (c)

FIG. 11. The Ω0 dependence of B=B0 (a), E=E0 (b), and T=T0 (c) is plotted for τ ¼ 1, 2 fm=c (blue and green solid and dashed
curves). The sets of free parameters (5.13) with χm ¼ 0 (thick solid curves), χm ¼ þ0.2 (thin solid curves), and χm ¼ −0.2 (dashed
curves) are used to determine B, E, and T from numerical solution of (3.39).
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decreases (increases) in a para- (dia-) magnetic fluid. This
effect enhances for larger values of σ.
The σ dependence of T=T0 for different sets of param-

eters (5.17) and (5.18) and τ ¼ 1, 2, 3 fm=c is plotted in

Fig. 14. Apart from the fact that for fχe; χmg ¼
f0.01;−0.2g, T=T0 becomes unphysically negative, the
amplitudes of T=T0 decrease with increasing σ for
4 ≤ σ ≤ 20 MeVc. For σ > 20 MeVc, however, T=T0 does
not change with increasing σ.

3. χm dependence of B, E, and T

To explore the χm dependence of B, E, and T, we have
plotted in Fig. 15 B=B0, E=E0, and T=T0 for two sets of
free parameters

fτ0; σ0; σ;Ω0; β0; χeg
¼ f0.5 fm=c; 10; 400 MeVc;−0.1; 0.01; 0.01g ð5:19Þ

[see Figs. 15(a)–15(c)] and

fτ0; σ0; σ;Ω0; β0; χeg
¼ f0.5 fm=c; 10; 400 MeVc;−1; 0.01; 0.01g ð5:20Þ

[see Figs. 15(d)–15(f)] and for χm ∈ ½−0.1;þ0.1�. This is
the interval that may be relevant for QGP. As it is shown in
Figs. 15(a) and 15(d), B=B0 is almost not affected by χm.
The same is also true for E=E0 [see Figs. 15(b) and 15(e)].
For τ ¼ 1 fm=c, E=E0 decreases with increasing χm, but
remains almost constant for τ ¼ 2, 3 fm=c. Apart from the
fact that at each fixed τ, E=E0 becomes larger when ω0

increases from ω0 ¼ 0.1 to ω0 ¼ 1, the χm dependence
of E=E0 remains almost unaffected by Ω0. Comparing
with B=B0 and E=E0, T=T0 is strongly affected by χm.
As it is shown in Figs. 15(c) and 15(f), T=T0 increases, in
general, with increasing χm. Moreover, as expected, the
temporal sequence of T=T0 changes for faster rotating
electromagnetic fields [compare this sequence in
Figs. 15(c) and 15(f)]. Let us notice that a change in the
temporal sequence of T=T0 in Fig. 15(c) comparing with
Fig. 15(f) is mainly caused by the appearance of a T-peak in
the regime 1 < τ < 2 fm=c for large ω0. The same effect
occurs in the plots demonstrated in Fig. 10, where,

(a) (b) (c)

FIG. 14. The σ dependence of T=T0 is plotted at τ ¼ 1, 2, 3 fm=c (blue, green, and red solid and dashed curves). The sets of free
parameters (5.17) and (5.18) with χm ¼ 0 (a), χm ¼ þ0.2 (b), and χm ¼ −0.2 (c) are used to determine T=T0 from the numerical
solution of (3.39).

(a)

(b)

FIG. 13. The σ dependence of B=B0 (a) and E=E0 (b) is plotted
at τ ¼ 1, 2, 3 fm=c (blue, green, and red solid and dashed curves).
The sets of free parameters (5.17) and (5.18) are used to plot these
curves. In b, thick solid curves correspond to fχe; χmg ¼ f0; 0g,
thin solid curves to fχe; χmg ¼ f0.01;þ0.2g, and dashed curves
to fχe; χmg ¼ f0.01;−0.2g. Whereas different choices of χm
have no significant effect on the σ dependence of B=B0 (see also
Fig. 15), positive and negative χm affect the σ dependence of
E=E0.
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comparing with the case of Ω0 ¼ −0.1 in Fig. 10(a), for
Ω0 ¼ −1 in Fig. 10(b) a T-peak arises.

4. σ0 dependence of B, E, and T

As it turns out, the numerical solutions of B and E are

independent of σ0 ¼ B2
0

ϵ0
. We thus focus, in this part, on the

dependence of T=T0 on σ0.
25 This seems to be interesting

also with regard to the evolution of the temperature in HIC
experiments: As aforementioned, it is believed that in HIC
experiments very strong magnetic fields are created at early
stages of the collision (small τ). Depending on the impact
parameter and collision energy, their strengths at the RHIC
and LHC are estimated to be eB0 ∼ 1.5m2

π and eB0 ∼ 15m2
π ,

respectively [18,19]. In what follows, after presenting the
σ0 dependence of T, we use the dependence of σ0 on B0,
and plot, in particular, T=T0 as a function of eB0=m2

π for
nonvanishing angular velocity and electric as well as
magnetic susceptibilities. To emphasize the effect of rotat-
ing electromagnetic fields, we also compare these results
with the corresponding results for T=T0 from nonrotating
solutions, previously presented in Sec. IVA.
In Fig. 16, the σ0 dependence of T=T0 is plotted for

τ ¼ 1, 2, 3 fm=c (blue and green solid and red dashed
curves). To solve (3.39), we have used the set of free
parameters

fτ0; σ; β0g ¼ f0.5 fm=c; 400 MeVc; 0.01g; ð5:21Þ

with

fχe; χmg ¼ f0; 0g;
fχe; χmg ¼ f0.01;þ0.02g;
fχe; χmg ¼ f0.01;−0.02g; ð5:22Þ

and Ω0 ¼ −0.1 [Figs. 16(a)–16(c)] as well as Ω0 ¼ −1
[Figs. 16(d)–16(f)].
The results presented in Fig. 16 show that the σ0

dependence of T=T0 is strongly affected by Ω0, χe, and
χm; let us first consider the case of small ω0 ¼ 0.1 in
Figs. 16(a)–16(c). The slope of T=T0 is affected by
susceptibilities: Whereas T=T0 increases with increasing
σ0 for fχe; χmg ¼ f0; 0g and fχe; χmg ¼ f0.01;þ0.02g in
a paramagnetic fluid [see Figs. 16(a) and 16(b)], it
decreases with increasing σ0 in a diamagnetic fluid with
fχe; χmg ¼ f0.01;−0.02g [see Fig. 16(c)]. For large
ω0 ¼ 1, a completely different picture arises. Here, the
effect of large angular velocity dominates the above-
mentioned effect of nonvanishing susceptibilities. As it
is shown in Figs. 16(d)–16(f), T=T0 increases with increas-
ing σ0 for all sets of χe and χm from (5.22). Moreover, as
expected, a change in the temporal sequence of T=T0

amplitudes occurs for large ω0 ¼ 1 in Figs. 16(d)–16(f)
comparing with small ω0 ¼ 0.1 from Figs. 16(a)–16(c).
The same behavior was previously observed in Figs. 10
and 15(c) in comparison with Fig. 15(f).

(a) (b) (c)

(d) (e) (f)

FIG. 15. The χm dependence of B=B0 [(a) and (d)], E=E0 [(b) and (e)], and T=T0 [(c) and (f)] is plotted at τ ¼ 1, 2, 3 fm=c (blue, green
solid curves, and red dashed curves). The sets of free parameters (5.19) [(a)–(c)] and (5.20) [(d)–(f)] are used to determine B=B0, E=E0,
and T=T0 from the numerical solution of (3.39).

25See (3.36) from which T=T0 is determined through (3.31).

Here, it is enough to replace E2
0

ϵ0
with E2

0

ϵ0
¼ σ0β

2
0.
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In Fig. 17, we have plotted the same numerical results
from Fig. 16 in terms of eB0=m2

π instead of σ0. The former
seems to be a more appropriate measure in relation to
HIC experiments. The aim is to look for a possibility to

emphasize the effects of Ω0, χe, and χm in a more
phenomenological language.
To evaluate T=T0 in terms of eB0=m2

π, it is necessary to
express eB0 in terms of σ0. This is given by

(a)

(d) (e) (f)

(b) (c)

FIG. 17. The eB0=m2
π dependence of T=T0 is plotted at τ ¼ 1, 2, 3 fm=c (blue, green solid curves, and red dashed curves). The sets of

free parameters (5.21) and (5.22) withΩ0 ¼ −0.1 [(a)–(c)]Ω0 ¼ −1 [(d)–(f)] are used to determine T=T0 from the numerical solution to
(3.39). The amplitude T=T0 is strongly affected by angular velocity Ω0 as well as electric and magnetic susceptibilities χe and χm.

(a)

(d) (e) (f)

(b) (c)

FIG. 16. The σ0 dependence of T=T0 is plotted at τ ¼ 1, 2, 3 fm=c (blue, green solid curves, and red dashed curves). The sets of free
parameters (5.21) and (5.22) with Ω0 ¼ −0.1 [(a)–(c)] Ω0 ¼ −1 [(d)–(f)] are used to determine T=T0 from the numerical solution of
(3.39). The amplitude T=T0 is strongly affected by angular velocity Ω, and electric and magnetic susceptibilities, χe and χm.
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eB0

m2
π
∼ 1.34ðϵ0σ0Þ1=2: ð5:23Þ

To arrive at (5.23), let us recall that σ0 ¼ ðeB0Þ2
e2ϵ0

is dimen-

sionless, provided eB0 is in GeV2 and ϵ0 in
GeV fm−3 ∼ 8 × 10−3 GeV4. Using mπ ¼ 0.14 GeV, we
have 1 GeV2 ∼ 50m2

π . Replacing e2 ¼ 4παe ∼ 0.09 with
the fine structure constant αe ¼ 1=137, we arrive at
(5.23). Here, ϵ0 is in GeV fm−3. For the energy density
ϵ0 ∼ 10 GeV fm−3 arising in a typical Au-Au collision with
impact parameter ∼10 fm and

ffiffiffiffiffiffiffiffi
sNN

p ∼ 200 GeV [34], we
have

eB0

m2
π
∼ 4.5σ1=20 : ð5:24Þ

The results presented in Fig. 17 have essentially the same
feature as the results presented in Fig. 16. Vertical thick
solid lines in the plots of Fig. 17 denote the values of eB0 at
the RHIC and LHC in m2

π units (see above). Remarkable is
the difference between the dependence of T=T0 on eB0=m2

π

for vanishing and nonvanishing susceptibilities for small
angular velocity ω0 ¼ 0.1. In this case, whereas for a fluid
with χm ¼ 0, T remains almost constant with increasing
eB0=m2

π , for a para- (dia-) magnetic fluid with positive
(negative) χm, T=T0 increases (decreases) with increasing
eB0=m2

π . In contrast for large angular velocity ω0 ¼ 1,
T=T0 increases for all values of χm.
To emphasize the effect of the rotation of electromag-

netic fields on the dependence of T=T0 on eB0=m2
π , we

have plotted in Fig. 18 the eB0=m2
π dependence of T=T0 for

vanishing and nonvanishing Ω0. For nonrotating solutions
of T=T0, we have used the analytical result (3.31) with
V ¼ 1 and expðLκÞ given in (4.10). For rotating solutions,
the same numerical results for T=T0 previously demon-
strated in Figs. 16 and 17 are used. In both cases the set of
parameters (5.21) and (5.22) is applied. For the rotating

solution, we set, in particular, Ω0 ¼ −0.1. The blue,
green, and red solid (dashed) curves correspond to
rotating (nonrotating) solutions. For fχe; χmg ¼ f0; 0g in
Fig. 18(a), the nonrotating solution is slightly deviated from
the numerical solution with small ω0 ¼ 0.1. In both cases
amplitude T=T0 remains almost constant once eB0=m2

π is
increased. In a paramagnetic fluid with fχe; χmg ¼
f0.01;þ0.02g, however, in both rotating and nonrotating
cases, T=T0 increases with increasing eB0=m2

π , while the
deviation of nonrotating solutions [dashed curves in
Fig. 18(b)] from rotating solutions [solid curves in
Fig. 18(b)] is positive. The opposite is true for a diamag-
netic fluid with fχe; χmg ¼ f0.01;−0.02g. As it is dem-
onstrated in Fig. 18(c), the fluid becomes cooler once
eB0=m2

π increases. However, for nonvanishing ω0, the
slope of T=T0 as a function of eB0=m2

π is smaller than
that for vanishing ω0 [compare the slope of solid and
dashed curves in Fig. 18(c)]. These results, together with
the data of T=T0 from the RHIC and LHC, may provide an
experimental tool to check whether in HIC experiments,
like those at the RHIC and LHC, the angular velocity of ω0

vanishes or not.

VI. SUMMARY AND CONCLUSIONS

The search for self-similar analytical solutions of RIHD
exhibiting various geometrical symmetry properties has
attracted much attention in recent years [16]. Being, in
particular, nonboost invariant, they represent extensions
to the well-known one-dimensional, longitudinally boost-
invariant Bjorken flow of RIHD [11,12]. The goal is,
among others, to develop new analytical solutions, which
overcome the shortcomings of Bjorken flow in reproducing
experimental data of the RHIC and LHC. Here, very large
magnetic fields are shown to be created during early stages
of HICs. Numerous attempts have already been undertaken
to study the impact of these magnetic fields on electro-
magnetic and thermal properties of QGP created in HICs.
Bearing in mind that the electromagnetic properties of

(a) (b) (c)

FIG. 18. The eB0=m2
π dependence of T=T0 corresponding to rotating (solid curves) and nonrotating (dashed curves) solutions is

plotted at τ ¼ 1, 2, 3 fm=c (blue, green, and red solid curves). Here, we used three different sets of free parameters from (5.22) [(a)–(c)].
For the rotating solution, we have particularly used Ω0 ¼ −0.1. Apart from different behavior of T=T0 for vanishing and nonvanishing
susceptibilities χe and χm, the deviation of nonrotating from the rotating solutions strongly depends on whether the fluid is para- or
diamagnetic.
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QGP, such as its electric conductivity or its response to
external electromagnetic fields, may elongate the lifetime
of the magnetic fields produced in these collisions, they
may affect the evolution of thermodynamic quantities, such
as the temperature, pressure, and energy density of QGP.
Motivated by the above facts, the boost-invariant motion

of an ideal magnetized fluid is recently studied in the
framework of ideal transverse MHD [33,34]. It is shown
that the (proper) time evolution of the energy density of the
fluid depends on whether the magnetic field decays as
BðτÞ ∼ τ−a with the free parameter a being either a ¼ 1 or
a ≠ 1. In the present work, we have extended the studies
performed in [33,34] to the case of nonideal transverse
MHD, where electric conductivity as well as electric and
magnetic susceptibilities of the fluid are assumed to be
finite. The aim was to study the evolution of electromag-
netic fields satisfying Maxwell and MHD equations.
Assuming the electric and magnetic fields to be transverse
to the fluid velocity, and parametrizing the corresponding
partial differential equations in terms of B ¼ jBj and
E ¼ jEj as well as ϕ and ζ, their angles to a certain fixed
axis in the transverse plane, we arrived at two distinct
differential equations for a certain function M, which
appears in the inhomogeneous continuity equation
∂μðBuμÞ ¼ BDM. For any M ≠ 0, the latter represents
a deviation from the frozen-flux theorem. Whereas boost-
invariant solutions for the evolution of B, E, and T arise
from dM

du ¼ 0, another, second-order quadratic differential
equation for M eventually leads to nonboost-invariant
solutions to B, E, and T. The latter are essentially
characterized by rotating, parallel, or antiparallel electric
and magnetic fields in the LRF of the fluid.26 The rotation
occurs with increasing rapidity η and with a constant
angular velocity ω0 ¼ dϕ

dη ¼ dζ
dη. The exact analytical solu-

tion for nonrotating electromagnetic fields arises once M
satisfies dM

du ¼ 0. Other approximate analytical solutions
arise for rotating electric and magnetic fields with E=B
being constant (power-law solution) or M being linear in
ω0 (slowly rotating solution). We have, in particular, shown
that the power-law decay BðτÞ ∼ τ−a with a ≠ 1, previously
introduced in [33,34] as an example for the violation of
frozen-flux theorem in ideal transverse MHD, naturally
arises as one of the approximate solutions of rotating
electromagnetic fields in the framework of nonideal trans-
verse MHD with constant E=B. We have also shown that
M plays a major role in determining the thermodynamic
fields T, p, and ϵ, which exhibit self-similar solutions
arising from our method of self-similar solutions of non-
conserved charges.

Choosing appropriate sets of free parameters for electric
conductivity σ and susceptibilities χe, χm of the electro-
magnetized fluid, we numerically studied the solutions to
the second-order, nonlinear differential equations for M
with a given Ω0 ¼ lω0. Here, l ¼ �1 indicates parallel
(l ¼ þ1) or antiparallel (l ¼ −1) electric and magnetic
vectors. We compared these numerical solutions with the
approximate power-law and slowly rotating solutions for B,
E, and T, arising from nontrivial solutions of M, and
checked, in this way, the reliability of these approxima-
tions. We further focused on the interplay between the
angular velocity ω0 and σ; χm in connection with their
potential effects on the lifetime of B and E fields as well as
the evolution of the temperature T. We have shown that for
large enough ω0, E and T exhibit certain peaks at early
times after the collision, whereas B monotonically decays.
In a general analysis of the solutions to the master equation
forM, we also discussed the conditions under which these
kinds of peaks occur (see Appendix B). The effects of
Ω0; σ, and χm on the amplitudes B=B0; E=E0, and T=T0 for
fixed proper times τ have also been separately studied. We
have, in particular, shown that for free parameters chosen
according to their relevance for QGP produced in HICs,
Ω0 > 0 leads to unphysical negative values for E=E0. This
indicates that within our transverse MHD approximations
B and E in these kinds of experiments have to be
antiparallel to each other.
We have further considered the dependence of B, E, and

T on the phenomenologically relevant parameter σ0 ¼ B2
0

ϵ0
,

which appears also in [33,34]. Through its dependence on
the magnetic field B0 and energy density ϵ0 at the initial
(proper) time τ0, we plotted the temperature gradient of the
electromagnetized fluid as a function of eB0=m2

π . We have
shown that for small values of ω0, the eB0=m2

π dependence
of T=T0 at fixed τ ≳ τ0 is significantly affected by χm,
whereas for large values of ω0, T=T0 increases with
increasing eB0=m2

π for all values of χm ¼ 0; χm > 0, and
χm < 0. Bearing in mind that the magnetic fields created in
HICs are estimated to be B ∼ 1.5m2

π at the RHIC and 15m2
π

at the LHC, a possible difference between the temperature
of QGP at the RHIC and LHC may provide information
about the onset of rotation of electromagnetic fields in these
kinds of experiments.
Let us finally note that the method of self-similar

solutions for nonconserved charges, developed and used
in the present work, is derived under the assumption of a
simple EoS, ϵ ¼ κp with constant κ ¼ c−2s ¼ 3, which is
only valid in the ultrarelativistic limit [33,34]. The above
results can thus be improved by choosing more realistic
EoS, arising, e.g., from lattice QCD, where cs turns out to
be T dependent. Apart from the sound velocity cs, the
electric conductivity and magnetic susceptibility, σ and χm,
can also be chosen to be T dependent. In a magnetized
medium, a dependence of cs, σ, and χm on B and E is also

26As concerns the relative angle δ0 between the electric and
magnetic vector fields in the laboratory (lab) frame, it is given by
an appropriate boost transformation of E and B from the LRF of
the fluid to the lab frame. As it turns out, δ0 ≠ δ. Here, δ is the
relative angle between E and B in the LRF of the fluid.

NOVEL SELF-SIMILAR ROTATING SOLUTIONS OF … PHYSICAL REVIEW D 96, 116008 (2017)

116008-27



possible. All these may lead to more complicated differ-
ential equations for M, which eventually results in more
realistic results for the τ dependence of B, E, and T. We
postpone these studies to our future works. As it is
emphasized in the discussion below (3.11), another exten-
sion of the results presented in the this work arises when p,
E, and B are not assumed to be boost invariant. In this case,
the uniform expansion of the fluid (i.e., Duμ ¼ 0) is
guaranteed once the numerator of (3.11) vanishes. More
complicated solutions for the space and time evolution of
the electromagnetic and thermodynamic fields may arise,
which are presented elsewhere [41].
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APPENDIX A: USEFUL PROOFS

1. Proof of ρe = 0 in two-dimensional
transverse MHD

As we have noticed in Sec. III, the electric charge
density ρe vanishes in transverse MHD. To show this,
let us contract the inhomogeneous Maxwell equation (3.9)
with uν. Using the definition of Fμν from (3.5), we arrive
first at

uν∂μFμν¼uν∂μðEμuν−Eνuμ−ϵμναβBαuβÞ¼uνJν: ðA1Þ

Evaluating the derivatives on the lhs and using ∂ · E ¼ 0;
ðu · EÞ ¼ 0 and uνðu · ∂ÞEν ¼ 0, which are valid in trans-
verse MHD, together with u · E ¼ 0, we arrive first at

uν∂μFμν ¼ 2B · ω; ðA2Þ

where ωμ ≡ 1
2
ϵμναβuν∂αuβ is the vorticity of the fluid.

Bearing in mind that in transverse MHD the nonzero
components of uμ and ∂μ are in μ ¼ 0, 3 directions, it
turns out that the vorticity of the fluid vanishes in the
transverse MHD. We therefore arrive at

uν∂μFμν ¼ 0: ðA3Þ

This leads to uνJν ¼ 0. Plugging at this stage Jν from
(3.10) into this relation, and using similar arguments as
above, it can be shown that uν∂ρMρν ¼ 0 and thus
uνJν ¼ ρe ¼ 0.

2. Notes on the symmetry properties
in transverse MHD

In Sec. III, we have introduced the setups of nonideal
transverse MHD. Here, Bμ and Eμ are defined by Bμ ¼
1
2
ϵμναβFναuβ and Eμ ¼ Fμνuν, where Fμν is the electromag-

netic field strength tensor and uμ ¼ γð1; vÞ the fluid

velocity. Using these definitions together with symmetry
properties of Fμν, it is easy to show u · B ¼ 0 and
u · E ¼ 0. Combining these relations with v · E ¼ 0 and
v · B ¼ 0, which characterize transverse MHD, we have, in
particular,27

B0 ¼ Bz ¼ 0 and E0 ¼ Ez ¼ 0: ðA4Þ

We thus have

Bμ ¼ ð0; Bx; By; 0Þ; Eμ ¼ ð0; Ex; Ey; 0Þ; ðA5Þ

as already pointed out in Sec. III. Using the definitions of
Bμ and Eμ in terms of Fμν,28

B0 ¼ þF12u3 ¼ − sinh ηF12;

Bz ¼ −F12u0 ¼ − cosh ηF12; ðA6Þ

as well as

E0 ¼ −F30u3 ¼ sinh ηF30;

Ez ¼ þF30u0 ¼ cosh ηF30; ðA7Þ

(A4) leads, in general, to

F12 ¼ 0; and F30 ¼ 0: ðA8Þ

In what follows, we use the above properties of transverse
MHD, and, in particular, the translational invariance in the
x-y plane, to show that Bi, i ¼ 0; z, and Ei, i ¼ 0; z do not
evolve with τ and η, i.e.,

∂Bi

∂τ ¼ ∂Bi

∂η ¼ 0 i ¼ 0; z; ðA9Þ

∂Ei

∂τ ¼ ∂Ei

∂η ¼ 0 i ¼ 0; z: ðA10Þ

To prove (A9), let us start with the homogeneous Maxwell
equation

∂γFαβ þ ∂βFγα þ ∂αFβγ ¼ 0: ðA11Þ

For ðα; β; γÞ ¼ ð0; 1; 2Þ, we have

∂2F01 þ ∂1F20 þ ∂0F12 ¼ 0: ðA12Þ

Using the translational invariance in the transverse x-y
plane, we have ∂2F01 ¼ ∂1F20 ¼ 0. We thus arrive at

27Here, for a generic four-vector aμ, the notation aμ ¼
ða0; a1; a2; a3Þ ¼ ða0; ax; ay; azÞ is used.

28Here, uμ ¼ ðcosh η; 0; 0; sinh ηÞ is used.
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∂F12

∂t ¼ 0: ðA13Þ

Plugging ðα; β; γÞ ¼ ð3; 1; 2Þ into (A11) leads to

∂2F31 þ ∂1F23 þ ∂3F12 ¼ 0: ðA14Þ

Again the translational invariance in the transverse x-y
plane yields ∂2F31 ¼ ∂1F23 ¼ 0. We thus obtain

∂F12

∂z ¼ 0: ðA15Þ

Using at this stage the definition of ∂
∂t and

∂
∂z from (3.14),

(A13) and (A15) read

�
cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η

�
F12 ¼ 0;

�
− sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η

�
F12 ¼ 0: ðA16Þ

Combining these relations, we arrive at

∂F12

∂τ ¼ 0; and
∂F12

∂η ¼ 0: ðA17Þ

Using at this stage the definitions (A6) of B0 and Bz in
terms of F12 as well as F12 ¼ 0 from (A8), we arrive finally
at ∂Bi∂τ ¼ ∂Bi∂η ¼ 0; i ¼ 0; z from (A9).
As concerns the τ and η dependence of Ei, i ¼ 0, 3 from

(A10), we have to start from the equation of motion (3.9),
with the electromagnetic current Jμ given in (3.10). For
ν ¼ 0, 3, we have

∂F30

∂t ¼ −J3; and
∂F30

∂z ¼ J0: ðA18Þ

Plugging at this stage ρe ¼ 0 from Appendix A 1 and
E0 ¼ Ez ¼ 0 from (A4), Ji, i ¼ 0, 3 are first given by

Ji ¼ ∂ρMρi; i ¼ 0; 3: ðA19Þ

Using the definition of Mρμ from (3.5) and the properties
∂ · E ¼ 0; E · ∂ ¼ 0 of transverse MHD, we obtain

Ji ¼ ∂ρMρi ¼ χe
∂Ei

∂τ − χm∂ρBρi; i ¼ 0; 3; ðA20Þ

where Bμν ≡ ϵμναβBαuβ. For ∂μ ¼ ð∂0; 0; 0; ∂3Þ and
uμ ¼ ðu0; 0; 0; u3Þ, we have ∂ρBρi; i ¼ 0, 3. We are there-
fore left with

J0 ¼ χe
∂E0

∂τ ; J3 ¼ χe
∂E3

∂τ : ðA21Þ

Plugging Ei, i ¼ 0, 3 from (A7) into (A21), and the
resulting expression into (A18), we arrive at

∂F30

∂t ¼ −χe cosh η
∂F30

∂τ ;

∂F30

∂z ¼ χe sinh η
∂F30

∂τ : ðA22Þ

Using (3.14) to write ∂t and ∂z in terms of ∂τ and ∂η, (A22)
reads

�
ð1þ χeÞ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η

�
F30 ¼ 0;

�
−ð1þ χeÞ sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η

�
F30 ¼ 0. ðA23Þ

Combining these relations, we arrive for χe ≠ −1 at

∂F30

∂τ ¼ 0; and
∂F30

∂η ¼ 0: ðA24Þ

Using at this stage the definitions (A7) of E0 and Ez in
terms of F30 as well as F30 ¼ 0 from (A8), we arrive finally
at ∂Ei∂τ ¼ ∂Ei∂η ¼ 0; i ¼ 0; z from (A10).
The above results (A9) and (A10) show that in a

transverse MHD setup, which is in particular characterized
by translational invariance in the transverse x-y plane, the
longitudinal components of E and B fields, Ei and Bi,
i ¼ 0; z, vanish during the uniform expansion of the fluid.
The proof performed in this section can be viewed as a
self-consistency check for the method used in Sec. III to
determine the space and time evolution of electromagnetic
and thermodynamic fields within a transverse nonideal
MHD setup.

APPENDIX B: GENERAL ANALYSIS OF
THE SOLUTIONS TO THE MASTER

EQUATION FOR M

The analysis of the master equation without actually
solving it gives us important insights about the qualitative
behavior of B, E, and T fields. One of the accessible results
is the prediction of repeaking in B, E, and T, i.e., the
appearance of maxima after the initial time. These kinds of
maxima do not occur in ideal MHD. Interestingly, for
χm > 1, it is also possible for the above fields to have a
minimum before rising to a peak. However, as far as the
HIC physics is concerned, χm > 1 is not physically
relevant. In what follows, we find the necessary conditions
for a repeaking of E and T fields, and prove that in the
physically relevant case of χm < 1 and χe > −1, we must
have Ω0 ≡ lω0 < 0. This guarantees B, E, and T to be
positive. We, in particular, show that for χm < 1, B is
monotonically decreasing, and find certain conditions for

NOVEL SELF-SIMILAR ROTATING SOLUTIONS OF … PHYSICAL REVIEW D 96, 116008 (2017)

116008-29



which E and T have only one single maximum shortly after
the initial time. To this purpose, we first prove a number of
lemmas.
Lemma 1: For ~u being the extrema of

fðτÞ ¼ f0

�
τ0
τ

�
eλðτÞ; ðB1Þ

we have

dλ
du

����
~u
¼ 1: ðB2Þ

In addition, ~u is a maximum (minimum) if d2λ
du2 j ~u is negative

(positive). Here, u ¼ lnð ττ0Þ. For f ¼ fB;E; Tg, we have

λ ¼ fM;N ;Lg, respectively.
Proof:—The proof is straightforward. One first finds the

derivative with respect to τ in terms of the derivative with
respect to u. By setting the first derivative equal to 0, (B2) is
derived. The second derivative test then translates into the
second claim.
Lemma 2: A differentiable function fðuÞ either does

not have two subsequent extrema of the same kind
(maximum or minimum) or is constant in between.
Proof:—Consider two extrema of the same kind at

points u1 and u2. Then, for some ϵ we have f0ðu1 þ ϵÞ
f0ðu2 − ϵÞ < 0, and thus another extremum exists in the
interval between u1 and u2. This is either of the same or
opposite kind. If it is of the same kind, this procedure can
be repeated until an extremum of opposite kind is found or
f0ðuÞ ¼ 0 for all points u ∈ ½u1; u2�.
Lemma 3: If the sign of the second derivative of a

differentiable function fðuÞ in its possible extremum is
forced to be negative and nonzero, then
(1) If ðdfdu j0Þðdfdu ju≫1Þ < 0, f has exactly one maximum

somewhere in ½0;∞Þ.
(2) If ðdfdu j0Þðdfdu ju≫1Þ > 0, f is monotonically decreasing

or increasing.
Proof:—If the second derivative is negative at any

possible extremum, then the function is neither constant
nor does it have a minimum by lemma 2. By Bolzano’s
theorem, the function has a maximum in ½0;∞Þ if the first
derivative has opposite signs in 0 and u ≫ 1. Now consider
the case that the derivative is negative both initially (u ¼ 0)
and asymptotically (u → ∞), and assume that f0ðuÞ ¼ 0 at
some point u⋆. Then, u⋆ needs to be a maximum of f0ðuÞ. If
it is not, then there exists a point such that f0ðuÞ > 0, and
therefore f0ðuÞ vanishes in another point other than u⋆. This
is not possible by lemma 2. Being a maximum of f0ðuÞ, we
have f00ðuÞ ¼ 0 at u⋆. This is again not possible, and
therefore fðuÞ is monotonically decreasing. A similar argu-
ment shows that fðuÞ is monotonically increasing if the first
derivative is positive both initially and asymptotically.
Lemma 4: At the initial time, i.e., u ¼ 0, the derivatives

of functions of interest are given by

dM
du

����
u¼0

¼ β0Ω0; ðB3Þ

d2M
du2

����
u¼0

¼ −
�
Ω0β0στ0 þ Ω2

0½1 − χm þ β20ð1þ χeÞ�
1þ χe

�
;

ðB4Þ

dN
du

����
u¼0

¼ −
�
Ω0ð1 − χmÞ þ β0στ0

β0ð1þ χeÞ
�
; ðB5Þ

dL
du

����
u¼0

¼ σ0
c2s

��
στ0

þ χe

�
Ω0ð1 − χmÞ þ β0ð1þ στ0 þ χeÞ

β0ð1þ χeÞ
��

β20

þ χmð1 − β0Ω0Þ
�
: ðB6Þ

Proof:—The first relation (B3)was already used in Sec. III
[see (3.54) and evaluate it at u ¼ 0]. Plugging dM

du from (B3)
into (3.39), (B4) is found. As concerns (B5), one uses

dM
du

dN
du

¼ d2M
du2

þ
�
dM
du

�
2

; ðB7Þ

along with earlier results, and arrives at (B5). Finally, from
(3.29), one finds

dL
du

¼ κB2

ϵ

��
στ − χe

�
dN
du

− 1

��
E2

B2
þ χm

�
1 −

E
B
Ω0

��
;

ðB8Þ

which at u ¼ 0 yields the desired relation (B6).
Lemma 5: The asymptotic behavior of quantities of

interest at u ≫ 1 is given by

dM
du

����
u≫1

∼ −
Ω2

0ð1 − χmÞ
στ0

e−u; ðB9Þ

d2M
du2

����
u≫1

∼ −
dM
du

; ðB10Þ

MðuÞju≫1 ∼ −
Ω2

0ð1 − χmÞ
στ0

ð1 − e−uÞ; ðB11Þ

dN
du

����
u≫1

∼ −1 −
Ω2

0ð1 − χmÞ
στ0

e−u; ðB12Þ

N ðuÞju≫1 ∼ −u −
Ω2

0ð1 − χmÞ
στ0

ð1 − e−uÞ; ðB13Þ
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and

eL=κju≫1 ∼ 1þ σ0 exp

�
−
2ð1 − χmÞΩ2

0

στ0

�

×

�
χm

1 − c2s
ð1 − e−ð1−c2sÞuÞ

þ 1

2 − c2s

�
β20στ0 þ

χmΩ2
0ð1 − χmÞ
στ0

�

× ð1 − e−ð2−c2sÞuÞ þ 2β20χe
3 − c2s

ð1 − e−ð3−c2sÞuÞ

þ β20χeΩ2
0ð1 − χmÞ

στ0ð4 − c2sÞ
ð1 − e−ð4−c2sÞuÞ

�
; ðB14Þ

as well as

d
du

ðeL=κÞju≫1 ∼ χmσ0 exp

�
−
2ð1 − χmÞΩ2

0

στ0

�
e−ð1−c2sÞu:

ðB15Þ

Proof:—We start by inspecting the master equa-
tion (3.39) at u ≫ 1. To do so, we reevaluate it in terms
of w≡ 1

u. Using

dM
du

¼ −w2
dM
dw

;
d2M
du2

¼ w3

�
2
dM
dw

þ w
d2M
dw2

�
;

ðB16Þ

keeping nonvanishing terms in w → 0, and rewriting the
result in terms of u, we find the asymptotic equation as

dM
du

euστ0 þ ω2
0ð1 − χmÞ ¼ 0: ðB17Þ

This immediately leads to (B9). Equations (B10) and (B11)
are found by differentiating and integrating (B9) with
respect to u. Here, Mð0Þ ¼ 0 is assumed. Using (B7),
and earlier results, we arrive at (B12). The result is then
integrated to give (B13). We useN ð0Þ ¼ 0. In order to find
(B14), we first rewrite (3.36) as

eL=κ ¼ 1þ σ0

�
στ0β

2
0

Z
u

0

du0e2N ðu0Þþc2su0

þ χeβ
2
0

Z
u

0

du0
�
1 −

dN
du0

�
e2N ðu0Þ−ð1−c2sÞu0

þ χm

Z
u

0

du0
�
1 −

dM
du0

�
e2Mðu0Þ−ð1−c2sÞu0

�
: ðB18Þ

Then, plugging earlier results into (B18), and performing
the corresponding integrals, we arrive at (B14). Here,

e2N ðu0Þ ∼ e−2u
0−

2Ω2
0
ð1−χmÞ
στ0

is used. Taking finally the derivative of (B14), all terms
except the first one are suppressed at u ≫ 1. We thus
arrive at (B15).
We are now in the position to analyze the rotating

solutions for B, E, and T in the following theorems:
Theorem 1: In order for the system to be physical

(i.e., E > 0)

Ω0ð1 − χmÞ < 0: ðB19Þ

In other words, the sign of dM
du does not change during the

time evolution.
Proof:—From (3.54), it is evident that, in order for E to

be non-negative, we must have

1

Ω0

dM
du

> 0; ðB20Þ

provided B > 0. In other words, dMdu does not change sign
in the whole interval of u. Moreover, according to (B9),
for χm < 1 (χm > 1), dMdu becomes asymptotically negative
(positive). Multiplying (B9) with 1=Ω0, we obtain

1

Ω0

dM
du

∼ −Ω0ð1 − χmÞξ; with ξ≡ e−u

στ0
> 0;

which leads to (B19), upon using (B20).
Theorem 2: For χm < 1, the magnetic field monoton-

ically decreases.
Proof:—According to theorem 1, χm < 1 leads to

Ω0 < 0. Negative Ω0 thus leads to dM
du < 0 < 1; ∀ u ∈

½0;∞Þ [see (B20)]. This shows that B has always a negative
derivative, and is thus monotonically decreasing.
Theorem 3: For χm < 1 and χe > −1, the electric field

repeaks exactly once if

Ω0 < −
β0ð1þ χe þ στ0Þ

1 − χm
: ðB21Þ

Otherwise, it is monotonically decreasing.
Proof:—Let us determine the sign of

dE
du

¼ E

�
dN
du

− 1

�
;

at u ¼ 0 and u ≫ 1 by separately inspecting the sign of
dN
du − 1 at u ¼ 0 and u ≫ 1. Using (B5) and (B12), we
have

dN
du

����
u¼0

− 1 ∼ −
½Ω0ð1 − χmÞ þ β0στ0 þ β0ð1þ χeÞ�

β0ð1þ χeÞ
;

dN
du

����
u≫1

− 1 ∼ −2 −
Ω2

0ð1 − χmÞ
στ0

e−u: ðB22Þ
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For χm < 1 and χe > −1, dNdu ju≫1 − 1 and thus dE
du ju≫1 are

always negative. Hence, in order for E to repeak only
once, dN

du ju¼0 − 1 and thus dE
du ju¼0 are to be positive (see

lemma 3). This fixes Ω0 to be

Ω0 < −
β0ð1þ χe þ στ0Þ

1 − χm
;

as claimed in (B21). Moreover, according to lemma 3, E
is monotonically decreasing for

Ω0 ≥ −
β0ð1þ χe þ στ0Þ

1 − χm
:

This completes the proof.
Theorem 4: Causality ensures T → 0 when τ ≫ τ0.

However, the parameters have to be constrained in order
for T to be positive. The constraint is roughly given by
χm ≳ −σ−10 .
Proof:—According to (3.31), for V ¼ 1, the self-similar

solution of T=T0 is given by

T
T0

¼
�
τ0
τ

�1
κ

e
L
κ : ðB23Þ

As we have seen in (B14), the asymptotic form of
T=T0 contains terms of 1 − e−ðk−c2sÞu, with k ¼ 1;…; 4.
Since cs ≤ 1 by causality, for all k ¼ 1;…; 4 we have
1 − e−ðk−c2sÞu → 1 as u → ∞. The factor eL=κ in (B23)
becomes therefore constant at u ≫ 1. Hence, the behavior
of T=T0 is exclusively dictated by the Bjorken factor τ−c

2
s

that vanishes at τ ≫ τ0. We therefore have T → 0 at large
τ ≫ τ0, as claimed.
Inspecting now the limit of eL=κ at u ≫ 1, it may

becomes negative, especially for χm, χe < 0. An exact
constraint, which ensures T to be positive, reads

σ0

�
χm

1 − c2s
þR

�
≥ −1; ðB24Þ

with R defined by

R≡ exp

�
−
2ð1 − χmÞΩ2

0

στ0

�

×

�
1

2 − c2s

�
β20στ0 þ

χmΩ2
0ð1 − χmÞ
στ0

�

þ β20χe
3 − c2s

þ β20χeΩ2
0ð1 − χmÞ

στ0ð4 − c2sÞ
�
: ðB25Þ

Assuming

Ω2
0

στ0
≪ 1; ðB26Þ

the second and the last term in the bracket appearing in R
are suppressed, and it becomes always positive for χe,
σ > 0. In this case, neglecting R, the positivity condition
(B24) is roughly given by χm ≳ −σ−10 , as claimed.
Theorem 5: For χm < 1, the temperature repeaks

exactly once if

dL
du

����
u¼0

¼ σ0
c2s

��
στ0

þ χe

�
Ω0ð1 − χmÞ þ β0ð1þ στ0 þ χeÞ

β0ð1þ χeÞ
��

β20

þ χmð1 − β0Ω0Þ
�

> 1: ðB27Þ

Proof:—To determine the sign of

dT
du

¼ T

�
dL
du

− 1

�
;

at u ¼ 0 and u ≫ 1, we separately inspect the sign of
dL
du−1 at u ¼ 0 and u ≫ 1. According to (B15), d

du ðeLÞ → 0
for u ≫ 1. This translates into dL

du ¼ 0. Hence, in the limit
of large u ≫ 1, dT

du ju≫1 is always negative. According to
lemma 3, T peaks only once if dT

du ju¼0 > 0. Using (B6), we
thus arrive at (B27), as claimed.
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