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The dynamical diquark picture asserts that exotic hadrons can be formed from widely separated colored
diquark or triquark components. We use the Born-Oppenheimer (BO) approximation to study the spectrum
of states thus constructed, both in the basis of diquark spins and in the basis of heavy quark-antiquark
spins. We develop a compact notation for naming these states, and use the results of lattice simulations for
hybrid mesons to predict the lowest expected BO potentials for both tetraquarks and pentaquarks. We then
compare to the set of exotic candidates with experimentally determined quantum numbers, and find that all
of them can be accommodated. Once decay modes are also considered, one can develop selection rules of
both exact (JPC conservation) and approximate (within the context of the BO approximation) types and test
their effectiveness. We find that the most appealing way to satisfy both sets of selection rules requires
including additional low-lying BO potentials, a hypothesis that can be checked on the lattice.
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I. INTRODUCTION

In a period of less than 15 years, the number of observed
heavy-quark exotic hadron candidates has grown from
none to over 30 [1–3]. Even so, the nature of the
substructure of these novel states remains hotly disputed.
In addition to the possibility that some of the neutral exotics
are heavy quark-antiquark (QQ̄) hybrid states [4], a variety
of multiquark options have been advocated: hadronic
molecules ðQq̄0ÞðQ̄qÞ of color-singlet hadrons, including
kinematic enhancements due to the proximity of hadronic
thresholds (reviewed in [5]); hadroquarkonium [6,7], in
which the QQ̄ pair forms a compact core surrounded
by a larger light-quark q̄0q wave function; and diquark
models (most notably, in Ref. [8]), in which the quark
(and antiquark) pairs form close associations through the
attractive color 3 ⊗ 3 → 3̄ and 3̄ ⊗ 3̄ → 3 channels to
form quasi-bound diquarks, δ≡ ðQqÞ3̄ and δ̄≡ ðQ̄q̄0Þ3,
respectively.
The dynamical diquark picture [9] is a physical para-

digm in which some of the light quarks q; q̄0;… created in
the production process of a heavy quark-antiquark pairQQ̄
not only coalesce into diquarks through the color mecha-
nism just described, but achieve a substantial spatial
separation by virtue of recoils achieved through the large
energies available in processes such as b → c decays or
collider events. Originally posited as a natural mechanism
for creating tetraquark states that remain strongly bound
despite their large spatial extent (>1 fm) due to color
confinement of the diquark-antidiquark pair, the picture
can easily be extended to pentaquarks and beyond [10],
by using the successive accretion of additional quarks
through the color-triplet channel attraction. For example,
pentaquarks can be interpreted as triquark-diquark

θ̄δ≡ ½Q̄ðq1q2Þ3̄�3ðQq3Þ3̄ states. The substantial relative
strength of the diquark color-triplet attraction compared to
the quark-antiquark color-singlet attraction (which is a factor
of 1

2
at short distances) suggests that diquark formation

should be a common feature of hadronic processes; for
example, a simple treatment of a collection of quarks and
antiquarks as a static ideal gas predicts diquark attraction to
be the dominant interaction Oð10%Þ of the time [11].
In order for this picture to be physically meaningful, the

diquarks must be somewhat spatially compact and achieve
some reasonable spatial separation, so that the state may
exhibit some distinctive physical signature different from
that of other structures, such as compact tetraquarks or
hadronic molecules. “Reasonable” in this sense means that
the bulk of the wave functions of the distinct diquarks do
not significantly overlap. Alternatively, it is worth noting
that diquarks have instead been considered as long-distance
correlated quark pairs [12], not unlike electron Cooper
pairs, but this scenario is not the one under scrutiny here.
The purpose of this paper is to initiate the development

of a dynamical diquark model, thus turning the physical
picture of rapidly separating colored constituents into a
formalism from which quantifiable predictions for masses,
selection rules for decay channels, and branching fractions
can be made under various assignments of the relevant
model parameters.
The first step in this direction is to describe how to

express the quantization of the δ-δ̄ (or θ̄-δ) system in order
to identify the appropriate combinations of quantum
numbers leading to the spectrum of mass eigenstates.
Already in the initial presentation of the dynamical diquark
picture [9], such a configuration was described as a color
flux tube connecting the δ-δ̄ pair, which eventually absorbs
all of the available kinetic energy in the process until the
pair comes relatively to rest. The principal calculation of*richard.lebed@asu.edu

PHYSICAL REVIEW D 96, 116003 (2017)

2470-0010=2017=96(11)=116003(14) 116003-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.116003
https://doi.org/10.1103/PhysRevD.96.116003
https://doi.org/10.1103/PhysRevD.96.116003
https://doi.org/10.1103/PhysRevD.96.116003


Ref. [9] supposed that the Z−
c ð4430Þ resonance appearing

in Λb → ðπ−ψð2SÞÞK− results from a δ-δ̄ pair of known
masses recoiling against the K−, the potential between
them assumed to be of the classic Coulomb-plus-linear
Cornell type [13,14]. The final separation of the δ-δ̄ pair
was calculated to be 1.16 fm, comparable to (indeed, larger
than) the expected spatial extent of the ψð2SÞ wave
function but much larger than that of the J=ψ—providing
a natural explanation why Z−

c ð4430Þ decays far more to
ψð2SÞ than to J=ψ [15].
That the system should not undergo significant hadro-

nization prior to this moment is suggested by the Wentzel-
Kramers-Brillouin (WKB) approximation, which favors
transitions when the configuration lies near its classical
turning point, since it gives an approximate wave function

ψðxÞ≃ Cffiffiffiffiffiffiffiffiffiffi
pðxÞp e�

i
ℏ

R
pðxÞdx; ð1Þ

where pðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ½E − VðxÞ�p

is the classical constituent
relative momentum. Such a configuration—two color
sources well separated and connected by strongly interact-
ing field configurations that may carry nontrivial quantum
numbers—is precisely the one used for heavy quarkonium
hybrid studies, particularly those performed on the lattice,
an approach begun decades ago [16]. In particular, the
Born-Oppenheimer (BO) approximation [17], originally
applied to atoms and molecules, proves instrumental for
studying systems containing heavy, slow-moving and light,
fast-moving degrees of freedom, which is the expectation
for the δ-δ̄ state in its final moments prior to hadronization.
The dynamical diquark approach is rather different from

those applied to hidden-color multiquark states in the past,
in that the state is bound only by confinement until it can
decay into hadrons, rather than existing as a (quasi-)static
configuration. To provide context on related works with
different perspectives, Sec. II briefly describes other direc-
tions for studying such states.
The BO approximation as applied to QQ̄ exotics is

reviewed briefly in Sec. IV. We note immediately that its
ground-state multiplet, conventionally denoted by the BO
potential Σþ

g , will be seen to coincide with the states one
obtains from a δ-δ̄ Hamiltonian approach [8,18], and we
enumerate and develop a notation for these states even
sooner, in Sec. III. However, in the BO approach one need
not restrict to a single compact state with only contact
interactions to obtain this result; the same lowest multiplet
occurs even if the state has significant spatial extent. For
example, in the case of QQ̄ hybrids, the Σþ

g multiplet
simply represents conventional quarkonium states without
excited glue (as well as states in which the glue content has
all singlet quantum numbers). In that case, the mass gap
between the lightest charmonium states (ηc, J=ψ) and the
lightest true hybrids, as calculated on the lattice [19], is
about 1.1–1.3 GeV. However, since the extended spatial

structure of the Σþ
g states in the dynamical diquark picture

is expected to be similar to that of the excited BO potential
states, one may anticipate a smaller mass gap, say in the
several hundred MeV range. They could be compa-
rable to typical radial excitation energies in charmonium
[mψð2SÞ −mJ=ψð1SÞ ≈ 600 MeV], or even as small as typical
orbital excitations [mχcð1PÞ −mJ=ψð1SÞ ≈ 400 MeV]. If
this possibility is realized, then the dynamical diquark-
generated phenomenological spectrum could be much
richer than naively expected, due to the intermingling of
orbitally, radially, and BO-excited exotic states.
By “light” quarks q, q0 in this paper we mean only u or d,

and by “heavy” quarks Q we mean only c or b. However,
depending upon the circumstance, s quarks may be
considered light (leading to a separate spectrum of, say,
cc̄ss̄ exotics, for which the Xð3915Þ state was proposed as
the JPC ¼ 0þþ ground state, and exotics with the observed
decay channel J=ψϕ are natural candidates [20]) or heavy
(for which one may seek interesting possible experimental
signals of their production, such as the small forward and
backward enhancements in the rate for γp → ϕp, which are
consistent with a pentaquark-like structure [21]). For the
heavy quarks, we have taken Q and Q̄ to have the same
flavor (b or c), but exotic Bc-like hadrons, as well as doubly
heavy cc, bb, and bc states, can also be studied within the
BO approach, although the treatment of the inversion
quantum numbers P and C must be adjusted accordingly.
This paper is organized as follows. Section II presents a

brief summary of alternate approaches studying multiquark
configurations interacting through color flux tubes or
potentials, or on the lattice. In Sec. III, we begin by
enumerating the states in the ground-state BO potential
[Σþ

g ð1LÞ, L ¼ 0; 1; 2;…] in both δ-δ̄ and heavy-quark spin
bases. We then give a brief review of BO potentials as
pertaining toQQ̄q0q̄ states in Sec. IV, and in Sec. V identify
the lowest expected potentials and catalogue the corre-
sponding spectra of δ-δ̄ states in Table I. In Sec. VI we carry
out this exercise for θ̄-δ pentaquark states, with the results
listed in Table II. Section VII compares the list of exotics
with known quantum numbers to the spectra predicted in
the previous two sections, and then extends the analysis to
discuss constraints from heavy-quark spin symmetry and
decay selection rules, both exact and approximate. In
Sec. VIII we summarize and indicate future directions of
research.

II. ALTERNATE HIDDEN-COLOR
MULTIQUARK APPROACHES

By “hidden color” here, we mean states containing
subunits carrying nontrivial color charge, as opposed to
only color-singlet (hadronic) subunits. These configurations
were described many years ago in terms color flux-tube
structures connected in different topologies, depending
upon whether the shortest (energetically favored) tube
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configurations connect qq and q̄ q̄ (diquark-like) pairs or qq̄
(meson-like) pairs. The transition between the two was
called a “flip-flop” [22–24]. Numerical simulations have
indeed found that such diquark-type structures occur when
the quarks are initially closer to each other than to anti-
quarks, even when the relative distances are not dramatically
different [25–29]. If the coupling between flux-tube con-
figurations is weak, however, Ref. [30] claims an absence of
bound multiquark states.
Not every simulation uncovers a diquark-antidiquark-like

structure, however. For example, Ref. [31] found no exotic
ccūd̄ state, but note that this state contains cc rather than cc̄,
and the diquarks are ðccÞðū d̄Þ. On the other hand, Ref. [32]
studies c̄cd̄u but does not find evidence for an exoticZþ

c state,
but the authors offer caveats that the basis of interpolating
operators must be carefully considered to include all coupled
meson-me-son states, and that diquark-antidiquark operators
having the same color structure after Fierz rearrangement
as such states. Comments about the incompleteness of the
operator basis are also voiced in Ref. [33].
Quark potential models with conventional two-body

forces have also been found to support four-quark struc-
tures, particularly in the QQ̄qq̄ case [34]. An extensive
study of possible multiquark structures [35] finds the
presence of hidden-color structures is quite feasible in
the light-quark sector. Potentials based on confinement and
instanton effects are used to study qqq̄ q̄ bound states in
Ref. [36], but no good observed candidates are found.
However, quark models based solely on string-type

confining potentials [37] give more encouraging results
for QQq̄ q̄, although the authors suggest that bound QQ̄qq̄
bound states may require diquark substructure in order to
occur [38]. QQq̄ q̄ bound states also appear in the more
elaborate string-potential model calculations of Ref. [39].
From this discussion, it should be clear that the status of

calculations of multiquark states is a delicate matter,
depending upon the precise modeling of the state and its
interactions. It should be equally clear that the dynamical
diquark picture does not obviously appear to fit into any of
these paradigms, especially as the system remains in a state
of rapid change until the moment it decays. In order to
model such a system appropriately, we therefore seek to
describe it based not upon static structures, but upon
symmetries: hence the introduction of the Born-
Oppenheimer approximation. We start with the ground-
state band where the symmetries are trivial, and then turn to
the description of the excited states.

III. GROUND-STATE BAND

In order to identify the δ-δ̄ states of the Σþ
g BO potential,

we employ notation as close as possible to that of Ref. [18].
Starting with the 4 quark spins and no orbital excitation,
one may couple the angular momenta to obtain a state of
total constituent spin S in several different orders, but the

most convenient for our purpose are ðQQ̄Þ þ ðqq̄Þ and
ðqQÞ þ ðq̄ Q̄Þ. The first option uses eigenstates of heavy-
quark spin, while the second uses eigenstates of diquark
spin. Of course, all orders of coupling are connected by the
relevant recoupling coefficients, which in this case are 9j
symbols:

hðsqsq̄Þsqq̄; ðsQsQ̄ÞsQQ̄; SjðsqsQÞsδ; ðsq̄sQ̄Þsδ̄; Si

¼ ð½sqq̄�½sQQ̄�½sδ�½sδ̄�Þ1=2
8<
:

sq sq̄ sqq̄
sQ sQ̄ sQQ̄

sδ sδ̄ S

9=
;; ð2Þ

where ½s�≡ 2sþ 1 simply denotes the multiplicity of a
spin-s state. Although we have here implicitly taken the
light quarks q, q̄ to form a charge-conjugate pair, it is
simple to generalize to the case q; q̄0, where q; q0 ∈ fu; dg,
which generates an I ¼ 0 and three I ¼ 1 states. The
neutral (I3 ¼ 0) isosinglet and isotriplet eigenstates carry
definite C eigenvalues, and in both cases the C-parity of
these states can be used to determine for all of the states the
G-parity eigenvalues Cð−1ÞI .
Although at this stagewe still consider only S-wave states,

let us discuss the spatial-inversion parity eigenvalues P and
C for arbitrary L. Using the usual reasoning applied to the
corresponding eigenvalues for conventional qq̄ mesons, P
contains a factor ð−1ÞL from the inversion properties of
orbital wave functions and a ð−1Þ from the intrinsic parity of
each qq̄ pair (both light and heavy). Charge conjugation
of the qq̄ pairs is equivalent to a combination of spatial
inversion and the sign obtained from exchange of the q, q̄
spins, ð−1Þsqq̄þ1. One therefore obtains the eigenvalues

P ¼ ð−1ÞL; C ¼ ð−1ÞLþsqq̄þsQQ̄ : ð3Þ

In particular, all S-wave tetraquarks have P ¼ þ, and the
ðqq̄Þ; ðQQ̄Þ basis is more convenient for identifying C (and
G) eigenstates than the δ, δ̄ basis. In the ðqq̄Þ; ðQQ̄Þ basis,
and using the notation of Ref. [18], one obtains the following
states:

JPC ¼ 0þþ∶ X0 ≡ 1
2
j0qq̄; 0QQ̄i0 þ

ffiffi
3

p
2
j1qq̄; 1QQ̄i0;

X0
0 ≡

ffiffi
3

p
2
j0qq̄; 0QQ̄i0 − 1

2
j1qq̄; 1QQ̄i0;

JPC ¼ 1þþ∶ X1 ≡ j1qq̄; 1QQ̄i1;
JPC ¼ 1þ−∶ Z≡ 1ffiffi

2
p ðj1qq̄; 0QQ̄i1 − j0qq̄; 1QQ̄i1Þ;

Z0 ≡ 1ffiffi
2

p ðj1qq̄; 0QQ̄i1 þ j0qq̄; 1QQ̄i1Þ;
JPC ¼ 2þþ∶ X2 ≡ j1qq̄; 1QQ̄i2; ð4Þ

where outer subscripts indicate total component spin S.
Equivalently, using Eq. (2), the states in the δ, δ̄ basis

read:
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JPC ¼ 0þþ∶ X0 ¼ j0δ; 0δ̄i0; X0
0 ¼ j1δ; 1δ̄i0;

JPC ¼ 1þþ∶ X1 ¼
1ffiffiffi
2

p ðj1δ; 0δ̄i1 þ j1δ; 0δ̄i1Þ;

JPC ¼ 1þ−∶ Z ¼ 1ffiffiffi
2

p ðj1δ; 0δ̄i1 − j0δ; 1δ̄i1Þ;

Z0 ¼ j1δ; 1δ̄i1;
JPC ¼ 2þþ∶ X2 ¼ j1δ; 1δ̄i2: ð5Þ

Note that the pairs X0, X0
0 and Z, Z0, carrying the same

JPC, can certainly mix. If one requires a basis of states with
definite values of heavy-quark spin, then the most conven-
ient combinations are:

~X0 ≡ j0qq̄; 0QQ̄i0 ¼ þ 1

2
X0 þ

ffiffiffi
3

p

2
X0
0;

~X0
0 ≡ j1qq̄; 1QQ̄i0 ¼ þ

ffiffiffi
3

p

2
X0 −

1

2
X0
0;

~Z≡ j1qq̄; 0QQ̄i1 ¼
1ffiffiffi
2

p ðZ0 þ ZÞ;

~Z0 ≡ j0qq̄; 1QQ̄i1 ¼
1ffiffiffi
2

p ðZ0 − ZÞ: ð6Þ

Whenever the symbols X0, X0
0 (Z, Z0) appear below, it

should be understood that ~X0, ~X
0
0 ( ~Z, ~Z

0) work equally well,
while the forms with tildes are specified if states of definite
sQQ̄ eigenvalues are preferred.
Turning next to the L > 0 states in the ground-state

band, one may use the usual rules of angular momentum
addition to derive the spectrum based upon the states X0,
X0
0, X1, Z, Z0, X2 listed in Eq. (4) or (5), by appending a

subscript letter for the L eigenvalue and a superscript
number in parentheses for the total J eigenvalue:

JPC ¼ Lð−1ÞL;ð−1ÞL

XðLÞ
0L ; X

0ðLÞ
0L ;

JPC ¼ ðL − 1; L; Lþ 1Þð−1ÞL;ð−1ÞL

XðL−1Þ
1L ; XðLÞ

1L ; X
ðLþ1Þ
1L ;

JPC ¼ ðL − 1; L; Lþ 1Þð−1ÞL;ð−1ÞLþ1

ZðL−1Þ
L ; ZðLÞ

L ; ZðLþ1Þ
L ;

Z0ðL−1Þ
L ; Z0ðLÞ

L ; Z0ðLþ1Þ
L ;

JPC ¼ ðL − 2; L − 1; L; Lþ 1; Lþ 2Þð−1ÞL;ð−1ÞL

XðL−2Þ
2L ; XðL−1Þ

2L ; XðLÞ
2L ; X

ðLþ1Þ
2L ; XðLþ2Þ

2L : ð7Þ
The S-wave states of Eq. (4) or (5) are of course only
those in Eq. (7) with the largest J value in each category:

X0 ¼ Xð0Þ
0 S , X0

0 ¼ X0 ð0Þ
0 S , X1 ¼ Xð1Þ

1 S , Z ¼ Zð1Þ
S , Z0 ¼ Z0ð1Þ

S ,

X2 ¼ Xð2Þ
2 S . For the P-wave states, one must also eliminate

the first two states in the final category: Explicitly, one

obtains the states JPC ¼ 2 × 1−− [Xð1Þ
0P; X

0ð1Þ
0P ], ð0; 1; 2Þ−−

[Xð0Þ;ð1Þ;ð2Þ
1P ], 2 × ð0; 1; 2Þ−þ [Zð0Þ;ð1Þ;ð2Þ

P ; Z0ð0Þ;ð1Þ;ð2Þ
P ], and

ð1; 2; 3Þ−− [Xð1Þ;ð2Þ;ð3Þ
2P ]. In this notation, the exhaustive list

of 1−− states given in Ref. [18] obtained by allowing all
values of L reads

Y1 ≡ Xð1Þ
0P; Y2 ≡ Xð1Þ

1P; Y3 ≡ X0 ð1Þ
0P ;

Y4 ≡ Xð1Þ
2P; Y5 ≡ Xð1Þ

2F: ð8Þ
As a final illustration, the list of D-wave states reads

JPC ¼ 2 × 2þþ [Xð2Þ
0D, X0 ð2Þ

0D ], ð1; 2; 3Þþþ [Xð1Þ;ð2Þ;ð3Þ
1D ],

2 × ð1; 2; 3Þþ− [Zð1Þ;ð2Þ;ð3Þ
D , Z0ð1Þ;ð2Þ;ð3Þ

D ], and ð0; 1; 2; 3; 4Þþþ

[Xð0Þ;ð1Þ;ð2Þ;ð3Þ;ð4Þ
2D ].
Let us compare the number of conventional quarkonium

states to the number of tetraquark states listed above,
including isospin. For L ¼ 0; 1; 2; 3;…, one counts
2; 4; 4; 4;… conventional states [the usual η;ψðor ϒÞ; h; χ
combinations] and 24; 56; 64; 64;… tetraquark states.1

Again, this counting represents only the (radial) ground-
state band (corresponding to a principal quantum number
n ¼ 1), but it does count all isospin states separately. Not
counting I3 ¼ �1 charge conjugates as distinct, the numbers
reduce by 25%, to 18; 42; 48; 48;…. While to date, 28
bosonic charmoniumlike exotics have been observed (not
counting charge conjugates), this number pales in compari-
son to that for potential future discoveries, should even a
fraction of the predicted states actually exist. To emphasize
this point, note that not even all of the n ¼ 1 D-wave
conventional quarkonium states have yet been seen.
A well-known problem for diquark models is their

tendency to produce large numbers of unobserved states.
This overabundance occurs because any Qq or Q̄ q̄ pair
is considered suitable for forming a diquark, regardless of
its spin: The expectation in the light-quark sector for nature
to prefer a “good” (spin-0) diquark over a “bad” (spin-1)
diquark [41] is greatly reduced for heavy-quark systems
(since these two types of quasiparticle differ in mass by a
heavy-quark spin flip, which costs an energy proportional
to Λ2

QCD=mQ), so that both types of diquark are expected
to be equally prevalent. Furthermore, since isospin sym-
metry of strong interactions implies that the replacement
of u ↔ d quarks makes little change to the heavy diquarks,
then in the absence of significant isospin-dependent
interactions between the diquarks, one naturally expects
tetraquarks formed of such diquarks to appear in nearly
degenerate I ¼ 0 plus I ¼ 1 quartets.
However, in the dynamical diquark picture as opposed to

traditional Hamiltonian-based diquark models, significant
isospin-dependent interactions may be quite natural due to

1This counting for the L ¼ 0 and L ¼ 1 states was carried out
in Ref. [40].
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the extended spatial size of the state. In the case of hadronic
molecules, the long-distance color-singlet attraction is
expected to be dominated by single-pion exchange since
it is by far the lightest hadron, and in turn the pion is light
and carries nontrivial isospin due to the Nambu-Goldstone
(NG) theorem of chiral symmetry breaking. Interestingly,
a version of the NG theorem exists even for colored
particles (in the context of color-flavor locking [42]), so
it is reasonable to expect interactions with both color
and isospin dependence between the separated, colored
diquarks. The analysis of Ref. [40] argued in the case of
hadronic molecules that each of the two light-quark con-
taining mesons contributes an isospin Pauli matrix τðkÞ to
the interaction, and τð1Þ · τð2Þ ¼−3;þ1 for I¼ 0, 1, meaning
that the interaction is binding in one isospin channel and
repulsive in the other. Therefore, one expects only one of
the I ¼ 0 or I ¼ 1 states for given angular momentum
quantum numbers to be bound, which greatly reduces the
expected number of tetraquark states, assuming a long-
distance isospin-dependent interaction between the colored
diquarks. Determining exactly which of the states are
bound of course requires a detailed model.

IV. BORN-OPPENHEIMER POTENTIALS

The Born-Oppenheimer approximation amounts to a scale
separation between heavy, slowly changing degrees of
freedom (hence effectively acting as static sources) and
light degrees of freedom (d.o.f.) that rapidly and adiabati-
cally adjust to the configuration of the heavy ones. The
full wave function then factors into a part due to the heavy
sources, and a part described by Born-Oppenheimer poten-
tials that carry only the quantum numbers of the light d.o.f.
but parametrically depend upon the configuration of the
heavy sources (hence the term “potentials”). In the original
application to atoms and molecules, these d.o.f. are of course
the nuclei (mass mN) and electrons (mass me), respectively.
The scale separation, expressed in powers of me=mN ,
provides the necessary small parameter to recast the BO
approximation into the modern language of effective field
theories [43]. In heavy quarkonium, the QQ̄ pair provides
the static sources, while the light d.o.f. are the gluon
configuration (for hybrid mesons) or can also include
light-quark d.o.f. (for multiquark mesons) [44]. The effec-
tive-field theory description arising from the BO approxi-
mation for the hybrid case (where the expansion parameter
becomes ΛQCD=mQ) was first considered in Ref. [45].
The configuration of the heavy d.o.f. is described both

by the relative separations of the heavy components and
by its symmetry. In the QQ̄ system with a relative
separation r and a unit vector r̂ pointing from Q̄ to Q,
the BO potential depends only upon r, and the potentials
are labeled by the irreducible representations of the group
D∞h, which describes the symmetries of a cylinder with
axis r̂. The conventional nomenclature [46] for these

representations uses the quantum numbers Γ≡ Λϵ
η, all of

which refer to the D∞h symmetry, as we now describe.
The basic angular momenta of the system are the total Jlight

of the light d.o.f., the orbital angular momentum LQQ̄ of the
heavy d.o.f., and spin sQQ̄ of theQQ̄ pair. Due to heavy-quark
symmetry, sQQ̄ is a goodquantumnumber of the full state, but
Jlight and LQQ̄ cannot be independently determined, although
the Casimirs Jlight and LQQ̄ can be simultaneously specified.
In this definition, the light-quark spin sqq̄ (in the case of
multiquark hadrons) is incorporated into Jlight. One then
defines the total orbital angular momentum as

L≡ LQQ̄ þ Jlight; ð9Þ
and finally, from coupling L and sQQ̄, one obtains the total
angularmomentumquantumnumbersJ; Jz of the state. Since
r̂ · LQQ̄ ¼ 0, the axial angular momentum r̂ · Jlight ¼ r̂ · L for
the light d.o.f. provides a good quantum number for the
system, its eigenvalues denoted by λ ¼ 0;�1;�2;…. Since
the physical system is invariant under a reflection through any
plane containing r̂ (under which λ → −λ), its energy eigen-
values cannot depend upon the sign of λ, and from this fact
one defines the first of the BO quantum numbers, Λ≡ jλj.
Potentialswith the eigenvaluesΛ ¼ 0; 1; 2;… are denotedby
Σ;Π;Δ;…, in analogy to the labels S; P;D;… for the
quantum numbers L ¼ 0; 1; 2;…. From Eq. (9) and
r̂ · LQQ̄ ¼ 0, one immediately notes the constraint

L ≥ jr̂ · Lj ¼ jr̂ · Jlightj ¼ Λ: ð10Þ
The light d.o.f. also possess two reflection symmetries.

The first is obtained by a reflection through the midpoint of
the QQ̄ pair. Since this inversion exchanges the orientation
of the light d.o.f. not just with respect to a coordinate origin
but also with respect to Q and Q̄, it is given not just by
the parity operator Plight, but in fact by the combination
ðCPÞlight. Its possible eigenvalues η ¼ þ1;−1, denoted by
g, u, respectively, provide the second BO quantum number.
The system also possesses, as mentioned above, a

symmetry under reflection Rlight of the light d.o.f. through
any plane containing the QQ̄ axis. In particular, the
Λ ¼ 0 (Σ) representations can be distinguished by their
behavior under Rlight, with its �1 eigenvalue denoted by ϵ,
the third BO quantum number. But the Λ > 0 configura-
tions jλ; η; ri can also be combined into eigenstates of Rlight

with eigenvalue ϵ: Noting that the light d.o.f. spatial-
inversion parity operator Plight is simply given by Rlight

multiplied by a rotation by π radians about an axis normal
to the plane defining Rlight, one sees for arbitrary λ that
Rlightjλ; η; ri ¼ ð−1Þλζj − λ; η; ri, where ζ is the intrinsic
parity of the light d.o.f. The eigenstate of Rlight with
eigenvalue ϵ for Λ > 0 is then constructed as

jΛ; η; ϵ; ri≡ 1ffiffiffi
2

p ½jΛ; η; ri þ ϵð−1ÞΛζj − Λ; η; ri�; ð11Þ
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and the eigenvalue of Plight is deduced to be ϵð−1ÞΛ.
With the quantum numbers Γ in hand, one then solves

the Schrödinger equation of the QQ̄ pair in the BO
potential VΓðrÞ, which produces eigenvalues and eigen-
functions labeled by a principal quantum number n. The
full physical states are then completely specified by the kets

jn; L; sQQ̄; JmJ;Λ; η; ϵi; ð12Þ

with Jlight and LQQ̄ eigenvalues implicit. In the multiquark
case, the light-quark spin quantum number sqq̄ is also
implicit, providing in the notation of Ref. [44] a contribu-
tion to Jlight.
The overall discrete quantum numbers for the physical

state depend upon both the heavy and light d.o.f. Those
for the heavy d.o.f.QQ̄ are obtained exactly as for ordinary
mesons, while those for the light d.o.f. depend upon
whether a qq̄ pair is present, which contributes an extra
factor ð−1Þ to P and ð−1Þsqq̄ to C. In particular, for hybrids,

P ¼ ϵð−1ÞΛþLþ1; ð13Þ
C ¼ ηϵð−1ÞΛþLþsQQ̄ ; ð14Þ

while for tetraquarks,

P ¼ ϵð−1ÞΛþL; ð15Þ
C ¼ ηϵð−1ÞΛþLþsqq̄þsQQ̄ : ð16Þ

The C eigenvalue, as before, refers to that of the neutral
state of an isospin multiplet; G parity is then given by
G ¼ Cð−1ÞI . Significantly, the expressions Eqs. (15)–(16)
differ from those in Ref. [44], which are the same for both
hybrids and tetraquarks. Even though the light-quark pair
has its spin angular momentum sqq̄ folded into the total
Jlight in Ref. [44], including its distinct dependence in P
and C is necessary to reflect the differing symmetry of the
wave functions, especially for differing values of sqq̄,
which already suggests difficulties for the choice of
including sqq̄ in Jlight. In particular, one expects states that
are identical except for a relative spin flip of the light
quarks, sqq̄ ¼ 0 ↔ sqq̄ ¼ 1, to belong to the same BO
potential (fixed Γ ¼ Λϵ

η), but also to have opposite C
eigenvalues. This effect is particularly evident in the
ground-state band Σþ

g (Λ ¼ 0, ϵ ¼ η ¼ þ1), where one
may use simple quark-model reasoning as in Eq. (3). As an
explicit example, in the case of bb̄cc̄ tetraquarks, for which
mb ≫ mc ≫ ΛQCD, one expects flipping the spin of c̄
relative to that of c (using the definition in which sqq̄ is
a part of Jlight) to affect the value of Jlight and hence Λ,
which would spread these two configurations over different
BO potentials. But the energy cost of this spin flip is small,
OðΛ2

QCD=mcÞ, suggesting that the BO potentials in the two
configurations are the same.

We therefore adopt a more traditional definition of
quantum numbers for BO potentials [46]: The angular
momentum Jlight in Eqs. (9) and (10) is understood to
exclude intrinsic light-quark spin sqq̄, and the BO potential
notation becomes Γ≡ 2sqq̄þ1Λϵ

η, the new superscript indi-
cating the multiplicity of ðsqq̄Þz eigenstates. From the
above example, one also expects the configurations
3Λϵ

ηðnPÞ and 1Λϵ
ηðnPÞ to lie fairly close in energy, ignoring

possible light-quark spin-dependent interactions such as
those correlated with isospin. We therefore suppress the
2sqq̄ þ 1 superscript whenever possible.
Also of interest is the possibility of Λ-doubling [46],

which occurs when two BO potentials produce the same
spectrum of states, and therefore can mix. For given
eigenvalues of L and Λ satisfying L ≥ 1 and L > Λ,
the states obtained from the BO potentials Λϵ

ηðnLÞ and
ðΛþ 1Þ−ϵη ðnLÞ [e.g., Σ−

u ð1PÞ and Πþ
u ð1PÞ] produce the

same spectrum, and potentially can mix. The naive
degeneracy between two BO potentials of opposite parity,
Λ�
η ðnLÞ [e.g., Π�

u ð1PÞ], is thereby lifted. This effect for
hybrids was first discussed in Ref. [45].

V. DIQUARK-ANTIDIQUARK BO POTENTIALS

The configuration of the tetraquark state in the dynamical
diquark picture is essentially the same as for hybrid heavy-
quark mesons: a spatially extended colored field connecting
a heavy color-3 (δ̄) source and a heavy color-3̄ source (δ).
The sources themselves differ in the two cases: Q, Q̄ carry
spin 1

2
and isospin 0, and are essentially pointlike, while δ, δ̄

carry spin 0 or 1 and isospin 1
2
, and are expected to be

compact due to the presence of the heavy quark but still be of
finite spatial extent (≲0.5 fm for charm [9]).
The static potentials for QQ̄ pairs were first calculated on

the lattice some time ago, with the first high-quality results
presented in Refs. [47–49], while the first unquenched
simulations were carried out in Ref. [50]. A summary of
the important landmarks in lattice simulations relevant to
heavy-quark hybrids is presented in Ref. [45] (see also [51]).
Simulations representing the state of the art for cc̄ hybrid
mesons are presented by the Hadron Spectrum Collaboration
in Ref. [19]. The essential result relevant to the present
analysis is that all authors agree the lowest BO potentials are
determined to be the ground stateΣþ

g , followed byΠu andΣ−
u .

The mixing of Πþ
u ð1PÞ and Σ−

u ð1PÞ states has been noted in
the previous section; but additionally, the Πu and Σ−

u BO
potentials are seen to become degenerate in the r → 0 limit,
givinga single color-adjoint source configurationas r → 0 (in
this case, with JPC ¼ 1þ−) called a gluelump.
We therefore suppose that the lowest BO potentials

producing tetraquarks in the dynamical diquark picture are
the ground-state potentials Σþ

g , whose S-, P-, and D-wave
states have already been enumerated in Sec. III, followed
by Πþ

u ð1PÞ mixed with Σ−
u ð1PÞ, Π−

u ð1PÞ, Σ−
u ð1SÞ, and
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Πþ
u ð1DÞ. This ordering follows the results of the lattice

simulations of Ref. [19], with the states identified as
originating within specific BO potentials in Refs. [44,45].
Before listing the spectra associated with these BO

potentials, let us make one final modification to the notation

ðX0; X0
0; X1; Z; Z0; X2ÞðJÞL introduced for theΣþ

g states.Noting
from Eqs. (15)–(16) that the P, C eigenvalues for nontrivial
BO potentials Λϵ

η differ from those of Σþ
g only by

ρ≡ ϵð−1ÞΛ; κ≡ ηϵð−1ÞΛ ¼ ηρ; ð17Þ
we adopt the final notation ðX0; X0

0; X1; Z; Z0; X2ÞðJÞρκL for the
tetraquark states. That is, Eqs. (15)–(16) are replaced by

P ¼ ρð−1ÞL; C ¼ κð−1ÞLþsqq̄þsQQ̄ ; ð18Þ
which identifies ρ, κ as the “intrinsic” P, C eigenvalues of
each particular BO potential. In this notation, one appends a
superscript ρκ ¼ þþ to all the states obtained from Σþ

g , and
taking ϵ → −ϵ or Λ → Λ� 1 changes both ρ → −ρ and
κ → −κ, while taking η → −η changes κ → −κ alone. Taking
ϵ → −ϵ orΛ → Λ� 1 orL → L� 1 changes bothP → −P
and C → −C for each state in the BO potential, while taking
η → −η changes only C → −C for each state.
To see that this notation is easily interpreted, let us

consider one specific example: Xð4Þ−þ
2F . Here, the total

component spin S ¼ 2 state X2 is defined in Eq. (4) with
sqq̄¼1, sQQ̄ ¼ 1; in addition, L ¼ 3, J ¼ 4, ρ ¼ ϵð−1ÞΛ ¼
−1 so that P ¼ þ, and κ ¼ ηρ ¼ þ1 so that η ¼ −1 and

C ¼ −: Xð4Þ−þ
2F is a JPC ¼ 4þ− state. The only ambiguity

lies in the combination ρ¼ ϵð−1ÞΛ¼−1; since Λ ≤ L ¼ 3,
the BO potentials ½Σ−

u ;Πþ
u ;Δ−

u ;Φþ
u �ðnFÞ can contribute.

In Table I we list the lowest multiplets of tetraquark
states expected in the dynamical diquark picture, both by
JPC eigenvalues and the BO potential from which they
emerge. States that for qq̄mesons have exotic JPC quantum
numbers (specifically, 0−− and the series 0þ−; 1−þ; 2þ−;…)
are indicated with boldface. We also use the ðqq̄Þ; ðQQ̄Þ
basis [Eq. (6)] in order to facilitate comparison in Sec. VII
with the expectations of heavy-quark spin symmetry.

VI. PENTAQUARK BO POTENTIALS

The central difference between diquark-antidiquark (δ-δ̄)
and triquark-diquark (θ̄-δ) BO potentials is that the latter case
is analogous to heteronuclear diatomic molecules:
The θ̄ and δ components are in no sense the same, so that
the reflection symmetry leading to the ðCPÞlight quantum
number η is lost. In addition, the (anti)triquark θ̄ is formed of a
light diquark δ0 in a color-3̄ bound to a heavy Q̄ to form an
overall color-3. For the purpose of this work, we limit
to the case of a δ0 ¼ ðudÞ diquark in a spin-0, isospin-0
configuration (a “good” diquark [41]), such as those naturally
appearing inΛQ baryons,Q ¼ s, c, b. Indeed, the pentaquark
candidates Pcð4380Þ, Pcð4450Þ were observed in Λb decays
[52], a fact used in the construction of the diquark-triquark
picture [10]. Assuming (as for the diquark δ ¼ Qq) no

TABLE I. Quantum numbers of the lowest tetraquark states expected in the dynamical diquark picture. For each of
the expected lowest Born-Oppenheimer potentials, the full multiplet is presented, using both the state notation
developed in this work and the corresponding JPC eigenvalues. States with JPC not allowed for conventional qq̄
mesons are indicated in boldface.

BO potential

State notation

State JPC

Σþ
g ð1SÞ ~Xð0Þþþ

0 S
~Zð1Þþþ
S , ~Z0ð1Þþþ

S
~X0 ð0Þþþ
0 S , Xð1Þþþ

1 S , Xð2Þþþ
2 S

0þþ 2 × 1þ− ½0; 1; 2�þþ

Σþ
g ð1PÞ ~Xð1Þþþ

0P ½ ~Zð0Þ;ð1Þ;ð2Þ
P �þþ, ½ ~Z0 ð0Þ;ð1Þ;ð2Þ

P �þþ ~X0 ð1Þþþ
0P , ½Xð0Þ;ð1Þ;ð2Þ

1P �þþ, ½Xð1Þ;ð2Þ;ð3Þ
2P �þþ

1−− 2 × ð0; 1; 2Þ−þ ½1; ð0; 1; 2Þ; ð1; 2; 3Þ�−−
Σþ
g ð1DÞ ~Xð2Þþþ

0D ½ ~Zð1Þ;ð2Þ;ð3Þ
D �þþ, ½ ~Z0 ð1Þ;ð2Þ;ð3Þ

D �þþ ~X0 ð2Þþþ
0D , ½Xð1Þ;ð2Þ;ð3Þ

1D �þþ, ½Xð0Þ;ð1Þ;ð2Þ;ð3Þ;ð4Þ
2D �þþ

2þþ 2 × ð1; 2; 3Þþ− ½2; ð1; 2; 3Þ; ð0; 1; 2; 3; 4Þ�þþ

Πþ
u ð1PÞ &
Σ−
u ð1PÞ

~Xð1Þ−þ
0P
1þ−

½ ~Zð0Þ;ð1Þ;ð2Þ
P �−þ, ½ ~Z0 ð0Þ;ð1Þ;ð2Þ

P �−þ 2 ×
ð0; 1; 2Þþþ

~X0 ð1Þ−þ
0P , ½Xð0Þ;ð1Þ;ð2Þ

1P �−þ, ½Xð1Þ;ð2Þ;ð3Þ
2P �−þ

½1; ð0; 1; 2Þ; ð1; 2; 3Þ�þ−

Π−
u ð1PÞ ~Xð1Þþ−

0P ½ ~Zð0Þ;ð1Þ;ð2Þ
P �þ−, ½ ~Z0 ð0Þ;ð1Þ;ð2Þ

P �þ− ~X0 ð1Þþ−
0P , ½Xð0Þ;ð1Þ;ð2Þ

1P �þ−, ½Xð1Þ;ð2Þ;ð3Þ
2P �þ−

1−þ 2 × ð0; 1; 2Þ−− ½1; ð0; 1; 2Þ; ð1; 2; 3Þ�−þ
Σ−
u ð1SÞ ~Xð0Þ−þ

0 S
~Zð1Þ−þ
S , ~Z0 ð1Þ−þ

S
~X0 ð0Þ−þ
0 S , Xð1Þ−þ

1 S , Xð2Þ−þ
2 S

0−þ 2 × 1−− ½0; 1; 2�−þ
Πþ

u ð1DÞ ~Xð2Þ−þ
0D ½ ~Zð1Þ;ð2Þ;ð3Þ

D �−þ, ½ ~Z0 ð1Þ;ð2Þ;ð3Þ
D �−þ ~X0 ð2Þ−þ

0D , ½Xð1Þ;ð2Þ;ð3Þ
1D �−þ, ½Xð0Þ;ð1Þ;ð2Þ;ð3Þ;ð4Þ

2D �−þ
2−þ 2 × ð1; 2; 3Þ−− ½2; ð1; 2; 3Þ; ð0; 1; 2; 3; 4Þ�−þ
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internal orbital angular momentum, the antitriquark θ̄≡
½Q̄ðudÞ� carries the unique quantum numbers sPθ̄

θ̄
¼ 1

2
−.

The intrinsic parity of the QQ̄qud pentaquark state is −1,
due to the presence of the single antiquark Q̄; its isospin I ¼ 1

2

is determined entirely by the light quark q in δ.
As noted in Ref. [10], the Pauli exclusion principlemust be

taken into account if δ0 contains identical quarks (in which
case it would cease to be a “good” diquark). But even if δ0 is a
good diquark, then the light quark in δ is identical to one of
those in δ0, and possible constraints on the overall state due to
antisymmetrizationbetween these quarksmustbeconsidered.
Inasmuch as δ0 (as a part of the antitriquark θ̄) and δ are
expected to achieve substantial spatial separation in the
dynamical picture, the effect of antisymmetrization onmatrix
elements of observables should be significantly muted.
The construction of the lowest pentaquark states uses

the same principles as used for the tetraquark states in
Secs. III–V, so we present explicitly in this section only the
most important intermediate results. Since heavy-quark
spin symmetry remains of interest in this system, we begin
by exhibiting the relation between the θ̄ − δ basis and the
ðqδ0ÞðQQ̄Þ basis, in which the light quark q in δ is instead
coupled with δ0 to form an all-light baryonic system
B≡ ðqδ0Þ. Analogous to Eq. (2), it reads

hðsqsδ0 ÞsB; ðsQsQ̄ÞsQQ̄; SjðsqsQÞsδ; ðsδ0sQ̄Þsθ̄; Si

¼ ð½sB�½sQQ̄�½sδ�½sθ̄�Þ1=2
8<
:

sq sδ0 sB
sQ sQ̄ sQQ̄

sδ sθ̄ S

9=
;: ð19Þ

At this point, the diquark δ0 spin has not yet been fixed to 0.
Making this restriction, however, one finds only 3 basis
states:

JPC ¼ 1

2

−
∶ P1

2
≡

���� 12θ̄ ; 0δ
�

1
2

; P0
1
2

≡
���� 12θ̄ ; 1δ

�
1
2

;

JPC ¼ 3

2

−
∶ P3

2
≡

���� 12θ̄ ; 1δ
�

3
2

: ð20Þ

The corresponding list that includes both these states and
also allows sδ0 ¼ 1 (giving 6 additional states) appears in
Ref. [53], albeit using a different notation.
In terms of Eq. (20) and using Eq. (19), the states of

definite heavy-quark spin can then be written:

~P1
2
≡

���� 12B ; 0QQ̄

�
1
2

¼ −
1

2
P1

2
þ

ffiffiffi
3

p

2
P0

1
2

;

~P0
1
2
≡

���� 12B ; 1QQ̄

�
1
2

¼ þ
ffiffiffi
3

p

2
P1

2
þ 1

2
P0

1
2

; P3
2
¼

���� 12B ; 1QQ̄

�
3
2

:

ð21Þ

The generalization of these states to L > 0, analogous to
Eq. (7), reads

JP ¼
�
L −

1

2
; Lþ 1

2

�ð−1ÞLþ1

P
ðL−1

2
Þ

1
2
L

; P
0ðL−1

2
Þ

1
2
L

;P
ðLþ1

2
Þ

1
2
L

; P
0ðLþ1

2
Þ

1
2
L

; ð22Þ

JP ¼
�
L −

3

2
; L −

1

2
; Lþ 1

2
; Lþ 3

2

�ð−1ÞLþ1

P
ðL−3

2
Þ

3
2
L

; P
ðL−1

2
Þ

3
2
L

; P
ðLþ1

2
Þ

3
2
L

; P
ðLþ3

2
Þ

3
2
L

: ð23Þ

Of course, any states in this list with J disallowed by the
triangle rule jL − Sj ≤ J ≤ Lþ S are excluded.
Since the θ̄-δ states are not eigenstates of ðCPÞlight

and hence lack η (and consequently C) eigenvalues, their
nontrivial BO potentials are simply labeled by Λϵ, and their
states carry the parity eigenvalues

TABLE II. Quantum numbers of the lowest pentaquark states
expected in the dynamical triquark-diquark picture. For each of
the expected lowest Born-Oppenheimer potentials, the full
multiplet is presented, using both the state notation developed
in this work and the corresponding JP eigenvalues.

State notation

BO potential State JP

Σþð1SÞ ~P
ð1
2
Þþ

1
2
S

, ~P
0 ð1

2
Þþ

1
2
S

P
ð3
2
Þþ

3
2
S

2 × 1
2
− 3

2
−

Σþð1PÞ h
~P
ð1
2
Þ;ð3

2
Þ

1
2
P

iþ
;
h
~P
0ð1
2
Þ;ð3

2
Þ

1
2
P

iþ h
P
ð1
2
Þ;ð3

2
Þ;ð5

2
Þ

3
2
P

iþ
2 × ð1

2
; 3
2
Þþ ð1

2
; 3
2
; 5
2
Þþ

Σþð1DÞ h
~P
ð3
2
Þ;ð5

2
Þ

1
2
D

iþ
;
h
~P
0ð3
2
Þ;ð5

2
Þ

1
2
D

iþ h
P
ð1
2
Þ;ð3

2
Þ;ð5

2
Þ;ð7

2
Þ

3
2
D

iþ
2 × ð3

2
; 5
2
Þ− ð1

2
; 3
2
; 5
2
; 7
2
Þ−

Πþð1PÞ & Σ−ð1PÞ h
~P
ð1
2
Þ;ð3

2
Þ

1
2
P

i
−
;
h
~P
0ð1
2
Þ;ð3

2
Þ

1
2
P

i
−

2 × ð1
2
; 3
2
Þ−

h
P
ð1
2
Þ;ð3

2
Þ;ð5

2
Þ

3
2
P

i
−

ð1
2
; 3
2
; 5
2
Þ−

Π−ð1PÞ Same as Σþð1PÞ
Σ−ð1SÞ ~P

ð1
2
Þ−

1
2
S
, ~P

0 ð1
2
Þ−

1
2
S

P
ð3
2
Þ−

3
2
S

2 × 1
2
þ 3

2
þ

Πþð1DÞ h
~P
ð3
2
Þ;ð5

2
Þ

1
2
D

i
−
;
h
~P
0 ð3

2
Þ;ð5

2
Þ

1
2
D

i
−

h
P
ð1
2
Þ;ð3

2
Þ;ð5

2
Þ;ð7

2
Þ

3
2
D

i
−

2 × ð3
2
; 5
2
Þþ ð1

2
; 3
2
; 5
2
; 7
2
Þþ
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P ¼ ϵð−1ÞΛþLþ1 ≡ ρð−1ÞLþ1: ð24Þ

The final addition to the notation of Eq. (23) is to
append the superscript ρ defined in Eq. (24) to the state
symbol. The analogue to Table I for θ̄-δ states with sδ0 ¼ 0,
representing the lowest expected pentaquark states in the
triquark-diquark picture, is presented as Table II. Again, the
notation of Eq. (21) is employed, to enable comparisons
with expectations from heavy-quark spin symmetry. A state

such as, e.g., ~P
0 ð3

2
Þþ

1
2
D

means sB ¼ 1
2
, sQQ̄ ¼ 1, S ¼ 1

2
, L ¼ 2,

J ¼ 3
2
, ρ ¼ þ, and P ¼ ρð−1ÞLþ1 ¼ −: As indicated in

Table II, it has JP ¼ 3
2
−.

VII. COMPARISON TO EXPERIMENT

A. Exotic candidates of known quantum numbers

Despite the large number of exotic candidates observed,
rather few have experimentally well-determined JPC (or
JPG) values [1]. Moreover, none of those yet seen carry
exotic qq̄-meson or qqq-baryon quantum numbers,2 so that
the known candidates can actually be described as “cryp-
toexotic.” In large part, this self-selection of quantum
numbers arises from constraints imposed by the production
modes and decay channels most easily accessible to
experiment. For example, the 1−− channel is especially
well studied because the initial-state radiation (ISR) proc-
ess eþe− → γISRY produces only states Y with JPC ¼ 1−−.
The exotic candidates with measured quantum numbers
(including “favored” values) are listed in Table III. The JPC

quantum numbers are also assumed known for the yet-
unseen neutral isospin partners of observed charged states
such as Zþ

c ð4430Þ.
In comparison, Table I exhibits 5 0þþ states, 3 0−− states,

10 1−− states, 5 1þþ states, and 8 1þ− states. Table II
exhibits multiple spin-3

2
and spin-5

2
states of either parity.

The known exotic candidates do not exhaust the lowest
multiplets (n ¼ 1 and L ≤ 2). Nor does this counting take
into account the likely possibility that exotics like Yð4140Þ
decaying into J=ψϕ are cc̄ss̄ states, which frees up even
more possible cc̄qq̄ states from Table I for identification
with the observed exotic candidates. To proceed further,
we next address whether heavy-quark spin symmetry, or
whether selection rules (either exact or obtained from the
BO potentials), can be used to constrain the possible
identifications of states.

B. Heavy-quark spin symmetry

Evidence for whether heavy-quark spin symmetry
imposes strong constraints on the exotic candidates is
not without ambiguity. If sQQ̄ is a good quantum number

for the exotics, then they should decay exclusively to ψðϒÞ
or χQ if sQQ̄ ¼ 1, and exclusively to ηQ or hQ if sQQ̄ ¼ 0.
No exotic candidate has yet been observed to decay to

ηQ. In the case of Xð3872Þ → ηc, the Particle Data Group
[55] presents an upper bound. However, the reconstruction
of ηQ states tends to be more difficult than that for ψðϒÞ,
χQ, or even hQ states, so it is difficult to draw any definite
conclusion in this case.
In the cc̄ sector, the charmonium decays of most of the

exotic candidates proceed exclusively through J=ψ or
ψð2SÞ, while a few (such as Zþ

c ð4250Þ [56]) have been
seen only with χc decays. The charmonium decays of the
charged Zþ

c ð3900Þ have so far only been seen in the J=ψ
channel, while those of the Zþ

c ð4020Þ have only been seen
in the hc channel [57,58], suggesting strong support for
the exotic candidates appearing in eigenstates of heavy-
quark spin.
However, interesting conflicting signals occur in the

region of the Yð4260Þ, which increasingly appears to be
not a single state but several closely spaced ones [59,60].
At a bare minimum, these states appear to be the Yð4360Þ
decaying to ψ , the Yð4390Þ decaying to hc, and the
Yð4220Þ,3 originally seen to decay to χc0ω [61], but also
appearing in hcππ. The first two of these states are of
course consistent with being sQQ̄ eigenstates, but the latter,
should it persist as a single state, is not.
The evidence for heavy-quark spin symmetry in the bb̄

sector is much more ambiguous. There, all the known
candidate exotics [Ybð10888Þ, Zbð10610Þ, Zbð10650Þ]
possess substantial decay branching fractions into both
ϒ and hb,

4 suggesting either that heavy-quark spin sym-
metry is actually strongly violated in the decays,5 or
simply that the resonances produced are mixtures of
heavy-quark spin eigenstates. For example, Ybð10888Þ
might not be the state ~Xð0Þþþ

0P or ~X0 ð0Þþþ
0P , which are pure

sQQ̄ ¼ 0 and sQQ̄ ¼ 1, respectively, but rather a pure

TABLE III. Exotic candidates with experimentally determined
JPC quantum numbers (both unambiguous and “favored”). All
are cc̄-containing states, except for those carrying a b subscript,
which are bb̄-containing states.

0þþ Xð3915Þ, Xð4500Þ, Xð4700Þ
0−− Z0

cð4240Þ
1−− Yð4008Þ, Yð4220Þ, Yð4260Þ, Yð4360Þ, Yð4390Þ,

Xð4630Þ, Yð4660Þ, Ybð10888Þ
1þþ Xð3872Þ, Yð4140Þ, Yð4274Þ
1þ− Z0

cð3900Þ, Z0
cð4200Þ, Z0

cð4430Þ,
Z0
bð10610Þ, Z0

bð10650Þ
3
2
�, 5

2
∓ Pcð4380Þ, Pcð4450Þ

2A possible exception is the yet-unobserved neutral partner to
the Zþ

c ð4240Þ [54], which would have JPC ¼ 0−−.

3Called Yð4230Þ in Ref. [1] and elsewhere.
4See [1] for collected experimental references.
5Such strong violations seem unlikely, particularly in the b

system, since their amplitudes are suppressed by ΛQCD=mQ.
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diquark-spin eigenstate Xð0Þþþ
0P or X0 ð0Þþþ

0P [Eqs. (5)–(6)].
The latter possibility appears perhaps more plausible since
the diquarks are more compact due to the presence of the
heavier b quarks, but drawing such a conclusion must await
a more detailed dynamical study.
A similar situation of a given exotic state not corre-

sponding to an eigenstate of a single sQQ̄ value arises if the
heavy exotics are molecules of hadrons in their separate
spin eigenstates (e.g., a 1−þ B̄�B� state with no admixture
of B̄B� þ B̄�B, where B;B� has JP ¼ 0−; 1−, respectively),
a fact that is very well appreciated in the construction of
such models [5,40]. In either the molecular or the diquark-
antidiquark spin-eigenstate limit, the spins of the heavy
quarks are correlated not to each other (except in the
composition of the overall state JP), but to the spins of the
corresponding light quarks with which they form hadron
subunits, either ðqQÞ þ ðq̄ Q̄Þ diquarks or ðq̄QÞ þ ðQ̄qÞ
hadrons. In both cases, the full state need not be an
eigenstate of a single sQQ̄ eigenvalue.
Inasmuch as heavy-quark spin symmetry does in fact

hold for the exotics, Tables I–II are presented in a manner
conducive to enumerating them. Specifically, with refer-
ence to Eqs. (4), (6), and (21), the leftmost entries on
each line (Table I: ~X0; ~Z; Table II: ~P1

2
) have sQQ̄ ¼ 0, while

the rightmost entries (Table I: ~Z0; X1; X2; Table II: ~P0
1
2
; P3

2
)

have sQQ̄ ¼ 1. Then, resolving into the categories
(fsQQ̄ ¼ 0g þ fsQQ̄ ¼ 1g), Table I exhibits (2þ 3) 0þþ

states, (2þ 1) 0−− states, (4þ 6) 1−− states, (1þ 4) 1þþ

states, and (3þ 5) 1þ− states. Table II exhibits (3þ 7) 3
2
þ,

(2þ 5) 3
2
−, (1þ 4) 5

2
þ, and (1þ 3) 5

2
− states.

Interestingly, the pentaquark candidates Pcð4380Þ and
Pcð4450Þ both decay to J=ψp, and their close spacing in
mass combined with the large width for Pcð4380Þ and
small width for Pcð4450Þ suggests—at this stage—that

Pcð4380Þ is the highest Σþð1SÞ state Pð3
2
Þþ

3
2
S

(JP ¼ 3
2
−), while

Pcð4450Þ is the unique 5
2
þ state in the lowest multiplets,6

namely, the Σþð1PÞ state P
ð5
2
Þþ

3
2
P

.

C. Selection rules

Selection rules for strong decays of exotics in the BO
approach were first developed in Ref. [62] and applied
systematically in Ref. [44]. These selection rules fall into
three types. The first is overall conservation of JPC for the
process, which is exact in strong interactions. Assuming
that the initial and final QQ̄-containing states have quan-

tum numbers JPiCi
i and J

PfCf

f , respectively, and a single
hadron with quantum numbers jpc is emitted with orbital

angular momentum ℓ relative to the final heavy state, one
immediately has the selection rules

Pi ¼ Pfpð−1Þℓ; Ci ¼ Cfc Ji ¼ Jf þ jþ ℓ : ð25Þ
The C eigenvalues here refer of course only to the neutral
members of each isospin multiplet; if transitions involving
charged states are considered, then G-parity conservation,
with G ¼ Cð−1ÞI for each state, must be imposed.
Selection rules in this class are never violated, assuming
only that the decays are pure QCD processes.
The second type of selection rule in Ref. [44] references

the approximate conservation of heavy-quark spin sym-
metry. We have already discussed in the previous sub-
section how well this symmetry is upheld in observed
processes.
The third type of selection rule in Ref. [44] uses the

BO approximation in a fundamental way: Under the
assumption that the light d.o.f. adjust much more quickly
in a physical process than the heavyQQ̄ pair, the decay to a
conventional QQ̄ state occurs through a rapid transition
from the initial BO configuration to the final one plus a
light hadron, leaving the separation and orientation of the
QQ̄ pair nearly unchanged. In fact, the heavy-quark spin-
symmetry limit is implicit in this approximation. The
conservation of angular momentum then reads

Jlight;i ¼ Jlight;f þ jþ ℓ ; ð26Þ
and since Jlight;i ¼ Li þ sqq̄ (with the replacement sqq̄ → sB
for pentaquarks) while Jlight;f (being the light d.o.f. angular
momentum of a conventional QQ̄ state) contains no
valence light quarks and hence equals Lf,

7 we have

Li ¼ Lf þ j − sqq̄ þ ℓ : ð27Þ
Dotting with r̂ gives

λi ¼ λf þ r̂ · ð j − sqq̄ þ ℓ Þ: ð28Þ
This expression differs from Eq. (28) in Ref. [44] by the
extra factor −sqq̄ on the right-hand side, and arises as the
result of our choice not to include sqq̄ in Jlight;i. The triangle
rule for the transition in the BO approximation reads

jλi − λfj ≤ jþ sqq̄ þ ℓ: ð29Þ
Again, since the final state is taken to be a conventionalQQ̄
state with BO potential Σþ

g , then λf ¼ 0, and thus:

Λi ≤ jþ sqq̄ þ ℓ; ð30Þ
with sqq̄ → sB in the pentaquark case. It is interesting
to consider the limit discussed in Sec. IV in which the

6Similar reasoning in a Hamiltonian formalism led to the same
JP identification of the Pc states in the triquark-diquark model of
Ref. [53].

7A distinct sqq̄ factor appears as a component of Jlight;f if it
is also a multiquark state.
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light-quark d.o.f. spin sqq̄ also remains fixed (i.e., for bb̄cc̄
tetraquarks, since mb ≫ mc ≫ ΛQCD). Then, assuming the
light final-state hadron contains no internal orbital excita-
tion, one has j ¼ sqq̄, and hence from Eq. (28) follows the
simple result Λi ≤ ℓ: States in Σ;Π;…BO potentials in
this limit only decay to light hadrons in at least S; P;…
relative partial waves, respectively. In the light-quark case,
however, only the looser constraint Eq. (30) applies.
The discrete BO eigenvalues also provide approximate

selection rules. Following the analysis in Sec. IV, the reflec-
tion parity Rlight through any plane containing the QQ̄ axis
r̂ acts upon the light hadron as a product of Plight (which
introduces a factor of its intrinsic parity p as well as a factor
ð−1Þℓ from its relative motion with respect to the final
heavy state) and a rotation by π radians about the normal to
the reflection plane (which introduces an extra phase
expðiπr̂ · sqq̄Þ in the initial state and exp½iπr̂ · ð jþ ℓ Þ� in
the final state). According to Eq. (28), the difference of
these phases is just exp½iπðλi − λfÞ�, which can be written
as ð−1ÞΛi−Λf since both λ’s are integers. In total, we have

ϵi ¼ ϵfpð−1Þℓð−1ÞΛi−Λf ; or ρi ¼ ρfpð−1Þℓ: ð31Þ

We note that no restriction to Λi ¼ Λf ¼ 0 is required, in
contrast to Eq. (31) of Ref. [44].
Lastly in the tetraquark case, for which charge con-

jugation symmetry is relevant, the BO approximation
ðCPÞlight quantum number η provides a selection rule
(Eq. (30) of [44]):

ηi ¼ ηfcpð−1Þℓ; or κi ¼ κfc: ð32Þ

The most incisive phenomenological tests of the exact
selection rules Eq. (25) and the BO approximation selection
rules Eqs. (30), (31), (32) are decays to conventional QQ̄
states (ϵf ¼ ηf ¼ þ, λf ¼ 0) that produce a single light
hadron. The decays of this type thus far observed are the
emission of a single light vector particle (jpc ¼ 1−−, ℓ ¼ 0)
such as ρ, ω, or ϕ, and the emission of a single charged pion
(jpg ¼ 0−−, ℓ ¼ 0). In the latter case, since the conven-
tional QQ̄ states are isosinglets, one has an isotriplet exotic
decaying to a single pion, in which case the ð−1ÞI ¼ −1
factors in the definition of G parity cancel between the
initial and final state, thus reducing G-parity conservation
condition to the C-parity conservation condition [Eq. (25)]
for the corresponding π0 process, c ¼ þ and Ci ¼ Cf.
Let us first consider the pionic decay. The role of π as

a Nambu-Goldstone boson of chiral symmetry breaking
suggests it to be emitted predominantly in a P-wave
(ℓ ¼ 1). However, Zþ

c ð3900Þ has been experimentally
determined to be a 1þ state [58], and therefore the observed
decay Zþ

c ð3900Þ → J=ψπþ to the 1−− J=ψ requires ℓ to be
even for this decay. Presumably, the S wave must dominate
this particular process; if this result remains true for the

other single-pion emission processes, then the selection
rules reduce to

Pi ¼ −Pf; Ci ¼ Cf; Ji ¼ Jf;

Λi ≤ sqq̄; ϵi ¼ ð−1ÞΛiþ1; ηi ¼ −;

½ρiκi ¼ −þ�: ð33Þ
In particular, only u BO potentials for the initial states are
represented. Since J=ψ is 1−− and π0 is 0−þ, Z0

cð3900Þ is
therefore 1þ−, and a glance at Table I shows 3 sQQ̄ ¼ 1

candidates in a ρiκi ¼ −þ BO potential with these quan-

tum numbers, namely, ~X0ð1Þ−þ
0P , Xð1Þ−þ

1P , and Xð1Þ−þ
2P in the

mixed Πþ
u ð1PÞ − Σ−

u ð1PÞ BO potential. Should the
Zþ
c ð4020Þ (which decays to hc) also be confirmed as a

1þ state, its natural identification would be as the sQQ̄ ¼ 0

state ~Xð1Þ−þ
0P in the same BO potential. The Zþ

c ð4200Þ and
Zþ
c ð4430Þ can be analyzed similarly, but whether they are

the other twoΠþ
u ð1PÞ − Σ−

u ð1PÞ states, or belong to either a
higher n ¼ 1 BO potential or the n ¼ 2 band, requires a
more detailed study. The Z0

cð4240Þ, should its 0−− quantum
numbers be unambiguously confirmed, is more problem-
atic because it does not fit into the Πþ

u ð1PÞ − Σ−
u ð1PÞ BO

potential with an S-wave pion coupling, but with a P-wave

decay it could be the state Xð0Þþþ
1P in Σþ

g ð1PÞ.
Turning now to the single light-vector decays and

assuming S-wave decays, the selection rules reduce to

Pi ¼ −Pf; Ci ¼ −Cf; Ji ∈ fJf; Jf � 1g;
Λi ≤ 1þ sqq̄; ϵi ¼ ð−1ÞΛiþ1; ηi ¼ þ;

½ρiκi ¼ −−�: ð34Þ
In particular, only g BO potentials for the initial states
are represented. A quick glance at Table I shows that no
ρiκi ¼ −− potentials are expected among the lowest
multiplets, which creates a real problem for this classi-
fication. It could be resolved in several ways: First, the BO
approximation for exotic states might simply not work
because the physical values mQ ¼ mc;mb are not large
enough; however, inasmuch as the approximation becomes
exact for mQ → ∞, it would be peculiar for the classi-
fication to fail for every light-vector decay mode but still
work for the single-pion decay modes. Second, the BO
approximation is expected to fail in for states in the vicinity
of two-hadron thresholds, at which point avoided energy-
level crossings must be taken into account by means of a
coupled-channel analysis, as discussed in [44] or imple-
mented via the Feshbach mechanism in [63]; while this
observation is certainly true and will have to be imple-
mented in a fully complete model, not every exotic
candidate (even restricting to ones decaying to light
vectors) is especially close to such a threshold. In either
of these first two scenarios, the conservation of the BO
quantum numbers can be violated in decay transitions.
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Third, the light vectors might (for unknown reasons) couple
predominantly to a P wave, in which case one finds
ρiκi ¼ þ−; while the Π−

u ð1PÞ potential fits this category
and indeed produces 1−− states, it produces neither 0þþ nor
1þþ states.
A fourth option is that the listing of the lowest BO

potentials for δ-δ̄ given in Table I is incomplete. One
particularly economical solution is to suppose that the
potentials Πþ

g ð1PÞ and Π−
g ð1PÞ are among the lowest.

Following the comments below Eq. (18), the listing of states
for Πþ

g ð1PÞ looks exactly like that for Πþ
u ð1PÞ − Σ−

u ð1PÞ,
except that all final superscripts, κ and C, flip sign. Then
several 0þþ and 1þþ states naturally appear [and, according
to our previous discussion, it matches the quantum numbers
of states in—and potentially mixes with—Σ−

g ð1PÞ].
Likewise, the listing of states for Π−

g ð1PÞ [which may
mix with Σþ

g ð1PÞ] looks exactly like that for Π−
u ð1PÞ except

for the flip of κ and C, which naturally produces multiple
1−− states (as well as another option for a 0−− state). For
completeness, these additional multiplets are listed in
Table IV. Whether this resolution is reasonable of course
depends upon the true ordering of δ − δ̄ BO potentials,
which presumably can be decided by lattice simulations. For
example, simulations such as those described for bb̄ud̄ in
Ref. [64] will be quite valuable.
Finally, the θ̄-δ BO states have the same selection rules,

excluding those for C and η [Eq. (32)], while sqq̄ is replaced
by sB, which we take to have its minimal value, 1

2
. Assuming

for now that we are only interested to decays into J=ψ

(J
Pf

f ¼ 1−) and nucleons (jp ¼ 1
2
þ), the selection rules read

Pi ¼ ρið−1ÞLþ1 ¼ Pfpð−1Þℓ ¼ ð−1Þℓþ1; Ji ≤
3

2
þ ℓ;

Λi ≤ 1þ ℓ; ϵi ¼ ð−1ÞΛiþℓ; ½ρi ¼ ð−1Þℓ�: ð35Þ
Since the two observed Pc states are found to have opposite
parities, the first string of equations in (35) shows that

opposite parities of ℓ are required to accommodate them. In
addition, the Ji triangle rule requires ℓ ≥ 1 for the spin-5

2

state. Moreover, substituting the final equality in (35) into its
first equation shows that L must be even for the potentials
producing each state. The JPi

i option 3
2
−; 5

2
þ for the Pc states

[which suits the broad width of the Pcð4380Þ and narrow
width of the Pcð4450Þ, as discussed in the previous sub-
section] corresponds to ℓ ¼ 0, 1, respectively, and is

accommodated most naturally by the pair Σþð1SÞ: Pð3
2
Þþ

3
2
S

,

and Πþð1DÞ [or Σ−ð1DÞ, if also present]: ~P
0 ð5

2
Þ−

1
2
D

or P
ð5
2
Þ−

3
2
D
.

Alternately, if the Pc states are found to be 3
2
þ; 5

2
−, then the

pair Σ−ð1SÞ: P
ð3
2
Þ−

3
2
S
, and Σþð1DÞ [or Π−ð1DÞ, if also

present]: ~P
ð5
2
Þþ

1
2
D

or P
ð5
2
Þþ

3
2
D

works.

In summary, the most natural BO potentials for accom-
modating known tetraquark candidates appear to be
Πþ

u ð1PÞ − Σ−
u ð1PÞ for those appearing in single-pion

decays, Πþ
g ð1PÞ − Σ−

g ð1PÞ and Π−
g ð1PÞ − Σþ

g ð1PÞ for
those appearing in single-vector decays. The most natural
BO potentials for accommodating the known pentaquark
candidates, depending upon the final parity assignments,
are Σþð1SÞ and Πþð1DÞ, or Σ−ð1SÞ and Σþð1DÞ.

VIII. CONCLUSIONS

In this paper we developed the spectroscopy of states in
the dynamical diquark picture, both for diquark-antidiquark
tetraquark states and for triquark-diquark pentaquark states,
within the context of the Born-Oppenheimer (BO) approxi-
mation. The first step was the group-theoretical exercise
of relating the diquark-spin basis to the basis of states of
well-defined heavy-quark spin, in which P and C quantum
numbers are most easily determined.
Next, the BO approximation and potentials were briefly

reviewed, the quantum numbers of states within these
potentials were determined, and a compact notation for
the states was introduced. The lowest BO potentials were
identified by supposing that the lowest potentials obtained
in lattice QCD simulations for hybrid mesons in the BO
approximation hold also for diquark-antidiquark and tri-
quark-diquark systems. Then the lowest expected multip-
lets for states in the diquark-antidiquark system were
collected in Table I, and in the triquark-diquark system
in Table II.
We then turned to the question of comparison with the set

of exotic candidates with experimentally observed quantum
numbers, and found that all of these states could be
accommodated, taking into account just their JPC quantum
numbers. We then developed selection rules—some exact
and some relying upon the BO approximation—for decays
of the exotic states, and carefully examined the constraints
thus obtained using known decay channels (via a single pion
or a single light vector meson). We found that the observed

TABLE IV. Quantum numbers for possible additional low-
lying tetraquark states in the dynamical diquark picture, as
suggested by the Born-Oppenheimer selection rules for light-
vector decays. The notation is the same as in Table I.

State notation

BO
potential State JPC

Πþ
g ð1PÞ ~Xð1Þ−−

0P ½ ~Zð0Þ;ð1Þ;ð2Þ
P �−−,
½ ~Z0ð0Þ;ð1Þ;ð2Þ

P �−−
~X0 ð1Þ−−
0P , ½Xð0Þ;ð1Þ;ð2Þ

1P �−−,
½Xð1Þ;ð2Þ;ð3Þ

2P �−−
1þþ 2 × ð0; 1; 2Þþ− ½1; ð0; 1; 2Þ; ð1; 2; 3Þ�þþ

Π−
g ð1PÞ ~Xð1Þþþ

0P ½ ~Zð0Þ;ð1Þ;ð2Þ
P �þþ,
½ ~Z0ð0Þ;ð1Þ;ð2Þ

P �þþ
~X0 ð1Þþþ
0P , ½Xð0Þ;ð1Þ;ð2Þ

1P �þþ,
½Xð1Þ;ð2Þ;ð3Þ

2P �þþ

1−− 2 × ð0; 1; 2Þ−þ ½1; ð0; 1; 2Þ; ð1; 2; 3Þ�−−
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tetraquark states decaying through pions and the pentaquark
states could still be accommodated, but if the BO selection
rules must hold in their strictest form, then the single-vector
decays appear to demand the introduction of additional low-
lying BO potentials [Table IV] beyond the ones appearing in
hybrid lattice calculations.
The next steps of this study point in many different

directions. First, it is important to keep track of the latest
discoveries in the exotic sector, to see whether newly
discovered states or old states with newly determined
quantum numbers continue to fit into the BO paradigm.
Second, lattice simulations of the lowest BO potentials that
include nontrivial light-quark spin or isospin will be
essential in firming up the identification of the known
exotics with particular states and determining whether the
BO selection rules actually hold in all instances. Third,
particular functional forms for the potentials inspired by
lattice results or models can be introduced, and the

corresponding Schrödinger equations solved, in order to
obtain predictions for the specific mass spectrum of the
states. Fourth, the very interesting question of how
coupled-channel effects with hadronic thresholds modify
these predictions must be addressed, as it cannot simply
be an accident that many of the exotic candidates lie so
close in mass to such thresholds (especially mXð3872Þ −
mD�0 −mD0 ¼ þ0.01� 0.18 MeV [55]).
An ambitious program of calculations within not only

the diquark model but molecular models as well, combined
with the steady rate of new experimental and lattice
simulation developments, will lead to a much richer and
clearer understanding of these novel hadrons.
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