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We consider inflation and supersymmetry breaking in the context of a minimal model of supersymmetry
in which the only “low” energy remnant of supersymmetry is the gravitino with a mass of order an EeV.
In this theory, the supersymmetry breaking scale is above the inflaton mass, m≃ 3 × 1013 GeV, as are all
sfermion and gaugino masses. In particular, for a no-scale formulation of Starobinsky-like inflation using
the volume modulus T, we show that inflation can be accommodated even when the supersymmetry
breaking scale is very large. Reheating is driven through a gravitational coupling to the two Higgs doublets
and is enhanced by the large μ-parameter. This leads to gravitino cold dark matter where the mass is
constrained to be in the range 0.1 EeV ≲m3=2 ≲ 1000 EeV.
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I. INTRODUCTION

While the Higgs boson was discovered at the LHC [1,2]
and is consistent with predictions of low energy super-
symmetry (SUSY), [3–7], so far supersymmetry has not
been seen experimentally [8]. Whether supersymmetry is
waiting around the corner, or is broken at some high scale
(intermediate or above) is currently unknown. If indeed
supersymmetry is broken above the inflationary scale, it
may well be that the only remnant of supersymmetry at low
energies is the gravitino which may yet play the role of dark
matter [9,10].1

Below the Planck and grand unified theory (GUT)
scales, it would appear that there is an intermediate scale
(between the GUT scale and electroweak scale) associated
with inflation. For the sake of definiteness, let us consider
the Starobinsky model of inflation as an example [12–14].
The inflaton potential can be written as

VðtÞ ¼ 3

4
m2ð1 − e−

ffiffi
2
3

p
tÞ2; ð1Þ

where t is the canonically normalized inflaton field. The
inflaton mass scale, m, can be determined by the amplitude
of density fluctuations [15],

As ¼
3m2

8π2
sinh4ðt�=

ffiffiffi
6

p
Þ ¼ 2.1 × 10−9; ð2Þ

where t� ≈ 5.35 corresponds to 55 efolds of inflation.
Solving for m in (2), we have m¼1.2×10−5MP≈
3×1013GeV, where MP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p ≃ 2.4 × 1018 GeV.
Interestingly, the mass scale around 1013 GeV, may also

correspond to an intermediate scale gauge group whose
breaking may yield a large Majorana mass for right-
handed neutrinos, MR ≃m, appropriate for the see-saw
mechanism [16].
Here, we consider the possibility that the supersymmetry

breaking scale is also of order the inflaton mass, m. An
example is provided by supersymmetry breaking via a
Polonyi sector which is achieved with a superpotential of
the form [17]

WP ¼ ~m2ðZ þ bÞ; ð3Þ

where Z is the chiral superfield responsible for breaking
supersymmetry with auxiliary field component F≡ ~m2. Of
course if ~m in (3) is of order the inflaton mass, m, then the
masses of the entire supersymmetric spectrum would be of
order the intermediate scale and clearly out of reach of any
accelerator search. However, the gravitino mass,

m3=2 ¼
~m2ffiffiffi
3

p
MP

; ð4Þ

would be significantly lighter and could still provide for the
dark matter in the universe [9,10]. In fact, to avoid over
production of gravitinos through the decay of the inflaton to
R-parity ¼ −1 matter fields (which subsequently decay to
gravitinos), it was argued [10], that the sparticle spectrum
should lie above the inflaton mass, thus providing a lower
limit to the supersymmetry breaking scale and hence a

*Emilian.Dudas@cpht.polytechnique.fr
†tgher@umn.edu
‡yann.mambrini@th.u-psud.fr
§olive@physics.umn.edu
1In this case supersymmetry is nonlinearly realized at lower

energies [11].

PHYSICAL REVIEW D 96, 115032 (2017)

2470-0010=2017=96(11)=115032(14) 115032-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.115032
https://doi.org/10.1103/PhysRevD.96.115032
https://doi.org/10.1103/PhysRevD.96.115032
https://doi.org/10.1103/PhysRevD.96.115032


lower limit to the gravitino mass of m3=2 > 0.2 EeV. Only
an EeV gravitino mass is left behind.
The EeV gravitino as a dark matter candidate is produced

after inflation in the process of reheating. The common
mechanism [18–32], for producing a single gravitino in
thermal scattering processes has a cross section which is
temperature independent and scales as m2

SUSY=M
2
Pm

2
3=2,

where mSUSY is a typical sparticle mass. The rate therefore
is roughly Γ ∼ T3m2

SUSY=M
2
Pm

2
3=2, where we have assumed

predominantly Goldstino production in the limit m3=2 ≪
mSUSY. If sparticle production is kinematically forbidden,
single gravitino production (which must be accompanied
by a massive sparticle (gluino), is not operative. Instead, the
rate for gravitino production during reheating is sup-
pressed, as only processes which produce two gravitinos
are allowed. This cross section is temperature dependent
and scales as hσvi ∝ T6=F4, so that the rate is roughly
Γ ∼ T9=F4. In this case, the final gravitino abundance
scales as n3=2=nγ ∼ Γ=H ∼ T7MP=F4 evaluated at the
reheating temperature, in contrast to the abundance for
single gravitino production, n3=2=nγ ∼ Γ=H ∼ Tm2

SUSY=
MPm2

3=2. For reheating temperatures of order 1010 GeV,
the gravitino abundance matches the CMB determined cold
dark matter density [15]. It is also possible that the inflaton
can decay to two gravitinos, but this is more model
dependent and we return to this possibility in Sec. III D.
The phenomenology of this high scale supersymmetric

model is simple. The (not so) low energy spectrum consists
of the gravitino and perhaps the scalars associated with the
chiral superfield, Z. However, as we discuss in Sec. III A,
we expect that these are also hierarchically more massive
than the gravitino. As has been shown recently [33,34],
even with a spectrum as massive as discussed here, a
125 GeV Higgs mass can still be attained if tan β is either
small (close to 1) or large (above 60).
The clear drawback of such a model is its testability. In

fact, the model in its simplest and most minimal form
predicts no signatures in either accelerator searches, or
direct and indirect searches for dark matter. Of course if
supersymmetry is actually discovered at the LHC, then this
model can be ruled out. In a modest extension of the model
with R-parity violation in the lepton-Higgs sector, the
gravitino becomes unstable, though still suitably long
lived. The detection of very high energy neutrinos or
photons at HAWC or the Pierre Auger Observatory would
be a signature of this model. Another possible signature
may come from the observation of non-Gaussianities in the
CMB due to scalars with masses near the Hubble scale
during inflation [35].
The paper is organized as follows. In Sec. II, we discuss

exemplary inflation models with high scale supersymmetry
breaking. We focus on models based on no-scale super-
gravity [36,37] which lead to Starobinsky-like potentials
[38–51]. In particular, models which allow for high scale

supersymmetry breaking with stabilized fields [38,39,41,
43,45,47] without spoiling the inflationary properties of the
potential. In Sec. III, we discuss the phenomenological
aspects of the model.2 We begin in Sec. III A with a model
for gaugino and scalar masses. The model utilizes the
strong stabilization of the Polonyi field [45,54–61] used to
generate large gaugino masses. Scalar masses are then
obtained through threshold corrections as in gaugino
mediation [62] or a more strongly-coupled mediation
mechanism [63,64]. The requirement that all sparticle
masses lie above the inflaton mass will set a constraint
on the stabilization scale. The effects of supersymmetry
breaking on inflation is then discussed in Sec. III B. In
Sec. III C we determine the conditions under which we
can obtain a Higgs mass of 125 GeV, as well as preserving
the stability of the Higgs vacuum. The requirements for
gravitino dark matter are outlined in Sec. III D. Our
concluding remarks are given in Sec. IV.

II. INFLATION AND SUPERSYMMETRY
BREAKING

There are many ways to proceed in constructing a model
of inflation which incorporates supersymmetry breaking.
While it would be an overstatement to say that recent
Planck results [15] on the CMB spectrum parameters, ns
and r, corresponding to the tilt of the scalar perturbation
spectrum and the scalar to tensor ratio, respectively predict
Starobinsky-like inflation models, it is clear that these
models are for now in very good agreement with Planck
results. In particular, we will use formulations of the
Starobinsky model based on no-scale supergravity.

A. No-scale supergravity and Starobinsky-like inflation

The Kähler potential in the context of no-scale super-
gravity can be written in the form [36,37],

K ¼ −3 ln
�
T þ T̄ −

1

3

X
i

jϕij2
�
; ð5Þ

where T is a volume modulus and the ϕi include all matter
fields and possibly a supersymmetry breaking Polonyi-like
field, Z [17]. The inflaton may be identified with either T or
a matter-like field, ϕ. Equivalently, we may use a set of field
redefinitions [65] and write

K ¼ −3 ln
�
1 −

X
i

jyij2
3

�
; ð6Þ

where the yi include all matter fields, moduli and the
inflaton. For now, let us ignore the matter fields, and
concentrate on a two-field model. There are at least two

2For alternative approaches to inflation in high scale super-
symmetric models see [52,53].
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independent families [41] of superpotentials which lead to
Starobinsky-like inflation. In the first, T is a modulus and ϕ
is the inflaton with a Wess-Zumino (WZ) superpotential
written as [38]

W ¼ m

�
ϕ2

2
−

ϕ3

3
ffiffiffi
3

p
�

WZ; ð7Þ

or in the symmetric basis

W ¼ m

�
y21
2

�
1þ y2ffiffiffi

3
p

�
−

y31
3

ffiffiffi
3

p
�

WZ; ð8Þ

which is a WZ model for the inflaton y1 with an interaction
term y21y2. In both bases, when ϕ (y1) is redefined to a
field x with a canonical kinetic term, the potential is exactly
of the form of the Starobinsky potential (1) (with t
identified as x), assuming that some dynamics stabilizes
and fixes T (y2): hTi ¼ hT�i ¼ 1=2 (hy2i ¼ 0). One way to
accomplish this is by adding a quartic term in the Kähler
potential [41,66].
The second family of models first formulated as an R2

extension to supergravity by Cecotti [67] can be written as

W ¼
ffiffiffi
3

p
mϕðT − 1=2Þ C; ð9Þ

or

W ¼ my1y2ð1þ y2=
ffiffiffi
3

p
Þ C; ð10Þ

In this case, the inflaton is associated with T (y2) and it
must be assumed that ϕ (y1) is stabilized at the origin
[39,41]. Again, when T (y2) is normalized to give a proper
kinetic term, we get the Starobinsky potential shown in
Eq. (1) [39].
In either case (WZ or C), the mass parameterm is related

to the inflaton mass, and is set by the amplitude of density
fluctuations measured in the CMB through Eq. (2).

B. Effects of supersymmetry breaking on inflation

Supersymmetry breaking can be accomplished in various
ways, but in many of these, there are constraints on the
SUSY breaking scale due to its effect on the inflationary
potential. In general, SUSY breaking perturbs the potential,
but these effects may be small, if the supersymmetry
breaking scale, ~m ≪ m. Indeed, this was one of the
initial motivations behind supersymmetric formulations
of inflation [68].
The simplest possibility we can consider is adding a

constant, w0 to the superpotential. In most low energy
models of SUSY phenomenology, we would relate w0 to
the weak scale through w0 ¼ ~mM2

P and the gravitino mass
is just

m3=2 ¼
w0

ðT þ T̄Þ3=2 ¼ ~m; ð11Þ

with T þ T̄ ¼ 1, in Planck units. However, in this case
low energy SUSY breaking parameters such as soft scalar
masses, m0, trilinear A-terms and the bi-linear B0 are all
proportional to m3=2 (m0 ¼ 0 for untwisted matter fields)
[45,69]. The gaugino mass in this case is

M1=2 ¼
���� 12 eG=2

f̄T
Ref

ðG−1ÞTTGT

���� ¼
���� 12w0

f̄T
Ref

����; ð12Þ

where fαβ ¼ fδαβ is the gauge kinetic function. For
T þ T̄ ¼ 1, it is unlikely that we get a hierarchy
m3=2 ≪ M1=2. Moreover, we would like to relate the
supersymmetry breaking scale to the inflationary scale
~m ¼ m. However, a priori, we can set w0 to be either ~mM2

P,
or ~m2MP, or ~m3, giving m3=2 ¼ m;m2=MP ≈ 0.4 EeV, or
m3=M2

P ≈ 5 TeV (though the latter may be of phenom-
enological interest at the LHC).
In [50], a linear term a2ϕ for the inflaton in the WZmodel

given in (7) was proposed, making the association between
the inflaton and Polonyi field. For small a, the theory works
quite well, and thus predicts a small (weak scale) gravitino
mass. The inflationary capability of the theory breaks down
when a≳ 5 × 10−5 corresponding to an upper limit on the
gravitino mass of m3=2 ¼ a4=2m≲ 106 GeV.
Next we can consider adding a strongly stabilized

(twisted) Polonyi field to the WZ model,

w0 → ~m2ðzþ bÞðT þ 1=2Þp; ð13Þ

with

K ⊃ zz̄ −
ðzz̄Þ2
Λ2
z

: ð14Þ

The factor ðT þ 1=2Þp is needed to avoid a deSitter vacuum
with weak scale energy density and we will take p ¼ 3 as
an example here [45]. Choosing b≃ 1=

ffiffiffi
3

p
gives a mini-

mum with zero vacuum energy at hzi≃ Λ2
z=

ffiffiffiffiffi
12

p
. The mass

of the Polonyi field is now hierarchically larger than the
gravitino mass

m2
z ¼

12m2
3=2M

2
P

Λ2
z

: ð15Þ

Once again, for ~m2 ≪ mMP, this works quite well so long
as Λz is not too small (Λz ≳ 2ð ~m2=mMPÞ:3). Increasing ~m,
leads to the formation of a new minimum at large field
values (of the canonically normalized inflaton), which
quickly becomes the global minimum. In Fig. 1, we
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show the potential for fixed p ¼ 3, Λz ¼ 10−2, and several
values of ~m. For ~m2=m < 10−8MP, the potential is indis-
tinguishable from that shown as 10−8. For m ≈ 10−5MP,
we see that this model works fine for weak scale super-
symmetry breaking, and for scales as large as
~m2=MP ≲ 10−12MP ∼ 3 PeV, corresponding to a gravitino
mass of m3=2 ≃ ~m2=

ffiffiffi
3

p
MP ≲ 1.7 PeV. In particular,

m3=2 ¼ 0.2 EeV would correspond to ~m2=m ≈ 10−5MP

which would badly spoil the inflationary potential.
While the WZ models are perfectly acceptable for low

scale supersymmetry breaking, our objective here is high
scale breaking and thus we turn our attention to the case C,
for the superpotential given by (9). To achieve supersym-
metry breaking and generate a finite gravitino mass, we can
again add a constant, w0 to the superpotential. In this case,
if w0 ≪ m, the minimum is shifted slightly to [45]

hTi ¼ 1

2
−
w2
0

m2
; hϕi ¼

ffiffiffi
3

p w0

m
; ð16Þ

but the vacuum energy density is necessarily negative,
V0 ¼ −3heGi ¼ −3m2w2

0=ðm2 − 3w2
0Þ < 0.

However, adding an untwisted Polonyi field, so that the
Kähler potential becomes

K ¼ −3 ln
�
T þ T̄ −

1

3

X
i

jϕij2 −
1

3
jzj2 þ jzj4

Λ2
z

�
; ð17Þ

with the superpotential given in (13) with p ¼ 0 leaves the
Starobinsky potential (now a function of T) unchanged,
save for a shift in the minimum to

hTi≃ 1

2
þ 1

3

�
~m2

mMP

�
2

; hϕi≃ ~m2

m
;

hzi≃ Λ2
z

6
ffiffiffi
3

p ; b≃ 1ffiffiffi
3

p
�
1 −

1

6

�
~m2

mMP

�
2
�
; ð18Þ

when ~m2=ðmMPÞ, Λz=MP ≪ 1. The mass of z is
ffiffiffi
3

p
times

larger than the twisted Polonyi mass given in Eq. (15).
Alternatively, one can add a twisted Polonyi field with

Kähler potential

K ¼ −3 ln
�
T þ T̄ −

1

3

X
i

jϕij2
�
þ jzj2 − jzj4

Λ2
z
; ð19Þ

and the same superpotential (9). This also leaves the
Starobinsky potential unchanged, with a similar shift in
the minimum to [45]

hTi≃ 1

2
þ 2

3

�
~m2

mMP

�
2

; hϕi≃ ~m2

m
;

hzi≃ Λ2
z

2
ffiffiffi
3

p ; b≃ 1ffiffiffi
3

p
�
1 −

1

2

�
~m2

mMP

�
2
�
; ð20Þ

Unlike the WZ case discussed above, the inflationary
potential maintains its form even for large ~m, and arbitrarily
small Λz. For example, in Fig. 2, we show the inflationary
potential with ~m2 ¼ 0.9mMP and Λz ¼ 10−3MP both the
twisted (solid) and untwisted (dashed) Polonyi models.
Here t ¼ ffiffiffiffiffiffiffiffi

3=2
p

lnð2TÞ is the canonically normalized
inflaton. In the figure, hzi and b have been fixed at the
approximate values given in (18) and (20), respectively
(higher order terms in (18) cannot be neglected).

0 5 10 15

0.5

1.0

1.5

2.0

V/m2

x

FIG. 1. Projections of the effective inflationary potential for the
model (7) with the Polonyi sector ((13) and (14)), for p ¼ 3. Here
hTi ¼ 1=2, hzi≃ Λ2

z=
ffiffiffiffiffi
12

p
and b≃ 1=

ffiffiffi
3

p
, and we use the

nominal value Λz ¼ 10−2. Shown is the potential for different
choices of ~m2=m ¼ 10−8, 10−7, 2 × 10−7, 5 × 10−7 (in Planck
units) in black, blue, green, and red.

5 10 15 20

0.2

0.4

0.6

0.8

1.0
V/m2

t

FIG. 2. Projections of the effective inflationary potential for the
model (9) with the Polonyi sector [(13) and (17)], with p ¼ 0. We
use the nominal values Λz ¼ 10−3 with ~m2=m ¼ 0.9. The values
hzi, b, and hϕi are given approximately by (18) (shown by the
dashed curve), and by (20) (shown by the solid curve).
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The gravitino mass for small Λz can be written as

m3=2 ¼ m
5 ~m6 þ 6 ~m2m2M2

P

2ð3m2M2
P þ ~m4Þ3=2 untwisted; ð21Þ

m3=2 ¼ m
4 ~m6 þ 2 ~m2m3MP

2
ffiffiffi
3

p ðm2M2
P þ ~m4Þ3=2 twisted; ð22Þ

which in the limit of small ~m2=mMP for both cases gives
the expected result m3=2 ¼ ~m2=

ffiffiffi
3

p
MP. Indeed, for

~m2 ¼ 0.9mMP, we obtain m3=2 ∼ 1013 GeV. It is indeed
rather surprising that even for a large Polonyi mass scale,
the inflationary dynamics are little affected. This is only
true for case C given by Eq. (9). Thus we are free to make
the simple choice of ~m ¼ m ≈ 10−5MP. In this case, the
gravitino mass is

m3=2 ¼
m2ffiffiffi
3

p
MP

≈ 0.2 EeV: ð23Þ

Furthermore, it was shown in the first reference of [47]
that one also needs to impose m3=2 < H in order to keep
perturbative control of the Kähler potential. In what
follows, we will restrict our attention to the twisted
Polonyi model.
To avoid the production of the Polonyi field during

reheating, we can derive an upper limit on Λz from the
requirement that mz ¼

ffiffiffiffiffi
12

p
m3=2MP=Λz > m. This limit is

shown by the blue dashed line in Fig. 3. Another upper
limit on Λz is obtained by requiring that the branching ratio
of inflaton decays to gravitinos does not lead to an excess
abundance of gravitinos (discussed in more detail in
Sec. III D). This constraint is shown by the negatively
sloped pink dot-dashed line. Acceptable parameters lie
below both lines (blue dashed and pink dot-dashed) Finally,
we also have a lower bound on Λz, stemming from our
effective correction to the Kähler potential which imposes
F < hzi < Λ2

z or 1=2 logðm3=2=MPÞ < logðΛz=MPÞ. This
lower bound is shown by the green dotted line in Fig. 3, and
all values of 10−5 < m3=2=m < 10−1 are allowed so long as
Λz lies in the pale shaded region.

III. THE PARTICLE SPECTRUM

A. Gaugino and scalar masses

We next discuss ways to generate gaugino and scalar
masses via perturbative mediations of supersymmetry
breaking, and then we will turn to more strongly-coupled
mediation mechanisms.
One perturbative possibility for mediation of supersym-

metry breaking is via gaugino mediation [62]. New physics
at a messenger mass scale M generates a coupling of the
supersymmetry breaking field, Z ¼ zþ θ2F (ignoring
fermionic components) to the gauge fields

Z
d2θ

�
f0 þ f1

Z
M

�
trWαWα; ð24Þ

where at leading order f0 ¼ 1=ð4g2Þ. This will give rise to
gaugino masses of order

M1=2 ∼ g2f1
F
M

: ð25Þ

Scalar masses are then generated by SM loop corrections
and will be of order

m2
0 ∼

g2

16π2
M2

1=2; ð26Þ

where g is a SM gauge coupling. Usually there is a log
enhancement of the scalar masses due to the running
between the mediation scale M and the scale of the
superpartners. In our case however, since the superpartners
are very heavy there is not much running, so numerically
we can use as an order of magnitude estimate
m0 ∼ ðα=gÞM1=2 ∼ 0.06M1=2. In order for the effective
field theory to be well-defined (higher-dimensional oper-
ators are negligible), one needs to impose F < M2. We also
forbid inflaton decays into superpartners, which roughly

-7

-6

-5

-4

-3

-2

-1

0

-7 -6 -5 -4 -3 -2 -1 0

Log m3/2/m

L
og

 Λ
z/M

P

FIG. 3. Bounds on the stabilization parameter Λz as a function
of the gravitino mass. The blue dashed line shows the upper limit
on Λz from the requirement that the mass of the Polonyi field lies
above the inflaton mass. The pink dot-dashed line (negatively
sloped) is an upper limit on Λz derived from an upper limit on the
branching ratio of inflaton decays to gravitinos. The green dotted
line shows the lower limit on Λz, assuming F < Λ2

z . The shaded
region is allowed by all constraints. Note, however, that there are
lower bounds on the gravitino mass given in Eqs. (27) and (30).
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requires m0 > 3 × 1013 GeV. Under such assumptions
with

ffiffiffiffi
F

p
∼M, one obtains

ffiffiffiffi
F

p
> 5 × 1014 GeV and there-

fore the minimum value of the gravitino mass in such a
scenario is

m3=2 > 6 × 1010 GeV ¼ 60 EeV: ð27Þ

It seems difficult to decrease the gravitino mass much
below 100 EeV with known perturbative mediations of
supersymmetry breaking. For example, in a model based on
gauge mediation, scalar masses would be expected to be
of order the gaugino masses such that m0 ∼M1=2 ∼
ðg2=16π2ÞF=M (hence there is no relative loop suppres-
sion). The lower limit on m3=2 is then increased to
m3=2 > 2 × 1013 GeV, which is essentially incompatible
with the required upper limit, m3=2 < m.
In order to decrease the viable values of the gravitino

mass, some strong coupling effects seem to be needed, like
for example in holographic models of supersymmetry
breaking of the type described in [63], or general gauge
mediation [64]. In more generic terms, this means a
mediation mechanism with no loop suppression in the
generation of visible sector soft masses, so that we obtain
m0 ∼M1=2 ∼ F=M. Thus we can start with the same gauge
kinetic function as in (24), namely

fαβ ¼
�
f0 þ f1

Z
M

�
δαβ; ð28Þ

and generate squark/slepton/Higgs soft masses through
operators of the type

Z
d4θ

Z†Z
M2

Q†Q; ð29Þ

where Q denotes a generic MSSM chiral superfield. In this
case, we recover the limit

m3=2 > 0.2 EeV; ð30Þ

and corresponds to the bound derived in [10]. Perturbativity

of the correction to gauge couplings f1
hzi
M < f0, together

with the requirement, M1=2 > m leads to the new lower
limit

m3=2 >
4hziffiffiffi

3
p m

MP
: ð31Þ

However, this constraint is easily satisfied, once the other
constraints, such as F ≤ M2 are taken into account.
Note that at the lower gravitino mass limit (30) we obtain

the bound g2f1 ≳ 1. Since mediation is strongly coupled,
this is not really surprising. In both holographic models and
general gauge mediation setups, additional states of mass,

M and heavier are expected. In order to not perturb our
single-field inflation framework, the masses of these states
should be above the Hubble scale H during inflation,3

which implies generically M > H. This condition is sat-
isfied by the range of gravitino masses in Fig. 3 and is
saturated at the lower bound.
Finally, we comment on the partial wave unitarity limit

arising from the scattering of two gluons into two grav-
itinos [70]. For gaugino mediation, tree-level unitarity is
violated at a scale ≃17=ðg2f1ÞM, which for g2f1 ≲ 17 is
above the messenger scale M (where new degrees of
freedom should appear), and therefore compatible with
the constraint arising from the gravitino mass limit (30).

B. Constraints on the scale of supersymmetry
breaking from reheating

Reheating proceeds by coupling the inflaton to the
MSSM sector. Since all superpartners are above the inflaton
mass and reheating temperature, reheating produces pre-
dominantly SM particles (the abundance of gravitinos is
discussed in Sec. III D). Radiative corrections with MSSM
fields in loops correct the inflaton potential. In low-energy
supersymmetry such corrections are tiny, since they are
proportional to the scale of supersymmetry breaking [68].
In our case with high-scale supersymmetry breaking, there
may be large radiative corrections that can spoil flatness
of the inflaton potential. Such constraints can put upper
limits on the superpartner masses and therefore on the
gravitino mass.
For example, a direct coupling (through the gauge

kinetic function) of the inflaton, t to gauge fields,
f ∋ h1t=MP, would induce quadratic and quartic correc-
tions of magnitude

δm2 ∼
h21
16π2

M2
1=2; ð32Þ

δλ ∼
h41
16π2

M2
1=2

M2
P
; ð33Þ

which both place nontrivial bounds on the coupling h1. For
reheating dominated decays to gauge bosons, this can be
translated into a limit on the reheating temperature and
eventually the gravitino abundance.
As we discuss in more detail in Sec. III D, reheating in

this model proceeds via the gravitational coupling of the
inflaton to two Higgs bosons. The coupling of the inflaton
field, t to MSSM fields was derived in [45], and the relevant
bosonic coupling is

3It is also possible that all additional scalars obtain Hubble
scale masses during inflation, therefore avoiding this condition.
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Leff ∋
ReTffiffiffi

3
p ðnI þ nL − 3ÞWILW̄LJΦIΦ̄J;

∼ μ2e
ffiffi
2
3

p
tðjhuj2 þ jhdj2Þ; ð34Þ

where nI;J are modular weights4 of the superfields ΦI;J and
should be taken to be equal to one for untwisted Higgs
fields. The coupling for the Higgs fields is then μ2=

ffiffiffi
3

p
MP,

where μ is the MSSM Higgs mixing mass, which is now
expected to be of order the scalar masses. The quadratic
and quartic corrections in Eqs. (32) and (33) are found with
the replacement h1 → μ2=mMP. Requiring δm2 ≪ m2 and
δλ ≪ 10−14 sets a rough bound on μ=m≲ 102 which we
will see below is satisfied when μ is adjusted to give the
correct gravitino relic density. However a more model-
independent statement is that reheating sets constraints on
inflaton couplings to MSSM fields. Once we fix such
couplings, the requirement that quantum corrections do not
spoil flatness of the inflaton potential generically set upper
bounds on superpartner masses. Such bounds are depen-
dent on the inflationary model and details of reheating, but
they typically indicate that the scale of supersymmetry
breaking should not be too much higher than the infla-
tionary mass scale.

C. The Higgs mass and vacuum stability

The fact that the sfermion, gaugino and Higgsino masses
are above 3 × 1013 GeV, leads to important implications
for the Higgs boson mass and vacuum stability. It is well
known that to obtain the 125 GeV Higgs mass for
tan β ≲ 50, the maximum supersymmetry breaking scale
is approximately 1010 GeV. However in Ref. [33], it was
noted that the supersymmetry breaking scale can be
increased to the GUT scale (∼1016 GeV), for very large
values of tan β ∼ 200. This assumes a degenerate super-
partner spectrum (at ~m), with a bottom superpotential
Yukawa coupling, ŷb ¼ yb= cos β such that α̂b ¼ ŷ2b=ð4πÞ∼
0.5. Even though this coupling is perturbative, a very close
Landau pole develops at Λ ∼ 10 ~m.
Instead, Ref. [34] considered nondegenerate superpart-

ner masses, and showed that GUT scale masses can in
fact be accommodated for much smaller values of tan β.
In particular, assuming ~m ¼ m ~QL;3

¼ m~tR ¼ 1016 GeV and
tan β ¼ 1, a scan of gaugino and first/second generation
sfermion masses in the range ½ ~m; 100 ~m�, and Higgsino
masses in the range ½ ~m

100
; ~m� gives rise to the required

threshold corrections of the Higgs quartic coupling.
The analysis in Ref. [34] suggests that our superpartner

spectrum can give rise to similar threshold corrections
needed for a 125 GeV Higgs mass. For concreteness we
will consider a gaugino-mediated spectrum, and expect

similar qualitative features for a spectrum generated by a
more strongly-coupled mediation mechanism. Identifying
the right-handed stau mass with the scale ~m ¼ m~τR∼
5 × 1013 GeV, will then determine the size of the remain-
ing sfermion and gaugino masses. Assuming that the
gaugino masses are generated at a scale m < μ0 ≤
1016 GeV, the sfermion masses are then approximately
given by

m2
~Q
≃ 1

16π2

�
32

3
g23 þ 6g22 þ

2

15
g21

�
M2

1=2 log
μ0
~m
; ð35Þ

m2
~u ≃ 1

16π2

�
32

3
g23 þ

32

15
g21

�
M2

1=2 log
μ0
~m
; ð36Þ

m2
~d
≃ 1

16π2

�
32

3
g23 þ

8

15
g21

�
M2

1=2 log
μ0
~m
; ð37Þ

m2
~L
≃ 1

16π2

�
6g22 þ

6

5
g21

�
M2

1=2 log
μ0
~m
; ð38Þ

m2
~e ≃ 1

16π2

�
24

5
g21

�
M2

1=2 log
μ0
~m
: ð39Þ

Other soft parameters such as At, Bμ and m2
Hu;d

are also
generated radiatively. Using this approximate spectrum we
can then compute the one-loop threshold corrections as
given in Refs. [34,71]. The result in shown in Fig. 4. The
contribution to the Higgs quartic coupling from our super-
partner spectrum overlaps with the �3σ band of the λH
coupling provided that 0.75≲ tan β ≲ 1.34.
However, note that the one-loop threshold correction

matches at a negative value of the Higgs quartic coupling.
This occurs because of our somewhat compressed

0.6 0.8 1.0 1.2 1.4 1.6
tan(β )

–0.06

–0.04

–0.02

λH

FIG. 4. The Higgs quartic coupling, λH at the matching scale
~m ¼ 5 × 1013 GeV, as a function of tan β. The solid blue line is
the difference between the SM and tree-level SUSY values,
with the dashed lines indicating the�3σ contours due to the error
in the top-quark Yukawa coupling ytðmtÞ, where mt ¼ 173.1�
0.7 GeV [72]. The green line shows the one-loop threshold
correction arising from our superpartner spectrum.

4Note that the definition of modular weights in our paper is
opposite in sign with respect to the standard convention.
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spectrum, m ~Q= ~m ∼ 1.9, M1=2= ~m ∼ 2, μ= ~m ∼ 1.5, and the
fact that the gaugino/Higgsinos contribute negatively, while
the positive stop contribution is suppressed by mixing near
tan β ∼ 1. A more detailed determination of the super-
partner spectrum that gives different mass ratios may lead
to a positive correction and then the matching could occur
for positive values of λH.
Nevertheless even with a positive one-loop threshold

correction from our superpartner spectrum, the value of
the top quark Yukawa coupling, ytðmtÞ would need to be
near its −3σ extreme value that is allowed by the large
uncertainty in the top-quark mass measurement. Otherwise
one needs to rely on other threshold effects to stabilize
the Higgs potential below the scale ~m. For instance this
could be due to the inflaton coupling to the Higgs,

yI ∼ 1ffiffi
3

p μ2

mMp
∼ 10−3. However, assuming that the super-

symmetric and soft contributions to the inflaton mass are
of the same order, this coupling causes a shift [73] in the
Higgs quartic coupling by an amount given by
δλH ≃ y2I sin

22β ≤ y2I ∼ 10−6, which is negligibly small.
Alternatively, a heavy scalar singlet with a quartic

coupling to the Higgs, could be introduced that is related
to the generation of the neutrino masses [74].5 If this
correction causes the Higgs quartic to be large and positive
at the SUSY scale ~m, then a negative one-loop threshold
correction would not be a problem, since it could then be
absorbed by the SUSY tree-level contribution for suffi-
ciently large tan β. Nonetheless this does require an extra
tuning in the model in order that this scalar singlet remains
light (at an intermediate scale).
Another potential concern is that the required tan β

values in Fig. 4 are near one, and normally in the
MSSM this would cause a Landau pole in the top quark
Yukawa coupling to appear below the GUT scale. However
since our sparticle spectrum is quite heavy, the top quark
Yukawa coupling is reduced by a factor of two at the scale
~m≃ 5 × 1013 GeV. The matching condition for the top
Yukawa coupling yt ¼ ŷt sin β, where ŷt is the super-
potential Yukawa coupling, then allows for a lower value
of tan β, with a corresponding larger value of ŷt. Since there
is relatively little running in our high-scale SUSY model
above the scale ~m, the larger ŷt value can remain pertur-
bative below the GUT scale.
Furthermore, to radiatively break electroweak symmetry

requires that at some scale,
dm2

Hu
dt ¼ 0, or ŷtm ~Q ∼ g2M2.

In the gaugino-mediated model this condition occurs
when tan β ∼ 0.5, which is incompatible with the range
required in Fig. 4.6 However if there were a new positive

contribution to the Higgs quartic coupling then it may be
possible to also achieve radiative electroweak symmetry
breaking. For instance, starting the running above the GUT
scale 1016 GeV would give different sfermion mass ratios
to make δλH positive and/or allow m2

Hu
to run negative

before ~m. The details of these possibilities are beyond the
scope of this paper and will be left for future work.

D. Dark matter

One of the main motivations of our high-scale SUSY
model is its ability to account for the dark matter in the form
of gravitinos with masses m3=2 ≳ 0.2 EeV. Because the
supersymmetric particle spectrum lies above the inflaton
mass, the dominant mechanism for gravitino production
becomes SMþ SM → 2 gravitinos with longitudinal polar-
izations [9,10] or the decay of the inflaton directly to
gravitinos depending on the reheating temperature.
The gravitino production rate was derived in [9]

R ¼ n2hσvi≃ 21.65 ×
T12

F4
; ð40Þ

where n is the number density of incoming states. This
temperature dependence can be understood as follows: one
uses n ∝ T3, and we expect the gravitino production cross
section to scale as hσvi ∝ T6=F4. From the rate RðTÞ,
we can determine that Γ ∼ R=n ∼ T9=M4

Pm
4
3=2 (assuming

m3=2 ≪ ~m) leading to a gravitino abundance n3=2=nγ ∼
Γ=H ∼ T7=M3

Pm
4
3=2 evaluated at T ¼ TRH or

Ω3=2h2 ≃ 0.11

�
0.1 EeV
m3=2

�
3
�

TRH

2.0 × 1010 GeV

�
7

; ð41Þ

assuming instantaneous decay and thermalization. Thus,
thermal production of gravitinos with m3=2 > 0.2 EeV
would require TRH > 3 × 1010 GeV.
It is known however, that the reheating process is not

instantaneous, and that the temperature of the Universe
during inflaton decay can exceed TRH by orders of
magnitude [32,76] up to a value Tmax. Due to the strong
temperature dependence of the gravitino production cross
section, there will be significant production of gravitinos at
Tmax, which is not fully diluted by the entropy produced in
subsequent decays. The final gravitino abundance in this
case (with σ ∝ T6) relative to the instantaneous approxi-
mation is [77]

r3=2 ¼
56

5
ln

�
Tmax

TRH

�
; ð42Þ

where

Tmax ≃ 0.5

�
m
ΓT

�
1=4

TRH; ð43Þ

5In [75], an additional SUð2ÞL triplet was introduced to insure
stability and aid in keeping the Higgs mass at 125 GeV.

6In addition, requiring that there is no color-breaking mini-
mum deeper than the electroweak minimum [71], leads to tan β ≳
0.6 for our spectrum.
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for inflationary models of this type, where ΓT is the total
inflaton decay rate.
For the inflationary model discussed above, there are

many possible decay channels all of which are Planck
suppressed. The decay channel given in Eq. (34) is
ordinarily (with weak scale supersymmetry breaking)
negligible as μ2=ðmMPÞ ≪ 1. However, in our case, since
μ > m, this is actually the dominant inflaton decay mode
t → Hu;dH�d;u which ultimately corresponds to a decay of
t → hh where h is the SM Higgs boson. The decay rate to
two Higgs bosons is [45]

Γ2h ¼
μ4

384πmM2
P
sin22β; ð44Þ

where an additional factor of 1=16 has been included in
writing H0

u ¼ h=
ffiffiffi
2

p
sin α, and H0

d ¼ h=
ffiffiffi
2

p
cos α, and not-

ing that α ¼ β in the high scale SUSY limit.7

If we define an effective Yukawa-like coupling,

yI ¼ μ2=ð4 ffiffiffi
3

p
mMPÞ, such that Γ2h ¼ y2I

8πm, we can express
the reheating temperature in terms of yI [10,30,32]

TRH ¼
�
10

gs

�
1=4

�
2Γ2hMP

πc

�
1=2

¼ 0.5
yI
2π

ðmMPÞ1=2; ð45Þ

where gs is the effective number of light degrees of
freedom, in this case set by the standard model, gs ¼
427=4 and c ≈ 1.2 is a constant. We can then reexpress the
relic abundance (41) as

Ω3=2h2 ≃ 0.11r3=2

�
0.1 EeV
m3=2

�
3
�

m
3 × 1013 GeV

�
7=2

×

�
yI

2.9 × 10−5

�
7

;

¼ 0.11r3=2

�
0.1 EeV
m3=2

�
3
�
3 × 1013 GeV

m

�
7=2

×

�
μ

1.2 × 1014 GeV

�
14

; ð46Þ

where we have included the enhancement factor r3=2
from Eq. (42). The enhancement factor depends on ln μ,
and for the range of μ values considered here (roughly
1014 − 1015 GeV), r3=2 varies very little and we take it as a
constant r3=2 ¼ 25.
The value of μ needed to obtain the correct relic density

of gravitinos is shown by the solid line in Fig. 5 using

Eq. (46). It is rather amazing that independent of the
supersymmetric particle spectrum discussed above, the
value of μ needed for the correct abundance of gravitinos
is in the range of roughly 3-30 times the inflaton mass. This
is exactly where one might expect the Higgsino mass to lie
given our spectrum of heavy scalars and gauginos.
It is also possible that μ takes values below the solid line

in Fig. 5. In that case, the abundance of gravitinos is below
the needed relic density of dark matter (by the same token,
values of μ above the solid line are excluded as they yield a
relic density in excess of the observed one). Nevertheless,
it is still possible to recover the correct relic density through
inflaton decay to gravitinos. The gravitino abundance
produced by inflaton decay for a given branching fraction
to gravitinos, B3=2 ¼ Γ3=2=Γ2h, was computed in [10]

Ωdecay
3=2 h2 ¼ 0.11

�
B3=2

1.3 × 10−13

��
yI

2.9 × 10−5

�

×

�
m3=2

0.1 EeV

��
3 × 1013 GeV

m

�
1=2

: ð47Þ

The decay of the inflaton to two gravitinos was computed
in [45] with

Γ3=2 ¼
�
Λz

MP

�
4 3m2

3=2m

256πM2
P
; ð48Þ

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0

Log m3/2/m

L
og

 μ
/m

thermal

Log Λz/MP = -4-2 -3-1

-3.5-2.5-1.5

FIG. 5. The value of μ relative to the inflaton mass needed to
obtain the correct relic density of gravitinos thermally through
reheating (solid line) as a function of the gravitino mass. Also
shown (dashed lines) are the values of μ needed to obtain the
correct relic density of gravitinos through inflaton decays for a
given value of logΛz=MP as labeled.

7We note that parametric resonance effects such as those
studied in [78] are not effective in this model. The adiabatic
condition _mh=m2

h > 1 is at best satisfied during the first inflaton
oscillation, where mh is the t-dependent Higgs mass. One can
easily check that _mh=m2

h ∼ Am=μMP, where A≲MP is the
amplitude of inflaton oscillations and we require m < μ.
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so that

B3=2 ¼
9

2

�
Λz

MP

�
4
�
m3=2

m

�
2
�
m
μ

�
4

: ð49Þ

Using Eq. (48), inputting B3=2 and yI , we obtain the correct
relic density of gravitinos along the sloped dashed and
dotted lines for different values of Λz=MP as labeled.
As one can see from Fig. 5, the value of the abundance

of gravitinos from the decay of the inflaton is strongly
dependent on the value of Λz as this scale controls the
branching ratio B3=2. As a consequence, we can derive an
upper limit to Λz

Λz

MP
≤ 2.4 × 10−4

�
m

m3=2

�
9=14

; ð50Þ

which is shown in Fig. 3 by the negatively sloped pink dot-
dashed line. This upper limit in turn imposes an upper limit
to the gravitino mass m3=2 ≲ 0.1m.

IV. CONCLUSIONS

It may be that supersymmetry is not physically realized
at energy scales accessible to the LHC. The hierarchy
problem and naturalness biased our expectations that the
supersymmetry mass scale was at or near the weak scale
making experimental discovery all but inevitable. Such is
not (yet) the case, and the mass scale of the supersymmetric
spectrum remains unknown. It is therefore plausible to
consider the possibility that nearly the entire supersym-
metric spectrum lies at very high energies. If it is above the
inflationary scale it is quite possible that the rich spectrum
of supersymmetric partners were never produced in the
early universe after inflationary reheating.
The exception could be the gravitino whose mass may

remain below the inflaton mass. In this case, gravitinos
could be produced (in pairs) during reheating [9,10] and
because of the strong sensitivity to temperature, have
enhanced production at the start of reheating when the
temperature of the radiation plasma is above the reheating
scale [77]. For a sufficiently high reheating temperature
(TRH ≳ 1010 GeV), thermally produced gravitinos would
have the correct relic density to account for the observed
cold dark matter in the Universe.
In this paper, we have constructed a working model

incorporating both inflation and supersymmetry breaking
which leads to the heavy supersymmetric spectrum with
gravitino dark matter. Our starting point is no-scale super-
gravity [36,37]. In the family of models formulated in
Ref. [67], the inflaton is associated with the volume
modulus, T, and the scalar potential is identical to that
derived in the Starobinsky model [12]. Supersymmetry

breaking is achieved by adding a strongly stabilized
Polonyi field which preserves the potential for inflation.
Reheating occurs through the gravitational coupling of the
inflaton to the standard model Higgs scalars. Because
supersymmetry breaking occurs at a high scale, the μ
parameter is large (larger than the inflaton mass) and the
dominant decay channel is to two Higgs bosons.
Depending on the value of μ, gravitinos may be produced
through reheating with the correct relic density over a wide
range of gravitino masses. For smaller values of μ (but still
larger than the inflaton mass), the correct relic density may
be obtained via the decays of the inflaton directly to
gravitinos. All constraints are satisfied for gravitino masses
in the range 0.1 EeV≲m3=2 ≲ 1000 EeV.
While we have shown that the Higgs mass in this class of

models can be compatible with the experimental value
when tan β ≈ 1, we leave open for future study the ques-
tions of vacuum stability, and radiative electroweak sym-
metry breaking—two attractive features normally
associated with supersymmetric models. Both stability
and symmetry breaking can be achieved without super-
symmetry via an intermediate scale such as in SO(10)
grand unification [79], and therefore suggests that in
models of high scale supersymmetry breaking, grand
unification plays a crucial role in determining the
Higgs mass.
Finally, the minimal setup of our model predicts no

signatures in either collider or direct/indirect dark matter
searches. Instead, scalars with masses near the Hubble scale
during inflation could lead to non-Gaussianities in the
CMB that may eventually be observed. Alternatively, by
introducing R-parity violation in the lepton-Higgs sector,
the gravitino can become unstable with a suitably long-
lived decay. The detection of the decay products, such as
very high energy neutrinos or photons at HAWC or the
Pierre Auger Observatory, would then be a possible sign of
high scale supersymmetry with an EeV gravitino, and thus
these types of signatures are worthy of further study.
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