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We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs
models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general
formula. Using this tool, we study the competition of fermion multiplets with different boundary
conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much
smaller than the intrinsic Randall-Sundrum mass scale.
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I. INTRODUCTION

One of the most important open questions in particle
physics is to find an explanation for the spontaneous
breaking of the weak interaction symmetry SUð2Þ×Uð1Þ.
Ideally, we would like to calculate the potential associated
with the Higgs boson in terms of a more fundamental set of
parameters. It is well appreciated that this is not possible
within the standardmodel of particle physics. This idea then
motivates models of physics that extend the standard model.
In this paper, we will study the generation of the Higgs

potential in five-dimensional field theory models. In these
models, the Higgs boson appears as the fifth component of
a gauge field. It has been understood for a long time that
fermions in such models can spontaneously acquire mass,
driving a breaking of the gauge symmetry [1,2]. The fifth
dimension can be flat, but here we will study models in
five-dimensional anti–de Sitter space with boundaries, as in
the model of Randall and Sundrum [3]. Such a model can
be viewed as a dual description of a strongly coupled field
theory in four dimensions [4]. Indeed, the study of these
five-dimensional models potentially gives a simplified but
calculable approach to composite Higgs models with strong
coupling.
In the original Randall-Sundrum model, a fundamental

Higgs field was introduced as a scalar field living on the
four-dimensional subspace or brane at the infrared boun-
dary. However, by introducing the Higgs field as a
fundamental scalar field, this approach gives up any chance
to compute the Higgs potential from deeper principles. In
this paper, we will consider the Higgs field to arise as the
fifth component of a gauge field in the five-dimensional
bulk, an approach called “gauge-Higgs unification” [5,6].
The Higgs potential will be generated dynamically, by
integrating out massive fermion and gauge boson states. We
will nevertheless use the abbreviation RS to denote this
class of models.
RS models of the Higgs sector were studied intensely

about ten years ago, by Agashe, Contino, and Pomarol [7]
and many others. However, many issues were not resolved.
Chief among these is the understanding of the various

hierachies of scales required in these models. RS models
with dynamical symmetry breaking generated by fermions
have three distinct hierarchies that need to be established.
First, the intrinsically five-dimensional or Kaluza-Klein
states must be much heavier than Standard Model particles,
including the top quark. Second, Higgs field vacuum
expectation value must be small compared to its natural
scale in the five-dimensional theory. Third, the mass
generation for light quarks and leptons due to the composite
Higgs must not generate too large anomalous values for
flavor observables. We will refer to these requirements as
the KK, v=f, and flavor hierarchies, respectively.
In this paper, we will discuss the formalism for symmetry

breaking in RS models of gauge-Higgs unification. Our
goal is to present strategies for creating KK and v=f
hierarchies. The KK hierarchy is easier to address. To
create such a hierarchy, we need to build the Higgs
potential from several different components that naturally
have different mass scales. We will exhibit some features of
fermion condensation in RS models that lead to models
with this property.
The v=f hierarchy is more difficult to generate. The

Higgs field of an RS model appears as a field of a nonlinear
sigma model, whose characteristic scale we call f. To
obtain a Higgs vacuum expectation value v much smaller
than f, we must be near a second-order phase transition in
the phase diagram of the model. We will present strategies
for obtaining such phase transitions. Still, it will always
turn out that a v=f hierarchy requires a fine-tuning in the
model.
This study will give us ingredients that we can use to

construct realistic theories of strong interactions leading to
a composite Higgs boson. Wewill present a model that uses
these strategies in a following paper [8].
Our concept for an RS model as a dual to a four-

dimensional strongly coupled theory of composite Higgs
bosons leads to some choices that are different from those
that are conventional in the literature. We consider the RS
dynamics as modelling an approximately conformal strong
interaction theory that exists at energies above 1 TeV, with
an ultraviolet cutoff at about 100 TeV. These scales will
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provide the boundaries of the warped RS geometry, called
zR and z0, respectively, in this paper. The top quark will
play a key role in this theory in breaking electroweak
symmetry, but the other quarks and leptons will have only
weak coupling to the new dynamics. We will connect the
light quarks and leptons to the Higgs sector through
boundary conditions at 100 TeV. In this, we view our
construction as a dual of a sort of an extended technicolor
(ETC) theory [9,10]. ETC is a scheme that is attractive in
principle but has many problems in practice. It has proven
difficult not only to solve the problems of ETC but even to
find a phenomenological treatment in which its problems
can be swept under the rug. We hope that RS models will at
least provide a sufficiently shaggy rug that we can make
progress with this idea.
The outline of this paper will then be as follows: In

Secs. II–IV, we present some basic formalism for compu-
tation of the Higgs potential in RS models, including a
simple, general formula for the computation of the
Coleman-Weinberg effective potential [11]. In Sec. V,
we review the results of Contino, Nomura, and Pomarol
[12] on symmetry-breaking with one fermion multiplet,
which provide a starting point for our constructions. In
Sec. VI, we explore the idea of competition between
fermion multiplets with different boundary conditions to
create models where v=f ≪ 1. In Sec. VII, we present a
model containing elements with intrinsically different
scales that can lead to relaxed fine-tuning. Section VIII
gives a summary and some perspective.

II. COLEMAN-WEINBERG POTENTIAL
IN RS MODELS

In this section, we review the formalism for computing
the Higgs potential in RS models. For the purpose of this
paper, we take a rather narrow definition: An RS model
here will be a model of gauge and fermion fields living in
the interior of a slice five-dimensional anti–de Sitter space

ds2 ¼ 1

ðkzÞ2 ½dx
mdxm − dz2� ð1Þ

with nontrivial boundary conditions at z ¼ z0 and z ¼ zR,
with z0 < zR. Then z0 gives the position of the “UV brane”
and zR gives the position of the “IR brane.” In accord with
the philosophy explained in the Introduction, we choose
very simple boundary conditions on the IR brane and
build the complexity of the theory using the boundary
conditions on the UV brane. Using the perhaps more
physical metric

ds2 ¼ e−2kx
5

dxmdxm − ðdx5Þ2; ð2Þ
we take the size of the interval in x5 to be πR. Then,

z0 ¼ 1=k zR ¼ eπkR=k: ð3Þ

Because this paper focuses on the properties of the one-
loop potential, we will quote formulae for the Green’s
functions of fields in RS in Euclidean space. Similar
formulae apply in Minkowski space.
In the interior or bulk five-dimensional region, we will

have spin-1
2
and spin-1 fields. The four-dimensional Higgs

field will appear as the fifth component of a gauge field in
five dimensions. In this paper, wewill notate gauge fields as
AA
M, whereM ¼ 0, 1, 2, 3, 5, with lower casem ¼ 0, 1, 2, 3,

and A is the gauge group index. Fermion fields are
4-component Dirac fields, which we will decompose as

Ψ ¼
�
ψL

ψR

�
; ð4Þ

where ψL transforms as a left-handed Weyl fermion and ψR
transforms as a right-handed Weyl fermion under four-
dimensional Lorentz transformations. More details of our
formalism for 5-d fermions are presented in Appendix A.
Quantum fields in the RS geometry were analyzed soon

after the original RS work [13–15]. Gherghetta and
Pomarol showed that fields of all spin values have simple
and parallel behavior in the RS geometry [16]. For a spin 0
field of mass m satisfying the Klein-Gordon equation,
the solutions in Euclidean space are given by Bessel
functions as

ϕðxÞ ¼ z2½AIνðpzÞ þ BKνðpzÞ�e−ip·x; ð5Þ

where

ν ¼
�
4þm2

k2

�
1=2

: ð6Þ

For a spin-1
2
field satisfying the Dirac equation with massm,

the solutions in Euclidean space have the form

ψL ¼ uLðpÞz5=2½AIνþðpzÞ þ BKνþðpzÞ�e−ip·x
ψR ¼ uRðpÞz5=2½AIν−ðpzÞ þ BKν−ðpzÞ�e−ip·x; ð7Þ

where

ν� ¼ c� 1

2
; with c ¼ m

k
: ð8Þ

The parameter c will play an important role in the physics
discussed in this paper.
For a spin-1 gauge field, using the background Feynman

gauge of Randall and Schwartz [17], the solutions in
Euclidean space have the form

Am ¼ ϵmðpÞz1½AI1ðpzÞ þ BK1ðpzÞ�e−ip·x
A5 ¼ z1½AI0ðpzÞ þ BK0ðpzÞ�e−ip·x
c ¼ z1½AI1ðpzÞ þ BK1ðpzÞ�e−ip·x; ð9Þ
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where cðx; zÞ is the ghost field. The gauge boson system
then mimics the system of a Dirac fermion with c ¼ 1

2
. This

correspondence allows us to compute the effects of gauge
bosons by borrowing results from the fermionic case. This
fact and other relevant details of this construction are
explained in Appendix B.
By integrating out fields in the five-dimensional bulk in

the presence of a fixed background gauge field, we generate
an effective potential for that gauge field, the Coleman-
Weinberg potential. The Coleman-Weinberg potential is
computed as an integral over Euclidean 4-momenta

V ¼
Z

d4p
ð2πÞ4

h
−2 log detðΨÞ þ 3

2
log detðAÞ

i
; ð10Þ

for the terms due to fermions and gauge fields. Precise
expressions for the operators labelled Ψ and A are given in
Appendixes A and B. The similarity of the solutions for
these fields allows us to write a general formula for the
values of these determinants. We emphasize that, through-
out this paper, we are not interested in the overall constant
in (10) but only in the dependence on the Higgs field, which
appears here as a background AA

5 field.
Consider, then, a field whose classical solutions take

the form

Φ ¼ za½AIνðpzÞ þ BKνðpzÞ�e−ip·x: ð11Þ

It is useful to define combinations of the Bessel functions
with definite boundary conditions at a point z ¼ z2,

Gαβðz1; z2Þ ¼ Kαðpz1ÞIβðpz2Þ − ð−1ÞδIαðpz1ÞKβðpz2Þ;
ð12Þ

where α; β ¼ �1, ð−1Þδ ¼ 1 for α ¼ β and −1 for α ≠ β,
and the orders of the Bessel functions are

for α; β ¼ þ1∶ νþ ¼ cþ 1

2
; for α; β ¼ −1∶ ν− ¼ c −

1

2

ð13Þ

for an appropriate value of the parameter c. Then
Gþþðz; zRÞ, G−−ðz; zRÞ will give solutions with Dirichlet

boundary conditions on the IR brane: Φðz; zRÞ ¼ 0 at
z ¼ zR. Due to the identities

d
dz

zνIνðzÞ ¼ zνIν−1ðzÞ and
d
dz

z−νIνðzÞ ¼ z−νIνþ1ðzÞ;
ð14Þ

and similarly for other Bessel functions, Gþ−ðz; zRÞ,
G−þðz; zRÞ will give solutions with appropriate Neumann
boundary conditions on the IR brane. The definition of
Neumann boundary conditions for gauge fields and of both
sets of boundary conditions for fermions requires some
further explanation, which we give in Appendixes A and B.
In this paper, we will refer to these Neumann and Dirichlet
boundary conditions as þ and − boundary conditions,
respectively.
The G functions obey the important identity

Gþþðz1; z2ÞG−−ðz1; z2Þ − Gþ−ðz1; z2ÞG−þðz1; z2Þ

¼ −
1

p2z1z2
; ð15Þ

which follows from the Wronskian identity for Bessel
functions.
We will use the G functions to construct Green’s

functions for the RS fields. As an example, consider

ηmnGABðz; z0; pÞ ¼ hAA
mðz; pÞAB

n ðz0;−pÞi: ð16Þ

This object is locally a solution of the classical field
equations in z, satisfying three sets of boundary conditions.
These are (1) þ or − boundary conditions on the IR brane
at z ¼ zR, (2) a discontinuity in the derivative of a fixed size
at z ¼ z0, and (3) þ, −, or other appropriate boundary
conditions at z ¼ z0. For the field AA

m, the solutions to the
field equations will be a linear combination of

z1Gþþðz; zRÞ and z1Gþ−ðz; zRÞ; ð17Þ

with c ¼ 1
2
. Take, for definiteness, Neumann boundary

conditions at z ¼ zR. Then the Greens function will have
the form

GABðz; z0; pÞ ¼ Kzz0 ·
�
AABGþ−ðz; zRÞGþ−ðz0; zRÞ − δABGþþðz; zRÞGþ−ðz0; zRÞ z < z0

AABGþ−ðz; zRÞGþ−ðz0; zRÞ − δABGþ−ðz; zRÞGþþðz0; zRÞ z > z0
: ð18Þ

In this formula, the second index − insures the Neumann
boundary conditions at z ¼ zR. The constant K, which is
independent of species, is determined by the discontinuity
at z ¼ z0. The matrix AAB, which depends on p but is
independent of z and z0, is still undetermined at this stage.

To find AAB, we must fix the boundary condition at
z ¼ z0. For example, if we directly apply Neumann
boundary conditions at z ¼ z0, we find the constraint

½AABG−−ðz0; zRÞ− δABG−þðz0; zRÞ�Gþ−ðz0; zRÞ ¼ 0: ð19Þ
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The dependence on z0 factors away, as it must, and we find
a simple linear equation for AAB, leading to

AAB ¼ δAB
G−þðz0; zRÞ
G−−ðz0; zRÞ

: ð20Þ

Imposition of the boundary condition at z ¼ z0 will always
give us a solution for AAB in terms of functions (12)
evaluated at ðz0; zRÞ, so, in the rest of this paper, we will
abbreviate

Gαβ ≡ Gαβðz0; zRÞ: ð21Þ

In the examples of interest later in this paper, we will not
apply simple Dirichlet or Neumann boundary conditions
directly to the elementary fields. Instead, we will apply
these boundary conditions only after the fields are mixed by
a unitary transformation. We will explain in Sec. III how
this allows us to encode the effect of the Higgs field
vacuum expectation value and other physical effects on the
UV brane. In the presence of such a unitary transformation
U, and allowing more general boundary conditions, (19) is
generalized to the condition

UAC½ACBGðCÞ
−A0;−CR

ðz0; zRÞ
− δCBGðCÞ

−A0;þCR
ðz0; zRÞ�GðBÞ

−B0;−BR
ðz0; zRÞ ¼ 0: ð22Þ

The notation of this equation is as follows: A0 represents
the boundary condition of the field A at z ¼ z0. That is,
−A0 is − if the field A has þ (Neumann) UV boundary
conditions, and þ if the field has − (Dirichlet) UV
boundary conditions. The index −CR similarly reflects
the IR boundary condition of the field C. In the gauge field
case, the functions Gαβ are fixed, but in the fermion case,
these functions will depend on the mass parameter c. Since
the twist U is only on the UV brane, the functions Gα;β

in the bracket must be evaluated using the IR identification
of the field, that is, with the c parameter of the field C. We
denote this explicitly in (22); the superscript (C) on a G
function indicates that this function should be evaluated
with c ¼ cðCÞ.
Equation (22) is a linear equation for the matrixAAB. We

will now abbreviate this equation as

CACACB ¼ ðRHSÞ; ð23Þ

where

CAC ¼ UACG
ðCÞ
−A0;−CR

: ð24Þ

The matrixC depends on the 4-momentum p through theG
functions (12), (21). Here we note explicitly that the indices
ν of the Bessel functions in (12) are to be evaluated using
the IR field identification. It will be convenient to notate
(24) in a more abstract way as

C ¼ B⃗UVUGB⃖IR; ð25Þ

imagining that the operators B⃗UV, B⃖IR supply the appro-
priate UV and IR boundary conditions.
We are now ready to evaluate the Coleman-Weinberg

potential (10). The determinants in this expression are
formally constructed as products over the KK mass
spectrum

detðAÞ ¼
Y
i

ðp2 þm2
i Þ ð26Þ

The massesm2
i that appear in this formula can be identified

as poles in the corresponding Green’s functions. So we
must go back through the solution for the Green’s function
given above and ask how these poles could appear. The
Bessel functions in the explicit factors of Gαβðz; zRÞ,
Gαβðz0; zRÞ have no poles in p, and the constant K can
be seen to be simply proportional to p. Thus, the poles
must reside in AABðpÞ, and must be generated when we
invert Eq. (23). This observation implies Falkowski’s
Theorem [18],

detðAÞ ¼ detC; ð27Þ

where CðpÞ is the matrix in (25), up to an overall
multiplicative constant. This constant could in principle
depend on U, but it will be independent of U if detU ¼ 1.
With this identification, we reduce the calculation of the
functional determinant to the calculation of a simple matrix
determinant involving the functions Gαβ.
In case this argument of Falkowski for the identification

(27) is not persuasive, we give a more constructive argu-
ment for this result in Appendix C.

III. IDENTIFICATION AND INFLUENCE
OF HIGGS BOSONS

Our next task is to define the UV boundary conditions on
the fermion and vector fields, and to review how these
boundary conditions incorporate the effects of the Higgs
boson vacuum expectation values.
In gauge-Higgs unification, the Higgs fields arise as the

fifth components of gauge fields AA
M. These components

transform as scalars under four-dimensional Lorentz trans-
formations, so they can obtain a vacuum expectation value.
Since it has nontrivial quantum numbers under the gauge
group, this expectation value can break down the gauge
symmetry.
We view the five-dimensional theory as a dual descrip-

tion of a strongly interacting four-dimensional theory. Our
physical picture is that the strong interaction theory has a
global symmetry G and a local gauge symmetry Gl at the
scale 1=z0. The strongly interacting theory spontaneously
breaks the global symmetry G to a subgroup H at the scale
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1=zR. This gives rise to the familiar Venn diagram shown
in Fig. 1.
The gauge fields of the five-dimensional theory fit

into this structure in different ways depending on their
UV and IR boundary conditions. We will quote boun-
dary conditions as þ or − boundary conditions on
AA
m. Because boundary conditions are imposed on the

gauge-covariant FA
m5,

FA
m5 ¼ ∂mAA

5 − ∂5AA
m þ gfABCAB

mAC
5 ; ð28Þ

a þ boundary condition for AA
m is only consistent with

a − boundary condition for AA
5 and vice versa. In

general, a field can have zero modes, zero-energy
solutions to the field equations, only with þþ boundary
conditions. Then AA

m will have zero modes for þþ
boundary conditions and AA

5 will have zero modes for
−− boundary conditions on AA

m. Zero modes in five
dimensions are dual to massless particles of the same
four-dimensional spin in four dimensions.
These considerations fit together into an appealing

picture. Gauge field components with þþ boundary con-
ditions give massless gauge fields in 4 dimensons. Gauge
fields with−− boundary conditions give massless scalars in
four dimensions from AA

5 . These will be Goldstone bosons
of the four-dimensional theory. Coming from the other side
of the duality, the underlying gauge symmetries of the
four-dimensional theory can be identified with gauge fields
with þ UV boundary conditions, while ungauged gener-
ators of the global symmetry group are identified with
gauge fields with − UV boundary conditions. Global
symmetries that are broken at 1=zR are identified with
gauge fields with − IR boundary conditions, while unbro-
ken global symmetries are identified with gauge fields
with þ IR boundary conditions. This correspondence,
shown also in Fig. 1, precisely identifies þþ gauge fields
with unbroken gauge symmetries and −− gauge fields with
spontaneously broken global symmetries.
We now have a picture in which Higgs bosons appear as

Goldstone bosons of the symmetry breaking in the new
strong interaction theory modelled by the five-dimensional
RS fields. This realizes the idea of Higgs fields as
Goldstone bosons as proposed in [19] and more recently

revived in the “Little Higgs” program [20,21]. The little
hierarchy is produced if the scale of the strong interaction
theory, associated with 1=zR, is much larger than the
Higgs field mass and vacuum expectation value. To model
this, we take the RS setup as given and generate the Higgs
potential from radiative corrections to this picture, des-
cribed quantitatively by the Coleman-Weinberg potential.
We have presented a formalism for computing the

Coleman-Weinberg potential in the previous section.
How can a Higgs boson vacuum expectation value be
included?
The Higgs bosons appear as zero modes of fields AA

5 .
A pure AA

5 background field can always be removed locally
by a gauge transformation. However, in a five-dimensional
system with boundaries, the influence of AA

5 ðz; xÞ cannot
be gauged away completely. There is gauge-invariant
information parametrized by the Wilson line

W½A� ¼ P

�
exp

�
ig
Z

zR

z0

dzAA
5T

A

��
: ð29Þ

The Coleman-Weinberg potential can depend on the
Wilson line and, in this way, on the expectation value of AA

5 .
In the formalism of the previous section, the Wilson

line appears in the following way: The equations in the
previous section apply to free fermion and gauge fields with
zero background Higgs fields. We can apply these same
formulae to a system with a background AA

5 field if we
gauge away AA

5 in the central region of z, leaving a singular
field near z0 or zR. The effect of a nonzero AA

5 field is
implemented by applying the Wilson line as a matrix to the
various fields in the problem, setting TA ¼ tA, the repre-
sentation matrix in the appropriate representation of the
gauge groupG. In this paper, we will generally consider the
AA
5 field as gauged away to the UV boundary. (It is a check

on our formalism that the same results can be obtained by
gauging away AA

5 to the IR boundary.)
The zero mode of AA

5 , present when the AA
m field has

boundary conditions −−, has the form

AA
5 ðz; xmÞ ¼ NhzhAðxmÞ; ð30Þ

where the z dependence is that of the AA
5 zero mode and Nh

is a normalization constant. Then let

UW ¼ exp

�
−ig

Z
zR

z0

dzNhzhhAitA
�

ð31Þ

The matrix UW should be applied to each field before
imposing the boundary condition at z ¼ z0. In this context,
the matrix UW plays the role of the matrix U in (25).
There may be additional complications that influence the

UV boundary conditions. For example, it is allowed to
introduce a fermion mass term on the boundary,

FIG. 1. The pattern of symmetry breaking. (��) denotes
boundary conditions of 5D gauge fields.

COMPETING FORCES IN FIVE-DIMENSIONAL FERMION … PHYSICAL REVIEW D 96, 115030 (2017)

115030-5



δL ¼
X
ij

MijΨ̄iΨjδðz − z0Þ; ð32Þ

as long as the mass matrixMij preserves the assumed local
gauge symmetry by mixing only fermion fields with the
same Gl quantum numbers. In this paper, we will include
such a mass mixing only on the UV boundary. The effect of
this term in models will be to mix fermions actively
participating in electroweak symmetry breaking with the
light quarks and leptons, similarly to the Extended
Technicolor interaction. The influence of (32) is to mix
the fermion fields by a unitary transformation. We will
implement this directly by including a unitary matrix UM
before applying the UV boundary condition.
Our final expression for the matrix C is

C ¼ B⃗UVUMUWGB⃖IR: ð33Þ

This formula has an important property that we will use
often in our discussion. If fermions mixed by UM have the
same boundary condition in the UV, then ½UM; B⃗UV� ¼ 0.
Then we can move UM to the left and find

detC ¼ detUM · det½B⃗UVUWGB⃖IR�: ð34Þ

Since UM is unitary, detUM ¼ 1, and the mixing angles in
UM disappear from the expression for the Coleman-
Weinberg potential. Similarly, if UW mixes only fields
with the same IR boundary conditions, we can move UW to
the right of B⃖IR and factor it out of determinant calculation.
Since detUW ¼ 1, the mixing angles in UW do not
contribute to the Coleman-Weinberg potential. The
Higgs field appears as mixing angles in UW and so, in
this latter case, the Coleman-Weinberg potential is flat
in hhi.
This argument extends to decompositions of UW and

UM: if

UMUW ¼ U1U and ½U1; B⃗UV� ¼ 0 ð35Þ

then the Coleman-Weinberg potential does not depend on
the angles in U1. In moving pieces of the unitary matrix to
the right, we must be more careful. The matrix UW mixes
fermions within a gauge multiplet, and these must have the
same values of c, but UM generally mixes fermions in
different multiplets with different values of c. The fermion
Green’s function Gðz0; zRÞ depends on c. So, if

UW ¼ UU2 and ½U2; B⃖IR� ¼ 0 ð36Þ

then U2 does not contribute to the Coleman-Weinberg
potential. More generally, pieces of UM may be moved to
the right and eliminated if they mix fermion fields with the
same value of c.

IV. FERMION ZERO MODES

Just as the boundary conditions on gauge fields
have physical significance, the boundary conditions on
fermion fields have a significance for model-building.
Five-dimensional fermions are 4-component Dirac fer-
mions, but, with appropriate boundary conditions, they
can have zero modes that can be interpreted as chiral quarks
and leptons [15,16].
The zero-mode solutions of the Dirac equation are

present for any nonzero value of the five-dimensional
fermion mass. With, again,

c ¼ m=k; ð37Þ

a zero mode corresponding to a left-handed four-dimen-
sional fermion has the form

ψL ¼ f−uLðpÞz2−ce−ip·x ψR ¼ 0; ð38Þ

where uLðpÞ is the usual 2-component massless spinor of a
left-handed fermion and f− is a normalization constant.
Similarly, a zero mode corresponding to a right-handed
four-dimensional fermion has the form

ψR ¼ fþuRðpÞz2þce−ip·x ψL ¼ 0: ð39Þ

We will refer to these as L and R zero modes, respectively.
These zero modes are nonzero at the boundary, and so they
require appropriate fermion boundary conditions, þþ for
the L zero mode and −− for the R zero mode.
An important feature of the zero modes is their structure

in the fifth dimension. The probability distribution of the
position in the fifth dimension is given, for the L zero
mode, byZ

dz
ffiffiffi
g

p
Ψ̄ðkzγ0ÞΨ ¼

Z
dz

kz
ðkzÞ5 jf−j

2z4−2c ∼
Z

dz
z
z1−2c:

ð40Þ

For c > 1
2
, the zero mode is localized near the UV brane; for

c < 1
2
, the zero mode is localized near the IR brane. For the

R zero mode, the same calculation gives the boundary at
c ¼ − 1

2
. Again,

c < − 1
2

− 1
2
< c < 1

2
1
2
< c

L IR IR UV

R UV IR IR

ð41Þ

In a realistic model, the light quarks and leptons would
be described by UV zero modes. We will see in a moment
that the formation of a symmetry-breaking potential prob-
ably requires a pair of IR zero modes which are mixed by a
symmetry-breaking Higgs expectation value. The right-
handed top quark can potentially be assigned to an IR zero
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mode. The assignment of the left-handed ðt; bÞL doublet to
IR zero modes is potentially in tension with precision
electroweak constraints on the bL. This is an important
issue for model-building [22].

V. SIMPLEST EXAMPLES
OF SYMMETRY BREAKING

As a first application of this formalism, we review the
calculation of the Higgs potential from one fermion
multiplet by Contino, Nomura, and Pomarol [12]. We will
do this in the simplest context of an SUð2Þ gauge field
acting on two-fermion multiplets. We assign the boundary
conditions for the two fermion fields as

Ψ ∼
�þ þ
− −

�
: ð42Þ

The notation here is to write the UV and IR boundary
conditions, respectively, for each fermion component
on a horizontal line. The matrix represents a single G
representation. Fermions in the same G representation
must have the same value of c ¼ m=k, the parameter that
determines the localization of the zero modes. Consistently
with these assignments, the gauge fields must be assigned
boundary conditions that break SUð2Þ down to its Uð1Þ
subgroup,

AA
m ∼

0
B@

− −
− −
þ þ

1
CA ð43Þ

for A1
m, A2

m, A3
m, respectively. Note that, with these assign-

ments, A1
5 and A2

5 are Goldstone bosons.
Now turn on hA2

5i ≠ 0. This is a direction that breaks
the Uð1Þ gauge symmetry and mixes the two fermion
components. The corresponding UW is

UW ¼
�
cW −sW
sW cW

�
; ð44Þ

where cW ¼ cos θ, sW ¼ sin θ, with

θ ¼ g
2

Z
zR

z0

dzA2
5ðzÞ: ð45Þ

Combining (42) and (44), we find the CðpÞ matrix from
(24) or (25) as

C ¼
�
cWG−− −sWG−þ
sWGþ− cWGþþ

�
: ð46Þ

We find immediately

detC¼c2WG−−Gþþþs2WG−þGþ−

¼ðG−−GþþÞð1−s2WðG−−Gþþ−G−þGþ−Þ=G−−GþþÞ:
ð47Þ

The first factor is independent of θW , so we can ignore it.
The second factor simplifies with the use of the identity
(15), which can be abbreviated here as

G−−Gþþ −G−þGþ− ¼ −
1

p2z0zR
: ð48Þ

We then find

log detC ¼ log

�
1þ s2W

p2z0zRG−−Gþþ

�
: ð49Þ

In the Euclidean region, for z0 ≪ zR, all four Green’s
functions G−−; G−þ; Gþþ; Gþ− are positive definite func-
tions of p. All four functions increase exponentially for
large p, as

Gabðz0; zRÞ ∼ epðzR−z0Þ: ð50Þ

The fermionic contribution to the Coleman-Weinberg
potential for this model is then [12]

VðhÞ ¼ −2
Z

d4p
ð2πÞ4 log

�
1þ s2W

p2z0zRG−−Gþþ

�
: ð51Þ

This result is well-defined and UV convergent and is
negative definite. It is minimized at θ ¼ π=2. The depth
of the potential depends strongly on the parameter c, as
shown in Fig. 2. The finiteness of the Coleman-Weinberg
potential is an important general feature of gauge-Higgs
unification models. It follows from the fact that the
Wilson line order parameter of the symmetry breaking is
a nonlocal quantity. Since hAA

5 i can be gauged away
locally, the potential does not get contributions from the
deep ultraviolet. However, the energy scale of the potential

FIG. 2. Dependence of the depth of the minimum of the
Coleman-Weinberg potential (51) on the parameter c.
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is set by zR, and so there is still a little hierarchy if
1=zR ≫ 100 GeV.
Wemust add to the fermion contribution the result for the

Coleman-Weinberg potential of the vector bosons. The
same formalism applies. The SUð2Þ gauge group acts on
the three gauge boson fields A1

M; A
2
M; A

3
M according to

tabc ¼ iϵbac: ð52Þ

Then the UW matrix for the three gauge boson states is

UW ¼

0
B@

c2W 0 s2W
0 1 0

−s2W 0 c2W

1
CA ð53Þ

where c2W ¼ cos 2θ, s2W ¼ sin 2θ, where θ is as in (45).
The boundary conditions on the fields A1

M and A3
M are the

same as those on the two fermion fields in this example.
Then we find that the Coleman-Weinberg potential gen-
erated by the gauge fields is

VðhÞ ¼ þ 3

2

Z
d4p
ð2πÞ4 log

�
1þ s22W

p2z0zRG−−Gþþ

�
: ð54Þ

where, in this expression, G−− and Gþþ are evaluated
at c ¼ 1

2
.

Some graphs of the complete potential for this model,
with c ¼ 1

2
for the gauge fields and different values of c for

the fermions, are shown in Fig 3. In the typical situation,
there is a potential barrier between the symmetric point at
h ¼ 0 and the symmetry-breaking minimum; that is, the
phase transition is first-order and it is not possible to tune
the value of v=f to be small. This is still true if the number
of fermion flavors is taken to be a variable nf and varied
continuously. The minimum of the potential is always
either at θ ¼ 0 or θ ¼ π.

VI. COMPETING FORCES WITH TWO
FERMION MULTIPLETS

To incorporate a little hierarchy with v=f ≪ 1, a model
must be in the vicinity of a second-order phase transition in
the space of parameters of the Coleman-Weinberg poten-
tial. We would like to understand systematically how to
achieve this in models with multiple fermion and gauge
fields. In this section, we take a first step into this program
by working out the possible phase diagrams of systems of
two fermion multiplets. For simplicity, we will restrict
ourselves to SUð2Þ in this section, and we will ignore the
gauge field contributions to the potential. We call the two
fermion multiplets ψ1 and ψ2 and assign them mass
parameters c1 and c2. We will call the Green’s functions
associated with these multiplets G1

ab and G2
ab, respectively.

An example of the full expansion of this notation is

G1þ− ¼ Gðψ1Þþ− ðz0; zRÞ: ð55Þ

A. No UV mixing

Consider first the simplest case in which there is no UV
mass mixing (UM ¼ 1). In this case, we have a pair of
fermion representations in the 2 of SUð2Þ, with boundary
conditions such as

�þ þ
− −

� �þ −
− −

�
ð56Þ

In Appendix A, we show that the reversal of the c
parameter and the UV and IR boundary conditions

c → −c; þ ↔ − ð57Þ

is a symmetry of a free fermion in RS. According to the
argument given below (34), a fermion multiplet gives zero
contribution to the Coleman-Weinberg potential if either its
two UV boundary conditions or its two IR boundary
conditions are identical. Then, for one fermion multiplet,
there are only two possible situation in which we obtain a
nonzero Coleman-Weinberg potential

ψA ∼
�þ þ
− −

�
and ψR ∼

�þ −
− þ

�
: ð58Þ

We call these the A (“attractive”) and R (“repulsive”) cases,
respectively.
The potential in the attractive case was worked out in

(51) above. For future reference, we notate this potential as
a function of sW ¼ sin θ and the fermion mass parameter c,

VAðsW; cÞ ¼ −2
Z

d4p
ð2πÞ4 log

�
1þ s2W

p2z0zRG−−Gþþ

�
: ð59Þ

FIG. 3. The complete Coleman-Weinberg potential for the
model of Sec. V, including both fermion and gauge boson
contribution.
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The potential is negative definite, and its minimum is
always at sW ¼ 1.
The potential in the repulsive case can be worked out in

the same way. From

C ¼
�
cWG−þ −sWG−−

sWGþþ cWGþ−

�
; ð60Þ

we find using the same method

VRðsW;cÞ ¼−2
Z

d4p
ð2πÞ4 log

�
1−

s2W
p2z0zRG−þGþ−

�
: ð61Þ

This potential is positive definite, and its minimum is
always at sW ¼ 0. One way to understand its repulsive
nature is that here the Higgs expectation value mixes two
massive states and therefore lowers the mass of the lightest
state. This is energetically less favored, so the potential
resists forming a condensate.
If we have two fermion multiplets, one with the A type

and one with the R type boundary conditions, these two
multiplets will compete. To understand the competition, we
need to work out the expansions of VA and VR about
sW ¼ 0. This is done in Appendix D. These expressions
have expansions in sin θ with the forms

VAðsW; cÞ ¼
1

4π2z4R

�
−AAðcÞs2W þ 1

2
BAðcÞs4W

þ 1

2
CAðcÞs4W logð1=s2WÞ þOðs6WÞ

�

VRðsW; cÞ ¼
1

4π2z4R

�
þARðcÞs2W þ 1

2
BRðcÞs4W þOðs6WÞ

�
;

ð62Þ

where we have chosen the signs so that all of the
coefficients are positive functions of c. Figure 4 shows
that AAðcÞ > ARðcÞ, but both functions are rapidly decreas-
ing functions of c. Then there is a line in the ðc1; c2Þ plane,
shown as a dotted line in Fig. 5, where

AAðc1Þ ¼ ARðc2Þ: ð63Þ

For c1 slightly outside this boundary, the potential
VAðc1Þ þ VRðc2Þ has a negative quadratic term in sW that
goes to zero on the curve (63), and a positive quartic term.
Then the curve (63) is a line of second-order transitions.
Near this line, the minimum v of the potential can be
made as small as we like. For the representative case
z0=zR ¼ 0.01, the tip of the curve occurs with c2 ¼ 0
at c1 ¼ 0.2997.
Actually, there are two minima, at v and −v. These

minima merge to a single minimum at hθi ¼ π=2 along the
line of bifurcations indicated by the dashed line in Fig 5.

B. Cases with UV mixing

In the remainder of this section, we will extend this
analysis to the more general case of two SUð2Þ fermion
multiplets with mass mixing on the UV brane. We will
analyze the cases systematically for all possible choices of
fermion boundary conditions. It is interesting, at least
to us, that all of the cases that we will encounter can be
understood from the competition between attractive and
repulsive boundary conditions that we have seen already in
Sec. VI A. That is, this concept is robust with respect to
turning on fermion mixing on the UV boundary. In most
cases, the generalization is relatively straightforward,
although the last case considered in Sec. VI F has some
nontrivial features.
A given fermion multiplet has 24 possible boundary

conditions, so a pair of multiplets has 256 different
boundary conditions to analyze. However, many of these
are related by the symmetry þ ↔ −, c ↔ −c or by
interchange of the top and bottom components of theFIG. 4. The c-dependence of AAðcÞ and ARðcÞ.

FIG. 5. Phase diagram of the model of Sec. VI A in the c1 − c2
plane. In most values of c1 and c2, the minimum is at either
hθi ¼ 0 or hθi ¼ π=2. However, a non-trivial minimum is
realized in the middle white area. Note that along the line
c1 ¼ c2, hθi ¼ π=4.
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fermion multiplets. Also, as we showed at the end of
Sec. III, mass mixing on the UV brane has physical effect
only if the fermions mixed by the mass term have different
UV boundary conditions. The strategy of our analysis will
be to enumerate the different possible IR boundary con-
ditions and then to go through the 16 cases of UV boundary
conditions from the simplest to the most difficult, using
symmetries wherever possible to reduce cases to equiv-
alent ones.
The 16 possible IR boundary conditions can be reduced

to four cases. Case I includes the two cases

� þ
þ

� � þ
þ

�
� þ

þ

� � −
−

�
ð64Þ

and two more cases withþ ↔ −. Case II includes the eight
cases equivalent to

� þ
−

� � þ
þ

�
ð65Þ

Case III includes

� þ
−

� � −
þ

�
ð66Þ

and the equivalent case with þ ↔ −. Case IV includes

� þ
−

� � þ
−

�
ð67Þ

and the equivalent case with þ ↔ −.
For each case, we have 16 choices of UV boundary

conditions. We will also introduce mixing by angles α
between the two fermions in the top row and β between the
two fermions in the bottom row. In cases in which the two
multiplets have the same boundary conditions, such as

�þ
−

� �þ
−

�
ð68Þ

the mixing can be removed. In cases such as

�þ
−

� �−
−

�
and

�−
−

� �þ
−

�
ð69Þ

the mixing by β has no effect but the potential depends on
the mixing angle α. Actually, the two cases shown in (69)
are equivalent, since increasing α by π=2 interchanges the
two boundary conditions in the top line. So, for each case
listed above, we have a trivial situation in which the
potential is independent of α and β, situations in which

the potential only depends on one angle, and one case of
the greatest complexity in which the potential depends on
both angles.

C. Case I

In case I, the IR boundary conditions are the same for
both fermions in each multiplet. Then, by the argument at
the end of Sec. III, the Coleman-Weinberg potential is
independent of sW . For all of these cases,

VðsW; c1; c2Þ ¼ 0: ð70Þ

D. Case II

For case II, we begin from the IR boundary conditions in
(65) and add UV boundary conditions, for which there are
16 possibilities. These can be grouped into three sets.
In the first set (4 cases), the UV boundary conditions are

the same between the two multiplets, and the calculation of
the Coleman-Weinberg potential reduces to that of two
separate multiplets. For example, in

�þ þ
− −

� �þ þ
− þ

�
ð71Þ

the second multiplet gives zero and the combined potential
is obviously

VðsW; c1; c1Þ ¼ VAðsW; c1Þ: ð72Þ

All of these cases give a potential equal to either VAðsW; cÞ
or VRðsW; cÞ.
In the second set, with one pair of UV boundary

conditions identical, there are 8 cases, connected in pairs
by α → αþ π=2 or β → β þ π=2. An example is

�þ þ
þ −

� � − þ
þ þ

�
; ð73Þ

for which the potential depends on α but not on β. In
addition, the contribution to the potential from ψ2 has no
dependence on sW . We can thus reduce the unitary trans-
formation at the UV brane to

U ¼

0
BBB@

cα 0 −sα 0

0 1 0 0

sα 0 cα 0

0 0 0 1

1
CCCA
0
BBB@

cW −sW 0 0

sW cW 0 0

0 0 1 0

0 0 0 1

1
CCCA

¼

0
BBB@

cαcW −cαsW −sα 0

sW cW 0 0

sαcW −sαsW cα 0

0 0 0 1

1
CCCA; ð74Þ
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where cα ¼ cos α, sα ¼ sin α. The matrix C then has the
form

C¼

0
BBB@

cαcWG1
−− −cαsWG1

−þ −sαG2
−− 0

sWG1
−− cWG1

−þ 0 0

sαcWG1þ− −sαsWG1þþ cαG2þ− 0

0 0 0 G2
−−

1
CCCA: ð75Þ

It is easy to check that detU ¼ 1. The cancellations in that
calculation guide the simplification of detC. We find

detC ¼ ðc2αG1
−−G2þ− þ s2αG1þ−G

2
−−ÞG1

−þG2
−−

þ s2αs2WðG2
−−Þ2ðG1

−−G1þþ −G1
−þG1þ−Þ: ð76Þ

We can reduce the last term using the Wronskian identity
(15) and extract a factor independent of s2W . Then the
Coleman-Weinberg potential becomes

VðsW; c1; c2Þ ¼ −2
Z

d4p
ð2πÞ4 log

�
1 −

s2αs2W
p2z0zRG1

−þG1þ−

×
1

ðs2α þ c2αG1
−−G2þ−=G

2
−−G1þ−Þ

�
: ð77Þ

This is a purely repulsive potential with strength dimin-
ished by s2α. In fact, for c1 ¼ c2,

VðsW; c1; c2Þ ¼ VRðsαsW; c1Þ: ð78Þ

Away to guess the answer (78) is to note that, for sα ¼ 0,
there is no mixing and the potential can be seen by
inspection to be zero, while for sα ¼ 1, the UV boundary
conditionsþ and − in the top lines of (73) are reversed and
the potential is exactly that of the repulsive case in
Sec. VI A.
The other three similar cases can be analyzed in the same

way. They are either purely attractive or purely repulsive.
We quote the results for the potential in the case c1 ¼ c2:

�þ þ
− −

� �− þ
− þ

�
→ V ¼ VAðcαsW; c1Þ�þ þ

þ −

� �þ þ
− þ

�
→ V ¼ VAðsβsW; c1Þ� − þ

þ −

� �− þ
− þ

�
→ V ¼ VRðcβsW; c1Þ: ð79Þ

Finally, we come to the case in which the potential
depends on both mixing angles

�þ þ
þ −

� �− þ
− þ

�
: ð80Þ

For this case, UM depends on both α and β, but we can still
simplify UW as in (74), so that

U ¼

0
BBB@

cαcW −cαsW −sα 0

cβsW cβcW 0 −sβ
sαcW −sαsW cα 0

sβsW sβcW 0 cβ

1
CCCA: ð81Þ

The corresponding C matrix is

C ¼

0
BBB@

cαcWG1
−− −cαsWG1

−þ −sαG2
−− 0

cβsWG1
−− cβcWG1

−þ 0 −sβG2
−−

sαcWG1þ− −sαsWG1þþ cαG2þ− 0

sβsWG1þ− sβcWG1þþ 0 cβG2þ−

1
CCCA:

ð82Þ

Then

detC ¼ c2αc2βG
1
−−G1

−þðG2þ−Þ2 þ c2αs2βG
1
−−G1þþG2

−−G2þ−

þ s2αc2βG
1þ−G

1
−þG2

−−G2þ− þ s2αs2βG
1þ−G

1þþðG2
−−Þ2

− ðs2αc2β − s2βc
2
αÞs2WG2

−−G2þ−=p
2z0zR: ð83Þ

We then find

V ¼ −2
Z

d4p
ð2πÞ4 log

�
1 −

s−sþs2W
p2z0zRD

�
; ð84Þ

where

s− ¼ sinðα − βÞ sþ ¼ sinðαþ βÞ ð85Þ

and

D ¼ c2αc2βG
1
−−G1

−þ
G2þ−

G2
−−

þ c2αs2βG
1
−−G1þþ þ s2αc2βG

1þ−G
1
−þ

þ s2αs2βG
1þ−G

1þþ
G2

−−

G2þ−
ð86Þ

is a positive definite factor. This potential switches from
repulsive to attractive according to the sign of s−sþ. In the
repulsive case, the minimum is at sW ¼ 0, in the attractive
case, the minimum is at sW ¼ 1, so there is no interesting
competition here that allows Higgs vacuum expectation
value to be arbitrarily small.

E. Case III

For case III, we begin with the IR boundary conditions in
(66) and add UV boundary conditions, covering the same
16 possibilities as in the previous section.
As in the previous section, the first four cases, with equal

boundary conditions in the UV for both fermion multiplets,
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have potentials independent of α and β. The cases with all
þ and all − boundary conditions in the UV give potentials
equal to zero. The case

�þ þ
− −

� �þ −
− þ

�
ð87Þ

gives

VðsW; c1; c2Þ ¼ VAðsW; c1Þ þ VRðsW; c2Þ; ð88Þ

precisely the case with competition analyzed in Sec. VI A.
The last case

� − þ
þ −

� � − −
þ þ

�
ð89Þ

gives a similar result.
The next set of cases have a potential that depends on one

but not both mixing angles. The first example is

�þ þ
þ −

� � − −
þ þ

�
: ð90Þ

It is straightforward to work out the potential using the
methods already described. We have

C¼

0
BBB@
cαcWG1

−− −cαsWG1
−þ −sαcWG2

−þ sαsWG2
−−

sWG1
−− cWG1

−þ 0 0

sαcWG1þ− −sαsWG1þþ cαcWG2þþ −cαsWG2þ−

0 0 sWG2
−þ cWG2

−−

1
CCCA:

ð91Þ

Computing the determinant and assembling the Coleman-
Weinberg potential, we find

V¼−2
Z

d4p
ð2πÞ4 log

�
1þ s2W

p2z0zR

c2αG1
−−G1

−þ− s2αG2
−−G2

−þ
D

�
;

ð92Þ

where now

D ¼ c2αG1
−−G1

−þG2
−−G2þþ þ s2αG2

−−G2
−þG1

−þG1þ−: ð93Þ

This potential interpolates between the attractive case, for
sα ¼ 0, and the repulsive case, for sα ¼ 1. However, for
almost all values of sα, the potential is monotonic and so is
minimized at sW ¼ 0, for smaller values of sα or at sW ¼ 1,
for larger values of sα. To understand this better, examine
the first two derivatives of (92). These are

∂V
∂ðs2WÞ

				
0

¼−2
Z

d4p
ð2πÞ4

�
1

p2z0zR

c2αG1
−−G1

−þ−s2αG2
−−G2

−þ
D

�
∂2V

∂ðs2WÞ2
				
0

¼þ2

Z
d4p
ð2πÞ4

�
1

p2z0zR

c2αG1
−−G1

−þ−s2αG2
−−G2

−þ
D

�
2

:

ð94Þ

The s4W is always positive, but, when the s2W term vanishes,
the s4W term has almost the same zero and is doubly
suppressed. Thus, this case has a second order phase
transition where the vacuum expectation value of the
Higgs field goes to zero, but it occurs only in an extremely
fine-tuned interval of sα.
The other three cases in which V depends on one mixing

angle are related to this case by exchanging þ ↔ −
boundary conditions and exchanging the two fermion
multiplets, by interchanging top and bottom within each
representation and sending α → β þ π=2, or by both of
these operations. All four cases then have the behavior just
described.
The remaining cases with this choice of IR boundary

condition can all be described as cases of

�þ þ
þ −

� �− −
− þ

�
ð95Þ

with arbitrary values of the mixing angles α and β. We can
get a feeling for the result by considering the special cases:
(a) For α ¼ β ¼ 0, the value of the Coleman-Weinberg
potential is zero; (b) if α ¼ π=2, β ¼ 0, then both fermions
are in the repulsive case, (c) if α ¼ 0, β ¼ π=2,
both fermions are in the attractive case. Then there will
be no competition between the two representations, but the
minimum of the potential will swing back and forth
between sW ¼ 0 and sW ¼ 1 according to the values of
α and β.
The precise form of the potential can be worked out as in

the previous cases. The result is

V¼−2
Z

d4p
ð2πÞ4 log

�
1−

s2W
p2z0zR

s−sþðG1
−−G1þþþG2

−þG2þ−Þ
D

−
s2Wc

2
W

ðp2z0zRÞ2
s2−
D

��
; ð96Þ

with s−, sþ as in (85) and where now

D ¼ c2αc2βG
1
−−G1

−þG2þ−G
2þþ þ c2αs2βG

1
−−G1þþG2

−−G2þþ

þ s2αc2βG
1
−þG1þ−G

2
−þG2þ− þ s2αs2βG

1þ−G
1þþG2

−−G2
−þ:

ð97Þ

Note that, using (48),

G1
−−G1þþ þ G2

−þG2þ− ¼ G1
−þG1þ− þ G2

−−G2þþ; ð98Þ
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so (96) has the required symmetry between ψ1 and ψ2. This
potential has just the form described in the previous
paragraph, with zeros along lines where s−¼sinðα−βÞ¼0.

F. Case IV

For case IV, we begin with the IR boundary conditions in
(67) and add UV boundary conditions, covering the same
16 possibilities as in the previous section.
The cases with both UV boundary conditions equal is

again trivial, giving potentials equal to 0, 0, VAðsW; c1Þ þ
VAðsW; c2Þ, and VRðsW; c1Þ þ VRðsW; c2Þ in the four cases.
The first case with one mixing angle is

�þ þ
þ −

� � − þ
þ −

�
: ð99Þ

For α ¼ 0, we have zero for the potential from ψ1 and the
repulsive case VRðsW; c2Þ from ψ2. For α ¼ π=2, the
potential from ψ1 is in the repulsive case VRðsW; c1Þ
and the potential from ψ2 is zero. This suggests that the
potential is always repulsive, with its minimum at sW ¼ 0.
The precise form of the potential is

V¼−2
Z

d4p
ð2πÞ4 log

�
1−

s2W
p2z0zR

c2αG1
−−G1

−þþ s2αG2
−−G2

−þ
D

�
;

ð100Þ

with

D ¼ c2αG1
−−G1

−þG2
−þG2þ− þ s2αG1

−þG1þ−G
2
−−G2

−þ: ð101Þ

This expression is clearly positive definite, with a zero at
sW ¼ 0. The second case with one mixing angle

�þ þ
− −

� �− þ
− −

�
ð102Þ

is similarly always in the attractive case, with its minimum
at sW ¼ 1. The full expression for the potential is

V¼−2
Z

d4p
ð2πÞ4 log

�
1þ s2W

p2z0zR

c2αG2þ−G
2þþþs2αG1þ−G

1þþ
D

�
;

ð103Þ

with

D ¼ c2αG1
−−G1þþG2þ−G

2þþ þ s2αG1þ−G
1þþG2

−−G2þþ: ð104Þ

The remaining two cases are related to these by reversing
the top and bottom rows.

The final case, with dependence on two mixing angles, is

�þ þ
þ −

� �− þ
− −

�
: ð105Þ

The Coleman-Weinberg potential can be worked out as
above; the result is

V¼−2
Z

d4p
ð2πÞ4 log

�
1þ s2W

p2z0zR

s−sþðG1þþG1
−−−G2þþG2

−−Þ
D

þ s2Wc
2
W

ðp2z0zRÞ2
s2−
D

��
; ð106Þ

with s−, sþ as in (85) and where now

D ¼ c2αc2βG
1
−−G1

−þG2þ−G
2þþ þ c2αs2βG

1
−−G1þþG2þ−G

2
−þ

þ s2αc2βG
1þ−G

1
−þG2

−−G2þþ þ s2αs2βG
1þ−G

1þþG2
−−G2

−þ:

ð107Þ

The form of this expression shows explicit competition
between ψ1 and ψ2. Most of this can be understood by
considering limit points where the two fermions decouple
from one another: at α ¼ 0, β ¼ 0, both fermions have
potential equal to zero; at α ¼ π=2, β ¼ 0, ψ1 is in the
repulsive case while ψ2 is in the attractive case; at α ¼ 0,
β ¼ π=2, ψ1 is in the attractive case while ψ2 is in the
repulsive case.
To understand the full dynamics of this model, it is useful

to reduce it to the minimal region of the ðα; βÞ plane. The
potential (106) depends only on s−sþ and s2−. Then the
potential takes the same value under the translations

α→ αþ π; β→ β and α→ α; β→ βþ π ð108Þ

and under the reflection

α → −α; β → −β: ð109Þ

This implies that the fundamental region for ðα; βÞ is the
triangle

0 < α < π; 0 < β < π; αþ β < π: ð110Þ

Further, reflection across the line α − β ¼ 0, that is,

α ↔ β; ð111Þ

changes the sign of the competition term in (106) and so is
equivalent to interchanging ψ1 and ψ2. The full dynamics
of the model is then exhibited in the triangle shown in
Fig. 6, with ψ1 always in the repulsive case and ψ2 always
in the attractive case.
The phase diagram shown in Fig. 5 changes smoothly

with α and β across this diagram. Note that, while the
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coefficient of s2W in VðsWÞ can have either sign, the
coefficient of s4W is always positive. Then we will find a
line of second-order phase transitions where ∂V=∂ðs2WÞ is
zero. At the bottom center of the triangle, α ¼ π=2, β ¼ 0,
we have a case equivalent to that of Sec. VI A. There is a
curve of second-order phase transitions with its tip at
c1 ¼ 0, c2 ¼ 0.2997 (for z0=zR ¼ 0.01). Across the bottom
of the triangle, the critical value of c2 for c1 ¼ 0 increases
slowly from 0.2697 at α ¼ 0 to 0.2997 at α ¼ π=2 and back
to 0.2697 at α ¼ π.
The other two edges of the triangle have simple forms for

VðsWÞ. Along the line α ¼ β, VðsWÞ ¼ 0. Along the line
αþ β ¼ π, sþ ¼ 0 and so the potential takes the simple
attractive form

V ¼ −2
Z

d4p
ð2πÞ4 log

�
1þ s2Wc

2
W

ðp2z0zRÞ2
s2−
D

�
; ð112Þ

with minima at s2W ¼ c2W ¼ 1
2
. In accordance with this, the

critical value of c2 at c1 ¼ 0 varies along each horizontal
line with fixed β > 0, tending to 0 as the left-hand
boundary is approached and to ∞ as the right-hand
boundary is approached. The critical value at α ¼ π=2
remains close to 0.3 for all values of β.

VII. AN EXAMPLE WITH RELAXED
FINE-TUNING

We have now seen that the examples of the previous
section can all be understood in terms of the competition of
fermion multiplets with attractive and repulsive boundary
conditions. However, the only cases with a large v=f
hierarchy were those in which the values of the parameters
c1 and c2 were adjusted to be close to a line of second-order
phase transitions. In other words, the Coleman-Weinberg
potential that we have encountered so far is always strongly
attractive or repulsive. In most of the parameter space, the

value of v=f was not affected by the competition, and the
potential was minimized at sW ¼ 0 or at sW ¼ 1.
More quantitatively, among the terms in the potential

expansion (62), the quadratic term s2W almost always
dominates over the quartic term s4W and therefore the
overall sign of s2W simply determines the vacuum. For a
non-trivial minimum, the parameters c1 and c2 should be
fine-tuned so that the overall strength of s2W becomes
smaller than that of s4W . This implies that for a natural
explanation of a large v=f hierarchy, a weakly repulsive
fermion is required, which contributes to the Higgs
potential only at the quartic level without the quadratic
term.
Here is an example: Consider a fermion multiplet in the

triplet representation of SUð2Þ with boundary conditions

ψ3 ∼

0
B@

qþ
q0
q−

1
CA ∼

0
B@

þ −
− −
− þ

1
CA; ð113Þ

where ðqþ; q0; q−Þ are eigenstates of the generator t3. If the
Goldstone boson hA2

5i connected the two fermions qþ and
q−, the triplet would generate a repulsive potential.
However, the form of the generator is

t2 ¼ 1ffiffiffi
2

p

0
B@

0 −i 0

i 0 −i
0 i 0

1
CA; ð114Þ

and it only connects qþ ↔ q0 and q0 ↔ q−. Then the
Coleman-Weinberg potential must be flat in the t2 direc-
tion, at least in the leading order. The same applies to hA1

5i.
Indeed, the matrix UW acting on ψ3 has the form

UW ¼

0
B@

c2W −s2W=
ffiffiffi
2

p
s2W

s2W=
ffiffiffi
2

p
c2W −s2W=

ffiffiffi
2

p

s2W s2W=
ffiffiffi
2

p
c2W

1
CA; ð115Þ

where s2W ¼ sin 2θW . The Coleman-Weinberg potential
from this multiplet is

V3ðsW;cÞ¼−2
Z

d4p
ð2πÞ4 log

�
1−

s4W
p2z0zRG−þGþ−

�
: ð116Þ

This potential has no s2W term and is repulsive in quartic
order. Figure 7 shows the shape of the three potentials VA,
VR, V3 near sW ¼ 0, all for c ¼ 0. We can see V3 is indeed
only weakly repulsive.
To study the effect of the new triplet ψ3 on the phase

diagram, first consider a system with two fermion multip-
lets, an attractive doublet ψA and the triplet ψ3. Figure 8
shows the minimum hθi of the Coleman-Weinberg poten-
tial as a function of c1 with c3 ¼ 0 fixed. This theory is

FIG. 6. Fundamental region of the ðα; βÞ plane useful for
describing the phase diagram of the model (105).
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always in the broken phase sW > 0, as it must be, but for
c1 > 0.3 the large contribution to the quartic term from ψ3

multiplet pushes the minimum of the potential to small
values.
More generally, we can use the multiplet ψ3 to lower the

degree of fine-tuning needed to achieve a small value of
v=f in a system with competition between attractive and
repulsive fermion multiplets. Consider a model with ψA
and ψR fermions as in Sec. VI A, and add the multiplet ψ3.
The position of the line of phase transitions does not
change, since ψ3 contributes only quartic terms, but the
presence of the quartic term from ψ3 can expand the region
where v=f is small. In Fig. 9, we vary the parameter c3
from high values to c3 ¼ 0 and show the values of c1 and c2
for which hs2Wi ¼ 0.01, a value sought in realistic RS
models. The vertical axis is a measure of the fine-tuning
needed to achieve v=f ≪ 1.
It is interesting that the multiplet ψ3 includes a right-

handed zero mode. By coupling it weakly to other fermions
through boundary conditions at z0, we can give this fermion
a small mass without disrupting the Coleman-Weinberg
potential. An interesting possibility for a realistic model is
then to introduce right-handed quarks and leptons in the
weakly repulsive multiplets and connect them at the UV

boundary to the left-handed doublets. This will generate
fermion masses much smaller than the top quark mass
while simultaneously making a v=f hierarchy more natural.

VIII. CONCLUSIONS

In this paper, we reviewed the formalism for fermions
and gauge fields in the RS geometry and the potential for
fermion condensation. We presented a simple formula,
implementing ideas of Falkowski, for computing the
Coleman-Weinberg potential for the Higgs field. Using
this formula, we explored the idea of competition between
fermion multiplets with different boundary conditions and
presented strategies for achieving the hierarchy v=f ≪ 1
needed in realistic models.
We hope that these tools will be useful for the con-

struction of realistic RS models with bulk fermions and
gauge fields which could provide predictive models of
strongly coupled Higgs bosons. In a forthcoming paper, we
will apply the methods discussed here to an illustrative
models of electroweak symmetry breaking driven by top
quark condensation [8].
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APPENDIX A: BASIC FORMALISM
FOR FERMIONS IN RS

In this appendix, we present details of our formalism for
fermion fields in RS. We begin in Minkowski space.
Capital letters denote five-dimensional indices, taking
the values 0,1,2,3,5, with M;N;… for world indices and

FIG. 8. The minimum of the potential VAðsW; c1Þ þ
V3ðsW; c3 ¼ 0Þ, shown as a function of c1.

FIG. 9. Separation of c�2 from its critical value c2;critical on the
line of phase transition corresponding to hθi ¼ 0.1. These values
are shown as a function of c1, where the lowest curve has the ψ3

omitted (or c3 → ∞) and the highest curve has c3 ¼ 0.

FIG. 7. The shape of VA, VR, V3 near sW ¼ 0. All three
potentials are for c ¼ 0.

COMPETING FORCES IN FIVE-DIMENSIONAL FERMION … PHYSICAL REVIEW D 96, 115030 (2017)

115030-15



A;B;…, for tangent-space indices. Lower-case letters
denote four-dimensional indices. We use the metric (2).
After deriving the equations of motion, and after gauge
fixing in the case of vector bosons, we go to Euclidean
space by the continuation p0 → ip0, p2 → −p2.
The Dirac action in RS is

S ¼
Z

d4xdz
ffiffiffiffiffiffi
−g

p ðΨ̄½ieMA γADM −m�Ψ − K̄Ψ − Ψ̄KÞ;

ðA1Þ

where DM is the gravity- and gauge-covariant derivative
and eMA ¼ kzδMA for the metric (2). We denote the gauge-
covariant derivative as DM; then DM ¼ DM þ 1

2
ωM

ABΣAB.
The nonzero terms in the spin connection are

ωm
a5 ¼ −ωm

5a ¼ 1

z
δam: ðA2Þ

We divide the 4-component Diract field Ψ into two
2-component fields as in (4),

Ψ ¼
�
ψL

ψR

�
; ðA3Þ

using the basis of Dirac matrices

γa ¼
�

σa

σ̄a

�
and γ5 ¼ −iΓ≡−i

�−1
1

�
: ðA4Þ

The matrix Γ denotes the four-dimensional chirality. With
these conventions, the Dirac action takes the form

S ¼
Z

d4xdz
1

ðkzÞ4
�
ψ†
Liσ̄

mDmψL þ ψ†
Riσ

mDmψR

þ ψ†
L

�
D5 −

2

z
−
c
z

�
ψR þ ψ†

R

�
−D5 þ

2

z
−
c
z

�
ψL

�

− K̄Ψ − Ψ̄K
�
: ðA5Þ

Let

D ¼ D5 −
2þ c
z

; D̄ ¼ D5 −
2 − c
z

: ðA6Þ

Then the homogeneous equations of motion for Ψ are

1

ðkzÞ4
�

−D̄ iσmDm

iσ̄mDm D

��
ψL

ψR

�
¼ 0: ðA7Þ

In gauge-Higgs unification, we assume that the back-
ground gauge field has the form

Aa
M ¼ ð0; 0; 0; 0; Aa

5ðzÞÞ: ðA8Þ

In this case, we can Fourier analyze in the four extended
dimensions, so that iσ̄mDm → σ̄ · p, iσmDm → σ · p. Then
we see that these fields obey

ΔΨðp2ÞΨ≡ 1

ðkzÞ4
�

−D̄ σ · p

σ̄ · p D

��
ψL

ψR

�
¼ 0: ðA9Þ

The contribution of a fermion to the Coleman-Weinberg
potential is then

VΨ ¼ −
Z

d4p
ð2πÞ4 log detΔΨð−p2Þ: ðA10Þ

This is the precise expression for the detðΨÞ term in (10).
We can eliminate either ψL or ψR from (A9). Once this is

done, the remaining field obeys

ΔLðp2ÞψL ≡ ðp2 þ DD̄ÞψL ¼ 0

ΔRðp2ÞψR ≡ ðp2 þ D̄DÞψR ¼ 0: ðA11Þ

Up to possible contributions from zero modes, ΔLðp2Þ and
ΔRðp2Þ have the same spectrum. The operatorsΔLðp2Þ and
ΔRðp2Þ include no spin matrices and can be thought of as
applied to single-component fields. Then we can rewrite the
Coleman-Weinberg potential as

VΨ ¼ −2
Z

d4p
ð2πÞ4 log detΔLð−p2Þ

¼ −2
Z

d4p
ð2πÞ4 log detΔRð−p2Þ: ðA12Þ

The factor 2 counts the 2 spin degrees of freedom. This is
the more precise expression for the detðΨÞ term in (10).
For A5ðzÞ ¼ 0, the homogeneous equations (A11) are

solved by

ψL ∼ z5=2ðJcþ1=2ðpzÞ; Ycþ1=2ðpzÞÞ
ψR ∼ z5=2ðJc−1=2ðpzÞ; Yc−1=2ðpzÞÞ: ðA13Þ

Standard identities for Bessel functions imply that these
solutions are interchanged by D and D̄, when A5ðzÞ ¼ 0.
For example,

D̄ðz5=2Jcþ1=2ðpzÞÞ ¼ pðz5=2Jc−1=2ðpzÞÞ
Dðz5=2Jc−1=2ðpzÞÞ ¼ −pðz5=2Jcþ1=2ðpzÞÞ: ðA14Þ

To calculate the Coleman-Weinberg potential, we must
continue these equations to Euclidean space. The continu-
ation of (A9) is
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ΔΨΨ≡ 1

ðkzÞ4
�

−D̄ iσ · p

iσ̄ · p D

��
ψL

ψR

�
¼ 0; ðA15Þ

where now σ · p ¼ p0 þ iσ⃗ · p⃗, σ̄ · p ¼ p0 − iσ⃗ · p⃗. The
operators D, D̄ have the action on the G functions (12)

D̄zz5=2Gþβðz; z0Þ ¼ pz5=2G−βðz; z0Þ
Dzz5=2G−βðz; z0Þ ¼ −pz5=2Gþβðz; z0Þ: ðA16Þ

The field Ψ has four Green’s functions,

GLLðz; z0; pÞ ¼ hψLðp; zÞψ†
Rð−p; z0Þi

GLRðz; z0; pÞ ¼ hψLðp; zÞψ†
Lð−p; z0Þi

GRLðz; z0; pÞ ¼ hψRðp; zÞψ†
Rð−p; z0Þi

GRRðz; z0; pÞ ¼ hψRðp; zÞψ†
Lð−p; z0Þi ðA17Þ

which are interconnected through the equations

ΔΨGðz; z0; pÞ ¼ δðz − z0Þ1 ðA18Þ

and similar equations with operators applied to the right
and acting on z0. If the fermion field has multiple gauge
components ΨA, these equations become matrix equations.
For example, GAB

LL will have the form

GAB
LLðz;z0;pÞ¼p2zRk4ðzz0Þ52½AABGðAÞ

þ;−AR
ðz;zRÞGðBÞ

−;−BR
ðz0;zRÞ

−

(
δABARG

ðAÞ
þ;AR

ðz;zRÞGðAÞ
−;−AR

ðz0;zRÞ� z<z0

δABARG
ðAÞ
þ;−AR

ðz;zRÞGðAÞ
−;AR

ðz0;zRÞ� z>z0
:

ðA19Þ

In this equation, AR represents the boundary condition of
the field A at z ¼ zR. That is, AR ¼ þ if the field A has þ
boundary condition on IR brane, and AR ¼ − if otherwise.
AR ¼ � implies −AR ¼ ∓. In the second line, AR denotes a
factor �1 depending on the sign of AR. We can obtain GAB

LR,
GAB
RL, and GAB

RR, using (A18), the similar equation acting on
z0, and (A16). In particular, GAB

RRðz; z0Þ has the same form
with the first indices of the G functions reversed þ ↔ −
from (A19).
Because ψL and ψR are interconnected, it is not

consistent to place separate boundary conditions on
these fields. Instead, it is sufficient to place the boundary
conditions

þ∶ ψR ¼ 0 or − ∶ ψL ¼ 0 ðA20Þ

A zero mode in ψL requires ðþþÞ boundary conditions; a
zero mode in ψR requires ð−−Þ boundary conditions.
Note that the equations for L and R are interchanged by

the interchange of boundary conditions þ ↔ − and the

interchange D ↔ D̄, or equivalently, c ↔ −c. After these
two interchanges, the fermion field will have the same
functional determinant.

APPENDIX B: BASIC FORMALISM
FOR GAUGE FIELDS IN RS

In this appendix, we present details of our formalism for
gauge fields in RS. Conventions for the five-dimensional
space are as in Appendix A.
The gauge field action in RS is

S ¼
Z

d4xdz
� ffiffiffiffiffiffi

−g
p �

−
1

4
gMPgNQFa

MNF
a
PQ

�
− JMAM

�
:

ðB1Þ

In our formalism, the Higgs field is a background
gauge field, so we will quantize in the Feynman-
Randall-Schwartz background field gauge [17]. Expand

Aa
M → Aa

MðzÞ þAa
M; ðB2Þ

where, on the right, Aa
M is a fixed background field,

Aa
M ¼ ð0; 0; 0; 0; Aa

5ðzÞÞ; ðB3Þ

as in (A8), and Aa
M is a fluctuating field. Let AM ¼ Aa

Mt
a

and FMN ¼ Fa
MNt

a, where ta are the generators of the
gauge group, and let DM be the covariant derivative
containing the background field only. Then the linearized
form for the field strength is

FMN ¼ DMAN −DNAM: ðB4Þ

After inserting the metric (2) and performing some
integrations by parts, the linearized gauge action becomes

S ¼
Z

d4xdz

�
1

2

1

kz

�
AnDmDmAn −AmDnDmAn

−AnkzD5

1

kz
D5An −A5DmDmA5 þ 2A5DmD5Am

�

− J mAm þ J 5A5

�
: ðB5Þ

Here and in the following, raised and lowered indices are
contracted with the Lorentz metric ηmn. Following [17],
introduce the gauge-fixing term

SGF ¼
Z

d4xdz
1

ðkzÞ5

×

�
−

1

2ξ

�
ðkzÞ2DmAm − ξðkzÞ3D5

1

kz
A5

�
2
�
: ðB6Þ

Then
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Sþ SGF ¼
Z

d4xdz

�
1

2

1

kz

�
Am

�
ηmnD2 − ηmnkzD5

1

kz
D5

−DmDn

�
1 −

1

ξ

��
An

þA5

�
−D2 þ ξD5kzD5

1

kz

�
A5

�

− J mAm þ J 5A5

�
: ðB7Þ

The linearized ghost action is

Sghost ¼
Z

d4xdz

�
1

kz

�
c̄

�
−D2 þ ξkzD5

1

kz
D5

�
c

�

− C̄c − c̄C
�
: ðB8Þ

These formulae simplify for ξ ¼ 1. The homogeneous
equations for the gauge field components are

ΔGðp2ÞAmðz;pÞ≡ 1

kz

�
p2þ zD5

1

z
D5

�
Amðz;pÞ¼ 0

Δ5ðp2ÞA5ðz;pÞ≡ 1

kz

�
p2þD5zD5

1

z

�
A5ðz;pÞ¼ 0

Δcðp2Þcðz;pÞ≡ 1

kz

�
p2þ zD5

1

z
D5

�
cðz;pÞ¼ 0: ðB9Þ

Up to possible contributions from zero modes, ΔGðp2Þ,
Δ5ðp2Þ and Δcðp2Þ have the same spectrum for consistent
boundary conditions, as defined below. Then when we
integrate out the fields Am, A5, and ðc; c̄Þ we find

ðdetΔGÞ4=2ðdetΔ5Þ1=2ðdetΔcÞ−1 ¼ ðdetΔGÞ3=2: ðB10Þ

The contribution of a gauge boson to the Coleman-
Weinberg potential is then

VG ¼ þ 3

2

Z
d4p
ð2πÞ4 log detΔGð−p2Þ: ðB11Þ

This is the precise expression for the detðAÞ term in (10).
The operators ΔG, Δ5 are related to the operators ΔL, ΔR

defined in (A11) for fermion fields with c ¼ 1
2
, by

ΔL ¼ z3=2ðkzΔGÞ
1

z3=2
ΔR ¼ z3=2ðkzΔ5Þ

1

z3=2
: ðB12Þ

Thus, the calculation of the determinant of ΔG and Δ5 for
gauge fields are special cases of the determinant calculation
for fermion fields.
For A5ðzÞ ¼ 0, the homogeneous equations (B9) are

solved by

Am; c ∼ z1ðJ1ðpzÞ; Y1ðpzÞÞ
A5 ∼ z1ðJ0ðpzÞ; Y0ðpzÞÞ: ðB13Þ

Standard identities for Bessel functions imply that
these solutions are interchanged by the action of ∂5 and
kz∂5ð1=kzÞ.
The Green’s functions for gauge fields are

hAmðz; pÞAnðz0;−pÞi ¼ ηmnGðz; z0; pÞ
hA5ðz; pÞA5ðz0;−pÞi ¼ G5ðz; z0; pÞ

hcðz; pÞc̄ðz0;−pÞi ¼ Gcðz; z0; pÞ: ðB14Þ

These satisfy the differential equations in z∶

ΔGðp2ÞGðz; z0; pÞ ¼ δðz − z0Þ
Δ5ðp2ÞG5ðz; z0; pÞ ¼ δðz − z0Þ
Δcðp2ÞGcðz; z0; pÞ ¼ δðz − z0Þ: ðB15Þ

The solutions to the gauge field equations are
interrelated by

A5ðzÞ ¼ D5AmðzÞ AmðzÞ ¼ kzD5

1

kz
A5: ðB16Þ

These transformations interchange the boundary conditions:

þ∶ D5AmðzÞ ¼ 0 − ∶ AmðzÞ ¼ 0

−∶ A5ðzÞ ¼ 0 þ ∶ kzD5

�
1

kz
A5ðzÞ

�
¼ 0 ðB17Þ

If AmðzÞ is assigned the boundary condition þ (respec-
tively, −), then consistently A5ðzÞ must be assigned the
boundary condition − (respectively, þ).

APPENDIX C: PROOF OF
FALKOWSKI’S THEOREM

In this appendix, we provide a proof of Falkowski’s
Theorem (27) by explicit calculation of A5 tadpole
diagrams. In Appendixes A and B, we have obtained
the operators ΔΨ, ΔG, Δ5 and Δc from the quadratic
Lagrangian for fermion and gauge fields under the back-
ground field

Aa
M ¼ ð0; 0; 0; 0; Aa

5ðzÞÞ: ðC1Þ

Then, the effective potential from each field can be written
as the functional determinant of the corresponding operator.
In this derivation, we will turn on the gauge field Aa

5

along a fixed direction in the adjoint representation. Then
we will simplify by writing Aa

5t
a ¼ A5t. It will be important

to remember that, while the mixing matrix UM in (33) can
mix fermion fields in a more arbitrary way, the matrices t
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and UW can only connect fermions in the same gauge
representations, which must therefore have the same value
of c. (For gauge bosons, always c ¼ 1

2
.) If t is proportional

to the unit matrix, it generates a pure phase in UW . This
affects the determinant of C, but such a phase manifestly
cancels out of Eq. (22) and so has no effect on A. In the
proof of the theorem below, we can then assume that t
generates no overall phase,X

AB

tABδAB ¼ 0: ðC2Þ

Consider first the fermion case

VΨ ¼ −
Z

d4p
ð2πÞ4 log detΔΨ: ðC3Þ

where p is the 4d Euclidean momentum. Varying A5ðzÞ, we
find

δVΨ ¼ −
Z

d4p
ð2πÞ4 tr½Δ

−1
Ψ δΔΨ�

¼ −
Z

d4p
ð2πÞ4

Z
zR

z0

dztr

�
Gðz; zÞ 1

ðkzÞ4 ð−igΓδA5ðzÞtÞ
�

¼ −
Z

d4p
ð2πÞ4

Z
zR

z0

dzð−igδA5ðzÞÞ

× tr

�
1

ðkzÞ4 ð−GLLðz; zÞ þ GRRðz; zÞÞt
�
: ðC4Þ

We can obtain the Green’s function by gauging A5 away
to the UV boundary, as explained in Sec. III. The full
Green’s function is related to the Green’s function for
A5ðzÞ ¼ 0 by

Gðz; z0Þ ¼ exp

�
−ig

Z
zR

z
dz̄A5ðz̄Þt

�

× G0ðz; z0Þ exp
�
þig

Z
zR

z0
dz̄A5ðz̄Þt

�
: ðC5Þ

In our method of turning on A5, this field is essentially
Abelian, and the exponential factors cancel out for z ¼ z0.
Then we can use the expression of the Green’s function
from (A19) to evaluate (C4). The trace part within the
integrand becomes

T ¼ 1

ðkzÞ4 tr½ð−GLLðz; zÞ þ GRRðz; zÞÞt�

¼ 2p2zzR
X
A;B

tBAAABð−GðAÞ
þ;−AR

ðz; zRÞGðBÞ
−;−BR

ðz; zRÞ

þ GðAÞ
−;−AR

ðz; zRÞGðBÞ
þ;−BR

ðz; zRÞÞ: ðC6Þ

The factor 2 comes from the trace over spinor indices. Note
that the terms with δAB in GAB

LLðz; zÞ and GAB
RRðz; zÞ are

identical in the symmetric limit z → z0 and cancel each
other. Here and in the rest of this appendix, summation over
field indices A, B. etc., is always explicitly shown.
From (24), we have

CAC ¼ ðUMUWÞACGðCÞ
−A0;−CR

: ðC7Þ

Using (22) and (A19), we can formally solve for AAB,

AAB ¼
X
C;D

ðC−1ÞACðUMUWÞCDDRδ
DBGðDÞ

−C0;þBR
: ðC8Þ

In last line of (C6), the states A and B are connected by tBA.
Then these states have the same value of c, and so we can
use (48) to evaluate the expression in parentheses,

ð−GðAÞ
þ;−AR

ðz;zRÞGðBÞ
−;−BR

ðz;zRÞþGðAÞ
−;−AR

ðz;zRÞGðBÞ
þ;−BR

ðz;zRÞÞ

¼
8<
:
0 AR¼BR

−1=p2zzR AR¼þ;BR¼−
þ1=p2zzR AR¼−;BR¼þ

¼ðBRδAR;−BR
Þ=p2zzR ðC9Þ

Assembling the pieces,

T ¼2
X
A;B;C

ðC−1ÞACððUMUWÞCBBRG
ðBÞ
−C0;þBR

ÞtBAðBRδAR;−BR
Þ

¼2
X
A;B;C

ððC−1ÞACðUMUWÞCBGðBÞ
−C0;−AR

ÞtBAδAR;−BR
:

ðC10Þ

The two factors of BR cancel, and then we are very close to
the desired form.
There is one further issue: The sum in (C6) is taken only

over pairs ðA;BÞ such that AR ¼ −BR. We would like to
extend this to a sum over all pairs. To do this, use the
identity C−1C ¼ 1. Writing this out using (C7), we have

X
C

ðC−1ÞACðUMUWÞCBGðBÞ
−C0;−BR

¼ δAB: ðC11Þ

For ðA; BÞ such that AR ¼ BR, this has the same form as the
summand of (C10). For A ≠ B, (C11) is zero and we can
add these terms to (C10). For A ¼ B, for which necessarily
AR ¼ BR, the trace of this identity with tAB is δABtAB ¼ 0,
and so we can also add back those terms. Then there is no
change in (C10) if we extend the sum to all pairs ðA; BÞ.
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Finally, we find

δVΨ ¼ −2
Z

d4p
ð2πÞ4

X
A;B;C

ðC−1ÞACðUMUWÞCB

×

�
−ig

Z
dzδA5ðzÞt

�
BA
GðBÞ

−C0;−AR

¼ −2
Z

d4p
ð2πÞ4

X
A;B;C

C−1
ACδCCA

¼ −2
Z

d4p
ð2πÞ4 δ log detC: ðC12Þ

Integrating up from A5ðzÞ ¼ 0, we obtain the contribution
of a fermion to the Coleman-Weinberg potential,

VΨ ¼ −2
Z

d4p
ð2πÞ4 log detCðpÞ; ðC13Þ

up to an additive, A5-independent constant. This
completes the proof of Falkowski’s Theorem for the
fermion determinants.
In (B12), we pointed out that the evaluations of the gauge

boson determinants were special cases of the evaluations of
the fermion determinants with c ¼ 1

2
. Thus, this method of

evaluation holds also for the gauge boson determinants.

APPENDIX D: PROPERTIES OF THE
FERMIONIC COLEMAN-WEINBERG
POTENTIALS FOR SUð2Þ DOUBLETS

In this appendix, we discuss the expansion of the
canonical attractive and repulsive potentials (59) and
(61) for small values of sW .
The symmetry under reversal of boundary conditions

and the sign of c noted at the end of Appendix A implies
that

VAðsW;−cÞ¼VAðsW;cÞ VRðsW;−cÞ¼VRðsW;cÞ: ðD1Þ

So, in this appendix, we will restrict ourselves to c ≥ 0.
The repulsive case is more straightforward. The inte-

grand of (61) can be expanded under the integral sign.
Then,

VRðsW; cÞ ¼
1

4π2z4R

�
ARðcÞs2W þ 1

2
BRðcÞs4W þ � � �

�
; ðD2Þ

as in (62), where

ARðcÞ ¼
Z

∞

0

dpp3
z4R

p2z0zRG−þGþ−

BRðcÞ ¼
Z

∞

0

dpp3
z4R

ðp2z0zRG−þGþ−Þ2
: ðD3Þ

The functions G−þ, Gþ− increase exponentially with p
according to (50), and so the integrals are convergent in the
UV. In addition, these functions behave as p → 0 as

G−þGþ− ¼ 1

p2z0zR
ð1þOðpÞÞ; ðD4Þ

so the integrals are convergent in the IR. Also note that AR
and BR depend only on the ratio z0=zR, not on z0 or zR
individually. There is a weak dependence on z0=zR when
z0 ≪ zR, the case of interest to us.
For the representative case z0=zR ¼ 0.01, the values of

these coefficients at c ¼ 0 are

ARð0Þ ¼ 1.4078 BRð0Þ ¼ 0.2169; ðD5Þ

and the dependence on c is qualitatively described by

ARðcÞ
ARð0Þ

≈ exp½−2.9c2� BRðcÞ
BRð0Þ

≈ exp½−4.4c2�: ðD6Þ

For the attractive case, more care is necessary. The
functions G−−, Gþþ go to constants as p → 0. Let

G0 ¼ z0zRG−−ð0ÞGþþð0Þ: ðD7Þ

For c ¼ 0 and zR ≫ z0,G0 ≈ z2R. The leading coefficient in
VAðs2WÞ is the convergent integral

AAðcÞ ¼
Z

∞

0

dpp3
z4R

p2z0zRG−−Gþþ
: ðD8Þ

To evaluate the s4W terms, differentiate VA twice with
respect to s2W ,

∂2VA

∂ðs2WÞ2 ¼
Z

dpp3
z4R

ðp2z0zRG−−Gþþ þ s2WÞ2
ðD9Þ

and evaluate the integral by breaking it into two parts at a
value ϵ such that s2W ≪ ϵ2G0 ≪ 1. The integral for p < ϵ
can be evaluated directly. The integral for p > ϵ can be
evaluated by adding and subtracting a term that cancels the
infrared divergence. This gives

∂2VA

∂ðs2WÞ2 ¼
z4R
2

�
1

ðG0Þ2
�
log

1

s2W
− γ − 1

�

þ
Z

∞

0

dp2

p2

�
1

ðz0zRG−−GþþÞ2
−

1

ðG0Þ2
e−G0p2

��
:

ðD10Þ

Integrating back, we find
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VAðsW; cÞ ¼
1

4π2z4R

�
−AAðcÞs2W þ 1

2
BAðcÞs4W

þ 1

2
CAðcÞs4W log

1

s2W
þ � � �

�
; ðD11Þ

as in (62), where

AAðcÞ ¼
Z

∞

0

dpp3
z4R

p2z0zRG−−Gþþ

BAðcÞ ¼ z4R

�
1

ðG0Þ2
�
1

4
−
γ

2

�

þ
Z

∞

0

dp
p

�
1

ðz0zRG−−GþþÞ2
−

1

ðG0Þ2
e−G0p2

��

CAðcÞ ¼
z4R

2ðG0Þ2
ðD12Þ

These coefficients also have a weak dependence on z0=zR.
For the representative case z0=zR ¼ 0.01, the values of

these coefficients at c ¼ 0 are

AAð0Þ ¼ 1.8771 BAð0Þ ¼ 0.1958 CAð0Þ ¼ 0.5205;

ðD13Þ

and the dependence on c is qualitatively described by

AAðcÞ
AAð0Þ

≈ exp½−3.3c2� CAðcÞ
CAð0Þ

≈ exp½−6.7c2�; ðD14Þ

where BAðcÞ has a non-trivial dependence on c, with
maximum at BAð0.1981Þ ¼ 0.2029 and exponential sup-
pression for large c.
Again for z0=zR ¼ 0.01, the solution to the equation

AAðc1Þ ¼ ARð0Þ ðD15Þ

is

c1 ¼ 0.2997: ðD16Þ

This point gives the tip of the locus of second-order
transitions in Fig. 5. Along the line of phase transitions,
we can parametrize the total quartic term as a function
of c1. The coefficient of s4W log 1

s2W
term is simply Cðc1Þ ¼

CAðc1Þ. The coefficient of s4W is well approximated by a
linear equation,

Bðc1Þ ¼ 0.41 − 0.99ðc1 − 0.3Þ
for 0.3 < c1 < 0.6; ðD17Þ

and approaches zero for large c1.
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