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We consider the standard model extension to explore the anomalous magnetic dipole moment of the
muon. In the QED part of the theory for the CP and CPT-even Lorentz parameter cμν, all independent
electromagnetic form factors depend on a new scalar as p0:c:p. Therefore, the form factors, even in zero
momentum transfer, can be energy dependent. We examine the magnetic form factor to find such an energy
dependent up to the one loop level at the leading order of cμν. We show that at the high energy limit (but low

enough to satisfy p2=m2 ≪ 1) there is an enhancement on the muon anomalous magnetic moment. For the
first time, we find a bound on the cμν components for the muon as ½cTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZ�,
which is about 10−11 in a terrestrial experiment.
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I. INTRODUCTION

The recent measurement on the muon anomalous mag-
netic dipole moment (μ-AMDM) in the E-821 experiment
at Brookhaven National Laboratory [1,2] has been provided
a new place to study the standard model (SM) of particle
physics and new physics beyond the SM. In fact, the muon
g-2 Collaboration has found a discrepancy above the 3σ
level for the muon anomalous magnetic moment (aμ) with
the SM prediction as [3]

Δaμ ¼ ðaμÞEXP − ðaμÞSM ¼ ð26.1� 8.0Þ × 10−10: ð1Þ

In order to understand the difference between the SM
prediction and the experimental measurement, many works
in both theoretical [4] and experimental [5] aspects of μ-
AMDM have been done. If we believe that the theoretical
calculation within the standard model is complete, then this
deviation should reflect the incompleteness of the SM and
the presence of new physics beyond the standard model [6].
However, the new physics can be introduced by new
interactions and/or new particles. For instance, there are
many attempts to calculate aμ in the noncommutative
space-time geometry [7], extra dimensional models [8],
little Higgs model [9], minimal supersymmetric standard
model [10], and dark photon [11] in which the deviation in
aμ is explained by introducing a new particle through an
extra U(1) gauge boson beyond the ordinary photon. In this
study, we would like to consider the so-called standard
model extension (SME) which is a minimal extension of
the standard model with Lorentz symmetry violation terms.
Although, at low energy the Lorentz and CPT sym-

metries seem to be the exact symmetries of nature, the local

Lorentz invariance at the Planck scale can be broken
through quantum gravity. In fact, irrespective of the under-
lying fundamental theory, the SME Lagrangian as an
effective field theory has been introduced to containing
such symmetry violation in the standard model [12]. The
presence of Lorentz violating (LV) terms in the SME can be
induced by some appropriate Lorentz spontaneous sym-
metry breaking in a fundamental theory [13]. Therefore,
these terms respect the observer Lorentz symmetry while
the particle Lorentz symmetry is violated. Furthermore, the
Lorentz and CPT symmetries have some relations through
the CPT theorem in a local field theory [14], which also
makes SME a suitable framework for investigating the
violation of the CPT symmetry. However, many works
have been done on the theoretical and the phenomeno-
logical aspects of the SME [15] where terrestrial [16] and
astrophysical [17] systems have lead to restricted bounds
on the LV parameters [18]. In this article, we consider the
QED part of SME (QEDE) to examine the appropriate LV
parameters which can affect the AMDM of particles and
obtain the corresponding modified form factors in the
presence of the LV backgrounds.
In Sec. II, we introduce the QED part of SME. In Sec. III,

we examine μ-AMDM in the QEDE. For this purpose, the
electromagnetic current for a charged fermion can be
written in terms of appropriate form factors. Then in this
section, we obtain the magnetic form factor up to one loop
level at the leading order of cμν. Consequently, μ-AMDM is
derived in the sun-centered inertial frame to find some
bounds on the corresponding components of cμν. We give
some concluding remarks in Sec. IV.

II. QED PART OF SME

In the QED part of the SME charged fermions interact
with photons in the four dimensions as follows [12]:
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LQEDE ¼ ψ̄ðiΓμD
↔μ

−MÞψ ; ð2Þ

where Dμ is the usual covariant derivative in QED, ψ is a
fermion field with mass m, and

Γμ ¼ γμ þ cμνγν − dμνγνγ5 þ eμ þ ifμγ5 þ
1

2
gλνμσλν;

M ¼ mþ aμγμ − bμγμγ5 þ
1

2
Hμνσ

μν þ im5γ
5; ð3Þ

where the new parameters in Γμ and M are called LV
parameters. The momentum-like parameters which
appeared in Γμ are important at high energies while the
masslike parameters in M are more effective at the low
energies. In fact, at the high energy limit one can safely
ignore all the LV parameters in M. Therefore, for a CP
invariance quantity such as the magnetic dipole moment
(MDM) we can consider the only the CP-invariance
LV parameter in Γμ (i.e., cμν) to rewrite the effective
Lagrangian as follows:

LMDM ¼ i
2
ψ̄γμD

↔

μψ −mψ̄ψ þ i
2
cμνψ̄γμD

↔ν
ψ ; ð4Þ

which leads to a free field Dirac equation as

ðp −mþ cμνpνγμÞuðpÞ ¼ 0; ð5Þ

and a new Feynman rule for the fermion-photon vertex as

Γμ ¼ −ieðγμ þ cνμγνÞ; ð6Þ

where the Dirac gamma algebra at the same order is

fΓμ;Γνg ¼ fγμ; γνg þ 4cSμν: ð7Þ

In fact, the Dirac algebra depends only on the symmetric
part of cμν which leads to the independence of physical
quantities to the antisymmetric part of cμν. Meanwhile, for
a fermion propagator up to the first order of cμν one has

SFðpÞ¼
i

p−mþcμνpνγμ
;

¼ iðpþmÞ
p2−m2

−
2icSμνpνpμðpþmÞ

ðp2−m2Þ2 þ icμνpνγμ

p2−m2
; ð8Þ

and the Gordon identities at the leading order would modify
to

ūðp0ÞγμuðpÞ ¼ ūðp0Þ
�ðpþ p0Þμ

2m
þ i

σμνqν

2m

þ i
cανσμαqν

2m
þ cμνðpþ p0Þν

2m

�
uðpÞ; ð9Þ

and

ūðp0ÞγνcνμuðpÞ ¼ ūðp0Þ
�ðpþ p0Þν

2m
þ i

cνμσναqα
2m

�
uðpÞ;

ð10Þ

where p and p0 are momenta of the ingoing and outgoing
fermions, respectively. For example, in the nonrelativistic
limit the coupling of the current given in (9) with an
electromagnetic vector potential leads to a Hamiltonian as�

i
σμνqν

2m
þ i

cανσμαqν
2m

�
× ð−eAμÞ; ð11Þ

where, for a magnetic field in the z direction, the gauge
independent part of the Hamiltonian can be cast into

−ie
σ3q2A1

2m
þ ie

σ3q1A2

2m
− ie

c22σ3q2A1

2m
þ ie

c11σ3q1A2

2m
;

ð12Þ
or after a little algebra

e
1

4m

�
2þ 2

ðc11 − c22Þ
2

�
σ3B3: ð13Þ

The first term in (13) shows the Dirac value for the g-factor
while the rest terms are corrections in the QEDE at the
tree level.
In the next section, we will explore the Lorentz violation

effects on the g-factor up to the one loop. Meanwhile, the
other useful equations and identities at the first order of cμν
can be found in Appendix A.

III. μ-AMDM IN THE QEDE

In QED for each 1
2
-spin point particle, the g-factor is 2 or

a ¼ 0 at the tree level which is different from the
experimental value given in (1) for muon. In fact, for
the electron the QED loop corrections can completely
explain the current experimental value for the anomalous
magnetic moment of the electron ae. Meanwhile, the QED
alone cannot explain the experimental value of aμ and one
not only needs to consider the loop corrections through the
SM framework but also the contribution from new physics
beyond the standard model as

aμ ¼ aSMμ þ aNP
μ ; ð14Þ

where aNP
μ contains all effects on the anomalous magnetic

moment of muon from physics beyond SM and

aSMμ ¼ aQEDμ þ aWeak
μ þ ahadronμ ; ð15Þ

where the aQEDμ includes the Schwinger result [19,20] plus
corrections up to five loops, aWeak

μ shows the weak
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contribution with the loops containing the heavy bosons
W�, Z, and H and the hadronic part ahadronμ shows the
contribution of hadrons in the loop corrections [21]. For
instance, in (13) the effect of QEDE as a theory beyond SM
on aμ can be derived as

atreelevelμ ¼ g − 2

2
¼ ðc11 − c22Þ

2
; ð16Þ

where this correction at the tree level of QEDE depends on
the LV parameter cμν which leads to a bound on c11 − c22
as order of 10−10 when compared with aexpμ . In the next
subsections, we are going to explore the one loop correc-
tion on aμ within the QEDE framework to find aNP

μ in this
theory.

A. Electromagnetic form factors in QEDE

In QED, to study loop effects in the electromagnetic
interaction of fermionic point particles usually currents are
parametrized in terms of electromagnetic form factors.
In fact, the vector current is a Lorentz vector and can be
generally expanded in terms of all independent Lorentz
vectors in the system under consideration. However, cμν in
QEDE is a new Lorentz quantity under observer Lorentz
transformation which should be considered along with the
other Lorentz vectors such as γμ and the momenta of
fermions. Therefore, the most general form of the fermionic
current, which is allowed by the Lorentz invariance and
Ward identity, can be written as

hJemμ i ¼ ūðp0ÞF μðq2ÞuðpÞ; ð17Þ

where q ¼ p − p0 is the momentum transfer,

F μðq2Þ ¼ F1½γμ þ γνcνμ� þ F2

�
i
σμνqν

2m

�
þ ðFcÞμ; ð18Þ

and F1 and F2 are the electric charge and magnetic moment
form factors, respectively, and depend on the Lorentz
scalars such as q2, pμcμνp0

ν and so on. Meanwhile, the
new Lorentz quantity cμν leads to new form factors which
are collected in ðFcÞμ and can be defined as

ðFcÞμ ¼ Fc1 ½ðq:c:γÞqμ − q2cμαγα�
þ iFc2 ½cμασαν − cνασαμ�

qν
2m

; ð19Þ

in which the new form factors Fc1 and Fc2 depend only on
the scalar quantity q2 at the leading order. In fact, up to the
first order of cμν only the electric and magnetic form factors
F1 and F2 can have some dependence on the cμν through
the scalar quantity pμcμνp0

ν. Therefore, values of the
magnetic form factors can be enhanced at the higher
energies even in a zero momentum transfer. Before

proceeding, some comments are in order. The form factors
F1 and F2 can also depend on the other LV parameters if
one considers the whole Lagrangian LQEDE given in (2) and
(3). However, such dependencies on the LV parameters can
be categorized as follows:
(1) The LV parameters without any Lorentz indices. For

instance, m5 in (3) is a Lorentz scalar with a mass
dimension. In this case, the dimensionless form
factors can depend on m5=mf where mf is the
fermion mass that leads to a very small correction
without any enhancement.

(2) The LV parameters with one Lorentz index such as
aμ, bμ, and so on. The Lorentz scalars that are
formed with such parameters and momenta at the
lowest order contain only one momentum vector.
However, the space part of such scalars usually
averages out to zero. For instant, in the storage ring
of the E821 experiment, the rotating particle in the
XY plane has zero average momentum and therefore
the scalar such as aμpμ reduces to a0p0. In this case,
the dimensionless quantity is a0p0=m2

f, which is
also very small but enhances as p0=mf for p0 > mf.

(3) The LV parameters with two Lorentz indices. In this
case, there are three parameters where cμν and dμν
are dimensionless and Hμν has the dimension of
mass. Therefore, the dimensionless scalars are
cμνpμpν=m2

f, dμνp
μpν=m2

f, and
Hμν

mf
pμpν=m2

f where,

for the antisymmetric tensor Hμν and for an experi-

ment like E821, the value of Hμν

mf
pμpν=m2

f averages

out to zero for μ ≠ ν. Meanwhile, the CP-conserving
form factors F1 and F2 cannot depend on the LV
parameter dμν at the lowest order. In fact, in a loop
correction in the extended QED framework, to have
a CP-invariant combination of dμν, γ5 and the
momenta four-vectors, at least two vertices with
the LV parameter d are needed. Therefore, the d
dependence of the form factors are proportional to
ðdμνpμpν=m2

fÞ2 ≪ cμνpμpν=m2
f for c ∼ d.

(4) Finally, the LV parameter gλνμ with three Lorentz
indices leads to a Lorentz scalar as gλνμpλpνpμ=m3

f,
which results in a null value if one takes into account
the zero average of momenta and the traceless
property of gλνμ.

It should be noted that none of the LV parameters that are
introduced in (3) have any contribution on the leading order
corrections to themuon g-factor. In fact, these parameters, as
is shown in Ref. [22], affect the spin precession frequency
through a combination of the parameters Hμν and gλνμ that
couple directly to σμν and the parameters bμ and dμν.
Meanwhile, the LV parameters can directly correct the
muon g-factor via their effects on the form factors F1 and
F2. However, the largest effect at the high energy limit
comes from the cμν parameter, which is negligible in the
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experiments formeasuring the anomalousmagneticmoment
of fermions where p2=m2 ≪ 1. Therefore, in the following
sections, we examine the contribution of cμν on the g-factor
of muon at the high energy limit (p2=m2 ≫ 1).

B. The muon vertex function in the LV theory

The form factors given in (18) can be calculated
perturbatively in the context of QEDE. At the lowest order
of the LV parameter only F1 and F2 depend on the cμν
through pμcμνp0

ν as a Lorentz scalar. To explore such a
dependence, we consider the fermion-photon vertex in the
QEDE framework up to the one loop correction and the first
order of the c parameter. To this end, we consider (5), (6),
and (8) to draw six diagrams at the first order of c, as is
shown in Fig. 1. In fact, in the leading order, one can use (5)
to (8) to evaluate the one loop correction in the QEDE as

δΓμ ¼
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3
× ð−2ie2Þūðp0ÞfN 1 þ � � � þN 6guðpÞ

−
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4
× ð12ie2Þūðp0ÞfN 7 þN 8guðpÞ; ð20Þ

where x, y, and z are the Feynman parameters, Δ ¼
−xyq2 þ ð1 − zÞ2m2, uðpÞ is the ordinary free Dirac spinor
except in the N 1-term, and

N 1 ¼ γρðk0 þmÞγμðkþmÞγρ; ð21Þ

N 2 ¼ γρðk0 þmÞγμðkþmÞcαργα; ð22Þ

N 3 ¼ γρðk0 þmÞcαμγαðkþmÞγρ; ð23Þ

N 4 ¼ cαργαðk0 þmÞγμðkþmÞγρ; ð24Þ

N 5 ¼ γρðk0 þmÞγμcαβkβγαγρ; ð25Þ

N 6 ¼ γρcαβk0βγαγμðkþmÞγρ; ð26Þ

N 7 ¼ xγρðk0 þmÞγμcαβkαkβðkþmÞγρ; ð27Þ

N 8 ¼ yγρcαβk0αk0βðk0 þmÞγμðkþmÞγρ: ð28Þ

It should be noted that (20), besides the LV corrections at
the leading order, contains all corrections up to the one loop
level for the vertex function coming from the SM as well.
Therefore, one can consider (20) as

δΓμ ¼ δΓμ
SM þ δΓμ

LV; ð29Þ

where the first term is the usual SM correction and the last
one shows the LV contribution on the vertex function as are
given, respectively, in (B5) and (B6) in Appendix B. Now
one can compare (20) with (18) to find all form factors F1

to Fc as are derived in Appendix C in (C6), (C10) and
(C13), respectively. For instance, the magnetic form factor
besides the ordinary SM part has some contribution from
the LV part of QEDE as

FLV
2 ðq2Þ ¼

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4
× ð12ie2Þ½½ð1 − zÞz2Þðp:cs:pÞ�½−4zð1 − zÞm2��;

ð30Þ
which leads in the zero momentum transfer (q → 0) to

F2ð0Þ ¼
α

2π
−
11α

3π

�
p:cS:p
m2

�
; ð31Þ

where cS is the symmetric part of the LV parameter cμν
which is expected for a physical quantity. Regarding (31)
some comments are in order: (i) the result obtained in (31)

is valid only for p:cS:p
m2 ≪ 1. For instance, the energy limits

for pe ∼ 100 TeV, pμ ∼ 200 TeV and pτ ∼ 5 GeV for the
current bounds on ce ∼ 10−16, cμ ∼ 10−11, and cτ ∼ 10−8,
respectively. (ii) The LV correction which is obtained in
(31) as a leading order correction is valid up to any order
of α. It means that the leading order LV correction,
which depends on the momentum of fermion at the n-loop
order, is

FIG. 1. Vertex correction in the LV background. The bold circle
shows where the LV background affect the vertex. In (1) only the
wave functions have been changed. In (2)–(4) the vertices have
been corrected while the last two diagrams are devoted to the
corrections on the fermion propagators.
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F2ð0Þjn−loop ¼ FSM
2 jn−loop −

11α

3π

�
p:cS:p
m2

�
: ð32Þ

Therefore, the anomalous magnetic moment of a charged
fermion at the leading order of the LV parameter c has been
changed as

δaf ¼ F2ð0Þjn−loop − FSM
2 jn−loop ¼

11α

3π

p:cS:p
m2

; ð33Þ

where the momentum dependence of δaf in (33) would be
interesting in high energy processes through the magnetic
moment interaction. Nevertheless, in the experiments for
measuring the anomalous magnetic moment of fermions
where p2=m2 ≪ 1, the correction given in (33) can be
ignored. Meanwhile, in the storage ring where the muon is
rotating in the XY plane with p2=m2 ∼ 103 ≫ 1, the LV
correction seems to be valuable. To this end, we can
consider pz ¼ 0 and p̄x ¼ p̄y ¼ 0 to find

δaμ ¼ 8.5 × 10−3
�
p2
0c00
m2

μ
þ p2

0ðcxx þ cyyÞ
2m2

μ

�
; ð34Þ

where p0 ≫ mμ is the muon energy in the ring. In the
standard sun-centered inertial frame [23], the time and
location dependence of the quantity 2c00 þ cxx þ cyy in the
rotating frame can be obtained as follows:

2c00 þ cxx þ cyy

¼ 2cTT þ ð1− sin2χcos2ΩtÞcXX þ ð1− sin2χsin2ΩtÞcYY
þ sin2χcZZ −

1

2
sin2χ sin2ΩtðcXY þ cYXÞ

−
1

2
sin2χ cosΩtðcXZ þ cZXÞ

−
1

2
sin2χ sinΩtðcYZ þ cZYÞ; ð35Þ

where χ depends on the laboratory location. The time
dependence in (35) leads to a day-night asymmetry in the
muon anomalous magnetic moment. However, if such
time-dependent experimental data are not readily available,
one can average (35) on time which casts (34) into

δaμ ¼ 8.5 × 10−3
p2
0

2m2
μ

�
ð2cTT þ cXX þ cYYÞ

−
1

2
sin2χðcXX þ cYY − 2cZZÞ

�
: ð36Þ

For example, in the E821 experiment, the Brookhaven
National Laboratory location is in χ ¼ 49.1, p0 ∼ 3 GeV
and mμ ∼ 0.1 GeV [1] lead to

δaμ ¼ 7.65fcTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZg; ð37Þ

which can explain the difference between the SM predic-
tion and the experimental value for the muon anomalous
magnetic moment if

½cTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZ� ∼ 3.4 × 10−10: ð38Þ

Meanwhile, for the available precision on the E821 experi-
ment,

½cTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZ� < 8.5 × 10−11 ð39Þ

cannot affect the experimental value of μ-AMDM. For
other current experiments such as E989 [24] and J-PARC
(E-34) [25], bounds on the appropriate combination of the
LV parameters are given in table (I).

IV. CONCLUSION

We have considered QED part of SME to study the
fermion-photon vertex up to the one loop level at the leading
order of the LV parameter cμν which preserve the CP
symmetry. Although cμν violates the particle Lorentz sym-
metry, it is a Lorentz tensor under the observer Lorentz
transformation which leads to new form factors in the
electromagnetic current; see (18) and (19). Meanwhile,
all form factors depend on a new scalar as p0:c:p which
leads to a momentum dependence for the form factors even
at the zero momentum transfer; see (31). In fact, at the high
energy limit wherep2 ≫ m2, the LV corrections on the form
factors can be enhanced. Such a correction has some new
contribution on the anomalous magnetic moment of a
charged fermion as is given in (34). However, the earth
rotation, in addition to the location dependence, leads to a
day-night asymmetry in the anomalousmagneticmoment as
is obtained in (35). Furthermore, we have obtained the time

TABLE I. LV bounds from μ-AMDM in the muon storage ring experiments with energy p0 ¼ 3 GeV for E821 and E989 and
p0 ¼ 0.32 GeV for J-PARC.

Experiment Precision (ppb) χ LV Components Bound Deviation

E821 560 49.1 cTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZ 8.5 × 10−11 3.4 × 10−10

E989 140 48.2 cTT þ 0.36ðcXX þ cYYÞ þ 0.27cZZ 2.1 × 10−11 3.4 × 10−10

J-PARC 120 53.5 cTT þ 0.33ðcXX þ cYYÞ þ 0.32cZZ 1.8 × 10−9 3.4 × 10−8
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average of the obtained correction as is given in (36).
Consequently, we have calculated the LV correction on
the muon anomalous magnetic moment in the storage ring.
With the muon’s energy, about 3 GeV in the E821 experi-
ment, ½cTT þ 0.35ðcXX þ cYYÞ þ 0.28cZZ� ¼ 3.4 × 10−10

can explain the current deviation between the experimental
measurement and the theoretical prediction.Nevertheless, in
order not to have any observable effect on the μ-AMDM for
the E821 experiment with 560 ppb in precision, one finds a
bound as 8.5×10−11 on ½cTTþ0.35ðcXXþcYYÞ þ0.28cZZ�;
see (39). Since the obtained correction in (35) depends on the
location of the laboratory where the measurement has been
done, one can find different bounds on different combina-
tions of the cμν components as is shown in Table I. As the
table shows for the future experiments the higher precision
measurements lead to tighter bounds of about 2 × 10−11.
These are the first bounds on the cμν components from the
terrestrial experiment which are comparable with the astro-
physical systems [18].

APPENDIX A: MODIFIED GORDON
IDENTITY IN QEDE

Here, we introduce some useful identities in the QEDE
which are modified by the c parameter with respect to
QED. To this end, we begin with the Dirac equation in the
SME as

ðp −mþ cμνpνγμÞuðpÞ ¼ 0; ðA1Þ

or

ūðp0Þðp0 −mþ cμνp0νγμÞ ¼ 0; ðA2Þ

which can be cast into

p2uðpÞ ¼ ½m2 − 2ðp:cS:pÞ�uðpÞ; ðA3Þ

and

ūðp0Þp02 ¼ ūðp0Þ½m2 − 2ðp0:cS:p0Þ�; ðA4Þ

or

ūðp0Þq2uðpÞ ¼ ūðp0Þ½2m2 − 2ðp0:cS:p0Þ
− 2ðp:cS:pÞ − 2p:p0�uðpÞ: ðA5Þ

Meanwhile, we can introduce the modified Gordon identity
as follows:

ūðp0ÞðγμþcνμγνÞuðpÞ

¼ ūðp0Þ
�ðpþp0Þμ

2m
þ i

σμνqν

2m

þ i
cανσμαqνþ icαμσανqν

2m
þðcμνþcνμÞðpþp0Þν

2m

�
uðpÞ:

ðA6Þ

APPENDIX B: MAGNETIC FORM FACTOR
IN THE LV BACKGROUND cμν AT THE

ONE LOOP LEVEL

Here, we give the detailed calculation of the form factor
F2 up to one loop level at the leading order of cμν. The loop
correction in the QEDE can be divided into two parts as

δΓμ ¼ δΓμ
SM þ δΓμ

LV; ðB1Þ

where δΓμ
SM shows the ordinary correction while δΓμ

LV is
reserved for the LV part of the QEDE. To find each part,
first we focus on the N 7 þN 8 where the Feynman
parametrization is not as the usual one. By considering
k0 ¼ kþ q, the relations introduced in Appendix A and the
LV parameter cμν as a traceless tensor, one finds

δΓμ
N 7þN 8

¼
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4 ð12ie2ÞAðcÞūðp0Þ

×
�
γμ:½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2� þ i

σμνqν
2m

:½−4zð1 − zÞm2�
�
uðpÞ; ðB2Þ

where AðcÞ is a function of the cμν tensor as follows

AðcÞ ¼ ½xy2 þ yð1 − yÞ2�:ðq:cS:qÞ þ ½yz2�:ðq:c:pþ p:c:qÞþ½ð1 − zÞz2�:ðp:cS:pÞ: ðB3Þ

In contrast with δΓμ
N 7þN 8

, which contains only the LV contribution, δΓμ
N 1þ���þN 6

has some contribution from both

the ordinary SM and QEDE as
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δΓμ
N 1þ���þN 6

¼
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þūðp0Þ
�
γμ:½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2�

þ i
σμνqν
2m

:½−4zð1 − zÞm2�γμ:½−4zð1 − yÞðp0:cs:p0Þ − 4zð1 − xÞðp:cs:pÞ þ 8zðp0:cs:pÞ þ zð1þ zÞðp:cs:pÞ
þ ððx − yÞ2 − 1 − zÞðq:cs:qÞ� þ csμνγν:½−4l2 þ 4xyq2 − 4zðz − 1Þm2� þ cνμγν:½l2 − 2ð1 − xÞð1 − yÞq2

− 2ð1 − 4zþ z2Þm2� − icsμνσναqα þ icsανσμνqα

2m
:½8zð1 − zÞm2� − icνασμνqα þ icνμσναqα

2m
:½4zð1 − zÞm2�

þ cSαβγ
α:½pμpβð−2zð1 − zÞÞ þ 2qμqβððx − yÞ2 þ z − 1Þ�

�
uðpÞ: ðB4Þ

Therefore, comparing (B2) and (B4) with (B1) leads at the lowest order of cμν to

δΓμ
SM ¼

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þūðp0Þ

×

�
γμ:½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2� þ i

σμνqν
2m

:½−4zð1 − zÞm2�
�
uðpÞ; ðB5Þ

and

δΓμ
LV ¼

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4 ð12ie2ÞAðcÞūðp0Þ
�
γμ:½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2�

þ i
σμνqν
2m

:½−4zð1 − zÞm2�
�
uðpÞ þ

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þūðp0Þ
�
γμ:½−4zð1 − yÞðp0:cS:p0Þ

− 4zð1 − xÞðp:cS:pÞ þ 8zðp0:cS:pÞ þ zð1þ zÞðp:cS:pÞ þ ððx − yÞ2 − 1 − zÞðq:cS:qÞ�
þ cSμνγν:½−4l2 þ 4xyq2 − 4zðz − 1Þm2� þ cνμγν:½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2�

−
icSμνσναqα þ icSανσμνqα

2m
:½8zð1 − zÞm2� − icνασμνqα þ icνμσναqα

2m
:½4zð1 − zÞm2�

�
uðpÞ; ðB6Þ

where p ¼ pþ p0. It should be noted that (B5) gives the
exact contribution from the ordinary QED at the one loop
level. Meanwhile, (B6) indicates all contributions at the
lowest order of cμν to the ordinary form factors and the new
ones as well. For instance, the magnetic form factor, which
gives the anomalous magnetic dipole moment, is related to

the coefficient of i σμνq
ν

2m . In fact, for the magnetic form
factor, the finite part of the integrals in (B5) and (B6), at the
zero momentum transfer and in the MMS scheme, leads to

F2ð0Þ ¼
α

2π
−
11α

3π

�
p:cS:p
m2

�
: ðB7Þ

APPENDIX C: ELECTROMAGNETIC FORM
FACTORS IN THE LV BACKGROUND cμν

In this appendix, we examine all the form factors which
are introduced in (18) up to the one loop level. To this end,

we compare (B5) and (B6) with (18). For F1ðq2Þ, which is
the coefficient of γμ, one has

F1ðq2Þ ¼ FSM
1 ðq2Þ þ FLV

1 ðq2Þ; ðC1Þ

where

FSM
1 ðq2Þ ¼ 1þ

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3
× ð−2ie2Þ½l2 − 2q2ð1 − xÞð1 − yÞ
− 2ð1 − 4zþ z2Þm2Þ� ðC2Þ

is the ordinary electric form factor in the QED and
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FLV
1 ðq2Þ ¼

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þ½−4zð1 − yÞðp0:cS:p0Þ − 4zð1 − xÞðp:cS:pÞ þ 8zðp0:cS:pÞ

þ zð1þ zÞðp:cS:pÞ þ ððx − yÞ2 − 1 − zÞðq:cS:qÞ� þ
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4
× ð12ie2Þ½AðcÞ × ½l2 − 2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2�� ðC3Þ

is the correction from the LV part of the Lagrangian. However, by using an appropriate Wick rotation and performing the
momentum integrals, one can easily show that

FLV
1 ðq2Þ ¼ −

α

4π

Z
dxdydzδðxþ yþ z − 1Þ

Δ
½−4zð1 − yÞðp0:cS:p0Þ − 4zð1 − xÞðp:cS:pÞ þ 8zðp0:cS:pÞ

þ zð1þ zÞðp:cS:pÞ þ ððx − yÞ2 − 1 − zÞðq:cS:qÞ� þ α

π

Z
dxdydzδðxþ yþ z − 1Þ

Δ
½AðcÞ�

þ α

2π

Z
dxdydzδðxþ yþ z − 1Þ

Δ2
AðcÞ½ð−2ð1 − xÞð1 − yÞq2 − 2ð1 − 4zþ z2Þm2Þ� ðC4Þ

and

FLV
1 ð0Þ ¼ −

2α

π

ðp:cS:pÞ
m2

�
−1þ

Z
dz

1

1 − z

�
ðC5Þ

have not any UV divergences. Therefore, the UV divergence for the electric form factor in the QEDE can be fixed similar to
its counterpart in QED as follows:

δF1ðq2Þ → δF1ðq2Þ − δF1ð0Þ; ðC6Þ

where δF1 ¼ F1 − 1. In fact, the electric charge normalization in this way can be fixed at zero momentum transfer.
Meanwhile, the IR divergence that appeared in the both SM and LV parts can be canceled by considering the soft
bremsstrahlung amplitude (MSB

LV) in the presence of the LV background as follows:

iMSB
LV ¼ ūðp0ÞMSMuðpÞe

�
−
p:ε�

p:k
þ p0:ε�

p0:k

�
þ ūðp0ÞMSMuðpÞe

�ðp:c:pÞðp:ε�Þ
ðp:kÞ2 þ ðp0:c:p0Þðp0:ε�Þ

ðp0:kÞ2
�

þ ūðp0ÞMSMuðpÞe
�
−
ðp:c:ε�Þ
p:k

þ ðp0:c:ε�Þ
p0:k

�
þ ūðp0ÞMSMuðpÞe

�
−
cαβpβγαγμε�μ

p:k
þ cαβp0βγμγαε�μ

p0:k

�
; ðC7Þ

where the first term in (C7) cancels the IR divergence of FSM
1 ð0Þwhile the second term can fix the IR divergence of FLV

1 ð0Þ.
It should be noted that, in contrast with the ordinary QED, the magnetic form factor and also the other new form factors have
IR divergences as well. In fact, the appearance of additional IR terms in (C7) are necessary for canceling the IR divergences
in the other form factors. For the magnetic form factor F2, (B5) and (B6) lead to

F2ðq2Þ ¼ FSM
2 ðq2Þ þ

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ4 ð12ie2Þ½AðcÞ½−4zð1 − zÞm2��; ðC8Þ

where

FSM
2 ðq2Þ ¼

Z
d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þ × ½4zðz − 1Þm2�: ðC9Þ

Therefore, after performing the momentum integrals and at the zero momentum transfer one has

F2ð0Þ ¼
α

2π
þ 2α

π

ðp:cS:pÞ
m2

Z
dz

z3

1 − z
¼ α

2π
−
11α

3π

�
p:cS:p
m2

�
þ 2α

π

ðp:cS:pÞ
m2

Z
dz

1

1 − z
; ðC10Þ
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where the last term shows the IR divergence of F2ð0Þ. As is already mentioned, (C7) has additional IR terms which can
resolve the IR part of the other form factors in the LV case. For this purpose the last term of (C7) can be rewritten as

ūðp0ÞMSMuðpÞe
�ðε�:c:qÞ

2k
−
icαβε�μσαμðpþ p0Þβ

8k

�
; ðC11Þ

which can remove the IR divergence of F2 at the one loop level. Finally, Fc can be derived from (B5) and (B6) as follows:

Fcðq2Þ ¼
Z

d4l
ð2πÞ4

Z
dxdydzδðxþ yþ z − 1Þ

ðl2 − ΔÞ3 ð−2ie2Þ½−4l2 þ 4xyq2 þ 16zð1 − zÞm2�: ðC12Þ

Nevertheless, we do not have any physical interpretation for the form factors that appear in the Fc which can be cast into

Fcð0Þ ¼ −
2α

π
þ IR; ðC13Þ

at the zero momentum transfer.
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