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We consider the standard model extension to explore the anomalous magnetic dipole moment of the

muon. In the QED part of the theory for the CP and CPT-even Lorentz parameter ¢

- all independent

electromagnetic form factors depend on a new scalar as p’.c.p. Therefore, the form factors, even in zero

momentum transfer, can be energy dependent. We examine the magnetic form factor to find such an energy
dependent up to the one loop level at the leading order of ¢,,. We show that at the high energy limit (but low

enough to satisfy p?/m?> < 1) there is an enhancement on the muon anomalous magnetic moment. For the
first time, we find a bound on the c,, components for the muon as [c77 4 0.35(cxy + cyy) + 0.28¢27],

which is about 107! in a terrestrial experiment.

DOI: 10.1103/PhysRevD.96.115028

I. INTRODUCTION

The recent measurement on the muon anomalous mag-
netic dipole moment (u-AMDM) in the E-821 experiment
at Brookhaven National Laboratory [1,2] has been provided
a new place to study the standard model (SM) of particle
physics and new physics beyond the SM. In fact, the muon
g-2 Collaboration has found a discrepancy above the 3¢
level for the muon anomalous magnetic moment (a,,) with
the SM prediction as [3]

Aa, = (a,)exp — (a,)sp = (26.1 £8.0) x 10710, (1)

In order to understand the difference between the SM
prediction and the experimental measurement, many works
in both theoretical [4] and experimental [5] aspects of -
AMDM have been done. If we believe that the theoretical
calculation within the standard model is complete, then this
deviation should reflect the incompleteness of the SM and
the presence of new physics beyond the standard model [6].
However, the new physics can be introduced by new
interactions and/or new particles. For instance, there are
many attempts to calculate a, in the noncommutative
space-time geometry [7], extra dimensional models [8],
little Higgs model [9], minimal supersymmetric standard
model [10], and dark photon [11] in which the deviation in
a, is explained by introducing a new particle through an
extra U(1) gauge boson beyond the ordinary photon. In this
study, we would like to consider the so-called standard
model extension (SME) which is a minimal extension of
the standard model with Lorentz symmetry violation terms.

Although, at low energy the Lorentz and CPT sym-
metries seem to be the exact symmetries of nature, the local
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Lorentz invariance at the Planck scale can be broken
through quantum gravity. In fact, irrespective of the under-
lying fundamental theory, the SME Lagrangian as an
effective field theory has been introduced to containing
such symmetry violation in the standard model [12]. The
presence of Lorentz violating (LV) terms in the SME can be
induced by some appropriate Lorentz spontaneous sym-
metry breaking in a fundamental theory [13]. Therefore,
these terms respect the observer Lorentz symmetry while
the particle Lorentz symmetry is violated. Furthermore, the
Lorentz and CPT symmetries have some relations through
the CPT theorem in a local field theory [14], which also
makes SME a suitable framework for investigating the
violation of the CPT symmetry. However, many works
have been done on the theoretical and the phenomeno-
logical aspects of the SME [15] where terrestrial [16] and
astrophysical [17] systems have lead to restricted bounds
on the LV parameters [18]. In this article, we consider the
QED part of SME (QEDE) to examine the appropriate LV
parameters which can affect the AMDM of particles and
obtain the corresponding modified form factors in the
presence of the LV backgrounds.

In Sec. II, we introduce the QED part of SME. In Sec. III,
we examine y-AMDM in the QEDE. For this purpose, the
electromagnetic current for a charged fermion can be
written in terms of appropriate form factors. Then in this
section, we obtain the magnetic form factor up to one loop
level at the leading order of ¢, . Consequently, u-AMDM is
derived in the sun-centered inertial frame to find some
bounds on the corresponding components of ¢,,. We give
some concluding remarks in Sec. IV.

II. QED PART OF SME

In the QED part of the SME charged fermions interact
with photons in the four dimensions as follows [12]:

© 2017 American Physical Society
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where D# is the usual covariant derivative in QED, v is a
fermion field with mass m, and

. 1
Fﬂ =7u + C/wyy - dpu/ybys + €, + lfuJ/S + ig/lyygh’

1
M=m+a,y" - bﬂy"}/s + EHWGW + imsy°, (3)

where the new parameters in I', and M are called LV
parameters. The momentum-like parameters which
appeared in I', are important at high energies while the
masslike parameters in M are more effective at the low
energies. In fact, at the high energy limit one can safely
ignore all the LV parameters in M. Therefore, for a CP
invariance quantity such as the magnetic dipole moment
(MDM) we can consider the only the CP-invariance
LV parameter in I, (ie., c,) to rewrite the effective
Lagrangian as follows:

l' _ <~ _ l _ v
[MDM _ EWV”DMV/ — mpy + ECMVW}/”D v, (4)

which leads to a free field Dirac equation as
(7 —m+cupr*)u(p) =0, (5)
and a new Feynman rule for the fermion-photon vertex as
I = —ie(y" + c"y,), (6)
where the Dirac gamma algebra at the same order is

{FIUFD} = {7;47 71/} + 4C;§y‘ (7)

In fact, the Dirac algebra depends only on the symmetric
part of ¢,, which leads to the independence of physical
quantities to the antisymmetric part of ¢,,. Meanwhile, for
a fermion propagator up to the first order of c,, one has

i
_F_m +C;wpb}/ﬂ ’
_i(p+m) 2icp'pt(ptm) ic,pr”

= + . (8)
P —m’ (pz_mz)z PP —m’

and the Gordon identities at the leading order would modify
to

Sr(p)

(p+0r), N l.o',wq”
2m 2m

u(p')yu(p) = ﬁ(ﬂ’)(

0,40, Cu(p+p)
B 48 u(p), (9

ti 2m 2m
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and

a(p ) c,u(p) = a(p) ((p ) ic””"”"q“) u(p).

2m 2m

(10)

where p and p’ are momenta of the ingoing and outgoing
fermions, respectively. For example, in the nonrelativistic
limit the coupling of the current given in (9) with an
electromagnetic vector potential leads to a Hamiltonian as

ouwq” oy,
(i) <o

where, for a magnetic field in the z direction, the gauge
independent part of the Hamiltonian can be cast into

—ie 03¢24A, ie 03q14> je 003424, Tie 1103914,
2m 2m 2m 2m
(12)
or after a little algebra
1 cpp—c

The first term in (13) shows the Dirac value for the g-factor
while the rest terms are corrections in the QEDE at the
tree level.

In the next section, we will explore the Lorentz violation
effects on the g-factor up to the one loop. Meanwhile, the
other useful equations and identities at the first order of ¢,
can be found in Appendix A.

III. u-AMDM IN THE QEDE

In QED for each %—spin point particle, the g-factor is 2 or
a=0 at the tree level which is different from the
experimental value given in (1) for muon. In fact, for
the electron the QED loop corrections can completely
explain the current experimental value for the anomalous
magnetic moment of the electron a,. Meanwhile, the QED
alone cannot explain the experimental value of a, and one
not only needs to consider the loop corrections through the
SM framework but also the contribution from new physics
beyond the standard model as

a, = aM + al". (14)

where a)” contains all effects on the anomalous magnetic
moment of muon from physics beyond SM and
aEM — (II?ED + a’\lVeak + azadron’ (15)

where the aSED includes the Schwinger result [19,20] plus

corrections up to five loops, a}‘jveak shows the weak
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contribution with the loops containing the heavy bosons
W*, Z, and H and the hadronic part a,‘}adm“ shows the
contribution of hadrons in the loop corrections [21]. For
instance, in (13) the effect of QEDE as a theory beyond SM
on a, can be derived as

a

geelevel — g ; 2 o (cll - c22) (16)

= 3 ,
where this correction at the tree level of QEDE depends on
the LV parameter c,, which leads to a bound on ¢;; — ¢;,
as order of 10719 when compared with @,". In the next
subsections, we are going to explore the one loop correc-
tion on a, within the QEDE framework to find ) in this
theory.

A. Electromagnetic form factors in QEDE

In QED, to study loop effects in the electromagnetic
interaction of fermionic point particles usually currents are
parametrized in terms of electromagnetic form factors.
In fact, the vector current is a Lorentz vector and can be
generally expanded in terms of all independent Lorentz
vectors in the system under consideration. However, ¢, in
QEDE is a new Lorentz quantity under observer Lorentz
transformation which should be considered along with the
other Lorentz vectors such as y, and the momenta of
fermions. Therefore, the most general form of the fermionic
current, which is allowed by the Lorentz invariance and
Ward identity, can be written as

(i) = a(p") Fu(q*)u(p). (17)
where ¢ = p — p’ is the momentum transfer,

2 v 'Gﬂyqu
Fﬂ(q ):F1[7u+ycw]+F2 l m

|+, a9

and F'| and F, are the electric charge and magnetic moment
form factors, respectively, and depend on the Lorentz
scalars such as g2, pucp, and so on. Meanwhile, the
new Lorentz quantity c,, leads to new form factors which
are collected in (F.), and can be defined as

(Fo), = Fel(g-cr)q, — a*cuar”]

+ iFCz [Cuaaw - Cw{da;t] ;_;1 ’ (19)
in which the new form factors ¥ and F., depend only on
the scalar quantity ¢ at the leading order. In fact, up to the
first order of ¢, only the electric and magnetic form factors
F, and F, can have some dependence on the ¢, through
the scalar quantity p,c*p,. Therefore, values of the
magnetic form factors can be enhanced at the higher
energies even in a zero momentum transfer. Before
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proceeding, some comments are in order. The form factors
F| and F, can also depend on the other LV parameters if
one considers the whole Lagrangian £L2PE given in (2) and
(3). However, such dependencies on the LV parameters can
be categorized as follows:

(1) The LV parameters without any Lorentz indices. For
instance, ms in (3) is a Lorentz scalar with a mass
dimension. In this case, the dimensionless form
factors can depend on ms/m; where m; is the
fermion mass that leads to a very small correction
without any enhancement.

(2) The LV parameters with one Lorentz index such as
a,, b,, and so on. The Lorentz scalars that are
formed with such parameters and momenta at the
lowest order contain only one momentum vector.
However, the space part of such scalars usually
averages out to zero. For instant, in the storage ring
of the E821 experiment, the rotating particle in the
XY plane has zero average momentum and therefore
the scalar such as a, p* reduces to agp,. In this case,
the dimensionless quantity is agpo/ mjzc which is
also very small but enhances as po/m for py > my.

(3) The LV parameters with two Lorentz indices. In this
case, there are three parameters where ¢, and d,,
are dimensionless and H,, has the dimension of
mass. Therefore, the dimensionless scalars are
CuwP¥ p¥/m3, d,p*p*/m7, and Hm"f pp*/m7 where,

for the antisymmetric tensor H,, and for an experi-

ment like E821, the value of % p¥ p*/m7 averages
out to zero for 4 # v. Meanwhile, the CP-conserving
form factors F; and F, cannot depend on the LV
parameter d,,, at the lowest order. In fact, in a loop
correction in the extended QED framework, to have
a CP-invariant combination of d,, ys and the
momenta four-vectors, at least two vertices with
the LV parameter d are needed. Therefore, the d
dependence of the form factors are proportional to
(d;wp"p”/mj%)2 < clwp”p”/mjzc for ¢ ~d.
(4) Finally, the LV parameter g,,, with three Lorentz
indices leads to a Lorentz scalar as g,,,,p*p* p*/m3,

which results in a null value if one takes into account
the zero average of momenta and the traceless
property of g;,,.

It should be noted that none of the LV parameters that are
introduced in (3) have any contribution on the leading order
corrections to the muon g-factor. In fact, these parameters, as
is shown in Ref. [22], affect the spin precession frequency
through a combination of the parameters H,, and g,,,, that
couple directly to ¢ and the parameters b, and d,,.
Meanwhile, the LV parameters can directly correct the
muon g-factor via their effects on the form factors F; and
F,. However, the largest effect at the high energy limit
comes from the c,, parameter, which is negligible in the
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experiments for measuring the anomalous magnetic moment
of fermions where p?/m? < 1. Therefore, in the following
sections, we examine the contribution of ¢, on the g-factor
of muon at the high energy limit (p?/m? > 1).

B. The muon vertex function in the LV theory

The form factors given in (18) can be calculated
perturbatively in the context of QEDE. At the lowest order
of the LV parameter only F; and F, depend on the c,,
through p,c*p; as a Lorentz scalar. To explore such a
dependence, we consider the fermion-photon vertex in the
QEDE framework up to the one loop correction and the first
order of the ¢ parameter. To this end, we consider (5), (6),
and (8) to draw six diagrams at the first order of ¢, as is
shown in Fig. 1. In fact, in the leading order, one can use (5)
to (8) to evaluate the one loop correction in the QEDE as

o [ d'l [dxdydzs(x+y+z-1)
ort = / (27)* / (- A)
x (=2ie*)a(p {N1 + -+ Ng}u(p)

d*l [ dxdydzs(x +y+z-1)
- / (27)* / (- Ay

x (12ie*)a(p"){N7 + N}u(p). (20)

where x, y, and z are the Feynman parameters, A =
—xyq®> + (1 — z)?>m?, u(p) is the ordinary free Dirac spinor
except in the N/'|-term, and

(6),(8)

FIG. 1. Vertex correction in the LV background. The bold circle
shows where the LV background affect the vertex. In (1) only the
wave functions have been changed. In (2)—(4) the vertices have
been corrected while the last two diagrams are devoted to the
corrections on the fermion propagators.
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Ni=7,(K +m)y"(K+m)y”, (21)
Ny =y,(K +m)" (K +m)c?y,, (22)
N3 =7,k +m)c™y (K+m)y’, (23)
Ny = copr® (K + m)y" (K +m)y”, (24)
Ns =1,(K + m)y'c sk ry’, (25)
N = 1,capkPry" (K + m)y?, (26)

N7 = xy,(K + m)y*c sk, (K + m)y’, (27)
N = y1,Capk/“KP(K + m)y* (K +m)y?.  (28)

It should be noted that (20), besides the LV corrections at
the leading order, contains all corrections up to the one loop
level for the vertex function coming from the SM as well.
Therefore, one can consider (20) as

ST = 8Ty, + 6T . (29)

where the first term is the usual SM correction and the last
one shows the LV contribution on the vertex function as are
given, respectively, in (B5) and (B6) in Appendix B. Now
one can compare (20) with (18) to find all form factors F;
to F. as are derived in Appendix C in (C6), (C10) and
(C13), respectively. For instance, the magnetic form factor
besides the ordinary SM part has some contribution from
the LV part of QEDE as

4 X X —
FLY(g?) = (§ﬂ§4/d dydzfl(2 j—Ay)j-Z 1)
x (12ie2)[[(1 = 2)22)(p.c*.p)][~4z(1 — 2)m?]),

(30)

which leads in the zero momentum transfer (¢ — 0) to

a lla(p.cS.p
R v L] M CY

where ¢’ is the symmetric part of the LV parameter Cuw
which is expected for a physical quantity. Regarding (31)
some comments are in order: (i) the result obtained in (31)

is valid only for £ P « 1. For instance, the energy limits

mZ

for p, ~ 100 TeV, p, ~200 TeV and p, ~5 GeV for the
current bounds on ¢, ~107'¢, ¢, ~107"", and ¢, ~ 1078,
respectively. (ii) The LV correction which is obtained in
(31) as a leading order correction is valid up to any order
of a. It means that the leading order LV correction,
which depends on the momentum of fermion at the n-loop
order, is
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lla (p.cS.p
:Fngn—loop_g{ m2 } (32)

F5(0)

|n—loop

Therefore, the anomalous magnetic moment of a charged
fermion at the leading order of the LV parameter ¢ has been
changed as

_ll_ap.cs.p

n—loop 3 7

6le = Fz(o) 7 "

-

(33)

|n—100p

where the momentum dependence of §a; in (33) would be
interesting in high energy processes through the magnetic
moment interaction. Nevertheless, in the experiments for
measuring the anomalous magnetic moment of fermions
where p?/m? < 1, the correction given in (33) can be
ignored. Meanwhile, in the storage ring where the muon is
rotating in the XY plane with p?/m? ~ 103 > 1, the LV
correction seems to be valuable. To this end, we can
consider p, =0 and p, = p, =0 to find

2 2m2

2 2
ot Gy
5a, = 8.5 x 10—3{p°C°° L hle C”>}, (34)
my, u

where py > m, is the muon energy in the ring. In the
standard sun-centered inertial frame [23], the time and
location dependence of the quantity 2¢qy + ¢y, + ¢y, in the
rotating frame can be obtained as follows:

2COO + Cyx + ny
= 2crr + (1 = sin?ycos?Qt)cyx + (1 — sinysin?Qt)cyy
1
+sin’ycz, — 5 sin?y sin 2Q¢(cyy + cyx)
1
-3 sin2y cos Qt(cxz + ¢zx)

1
—Esin 2y sinQt(cyy + czy), (35)

where y depends on the laboratory location. The time
dependence in (35) leads to a day-night asymmetry in the
muon anomalous magnetic moment. However, if such
time-dependent experimental data are not readily available,
one can average (35) on time which casts (34) into

PHYSICAL REVIEW D 96, 115028 (2017)
p2
561” =8.5x 10_3—02 |:(2CTT -+ Cxx + ny)

2my,

.
- ESIHZI(CXX + Cyy — 2022)] . (36)

For example, in the E821 experiment, the Brookhaven
National Laboratory location is in y = 49.1, py, ~3 GeV
and m, ~0.1 GeV [1] lead to

5aﬂ = 7.65{CTT + O.SS(CXX + ny) + 0.286‘22}, (37)

which can explain the difference between the SM predic-
tion and the experimental value for the muon anomalous
magnetic moment if

[CTT =+ 0.35(6')()( + ny) —+ 0.286’22} ~34x 10_10. (38)

Meanwhile, for the available precision on the E821 experi-
ment,

[CTT + 0.35(CXX + ny) + 0.286'22} < 85 X 10_11 (39)

cannot affect the experimental value of y-AMDM. For
other current experiments such as E989 [24] and J-PARC
(E-34) [25], bounds on the appropriate combination of the
LV parameters are given in table (I).

IV. CONCLUSION

We have considered QED part of SME to study the
fermion-photon vertex up to the one loop level at the leading
order of the LV parameter c,, which preserve the CP
symmetry. Although c,, violates the particle Lorentz sym-
metry, it is a Lorentz tensor under the observer Lorentz
transformation which leads to new form factors in the
electromagnetic current; see (18) and (19). Meanwhile,
all form factors depend on a new scalar as p’.c.p which
leads to a momentum dependence for the form factors even
at the zero momentum transfer; see (31). In fact, at the high
energy limit where p? > m?, the LV corrections on the form
factors can be enhanced. Such a correction has some new
contribution on the anomalous magnetic moment of a
charged fermion as is given in (34). However, the earth
rotation, in addition to the location dependence, leads to a
day-night asymmetry in the anomalous magnetic moment as
is obtained in (35). Furthermore, we have obtained the time

TABLE I. LV bounds from x-AMDM in the muon storage ring experiments with energy p, = 3 GeV for E821 and E989 and
po = 0.32 GeV for J-PARC.

Experiment Precision (ppb) X LV Components Bound Deviation

E821 560 49.1 crr +0.35(cxy + cyy) +0.28¢,, 8.5 x 107! 3.4 x 10710
E989 140 48.2 crr +0.36(cxy + cyy) +0.27¢,, 2.1x 1071 3.4 x 10710
J-PARC 120 53.5 crr +0.33(cxy + cyy) +0.32¢,, 1.8 x107° 3.4 x1078
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average of the obtained correction as is given in (36).
Consequently, we have calculated the LV correction on
the muon anomalous magnetic moment in the storage ring.
With the muon’s energy, about 3 GeV in the E821 experi-
ment, [cyr + 0.35(cxx + cyy) +0.28¢4,] = 3.4 x 10710
can explain the current deviation between the experimental
measurement and the theoretical prediction. Nevertheless, in
order not to have any observable effect on the u-AMDM for
the E821 experiment with 560 ppb in precision, one finds a
bound as 8.5 x 107" on [c;74+0.35(cxx +cyy) +0.28¢,,];
see (39). Since the obtained correction in (35) depends on the
location of the laboratory where the measurement has been
done, one can find different bounds on different combina-
tions of the ¢, components as is shown in Table I. As the
table shows for the future experiments the higher precision
measurements lead to tighter bounds of about 2 x 107!,
These are the first bounds on the ¢, components from the
terrestrial experiment which are comparable with the astro-
physical systems [18].

APPENDIX A: MODIFIED GORDON
IDENTITY IN QEDE

Here, we introduce some useful identities in the QEDE
which are modified by the ¢ parameter with respect to
QED. To this end, we begin with the Dirac equation in the
SME as

(7= m+cup'r*)u(p) =0, (A1)
or
a(p")(p' —m+c,p"r') =0, (A2)
which can be cast into
p*u(p) = [m* = 2(p.c*.p)lu(p), (A3)

5Fﬁ/7+/\/8 = / (27[)4 (12 — A)4

{0 =200 = )1 =) =201 =zt 2] 41 2z = o ),

where A(c) is a function of the c,, tensor as follows

Ale) = [xy* +y(1 = y)*.(g.c5.q) + [yz

In contrast with o4

the ordinary SM and QEDE as

d*l / dxdydzé(x+y+z—1)

2.(g.c.p + p.c.q)+[(1 = 2)z%].(p.c5.p).

. . o u
NN which contains only the LV contribution, 5FN1 N

PHYSICAL REVIEW D 96, 115028 (2017)

and
a(p")p? =a(p)m?* =2(p'.c>.p)l,  (A4)
or
a(p")q*u(p) = u(p')2m* = 2(p'.c%.p)
=2(p.c®.p) =2p.p'lu(p). (AS)

Meanwhile, we can introduce the modified Gordon identity
as follows:

a(p")(yu+ ey’ )ulp)
( ,) ((p+p )/4+l.6;qu

=u

2m 2m

6,44, +1Co,0* cte, +p)Y
1Oty iy (Gt )P+ P) u(p).
2m 2m

(A6)

APPENDIX B: MAGNETIC FORM FACTOR
IN THE LV BACKGROUND ¢, AT THE
ONE LOOP LEVEL

Here, we give the detailed calculation of the form factor
F, up to one loop level at the leading order of ¢, . The loop
correction in the QEDE can be divided into two parts as

ST = 8y + 1, (B1)
where 6Iy; shows the ordinary correction while I, is
reserved for the LV part of the QEDE. To find each part,
first we focus on the A7 + ANy where the Feynman
parametrization is not as the usual one. By considering

k' = k + ¢, the relations introduced in Appendix A and the

LV parameter c,, as a traceless tensor, one finds

(12ie?) A(c)a(p")

(B2)

(B3)

has some contribution from both
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- [ dY [dxdydzS(x+y—+z—1)
NitNe = [ (27)* (> = A)

.0'"q,
+1i m

PHYSICAL REVIEW D 96, 115028 (2017)

(—21'62)51(17’){)/”.[l2 —2(1 =x)(1 = y)g* = 2(1 — 4z + 2*)m?]

[=4z(1 = 2)m?y*.[=4z(1 = y)(p'.c*.p') = 4z(1 = x)(p.c*.p) + 8z(p'.c*.p) + z(1 + z)(p.c’.p)

+((x=y)2 = 1=2)(q.c’.q)] + ¢y, [-4 + dxyq® — 4z(z — 1)m?] + ¢y, [I> = 2(1 = x)(1 — y)q?

_iCM0,,q" + i3, 0" "

-2(1 =4z + >)m?] -

oS P (<221 = 2)) + 24 (= ) 2 1)]}u<p>.

[82(1 = z)m?]

g a ) o
_ic,q0"q" + ic'0,4q
2m

[4z(1 = 2)m?]

(B4)

Therefore, comparing (B2) and (B4) with (B1) leads at the lowest order of ¢, to

e / d*l /dxdydzé(x +y+z-1)
M) @a)t (2 - a)

x {mﬂ =21 = )1 =) =21 = 4z )] + i 2 [az(1 - z>m2]}u<p>,

and

(=2ie?)a(p’)

(BS)

m

o :/(‘m /dXdydzé(x+y+Z_1)(12ie2)A(c)ﬁ(p’){y”.[12—2(1—x)(l—y)q2—2(1—4z+zz)m2]

27)° (Z—A)

+ i%.[—%(l — z)mz]}u(p) + / 2n)

d*l / dxdydzs(x +y+z—1)

(Z—A)p (—2i62)ﬁ(p’){yﬂ.[—4z(1 -y)(p'.c5.p')

—4z(1 —x)(p.c5.p) + 8z(p'.c5.p) + z(1 + 2)(p.c®.p) + (x — y)* = 1 = 2)(¢q.c5.q)]
+ Sy, =41 + dxyg? — 4z(z = D)m?] + ¢y, [P = 2(1 = x)(1 — y)g? = 2(1 — 4z + 22)m?]

P ASuv a P LS v ,Q
_ ict Oyaq + lcavaﬂ q

; U 40 7 AU a
_ lcl/(laﬂ q + Ic ﬂal/(lq

pp [8z(1 = z)m?]

where p = p + p’. It should be noted that (B5) gives the
exact contribution from the ordinary QED at the one loop
level. Meanwhile, (B6) indicates all contributions at the
lowest order of ¢, to the ordinary form factors and the new
ones as well. For instance, the magnetic form factor, which
gives the anomalous magnetic dipole moment, is related to
the coefficient of i % In fact, for the magnetic form
factor, the finite part of the integrals in (B5) and (B6), at the
zero momentum transfer and in the MMS scheme, leads to

a lla(p.cSp
Fz(o)Zﬂ‘ﬁ{ pe }

APPENDIX C: ELECTROMAGNETIC FORM
FACTORS IN THE LV BACKGROUND ¢,

(B7)

In this appendix, we examine all the form factors which
are introduced in (18) up to the one loop level. To this end,

2m

421 - z>m21}u<p>, (B6)

|
we compare (B5) and (B6) with (18). For F(g?), which is
the coefficient of y,, one has

Fi(q*) = FM(¢*) + F1¥(4%). (C1)
where
N d*l [ dxdydzs(x+y+z—1)
) =1+ [ [ S
x (=2ie?)[? = 2¢*(1 = x)(1 - y)
—2(1 — 4z + 22)m?)] (C2)

is the ordinary electric form factor in the QED and
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4 X x -
FiV(g?) = / (5”;4/61 dydzfl(z _‘FA)’);F 2= 1) (=2ie?)[=4z(1 —y)(p'.c5.p") —4z(1 = x)(p.c5.p) + 8z(p'.c5.p)

4 X X —
+Z(1+Z)(p_cs.p)+((x_y)2_1—Z)(Q.cs_q)]+/(jﬂ§4/d dde?l(z _+Ay)jz 1)

x (12ie2)[A(c) x [E=2(1 = x)(1 = y)g? = 2(1 — 4z + 22)m?]] (C3)

is the correction from the LV part of the Lagrangian. However, by using an appropriate Wick rotation and performing the
momentum integrals, one can easily show that

a [dxdydzé(x+y+z-1)

Fi' () = - A [~4z(1 = y)(p'.c®.p") = 4z(1 = x)(p.c.p) + 8z(p'.c*.p)
a1+ )t p) + (=P = 1= 2)(qecSg) + 2 [ EREEEIEIZD
% dxdydz&(x;y 27D Ao)i(=2(1 = x)(1 = y)@? = 2(1 — 4z + 2)ni?)] (C4)
and
FLV(0) = _2_;"("%2'1’) [—1 +/dzi} (Cs5)

have not any UV divergences. Therefore, the UV divergence for the electric form factor in the QEDE can be fixed similar to
its counterpart in QED as follows:

8F (q*) = 6F (q*) — 6F1(0), (Co)

where 0F; = F; — 1. In fact, the electric charge normalization in this way can be fixed at zero momentum transfer.
Meanwhile, the IR divergence that appeared in the both SM and LV parts can be canceled by considering the soft
bremsstrahlung amplitude (M4%) in the presence of the LV background as follows:

: _ pe  ple] (p.c.p)(p-e’)  (p'.c.p’)(p'€")

M3} = (0 Mswan(ple |- 25+ 5| n(p Mgt ple | PP S PO
_ p.C.S* p/.C.S* _ Ca p/}yayyg* Ca/}p/ﬂyuy(zg*
atpMu(ple| =L ] gupre |- 0L LI SLEEE] )

where the first term in (C7) cancels the IR divergence of F3(0) while the second term can fix the IR divergence of F£V(0).
It should be noted that, in contrast with the ordinary QED, the magnetic form factor and also the other new form factors have
IR divergences as well. In fact, the appearance of additional IR terms in (C7) are necessary for canceling the IR divergences
in the other form factors. For the magnetic form factor F,, (B5) and (B6) lead to

Fa(q?) = F3¥(q?) + 12ie?)[A(c)[=4z(1 = 2)m?]], (C8)

d*l /dxdydzﬁ(x +y+z-1)
(2r)* (= A)* \

where

(=2ie?) x [4z(z — 1)m?]. (C9)

d*l dxdydzé(x -1
F§M(Clz) :/(2”)4/ 4 Z(l(z j:):_z )

Therefore, after performing the momentum integrals and at the zero momentum transfer one has

2a(p.c5. 3 1a [ p.cS. 2a(p.cS. 1
Fz(0)=3+—a(pc p)/dzlz :1——“{” p}+_0t(p:12p)/le : (C10)

2r 7w m? -z 2 3=m m? T -z
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where the last term shows the IR divergence of F,(0). As is already mentioned, (C7) has additional IR terms which can

resolve the IR part of the other form factors in the LV case. For this purpose the last term of (C7) can be rewritten as

(8*'6'61) _ icaﬁg;g”/‘ (p + p/)ﬁ
2k 8k '

u(p' ) Msmu(p)e { (C11)

which can remove the IR divergence of F, at the one loop level. Finally, F,. can be derived from (B5) and (B6) as follows:

d*l [ dxdydzd(x+y+z—1)
F.(q%) = —2ie?)[—41% + 4xyq® + 16z(1 — 2].
() = [ s [ SR (21 4 dxyg? + 1621 = o)

(C12)

Nevertheless, we do not have any physical interpretation for the form factors that appear in the F, which can be cast into

2a

F(0)=~""+IR, (C13)

at the zero momentum transfer.
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