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We consider a scenario of a composite Higgs arising from a strong sector.We assume that the lowest lying
composite states are the Higgs scalar doublet and a massive vector triplet, the dynamics below the
compositeness scale of which are described in terms of an effective Lagrangian. Electroweak symmetry
breaking takes place through a vacuum expectation value just as in the Standard Model, but with the vector
resonances strongly coupled to the Higgs field. We determine the constraints on this scenario imposed by
(i) theHiggs diphoton decay rate, (ii) the electroweak precision tests, and (iii) searches of heavy resonances at
the LHC in the final states lþl− and lνl (l ¼ e, μ), τþτ−, jj, tt̄,WZ,WW,WH, andZH.We find that the heavy
vector resonances should havemasses in the range 2–3 TeV. In addition, themixing of the heavy vectors with
the Standard Model gauge bosons should be below tanϑ ∼ 0.3, which is consistent with the original
assumption that the Higgs couples weakly to the Standard sector and strongly to the heavy vector resonances.

DOI: 10.1103/PhysRevD.96.115027

I. INTRODUCTION

The recent discovery of the Higgs boson at the LHC [1,2]
provides the opportunity to directly explore the mechanism
of electroweak symmetry breaking (EWSB). While this
remarkable achievement implies severe constrains on many
proposed extensions of the Standard Model (SM), an
additional sector beyond our current knowledge is still
needed in order to explain the dynamical origin of the
electroweak scale and its stability [3]. A specific question in
this context is whether this new sector is weakly or strongly
interacting [4]. In the latter case, the Higgs boson is viewed
as a composite state which must be accompanied by a
plethora of new heavy composite particles [5–7]. In
general, it is expected that the lightest states produced
by the strong dynamics would correspond to spin-0 and
spin-1 particles [5–8]. In these models, the lightness of the
Higgs can be explained in two different ways. One way is to
consider the Higgs boson as a pseudo-Goldstone boson that
appears after the breakdown of a suitable global symmetry
[6,7,9–26]. A second way is to consider the Higgs boson as
the modulus of an effective SUð2Þ doublet, where its
lightness is due to particularities of the dynamics of the
underlying theory [16,27–58]. For instance, there are
evidences that quasiconformal strong interacting theories
such as walking technicolor may provide a light composite
scalar [52–57]. It has also been shown that, in the effective
low-energy theory, the composite scalar may develop a
potential that reproduces the standard Higgs sector [27].
In this scheme, the electroweak symmetry breaking is

effectively described by a nonzero vacuum expectation
value of the scalar arising from the potential, just as in the
Standard Model. However, additional composite particles,
like vector resonances, may also be expected to appear in
the spectrum [59].
The main reason to consider strongly interacting mech-

anisms of EWSB as alternatives to the Standard Model
mechanism based on a fundamental scalar is the so-called
hierarchy problem that arises from theHiggs sector of theSM
[5–7]. This problem is indicative that, in a natural scenario,
new physics should appear at scales notmuch higher than the
EWSB scale, say around a few TeV, in order to stabilize the
Higgs mass at a value much lower than the Planck scale
(∼1019 GeV). An underlying strongly interacting dynamics
without fundamental scalars, which becomes nonperturba-
tive somewhere above the electroweak scale, is a possible
scenario that gives an answer to this problem.
While a composite Higgs boson is theoretically attractive

because the underlying strong dynamics provides a com-
prehensive and natural explanation for the origin of the
Fermi scale [5–7], the presence of additional composite
states such as the vector triplets previously mentioned may,
in principle, produce phenomenological problems. For
instance, one could expect that, at one-loop level, they
may produce sensible corrections to observables involving
the Higgs boson. Consequently, an interesting quantity
which can eventually reveal the influence of additional
states is Γðh → γγÞ. In a previous work, this decay channel
was studied in a simple model with vector resonances, and
it was found it is in general agreement with current
experimental measurements in the limit where the Higgs
boson is weakly coupled to the new resonances [42].
However, if the Higgs boson arises from a strongly
interacting sector together with other heavy resonances,
one should expect a strong coupling among them.
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In this work, we want to investigate whether this strong
coupling hypothesis is still compatible with the currently
known phenomenology and, in general, whether composite
models are viable alternatives to electroweak symmetry
breaking, given the current experimental success of the
Standard Model [3]. To be concrete, we describe the new
sector by means of an effective model with minimal particle
content, without referring to the details of the underlying
strong dynamics. We use an effective chiral Lagrangian to
describe the theory below the cutoff scale of the underlying
strong interaction, assumed to be Λ ¼ 4πv ∼ 3 TeV. This
low-energy effective theory must contain the Standard
Model spectrum and the extra composite scalar and vector
multiplets.
The content of this paper goes as follows. In Sec. II, we

introduce our effective Lagrangian that describes the
spectrum of the theory. Section III deals with the con-
straints arising from the Higgs diphoton decay rate. The
constraints on the model parameter space arising from the
oblique T and S parameters are discussed in Sec. IV. In
Sec. V, we describe the different production and decay
channels of the heavy vector resonances. In Sec. VI, we
present the constraints of our model arising from LHC
searches of heavy vector resonances. Finally, in Sec. VII,
we state our conclusions.

II. LAGRANGIAN FOR A HIGGS DOUBLET
AND HEAVY VECTOR TRIPLET

Wewant to formulate the scenario of EWSB triggered by
a strongly coupled sector without referring to specific
details of the underlying theory. This underlying theory,
as it becomes strong at low energies, should generate the
Higgs scalar multiplet as a composite field below a scale
Λ ∼ 4πv, where v will be the analog of the pion decay
constant in QCD. We will assume that, in addition to the
composite scalar multiplet, there will remain a vector
composite multiplet below the scale Λ. One should then
expect that these composite fields would exhibit a remnant
strong coupling among themselves, which is the main
hypothesis we want to test.
We will assume the vector composites to form a triplet

under SUð2ÞL, while the scalars will form a Higgs doublet
just as in the SM. To this end, we construct the effective
theory based on a hidden local SUð2Þ symmetry so that our
gauge group appears as SUð2Þ1 × SUð2Þ2 ×Uð1ÞY . To give
large masses to the vectors, the SUð2Þ1 × SUð2Þ2 part will
be broken down to the diagonal subgroup, i.e., the standard
SUð2ÞL. The would-be Goldstone bosons of this breaking
will be incorporated as a nonlinear sigma model field Σ. In
turn, the gauge symmetry of the Standard Model will be
broken, as usual, when the electrically neutral component of
the scalar doublet Φ acquires a vacuum expectation value.
We denote the gauge fields of SUð2Þ1, SUð2Þ2, and

Uð1ÞY as Að1Þ
μ , Að2Þ

μ , and Bμ, respectively. After the breaking

of SUð2Þ1 × SUð2Þ2 → SUð2ÞL, one combination of the

vector fields Að1Þ
μ and Að2Þ

μ will become the heavy vectors,
and the other combination will remain as the SUð2ÞL gauge
fields. In our notation, the heavy vectors will be mainly Að2Þ

μ

with a small admixture of Að1Þ
μ . The scalar doublet Φ, i.e.,

the Higgs field for the SM, on the other hand, should be
completely localized at the SUð2Þ2 site, in order to reflect a
stronger coupling to the heavy vectors. As such, Σ is a
doublet under both SUð2Þ1 and SUð2Þ2, while Φ and ψ iL
are doublets only under SUð2Þ2 and SUð2Þ1, respectively
(see Table I). The effective Lagrangian is expressed as

L ¼ −
1

2
hFð1Þ

μν Fð1Þμνi − 1

2
hFð2Þ

μν Fð2Þμνi − 1

2
hBμνBμνi

þ fΣ2

2
hðDμΣÞ†DμΣi þ ðDμΦÞ†DμΦ − μ2Φ†Φ

þ λ

4
ðΦ†ΦÞ2 þ β

2
ðΦ†ΦÞhðDμΣÞ†DμΣi þ iψ̄ iLγ

μDμψ iL

þ iψ̄ iRγ
μDμψ iR þ yijψ̄ iLΣΦψ iR þ ~yijψ̄ iLΣΦcψ iR

þ H:c: ð1Þ

Here Fð1Þμν, Fð2Þμν, and Bμν are the gauge field tensors;
the brackets hi denote the trace in the corresponding group
indices; fΣ is the analog of a decay constant for the extra
would-be Goldstones expressed nonlinearly in the field Σ
(these are absorbed as the longitudinal components of the
heavy vector composites); λ and μ are the SM parameters of
the Higgs potential; and β is the coefficient of a mixing
term allowed by the symmetry. The value of β is not easy to
isolate from other parameters in observable quantities, so
we scan values of β of order unity, in the range −4 to þ4.
Finally, the covariant derivatives are

DμΣ ¼ ∂μΣ − ig1A
ð1Þ
μ Σþ ig2ΣA

ð2Þ
μ ;

DμΦ ¼ ∂μΦ − ig2A
ð2Þ
μ Φ − i

g0

2
BμΦ;

Dμψ iL ¼ ∂μψ iL − ig1A
ð1Þ
μ ψ iL − ig0YfiLBμψ iL;

Dμψ iR ¼ ∂μψ iR − ig0YfiRBμψ iR; ð2Þ

TABLE I. Field charge assignments under the full gauge group
SUð2Þ1 × SUð2Þ2 ×Uð1ÞY . The i index runs from 1 to 3.

Fields SUð2Þ1 SUð2Þ2 Uð1ÞY
Σ 2 2̄ 0
Φ 1 2 1=2
Qi

L 2 1 1=6
Ui

R 1 1 2=3
Di

R 1 1 −1=3
Li
L 2 1 −1=2

eiR 1 1 −1
Ni

R 1 1 0
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where AðnÞ
μ ¼ 1

2
τaAðnÞa

μ (n ¼ 1, 2) are the Hermitian gauge
field matrices corresponding to the SUð2Þn gauge fields

AðnÞ
μ , n ¼ 1, 2, respectively.
Notice that Φ is coupled to Að2Þ

μ but not to Að1Þ
μ , and so it

is more strongly coupled to the heavy vectors than to the
SM gauge fields. In addition, left-handed SM fermionic
fields will couple mainly to SM gauge fields, which are
primarily contained in SUð2Þ1. The scalar doublet will
correspond to the SM Higgs field, which can be expressed
as usual by

Φ ¼
� Gþ

1ffiffi
2

p ðvþ hþ iG0Þ
�
; ð3Þ

where the field h is the Higgs boson, while G� and G0 are
the would-be Goldstones that will be absorbed after EWSB.
The spontaneous breaking of the extra gauge symmetry can
be formulated by taking Σ ¼ 1 (in the unitary gauge). The
Lagrangian then takes the form

L ¼ Lgauge þ
fΣ2g2

4sin22ϑ
Vð2Þ
μ Vð2Þμ þ ðDμΦÞ†DμΦ − μ2Φ†Φ

þ λ

4
ðΦ†ΦÞ2 þ βg2

sin22ϑ
ðΦ†ΦÞVð2Þ

μ Vð2Þμ þ iψ̄ iLγ
μDμψ iL

þ iψ̄ iRγ
μDμψ iR þ yijψ̄ iLΦψ iR þ ~yijψ̄ iLΦcψ iR þ H:c:;

ð4Þ

where the covariant derivative is now rewritten as

DμΦ ¼ ∂μΦ − ig
τa

2
Vð1Þ
μ;aΦ − i~g

τa

2
Vð2Þ
μ;aΦ − i

g0

2
BμΦ; ð5Þ

with the vector fields given by

Vð1Þ
μ ¼ cosϑAð1Þ

μ þ sinϑAð2Þ
μ ;

Vð2Þ
μ ¼ − sinϑAð1Þ

μ þ cosϑAð2Þ
μ ; tanϑ ¼ g1

g2
ð6Þ

and the couplings

g ¼ g1g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p ; ~g ¼ g22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p : ð7Þ

At this stage, the fields Vð1Þ
μ remain massless, but Vð2Þ

μ

acquire mass proportional to fΣ, as shown in Eq. (4). When
the Higgs boson acquires a vacuum expectation value
hΦi ¼ 1ffiffi

2
p ð0; vÞT , from Eq. (4), it follows that the squared

mass matrices for the neutral and charged gauge bosons are
given by

M2
N ¼ v2

4

0
B@

g2 −gg0 g~g

−gg0 g02 −g0 ~g
g~g −g0 ~g ~g2k2

1
CA; M2

C ¼ v2

4

�
g2 g~g

g~g k2 ~g2

�
;

with k2 ¼ 1þ 2fΣ2þ βv2

v2cos4ϑ
: ð8Þ

The masses of the gauge bosons are given by diagonal-
ization of these mass matrices,

MA ¼ 0;

MZ ¼ v

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02 þ ~g2k2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~g4k4 þ ðg2 þ g02Þ½g2 þ g02 þ 2ð2 − k2Þ~g2�

qr
;

Mρ0 ¼
v

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02 þ ~g2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~g4k4 þ ðg2 þ g02Þ½g2 þ g02 þ 2ð2 − k2Þ~g2�

qr
;

MW� ¼ v

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ~g2 þ g2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 − k2 ~g2Þ2 þ 4g2 ~g2

qr
;

Mρ� ¼ v

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ~g2 þ g2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 − k2 ~g2Þ2 þ 4g2 ~g2

qr
; ð9Þ

and the physical neutral and charged gauge bosons are given by

0
B@

Aμ

Zμ

ρ0μ

1
CA ¼

0
B@

cos θW sin θW 0

− cos γ sin θW cos γ cos θW − sin γ

− sin γ sin θW cos θW sin γ cos γ

1
CA
0
BB@

B0
μ

Vð1Þ
μ;3

Vð2Þ
μ;3

1
CCA;

�
W�

μ

ρ�μ

�
¼

�
cos κ − sin κ

sin κ cos κ

��
Vð1Þ�
μ

Vð2Þ�
μ

�
; ð10Þ
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where, besides the standard θW , the additional mixing
angles κ and γ are

tan 2κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ρ� − g2v2Þðg2v2 − 4M2
WÞ

q
2ðM2

ρ� þM2
WÞ − g2v2

;

tan 2γ ¼ 2~g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
~g2k2 − g2 − g02

: ð11Þ

At this stage, the electroweak symmetry is finally
broken, and the only remaining massless vector boson is
the photon field Aμ.

III. CONSTRAINTS FROM HIGGS DECAY
INTO TWO PHOTONS

In the Standard Model, the h → γγ decay is dominated
by W loop diagrams which can interfere destructively with
the subdominant top quark loop. In our strongly coupled
model, the h → γγ decay receives additional contributions
from loops with charged ρ�μ , as shown in Fig. 1. The
explicit form for the h → γγ decay rate is

Γðh → γγÞ ¼ α2emm3
h

256π3v2

����X
f

NcQ2
fF1=2ðxfÞ

þ ahWWF1ðxWÞ þ ahρþρ−F1ðxρÞ
����2; ð12Þ

where

ahWþW− ¼ vg2

2

�
ðcos κ − cot ϑ sin κÞ2 þ βsin2κ

sin2ϑcos2ϑ

�
v

2M2
W
;

ð13Þ

ahρþρ− ¼ vg2

2

�
ðsin κ þ cotϑ cos κÞ2 þ βcos2κ

sin2ϑcos2ϑ

�
v

2M2
ρ�
:

ð14Þ

Here, xf ¼ m2
h=4m

2
f, xW ¼ m2

h=4M
2
W and

xρ ¼ m2
h=4M

2
ρ; αem is the fine structure constant; NC is

the color factor (NC ¼ 1 for leptons and NC ¼ 3 for
quarks); and Qf is the electric charge of the fermion in
the loop. From the fermion loop contributions, we will keep
only the dominant term, which is the one involving the
top quark.
The dimensionless loop factors F1=2ðxÞ and F1ðxÞ (for

particles of spin 1=2 and 1 in the loop, respectively) are
[60–67]

F1=2ðxÞ ¼ 2½xþ ðx − 1ÞfðxÞ�x−2; ð15Þ

F1ðxÞ ¼ −½2x2 þ 3xþ 3ð2x − 1ÞfðxÞ�x−2; ð16Þ

with

fðxÞ ¼
(
arcsin2

ffiffiffi
x

p
; for x ≤ 1

− 1
4

h
ln
�
1þ

ffiffiffiffiffiffiffiffiffi
1−x−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−x−1

p
	
− iπ

i
2
; for x > 1:

ð17Þ

In what follows, we want to determine the range of
values for the mass Mρ of the heavy vector resonances and
the mixing angle ϑ, consistent with the Higgs diphoton
signal strength measured by the ATLAS and CMS collab-
orations at the LHC. To this end, we introduce the ratio Rγγ ,
which corresponds to the Higgs diphoton signal strength
that normalizes the γγ signal predicted by our model
relative to that of the SM:

Rγγ ¼
σðpp → hÞΓðh → γγÞ

σðpp → hÞSMΓðh → γγÞSM
≃ Γðh → γγÞ

Γðh → γγÞSM
:

This normalization for h → γγ was also done in
Refs. [67–69]. Here, we have used the fact that in our
model single Higgs production is also dominated by gluon
fusion as in the Standard Model.
Figure 2 shows the sensitivity of the ratio Rγγ under

variations of Mρ for several values of tan ϑ. The curves

FIG. 1. One-loop Feynman diagrams in the unitary gauge contributing to the h → γγ decay.
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from top to bottom correspond to tan ϑ ¼ 0.1, 0.2, 0.3. The
ratio Rγγ decreases slowly when the heavy vector masses
are increased.
As shown, our model successfully accommodates the

current Higgs diphoton decay rate constraints.
A more exhaustive study of the allowed values of ϑ for

differentMρ and several values of β is shown in Fig. 3. The
observed Higgs diphoton decay rate at the LHC excludes
the region below the respective curve in the figure,
corresponding to too-small values of ϑ; for such small ϑ
values, the Higgs boson would couple too strongly to the
heavy vector resonances, increasing the Higgs diphoton
decay rate beyond the observed values. In addition, the
heavy vector contribution to the Higgs diphoton decay rate
scales as 1=M2

ρ due to the heavy vector propagator, and
consequently, as Fig. 3 shows, the tightest lower bounds
for tan ϑ are obtained at lower Mρ values. It is worth

mentioning that for larger positive β the coupling of the
Higgs boson to the heavy vector resonances increases,
potentially going over the LHC upper bound, thus requiring
larger tanϑ. On the other hand, for more and more negative
β, the coupling of the Higgs to vector resonances decreases,
potentially going below the LHC lower bound, thus
requiring again larger values of tanϑ. Indeed, as Fig. 3
shows, the lowest bounds on tan ϑ are reached for β ¼ 0.

IV. CONSTRAINTS FROM THE
T AND S PARAMETERS

The inclusion of the extra composite particles also
modifies the oblique corrections of the SM, the values
of which have been extracted from high-precision experi-
ments. Consequently, the validity of our model depends on
the condition that the extra particles do not contradict those
experimental results. These oblique corrections are para-
metrized in terms of the twowell-known quantities T and S.
The T parameter is defined as [72–74]

T ¼ Π33ð0Þ − Π11ð0Þ
M2

WαemðmZÞ
; ð18Þ

where Π33ð0Þ and Π11ð0Þ are the vacuum polarization
amplitudes at q2 ¼ 0 for the propagators of the gauge

bosons Að1Þ
μ;3 and Að1Þ

μ;1, respectively, which are those that

couple to the external fermions in the process eþe− →
ff̄ [74].
In turn, the S parameter is defined as [72–74]

S ¼ 4sin2θW
αemðmZÞ

g
g0

d
dq2

Π30ðq2Þ
����
q2¼0

; ð19Þ

where Π30ðq2Þ is the vacuum polarization for the propa-

gator mixing of Að1Þ
μ;3 and Bμ. The most important Feynman

diagrams contributing to the T and S parameters are shown
in Figs. 4 and 5. We computed these oblique T and S
parameters in the Landau gauge for the SM gauge bosons
and would-be-Goldstone bosons, in which the global
SUð2ÞL ×Uð1ÞY symmetry is preserved. We can separate
the contributions to T and S from the SM and extra physics
as T ¼ TSM þ ΔT and S ¼ SSM þ ΔS, where

TSM ¼ −
3

16πcos2θW
ln

�
m2

h

m2
W

�
þ 3m2

t

32π2αemðmZÞv2
;

SSM ¼ 1

12π
ln
�
m2

h

m2
W

�
þ 1

2π



3 −

1

3
ln
�
m2

t

m2
b

��
; ð20Þ

whileΔT andΔS contain all the contributions involving the
extra particles.
The tree and dominant one-loop contributions to ΔT and

ΔS in our model are

FIG. 3. Lower bound on tan ϑ vsMρ, for different values of the
Lagrangian parameter β, cf. Eq. (1), according to the constraint
imposed by the Higgs diphoton decay rate h → γγ at the LHC.
For each value of β, the region below the respective curves is
excluded.

2000 2200 2400 2600 2800 3000

1.0

1.2

1.4

1.6

1.8

2.0

M [GeV]

R

FIG. 2. The ratio Rγγ as a function of Mρ for several values of
tan ϑ. The solid curves from top to bottom correspond to
tan ϑ ¼ 0.1, 0.2, and 0.3. The horizontal dashed lines are the
minimum and maximum values of the ratio Rγγ inside the 1σ
experimentally allowed range by CMS and ATLAS, namely,
1.14þ0.26

−0.23 and 1.17� 0.27, respectively [70,71].
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ΔT ¼ v8tan2ϑtan2θW
256αemðmZÞM4

WM
4
ρ
þ tan2ϑTSM −

3β2M4
W

16πcos2ϑsin4ϑcos2θW
FðMW tan θW;mh;MAð2Þ Þ; ð21Þ

ΔS ¼ v4tan2ϑsin2θW
4αemðmZÞcos3ϑM2

WM
2
ρ
þ 1 − cos ϑ

cos ϑ
SSM þ 2βM2

W

πsin2ϑ cos ϑ



G1ðMAð2Þ ; mhÞ −

1

4M2
Að2Þ

G2ðMAð2Þ ; mhÞ
�
; ð22Þ

where

Fðm1; m2; m3Þ ¼
m2

1

ðm2
1 −m2

2Þðm2
1 −m2

3Þ2
ln

�
1þ Λ2=m2

1

1þ Λ2=m2
3

�
þ m2

2

ðm2
2 −m2

1Þðm2
2 −m2

3Þ2
ln

�
1þ Λ2=m2

2

1þ Λ2=m2
3

�
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G1ðm1; m2Þ ¼
Z

1

0

dxxð1 − xÞ

 1

2
½−ðm2

1 −m2
2Þxþm2

1� þ Λ2

ð½−ðm2
1 −m2
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G2ðm1; m2Þ ¼
Z

1

0
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ln

�
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1 −m2
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�
−
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1�g2
; ð25Þ

MAð2Þ ¼ g2ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2Σ þ

β þ 1

2
v2

r
≃ 4cos2ϑ

sin ϑ

�
MW

v

�
2

Mρ: ð26Þ

FIG. 4. One-loop Feynman diagrams contributing to the T parameter. The fields are those in Eqs. (2) and (3).

FIG. 5. One-loop Feynman diagrams contributing to the S parameter. The fields are those in Eqs. (2) and (3).
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We computed the tree-level contribution to the T parameter

from the relation αemðmZÞTtree¼ M2
W

M2
Z cos

2θW
−1, where Eq. (9)

was used.
As a result, the experimental constraints on the T and S

parameters [75] impose an upper bound on our mixing
parameter tan ϑ≲ 0.5, for heavy vector masses from 2 up to
3 TeV (see Fig. 6).
The lack ofMρ dependence of the upper bound tanϑ ≲ 0.5

arising from the oblique parameters T and S can be explained
as follows. The tree-level contributions to T and S from the
vector resonances go as v4=M4

ρ and v2=M2
ρ, respectively,

which are small for the vector massesMρ we are considering,
namely, larger than about 2 TeV. The one-loop contributions
of the heavy vectors to T are thus dominant, and these are
described by the loop functions FðMW tan θW;mh;MAð2Þ Þ,
G1ðMAð2Þ ; mhÞ, and G2ðMAð2Þ ; mhÞ, which have low sensi-
tivity for cases in which Mρ are much larger than the Higgs
boson mass, as is the case here. In what regards the S
parameter, the tree-level contribution to this parameter
becomes dominant with respect to its one loop–level
contribution. However, due to the fact that we are considering
heavy vector masses larger than about 2 TeV, our model
pass the electroweak precision constraints provided that
tanϑ≲ 0.5
Consequently, here, T and S have a very weak depend-

ence on Mρ.
We have also verified numerically that the upper bound

tanϑ≲ 0.5, arising from T and S, does not change when β
is varied over the range −4 ≤ β ≤ 4. This is indeed the case

because the one loop–level contributions are small for
heavy vector masses larger than about 2 TeV.
Finally, it is worth mentioning that the obtained values

for T and S in our model coincide with the predictions of
the SM for a vanishing tanϑ because, in the limit tanϑ → 0,
MAð2Þ become extremely large [see Eq. (26)], and thus the
heavy vectors are decoupled from the theory.

V. PRODUCTION AND DECAYS
OF THE HEAVY VECTORS

The current important period of LHC exploration of the
Higgs properties and discovery of heavier particles may
provide crucial steps to unravel the electroweak symmetry
breaking mechanism. Consequently, we complement our
work by studying the production and decay channels of the
heavy vector resonances which are relevant for the LHC.
At a hadron collider like the LHC, the most important

production channel for the heavy vector resonance is quark-
antiquark annihilation. In our construction, the coupling of
heavy vectors to quarks goes through a term which has its
origin in the mixing between the gauge fields Að1Þ

μ and Að2Þ
μ .

Consequently, the ρ production amplitude is proportional to
tanϑ, which acts as a suppression factor. The influence of
tanϑ can be seen in Fig. 7, in which we show the ρ
production cross section, computed with CALCHEP [76],
for different values of Mρ and tanϑ.
Additionally, we compute the two-body decay rates of

the heavy vectors. These rates, up to corrections of order
m2

h=M
2
ρ and M2

W=M
2
ρ, are

Γðρ0 → qq̄Þ≃ 3g2tan2ϑ
96π

Mρ;

Γðρþ → uid̄jÞ ¼ Γðρ− → ūidjÞ≃ 3g2tan2ϑ
96π

jVijj2Mρ;

Γðρ� → W�hÞ ¼ Γðρ0 → ZhÞ≃ g2cot2ϑ
96π

Mρ;

Γðρ0 → WþW−Þ ¼ Γðρ� → W�ZÞ≃ g2cot2ϑ
96π

Mρ: ð27Þ

–0.2 –0.1 0.0 0.1 0.2 0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

S

T

FIG. 6. The ΔS-ΔT plane in our model. The ellipses denote the
experimentally allowed region at 95% C.L. taken from Ref. [75].
The origin ΔS ¼ ΔT ¼ 0 corresponds to the Standard Model
value, with mh ¼ 126 GeV and mt ¼ 176 GeV. The line coming
from the origin shows the values of ΔS and ΔT in the model, as
tan θ varies over the range 0 ≤ tan θ ≤ 0.6 and the heavy vector
mass is kept fixed at 2 TeV. The line coming from the origin
intersects the ellipse at tan ϑ ∼ 0.5, thus the upper bound of tan ϑ.

FIG. 7. Heavy vector production cross section σðpp → ρÞ vs
Mρ, for tanϑ ¼ 0.2, 0.3, 0.4 and 0.5.
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Figure 8 displays the branching ratios of the neutral (a)
and charged (b) heavy vectors to a quark-antiquark pair and
to a SM-like Higgs in association with a SM gauge boson,
as a function of tanϑ. This angle controls the strength of the
coupling of the heavy vector resonances with fermions.
Clearly the largest decay rates of the heavy vectors are into
a pair of SM gauge bosons as well as into a SM-like Higgs
and SM gauge boson, for all values of tan ϑ. The decays
into quark-antiquark pairs are much smaller in the relevant
region of parameter space. This is a direct consequence of
the gauge structure of the model and the representations of
the fermions and the Higgs doublet under the full gauge
symmetry group.

VI. BOUNDS FROM LHC SEARCHES

The ATLAS and CMS collaborations have performed
several searches for heavy resonances decaying into

different final states [77–81]. These searches are based
on upper limits in the resonant cross section for different
heavy vector particles. We use those limits to set restric-
tions on the model parameter space, thus complementing
the diphoton and the electroweak precision test constraints
described above. As stated at the end of Secs. III and IV, the
allowed mixing parameter tanϑ is restricted to the range
0.15≲ tanϑ≲ 0.5. In what follows, we will use as bench-
mark points the values tanϑ ¼ 0.15, 0.20, 0.30, and 0.50.
We now focus on the LHC upper limits to constrain the

model parameter space using the final states lþl−, lνl
(l ¼ e, μ), τþτ−, jj, tt̄,WZ,WW,WH, and ZH, assumed to
be produced through a resonant ρ0 or ρ� decay. For
example, the observation of the combined dilepton modes
eþe− and μþμ− [77] provides a bound for a neutral
resonance, which we identify here with the neutral state
ρ0. Figure 9 (left) shows the cross section prediction for ρ0
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FIG. 8. Branching ratios of neutral and charged heavy vector decays vs tan ϑ: (a) neutral vector decays: Brðρ0 → qq̄Þ, q ¼ u; d; s;…
(solid) and Brðρ0 → WþW−Þ ¼ Brðρ0 → ZhÞ (dashed); (b) charged vector decays: Brðρþ → ud̄Þ ¼ Brðρ− → dūÞ (solid) and
Brðρ� → W�ZÞ ¼ Brðρ� → W�hÞ (dashed).

FIG. 9. Left: predicted pp → ρ0 → lþl− resonant production at
ffiffiffi
s

p ¼ 13 TeV, for the combined channel ee and μμ, as a function of
Mρ, for different values of tan ϑ; the solid line is the 95% C.L. upper limit obtained by ATLAS [77]. Right: predicted pp → ρ0 → τþτ−

resonant production at
ffiffiffi
s

p ¼ 13 TeV, for the combined channel ee and μμ, as a function of Mρ, for different values of tan ϑ; the solid
line is the 95% C.L. upper limit obtained by CMS [78].
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FIG. 11. Left: predicted pp → ρ0;� → jj resonant production at
ffiffiffi
s

p ¼ 13 TeV as a function of Mρ, for different values of tan ϑ; the
solid line is the 95% C.L. upper limit obtained by ATLAS [81]. Right: predicted pp → ρ0 → tt̄ resonant production at

ffiffiffi
s

p ¼ 13 TeV,
for the combined channel ee and μμ, as a function ofMρ, for different values of tan ϑ; the solid line is the observed 95% C.L. upper limit
obtained by ATLAS [80].

FIG. 10. Predicted pp → ρ� → lν resonant production at
ffiffiffi
s

p ¼ 13 TeV, for l ¼ e, μ, as a function ofMρ, for different values of tanϑ;
the solid line is the 95% C.L. upper limit obtained by ATLAS [77].

FIG. 12. Left: predicted pp → ρ0 → ZH resonant production at
ffiffiffi
s

p ¼ 13 TeV as a function ofMρ, for different values of tanϑ. Right:
predicted pp → ρ� → W�H resonant production at

ffiffiffi
s

p ¼ 13 TeV, for the combined channel ee and μμ, as a function of Mρ, for
different values of tan ϑ. In both figures, the solid line is the observed 95% C.L. upper limit obtained by ATLAS [82].
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FIG. 13. Left: predicted pp → ρ0 → WþW− resonant production at
ffiffiffi
s

p ¼ 13 TeV as a function of Mρ, for different values of tan ϑ.
Right: predicted pp → ρ� → W�Z resonant production at

ffiffiffi
s

p ¼ 13 TeV, for the combined channel ee and μμ, as a function ofMρ, for
different values of tan ϑ. In both figures, the solid line is the 95% C.L. upper limit obtained by ATLAS [83].

FIG. 14. Allowed and excluded regions in the model parameter space for different values of the β parameter after including all the
constraints, i.e. the h → γγ (diphoton) constraint, the EWPT and the bounds from the LHC searches in the channels lþl−, lνl (l ¼ e, μ),
τþτ−, jj, tt̄, ZH, WH, WW and WZ. The allowed region which is consistent with all the constraints is shown in white, while the grey
regions are excluded. Here we have taken β ¼ 4 (upper left plot), β ¼ 2 (upper right plot), β ¼ 0 (middle left plot), β ¼ −2 (middle right
plot), β ¼ −4 (lower plot).
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decaying into dileptons (l ¼ e, μ), together with the upper
limit obtained by ATLAS, thus setting restrictions on the
tanϑ and Mρ parameter space. The CMS upper bounds in
the τþτ− final state [78] are less restrictive than those of
eþe− and μþμ−, thus providing no further constraints as
shown in Fig. 9 (right). The experimental bound in the lν
final state, with l ¼ e, μ, is as stringent as in the lþl−
channel (see Fig. 10). In contrast to dileptons, the tt̄ [80]
and dijet [81] experimental upper bounds do not restrict our
parameter space, as can be seen in Fig. 11.
Now, the associated hZ and hW� production estimates

and upper bounds [82] are shown in Fig. 12. Finally, the
ATLAS constraints from ZW and WþW− production are
shown in Fig. 13, in which again we contrast the exper-
imental upper bound [83] with the resonant production of
WþW− (left) and ZW (right).
Combining all these restrictions in the tan ϑ-Mρ plane,

we arrive at Fig. 14, i which the allowed region of the
parameter space is shown. Here, we include also the h → γγ
(diphoton) constraint—which provides the lower bounds
on tan ϑ and the upper bound from electroweak precision
tests (EWPT)—which turns out to be less restrictive than
the upper bounds from the dilepton and diboson channels,
as shown in the figure.

VII. CONCLUSIONS

We studied a framework of strongly interacting dynam-
ics in which the Higgs (a scalar doublet) and also a heavy
vector triplet appear as composite fields below a scale
Λ≃ 4πv ∼ 3 TeV. Without addressing details of the
strong dynamics, we focus on the effective theory below
the scale Λ, assumed to be the Standard Model, with its
SUð2ÞL ×Uð1ÞY gauge group, with the addition of a
SUð2ÞL triplet of heavy vectors. The inclusion of the
composite fields in the effective Lagrangian, i.e., the
Higgs and the heavy vectors, is done by considering the
vectors as gauge fields of a hidden local SUð2Þ2 symmetry
and the Higgs as a doublet under this same symmetry. On
the other hand, the SM gauge group at this stage is a
SUð2Þ1 ×Uð1Þ. The SM fermions transform only under the
latter group. By the mechanism of hidden local symmetry,
the SUð2Þ1 × SUð2Þ2 breaks down to the diagonal SUð2Þ
subgroup, which will be effectively the SUð2ÞL of the SM.

This spontaneous breakdown is formulated in terms of a
nonlinear sigma model, in which the “would-be Goldstone”
bosons are absorbed into the massive vector triplets. In this
process, the Higgs SUð2Þ2 doublet, which originally
interacts with the composite vectors only, now acquires
interactions with the SM fields. In this way, the composite
Higgs maintains a rather strong interaction with the
composite vector triplets and a weaker interaction with
the SM fields.
We put to test the resulting spectrum and interactions, in

view of the existing experimental data; we determined the
constraints arising from the measured Higgs diphoton
decay rate, electroweak precision tests, and the searches
of heavy resonances at the LHC in the final states lþl− and
lνl (l ¼ e, μ), τþτ−, jj, tt̄, WZ, WW, WH, and ZH.
As a consequence of these constraints, we find that

heavy vector masses in the range 2–3 TeV are consistent
with the data, together with a mixing of the heavy vectors
with the SM gauge bosons in the range tanϑ ∼ 0.1–0.3.
These values are also consistent with the assumption that
the Higgs couples weakly to the Standard sector and
strongly to the heavy vector resonances.
We have found that the parameter of largest uncertainty

is β, the bound of which cannot be isolated from current
experimental results. Nevertheless, of the quantities we
examined, only the Higgs diphoton decay rate at the LHC is
sensitive to β to a significant level. Accordingly, we
performed a scan of β in the range −4 to 4, finding that
for all β values in that range there is always a region in the
Mρ − tanϑ parameter space consistent with current exper-
imental data.
Consequently, the current experimental data still allow

for a Higgs boson that is strongly coupled to a composite
sector, here assumed as triplet of vector resonances.
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