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Calculating the abundance of thermally produced dark matter particles has become a standard procedure,
with sophisticated methods guaranteeing a precision that matches the percent-level accuracy in the
observational determination of the dark matter density. Here, we point out that one of the main assumptions
in the commonly adopted formalism, namely local thermal equilibrium during the freeze-out of
annihilating dark matter particles, does not have to be satisfied in general. We present two methods
for how to deal with such situations, in which the kinetic decoupling of dark matter happens so early that it
interferes with the chemical decoupling process: (i) an approximate treatment in terms of a coupled system
of differential equations for the leading momentum moments of the dark matter distribution, and (ii) a
full numerical solution of the Boltzmann equation in phase space. For illustration, we apply these methods
to the case of scalar singlet dark matter. We explicitly show that even in this simple model the
prediction for the dark matter abundance can be affected by up to 1 order of magnitude compared to the
traditional treatment.

DOI: 10.1103/PhysRevD.96.115010

I. INTRODUCTION

The leading hypothesis for the cosmological dark matter
(DM) [1,2] is a new type of elementary particle [3]. One of
the most attractive options to explain the present abundance
of these particles consists in the possibility that they have
been thermally produced in the early universe. This is
particularly interesting for the scenario originally studied
by Lee and Weinberg [4], as well as others [5–8], in which
nonrelativistic DM particles initially are kept in thermal
equilibrium with the heat bath through frequent annihila-
tion and creation processes with standard model (SM)
particles. Once the interaction rate starts to fall behind the
expansion rate of the universe, the DM number density
begins to “freeze-out” and remains covariantly conserved.
For weakly interacting massive particles (WIMPs), elemen-
tary particles with masses and interaction strengths at the
electroweak scale, this scenario automatically leads to a
relic abundance in rough agreement with the observed DM
density—a fact sometimes referred to as theWIMPmiracle.
The by now standard treatment [9,10] of calculating the

resulting DM abundance in these scenarios implements an
efficient and highly accurate method of solving the
Boltzmann equation for a given (effective) invariant DM
annihilation rate. This approach fully captures, in particular,

the three famous exceptions to the original relic density
calculations pointed out in a seminal paper by Griest and
Seckel [11], namely coannihilations, threshold effects and
resonances. The main assumption entering this formalism is
that, during the freeze-out process, DM is still kept in local
thermal equilibriumwith the heat bath by frequent scattering
processes with relativistic SM particles. For many WIMP
candidates, this is indeed satisfied to a high accuracy and
kinetic decoupling typically only happens much later than
the chemical decoupling [12].
Here we point out that exceptions to this standard lore do

exist, even in very simple scenarios, where kinetic decou-
pling happens so early that it cannot be neglected during the
freeze-out process. We develop both semianalytical and
fully numerical methods to solve the Boltzmann equation
and to compute the DM relic abundance in these cases.
Technically, one of the challenges that had to be overcome
for obtaining sufficiently accurate results was to extend the
highly nonrelativistic Boltzmann equation, as discussed
previously in the literature, to the semirelativistic regime.
Numerically, we also succeeded to resolve the evolution
of the full phase-space distribution accurately enough to
test, for the first time, the underlying assumptions for the
standard way of calculating the relic density of WIMPs or
other self-annihilating DM candidates (for a recent example
where the relic density is instead set by inelastic scattering,
rather than self-annihilation, see Ref. [13]). We illustrate
our general results by a detailed discussion of the scalar
singlet model [14–16], for which we find a DM relic
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density that differs by up to an order of magnitude from the
standard treatment.
This article is organized as follows. In Sec. II, we start

with a general description of the underlying Boltzmann
equation that governs the DM phase-space evolution. We
then briefly review the standard treatment of solving for the
DM number density (Sec. II A), extend this by deriving a
coupled system of evolution equations for the number
density and the velocity dispersion (Sec. II B), and finally
introduce our framework for a fully numerical solution
(Sec. II C). Section III is devoted to a thorough application
of these methods to the scalar singlet model. We comment
on our results in Sec. IV, and discuss potential other areas
of application, before we conclude in Sec. V. In two
Appendices we discuss in detail the evolution of the singlet
DM phase-space density for selected parameter points
(Appendix A) and comment on the semirelativistic form
of the scattering operator in the Boltzmann equation
(Appendix B).

II. THERMAL PRODUCTION OF DARK MATTER

Let us denote the DM particle by χ, and its phase-space
density by fχðt;pÞ. The evolution of fχ is governed by the
Boltzmann equation which, in an expanding Friedmann-
Robertson-Walker universe, is given by [17,18]

Eð∂t −Hp ·∇pÞfχ ¼ C½fχ �: ð1Þ

Here, H ¼ _a=a is the Hubble parameter, a the scale factor,
and the collision term C½fχ � contains all interactions
between DM and SM particles f. For WIMPs, we are to
leading order interested in two-body processes for DM
annihilation and elastic scattering, C ¼ Cann þ Cel, where

Cann¼
1

2gχ

Z
d3 ~p

ð2πÞ32 ~E
Z

d3k
ð2πÞ32ω

Z
d3 ~k

ð2πÞ32 ~ω
×ð2πÞ4δð4Þð ~pþp− ~k−kÞ
× ½jMj2

χ̄χ←f̄f
gðωÞgð ~ωÞ− jMj2

χ̄χ→f̄f
fχðEÞfχð ~EÞ�; ð2Þ

and

Cel¼
1

2gχ

Z
d3k

ð2πÞ32ω
Z

d3 ~k
ð2πÞ32 ~ω

Z
d3 ~p

ð2πÞ32 ~E
× ð2πÞ4δð4Þð ~pþ ~k−p−kÞjMj2χf↔χf

× ½ð1∓ g�ÞðωÞg�ð ~ωÞfχð ~pÞ− ðω↔ ~ω;p↔ ~pÞ�: ð3Þ

In the above expressions, jMj2 refers to the respective
squared amplitude, summed over all spin and other
internal degrees of freedom, as well as all SM particles f.
We assume the SM particles to be in thermal equilibrium,
such that their phase-space distribution is given by g�ðωÞ ¼
1=½expðω=TÞ � 1�. Note that we have neglected Bose

enhancement and Pauli blocking factors for fχ here, as
we assume DM to be nonrelativistic; momentum conserva-
tion then implies that, in Cann, we can also neglect these
factors for the SM particles.
Assuming CP invariance, and using the fact that in

thermal equilibrium annihilation and creation processes
should happen with the same frequency, the annihilation
term given by Eq. (2) can be further simplified to [9]

Cann ¼ gχE
Z

d3 ~p
ð2πÞ3 vσχ̄χ→f̄f

× ½fχ;eqðEÞfχ;eqð ~EÞ − fχðEÞfχð ~EÞ�; ð4Þ

where v¼vMol≡ðE ~EÞ−1½ðp· ~pÞ2−m4
χ �1=2 is the Møller

velocity, which in the rest frame of one of the DM particles
coincides with the lab velocity vlab¼½sðs−4m2

χÞ�1=2=
ðs−2m2

χÞ.
The scattering term, on the other hand, is in general

considerably more difficult to manage. Analytic expres-
sions have, however, been obtained in the highly non-
relativistic limit of the DM particles, and assuming that the
momentum transfer in the scattering process is much
smaller than the DM mass [12,18–22]:

Cel ≃mχ

2
γðTÞ

�
Tmχ∂2

p þ
�
pþ 2T

mχ

p

�
∂p þ 3

�
fχ ; ð5Þ

where the momentum exchange rate is given by

γðTÞ ¼ 1

48π3gχm3
χ

Z
dωg�∂ωðk4hjMj2itÞ; ð6Þ

with

hjMj2it ≡ 1

8k4

Z
0

−4k2cm
dtð−tÞjMj2 ¼ 16πm2

χσT; ð7Þ

and k2cm¼ðs−ðmχ−mfÞ2Þðs−ðmχþmfÞ2Þ=ð4sÞ evaluated
at s¼m2

χþ2ωmχþm2
f. Here, σT ¼ R

dΩð1 − cos θÞdσ=dΩ
is the standard transfer cross section for elastic scattering.
In Appendix B, we discuss how the scattering term is
expected to change in the semirelativistic case, i.e. when
the assumption of highly nonrelativistic DM is slightly
relaxed. For reference, we will in the following use

Cel≃E
2
γðTÞ

�
TE∂2

pþ
�
pþ2T

E
p
þT

p
E

�
∂pþ3

�
fχ ð8Þ

when explicitly addressing this regime.

A. The standard treatment

In order to calculate the DM relic abundance, we can
integrate the Boltzmann Eq. (1) over p. This results in
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dnχ
dt

þ 3Hnχ ¼ gχ

Z
d3p

ð2πÞ3ECann½fχ �; ð9Þ

which has to be solved for the DM number density

nχ ¼ gχ

Z
d3p=ð2πÞ3fχðpÞ ð10Þ

(note thatCel vanishes once it is integrated over). In order to
evaluate the rhs of this equation, the usual assumption [9] is
that during chemical freeze-out one can make the following
ansatz for the DM distribution:

fχ ¼ AðTÞfχ;eq ¼
nχ
nχ;eq

fχ;eq; ð11Þ

where AðTÞ ¼ 1 in full equilibrium, i.e. before chemical
freeze-out. This is motivated by the fact DM-SM scattering
typically proceeds at a much faster rate than DM-DM
annihilation, because the number density of relativistic SM
particles is not Boltzmann suppressed like that of the
nonrelativistic DM particles. In that case, DM particles
are kept in local thermal equilibrium even when the
annihilation rate starts to fall behind the Hubble expansion
and chemical equilibrium can no longer be maintained.
Approximating furthermore fχ;eqðEÞ≃ expð−E=TÞ, i.e.

neglecting the impact of quantum statistics for nonrelativ-
istic particles, five of the six integrals in Eq. (9) can be
performed analytically. This by now standard treatment, as
established by Gondolo and Gelmini [9], results in the
often-quoted expression

dnχ
dt

þ 3Hnχ ¼ hσviðn2χ;eq − n2χÞ; ð12Þ

where nχ;eq ¼ gχm2
χTK2ðmχ=TÞ=ð2π2Þ and

hσvi≡ g2χ
n2χ;eq

Z
d3p
ð2πÞ3

d3 ~p
ð2πÞ3 σvχ̄χ→f̄ffχ;eqðpÞfχ;eqð ~pÞ ð13Þ

¼
Z

∞

1

d~sσχ̄χ→f̄fvlab
2mχ

ffiffiffiffiffiffiffiffiffiffi
~s − 1

p ð2~s − 1ÞK1ð2
ffiffi
~s

p
mχ

T Þ
TK2

2ðmχ=TÞ
:

ð14Þ

Here, Ki are the modified Bessel functions of order i, and
we have introduced ~s≡ s=ð4m2

χÞ. While there are various
ways to state the final result for hσvi, the form given
above stresses that physically one should indeed think of
this quantity as a thermal average of σvlab rather than
any other combination of cross section and velocity
(in the sense that we strictly have hσvi ¼ σvlab for σvlab ¼
const; for e.g., σvCMS ¼ const, on the other hand, with
vCMS ¼ 2ð1 − 4m2

χ=sÞ, we instead have hσvi → σvCMS

only in the limit T → 0).

By introducing dimensionless variables

x≡mχ=T; ð15Þ

Y ≡ nχ=s; ð16Þ

and assuming entropy conservation, finally, the above
Boltzmann equation for the number density, Eq. (12),
can be brought into an alternative form that is particularly
suitable for numerical integration:

Y 0

Y
¼ sY

x ~H
hσvi

�
Y2
eq

Y2
− 1

�
: ð17Þ

Here, s ¼ ð2π2=45ÞgseffT3 denotes the entropy density,
0 ≡ d=dx and ~H ≡H=½1þ ~gðxÞ�, where

~g≡ 1

3

T
gseff

dgseff
dT

: ð18Þ

The value of Y today, Y0 ≡ Yðx → ∞Þ, can then be related
to the observed DM abundance by [9]

Ωχh2 ¼ 2.755 × 1010
�

mχ

100 GeV

��
TCMB

2.726 K

�
3

Y0: ð19Þ

We note that Eq. (17) is the basis for the implementation
of relic density calculations in all major numerical codes
[23–29].

B. Coupled Boltzmann equations

The main assumption that enters the standard treatment
reviewed above is contained in Eq. (11), i.e. the require-
ment that during chemical freeze-out, or in fact during any
period when the comoving DM density changes, local
thermal equilibrium with the heat bath is maintained. If that
assumption is not justified, one has in principle to solve the
full Boltzmann equation in phase space, Eq. (1), numeri-
cally (see next subsection). As first pointed out in Ref. [30],
however, it sometimes suffices to take into account the
second moment of Eq. (1), instead of only the zeroth
moment as in the previous subsection. This leads to a
relatively simple coupled system of differential equations
that generalizes Eq. (17).
The starting point is to define, in analogy to Y for the

zeroth moment of fχ , a dimensionless version of the second
moment of fχ :

y≡ mχ

3s2=3

�
p2

E

�
¼ mχ

3s2=3
gχ
nχ

Z
d3p
ð2πÞ3

p2

E
fχðpÞ: ð20Þ

For a thermal distribution, the DM particles thus have a
temperature

EARLY KINETIC DECOUPLING OF DARK MATTER: … PHYSICAL REVIEW D 96, 115010 (2017)

115010-3



Tχ ¼ ys2=3=mχ : ð21Þ

We note that for nonthermal distributions we could still
view this last equation as an alternative definition of the
DM “temperature,” or velocity dispersion, in terms of the
second moment of fχ as introduced above. This allows,
e.g., a convenient characterization of kinetic decoupling as
the time when Tχ no longer equals T but instead starts to
approach the asymptotic scaling of Tχ ¼ Tkdða=aeqÞ−2 for
highly nonrelativistic DM [12,18].
Integrating Eq. (1) over gχ

R
d3p=ð2πÞ3=E and

gχ
R
d3p=ð2πÞ3p2=E2, respectively, we find

Y 0

Y
¼ mχ

x ~H
C0; ð22Þ

y0

y
¼ mχ

x ~H
C2 −

Y 0

Y
þ H

x ~H

hp4=E3i
3Tχ

; ð23Þ

where

hp4=E3i≡ n−1χ gχ

Z
d3p
ð2πÞ3

p4

E3
fχðpÞ ð24Þ

and we introduced the moments of the collision term as

mχnχC0 ≡ gχ

Z
d3p

ð2πÞ3EC½fχ �; ð25Þ

mχnχ

�
p2

E

�
C2 ≡ gχ

Z
d3p

ð2πÞ3E
p2

E
C½fχ �: ð26Þ

Plugging in C ¼ Cann þ Cel as provided in Eqs. (4) and
(5), finally, we arrive at a coupled set of equations that
constitutes one of our main results1:

Y 0

Y
¼ sY

x ~H

�
Y2
eq

Y2
hσvi − hσvineq

�
; ð27Þ

y0

y
¼ γðTÞ

x ~H

�
yeq
y
−1

�
þ sY

x ~H
½hσvineq− hσvi2;neq�

þ sY

x ~H

Y2
eq

Y2

�
yeq
y
hσvi2− hσvi

�
þ H

x ~H

hp4=E3ineq
3Tχ

: ð28Þ

Here, in addition to hσvi in Eq. (13), we also introduced
another, temperature-weighted thermal average:

hσvi2≡ g2χ
Tn2χ;eq

Z
d3pd3 ~p
ð2πÞ6

p2

3E
σvχ̄χ→f̄ffχ;eqðpÞfχ;eqð ~pÞ ð29Þ

¼
Z

∞

1

d~sσχ̄χ→f̄fvlab
4~sð2~s − 1Þx3
3K2

2ðxÞ

×
Z

∞

1

dϵþe−2
ffiffi
~s

p
xϵþ

�
ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~s − 1Þðϵ2þ − 1Þ

q

þ 1

2
ffiffiffi
~s

p log

� ffiffiffi
~s

p
ϵþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~s − 1Þðϵ2þ − 1Þ

p
ffiffiffi
~s

p
ϵþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~s − 1Þðϵ2þ − 1Þ

p
��

; ð30Þ

where we have used ϵþ ≡ ðEþ ~EÞ= ffiffiffi
s

p
. The “out-of-

equilibrium average” hσvi2;neq is defined as in Eq. (29),
but for arbitrary nχ, fχðpÞ—and hence also 1=T → 1=Tχ in
the normalization; the last equality, Eq. (30), thus does not
hold in this case. Correspondingly, hσvineq is defined in
analogy to Eq. (13), but equals in general not the expression
given in Eq. (14).
Two comments about this central result are in order. The

first comment, more important from a practical point of
view, is that the set of Eqs. (22) and (23) includes higher
moments of fχ , and hence does not close with respect to the
variables Y and y. Concretely, we need additional input to
determine the quantities hσvineq, hσvi2;neq and hp4=E3ineq
in Eqs. (27) and (28) in terms of only y and Y. Wewill make
the following ansatz for these quantities:

hσvineq ¼ hσvijT¼ys2=3=mχ
; ð31Þ

hσvi2;neq ¼ hσvi2jT¼ys2=3=mχ
; ð32Þ

hp4=E3ineq ¼
�

gχ
2π2nχ;eqðTÞ

Z
dp

p6

E3
e−

E
T

�
T¼ys2=3=mχ

: ð33Þ

These expressions would, in particular, result from a DM
phase-space distribution of the form

fχ ¼
nχðTÞ

nχ;eqðTχÞ
exp

�
−

E
Tχ

�				
Tχ¼ys2=3=mχ

; ð34Þ

which describes a situation in which the DM particles
follow a Maxwellian velocity distribution with a temper-
ature different from that of the heat bath (as expected, e.g.,
if the DM particles exhibit significant self-scattering

1This extends the results presented in [30]. Compared to that
reference, we have kept terms proportional to Yeq (see also [31])
and adopted a fully relativistic temperature definition in Eqs. (20)
and (21). The latter indeed turns out to be important outside the
highly nonrelativistic regime and is the origin of the last term in
Eq. (28), as well as the corrected form of hσvi2—which now
(unlike in its original form) can be seen as a proper thermal
average in the sense that a constant σvlab leads to hσvi2 ¼ σvlab
for all values of T (i.e. not only for T → 0).

We note that both hp4=E3i and the integral over ϵþ can be
expressed in terms of a series of Bessel functions when expanding
E in the denominator around E ¼ m. Since this series does not
converge very fast for the relatively small values of x that we will
be interested in here, however, we do not display these series.

BINDER, BRINGMANN, GUSTAFSSON, and HRYCZUK PHYSICAL REVIEW D 96, 115010 (2017)

115010-4



[30,32–34]). We emphasize, however, that from the point of
view of solving the coupled set of Eqs. (27) and (28), there is
no need to make such a relatively strong assumption about
fχðpÞ: any form of fχ that leads to (very) similar results for
the quantities given in Eqs. (31)–(33) will also lead to (very)
similar results for YðxÞ and yðxÞ. In other words, we expect
our coupled system of Boltzmann equations to agree with
the full numerical solution discussed in the next section–
concerning the evolution of Y and y–if and only if the ansatz
in Eqs. (31)–(33) coincides with the corresponding averages
numerically determined from the “true” phase-space dis-
tribution. As we will see later, this is indeed very often
the case.
The second comment concerns the first term on the rhs of

Eq. (28), which is proportional to the second moment of the
elastic scattering term given in Eq. (5). As that latter
expression is valid only to lowest order inp2=E2 ∼ p2=m2

χ ∼
1=x, we had for consistency also to neglect any higher-order
corrections in these quantities to the elastic scattering part of
C2 when deriving our final result. As discussed in
Appendix B, in fact, there is no simple way of determining
the next-to-leading order corrections to Cel. If we use our
default semirelativistic scattering term given in Eq. (8),
however, including the resulting corrections from sublead-
ing orders corresponds to replacing in Eq. (28),

Tχ

�
yeq
y
−1

�
¼T−Tχ

→T−Tχ þ
1

6

�
p4

E3

�
−
5

6
T

�
p2

E2

�
þ1

3
T

�
p4

E4

�
:

ð35Þ
By construction, see Appendix B, this operator must still be
an attractor to the equilibrium solution, and hence be
proportional to (some power of) T − Tχ ; for the ansatz of
Eq. (34), e.g., this can easily be verified directly. In practice,
this replacement has very little impact on the evolution of Y
and y, even at times as early as x ∼ 10. We can think of the
resulting small differences as a measure of the intrinsic
uncertainty associated to our treatment of the scattering
term.

C. The full phase-space density evolution

We now turn to solve the Boltzmann Eq. (1) at the full
phase-space density level. This is numerically more chal-
lenging, but allows to assess the validity of the assumptions
in previous sections and to track deviations (as we will see
can occur) from the standard Maxwell Boltzmann velocity
distribution. To achieve this, we start by reexpressing
Eq. (1) in the two dimensionless coordinates,

xðt; pÞ≡mχ=T and qðt; pÞ≡ p=T;

where the monotonic temperature TðtÞ replaces as before
the time parameter t via our xðTÞ, and q is now the

“momentum” coordinate that depends on both t and p. In
these variables, we can rewrite the Liouville operator on the
lhs of Eq. (1) as

ð∂t −Hp · ∇pÞ ¼ ∂t −Hp∂p ¼ ~Hðx∂x − ~gq∂qÞ: ð36Þ

Here, we used the fact that the system is isotropic and
assumed, as in the previous sections, that entropy is
conserved. With the collision terms given in Eqs. (4)
and (8), the Boltzmann equation for fχ now becomes

∂xfχðx; qÞ ¼
m3

χ

~Hx4
gχ̄
2π2

Z
d ~q ~q2

1

2

Z
d cos θvM=olσχ̄χ→f̄f

× ½fχ;eqðqÞfχ;eqð ~qÞ − fχðqÞfχð ~qÞ�

þ γðxÞ
2 ~Hx

�
xq∂2

q þ
�
qþ 2xq

q
þ q
xq

�
∂q þ 3

�
fχ

þ ~g
q
x
∂qfχ ; ð37Þ

where xq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ q2

p
and θ is the angle between q and ~q.

The benefits of this rewriting are twofold. First, the
interpretation of the Boltzmann equation becomes very
transparent, in the sense that this “comoving” phase-space
density fχðx; qÞ clearly stays unaltered for ~gðxÞ ¼ 0 and
vanishing annihilation and scattering rates (being propor-
tional to σχ̄χ→f̄f and γ, respectively). The new coordinates
thus absorb how momentum and DM density change
exclusively due to the Hubble expansion. (For nonvanishing
~g, these quantities continue to scale in the samewaywith the
scale factor a, but taking into account that a ∝ gseff

−1=3T−1.)
Second, the use of a comoving momentum q≡ p=T
significantly helps numerical calculations that extend over
a large range in x ¼ mχ=T. In fact, fχðx; qÞ is expected to
stay unchanged in shape both in the early semirelativistic
and kinetically coupled regime, where fχ ∼ e−p=Tχ ¼ e−q

given that Tχ ¼ T, as well as in the late nonrelativistic

kinetically decoupled regime, where fχ ∼ e−p
2=ð2mTχÞ ∝

e−q
2=ð2mÞ given that Tχ ∝ T2 in this case—at least as long

as ~g ¼ 0 and the DM phase-space distribution remains close
to Maxwellian as in Eq. (34).
Let us stress that here, unlike for our discussion in the

previous subsection, it is indeed mandatory to use the
semirelativistic form of Eq. (8) for the scattering operator
when discussing the evolution of the phase-space density,
in the sense that it must drive the distribution function
fχðqÞ towards the fully relativistic form∝ e−E=T [and not as

Eq. (5) to the nonrelativistic approximation ∝ e−
q2

2m=T]. The
importance of this can be seen by comparing the second
and the third line of Eq. (37). The factor in the second line
will always drive DM annihilation to occur unless an
equilibrium distribution feq is reached. The term in the
third line determines towards which equilibrium shape the
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scattering operator will drive the DM distribution fχðqÞ. If
the scattering attractor distribution would not match the
feqðqÞ of the second line, then scattering could artificially
drive annihilation to occur. For more discussions of
the semirelativistic aspects of the scattering term, see
Appendix B.
We then use a technique that discretizes the unbounded

momentum variable q into a finite number of qi with
i ∈ f1; 2;…; Ng. This allows to rewrite our integro partial
differential equation into a set of N coupled ordinary
differential equations (ODEs):

d
dx

fi¼
m3

χ

~Hx4
gχ̄
2π2

XN−1

j¼1

Δ ~qj
2

½ ~q2jhvM=olσχ̄χ→f̄fiθi;jðfeqi feqj −fifjÞ

þ ~q2jþ1hvM=olσχ̄χ→f̄fiθi;jþ1ðfeqi feqjþ1−fifjþ1Þ�

þ γðxÞ
2 ~Hx

�
xq;i∂2

qfiþ
�
qiþ

2xq;i
qi

þ qi
xq;i

�
∂qfiþ3fi

�

þ ~g
qi
x
∂qfi; ð38Þ

where fi ≡ fχðx; qiÞ, and the derivatives ∂qfi and ∂2
qfi are

determined numerically by finite differentials using several
neighboring points to fi. hvM=olσχ̄χ→f̄fiθi;j is the velocity-

weighted cross section averaged over θ (which is evaluated
analytically or numerically) as a function of qi and ~qj, and
Δ ~qj ≡ ~qjþ1 − ~qj. Finally, the DM number density in
Eq. (10) is determined by trapezoidal integration.
Numerous numerical tests have been performed to

ensure stability of our solutions to the ODEs of Eq. (38)
and that imposed conditions on the now emerged boundary
points (at q1 and qN) are physically sound. It turns out that
very small step sizes over a large range in q are required for
solving these stiff ODEs. We typically used the range q1 ¼
10−6 to qN ¼ 50with about thousand steps in between, and
set the two last terms of Eq. (38) to zero at qN while using
forward derivatives to evaluate them at q1. By the use of the
ODE15s code in MATLAB, and by analytically deriving
internally required Jacobians, we are able to efficiently
calculate the full phase-space evolution for the freeze-out
after optimizing numerical settings. On the time scale of a
few minutes we can derive the relic abundance for a given
DM model. The code is general enough to be adapted to
any standard single WIMP setup.

III. SCALAR SINGLET DARK MATTER

The simplest example of a renormalizable model
providing a WIMP DM candidate is the scalar singlet
model [14–16], originally proposed as DM made of “scalar
phantoms” by Silveira and Zee [14]. In this model, the only
addition to the standard model is a real gauge-singlet scalar
field S which is stabilized by a Z2 symmetry and never
obtains a nonvanishing vacuum expectation value. The

simplicity of the model has in itself triggered considerable
interest [35–44], with a further boost of attention after the
discovery of the Higgs boson [45–58]. Recently, the
GAMBIT [59] collaboration presented the so far most
comprehensive study of this model by performing a global
fit taking into account experimental constraints from both
direct, indirect and accelerator searches for DM [60].
Interestingly, the resulting parameter region with the

highest profile likelihood in this global fit is the one where
the scalar singlet mass mS is about half that of the SM
Higgs mass, mh, and where the DM abundance today is set
by the resonant annihilation of two DM particles through an
almost on-shell Higgs boson. As we will see, it is exactly in
this parameter region that the standard way of calculating
the relic density, as implemented in all previous studies of
this model, fails because kinetic decoupling happens so
early that it essentially coincides with chemical decoupling.
Instead, the formalism introduced in the previous section
provides a reliable calculation of the relic abundance of
scalar singlet DM.

A. Model setup

The model symmetries, along with the requirement of
renormalizability, uniquely determine the form of the
Lagrangian to be

LSZ¼LSMþ1

2
∂μS∂μS−

1

2
μ2SS

2−
1

2
λSS2H†H−

1

4!
λSSS4;

ð39Þ
whereH is the Standard Model Higgs doublet. The S boson
mass receives contributions from both the bare mass term,
μS, and from electroweak symmetry breaking, leading to

mS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2S þ 1

2
λSv20

q
, where v0 ¼ 246.2 GeV is the Higgs

vacuum expectation value. We adopt the Higgs mass
and the total width from decay to SM particles to be
mh¼125.09GeV [61] and Γh;SM¼4.042MeV [62]. For the
moment, we neglect the quartic self-coupling λSS, but will
later comment on its potential (minor) impact on relic
density calculations.
The annihilation cross section of DM pairs to SM

particles, apart from hh final states, is given by [49]

σvCMS ¼
2λ2Sv

2
0ffiffiffi

s
p jDhðsÞj2Γh→SMð

ffiffiffi
s

p Þ; ð40Þ

where Γh→SMð
ffiffiffi
s

p Þ is the partial decay width of a Standard
Model Higgs boson of mass

ffiffiffi
s

p
, and

jDhðsÞj2 ¼
1

ðs −m2
hÞ2 þm2

hΓ2
h

: ð41Þ

The total Higgs width Γh in the above propagator, but not
elsewhere, includes not only all SM channels but also the
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h → SS channel if it is open. For Γh→SMð
ffiffiffi
s

p Þ, as in [49], we
use tabulated values for

ffiffiffi
s

p
< 300 GeV from [62] and

analytic expressions at higher
ffiffiffi
s

p
. Note however that the

latter high
ffiffiffi
s

p
region has no impact on the relic density in

the studied scalar singlet mass range. Likewise, the channel
SS → hh lies outside our kinematic region of interest.
For the elastic scattering processes, we take into account

DM scattering with all SM fermions. Being mediated only
by a Higgs in the t-channel, the corresponding squared
amplitude takes a particularly simple form,

jMSf→Sfj2 ¼
Nfλ

2
Sm

2
f

2

4m2
f − t

ðt −m2
hÞ2

; ð42Þ

where mf is the mass of the SM fermion and the color
factor is Nf ¼ 3 for quarks and Nf ¼ 1 for leptons.
Averaging over the transferred momentum, as in Eq. (7),
we thus find

hjMj2it ¼
X
f

Nfλ
2
Sm

2
f

8k4

�
2k2cm − 2m2

f þm2
h

1þm2
h=ð4k2cmÞ

− ðm2
h − 2m2

fÞ log ð1þ 4k2cm=m2
hÞ
�
: ð43Þ

Note that the sum here runs over all relevant fermions and
antifermions separately.
The hierarchical Yukawa structure of the Higgs cou-

plings leads to the scattering rate being dominated by the
interactions with the heaviest fermions that for a given
temperature are still sufficiently abundant in the plasma. In
the range of DM masses mS that we are interested in,
freeze-out happens around T ∼Oð1 GeVÞ, which is not far
from the temperature of the QCD phase transition.
Consequently, the details of this transition and the SM
plasma can have a significant impact on the scattering rate;
a study which goes beyond the scope of this work.
Therefore, we follow the literature and adopt two extreme
scenarios that can be thought of as bracketing the actual
size of the scattering term:
(A) All quarks are free and present in the plasma down to

temperatures of Tc ¼ 154 MeV (largest scattering
scenario, as adopted in [20]).

(B) Only light quarks (u, d, s) contribute to the scattering,
and only for temperatures above 4Tc ∼ 600 MeV,
below which hadronization effects start to become
sizable [63] (smallest scattering scenario, as adopted
in [12]).

Finally, we adopt the recent results from Drees et al. [64]
for the effective number of relativistic degrees of freedom
geffðTÞ that enter the calculation of the Hubble rate during
radiation domination, H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3geff=45

p
T2=mPl, as well as

the entropy degrees of freedom entering for example in the
calculation of ~gðTÞ as defined in Eq. (18).

B. Relic density of scalar singlet dark matter

Let us first compute the relic density following the
standard treatment adopted in the literature. To this end, we
numerically solve Eq. (17) for a given set of parameters
ðmS; λSÞ and determine the resulting asymptotic value of
Y0. The blue dashed line in Fig. 1 shows the contour in this
plane that results in Y0 corresponding to a relic density of
Ωh2 ¼ 0.1188, cf. Eq. (19). We restrict our discussion to
values ofmS in the kinematic range where hσvi is enhanced
due to the Higgs propagator given in Eq. (41), and the
coupling λS that results in the correct relic density is hence
correspondingly decreased. This curve agrees with the
corresponding result obtained in Ref. [49].
For comparison, we show in the same figure the required

value of λS that results when instead solving the coupled
system of Boltzmann equations (27) and (28), or when
numerically solving the full Boltzmann equation as
described in Sec. II C. Here, the solid (dashed) line shows
the situation for the B (A) scenario for scatterings on
quarks. Outside the resonance region, the coupled
Boltzmann equations lead to identical results compared
to the standard approach, indicating that kinetic decoupling
indeed happens much later than chemical decoupling and
that the assumption of local thermal equilibrium during
chemical freeze-out thus is satisfied. For DM masses inside
the resonance region, on the other hand, we can see that the

FIG. 1. The required value of the singlet-Higgs coupling λS, as
a function of the scalar singlet mass mS, in order to obtain a relic
density of Ωh2 ¼ 0.1188. The blue dashed line shows the
standard result as established by Gondolo and Gelmini [9], based
on the assumption of local thermal equilibrium during freeze-out.
For comparison, we also plot the result of solving instead the
coupled system of Boltzmann equations (27) and (28) for the
maximal (“B”) and minimal (“A”) quark scattering scenarios
defined in the main text (red solid and dashed lines, respectively).
Finally, we show the result of fully solving the Boltzmann
equation numerically, for the maximal quark scattering scenario
and with no DM self-interactions included (“full BE”).
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two methods can give significantly different results, imply-
ing that this assumption must be violated. For the same
reason, a smaller scattering rate (as in scenario B) leads to
an even larger deviation from the standard scenario than the
maximal scattering rate adopted in scenario A.
This interpretation is explicitly confirmed in Fig. 2,

where we plot the temperatures at which the DM number
density and temperature start to deviate from the equilib-
rium values: in the parameter range that we focus on here,
kinetic decoupling happens indeed very close to chemical
decoupling. The reason for this very early kinetic decou-
pling is straightforward to understand as the result of a
strongly suppressed momentum transfer rate γðTÞ, com-
pared to the annihilation rate, due to two independent
effects: (i) the small coupling λS needed to satisfy the relic
density requirement, without a corresponding resonant
enhancement of γðTÞ, and (ii) the scattering rate being
proportional to the Yukawa coupling squared, which favors
scattering with Boltzmann-suppressed heavy fermions. We
note that the latter point also explains the relatively large
difference between the two extreme quark scattering sce-
narios used here for illustration (in scenario B, the largest
Yukawa couplings do not contribute to the scattering).
In order to emphasize the importance of our improved

treatment of the decoupling history, we plot in Fig. 3 also
the ratio of the resulting relic density to that of the standard
approach (for parameter values satisfying the relic density
constraint for the latter, i.e. corresponding to the blue
dashed curve in Fig. 1). Let us stress that, compared to the
observational uncertainty in this quantity of about 1%,
these corrections are by no means small even in the

minimal scattering scenario A. In the same figure, we also
compare our result for the coupled system of Boltzmann
equations (27) and (28) to the full numerical solution of
the Boltzmann equation in phase space, as described in
Sec. II C (black dots). Before getting back to these results,
let us briefly comment on the green dashed line in Fig. 3,
which implements the highly nonrelativistic scattering term
Cel of Eq. (5), and hence not the replacement (35) in
Eq. (28) which we otherwise adopt as our default. Clearly,
the impact of this choice is very limited for this approach.
We note that the quantitative importance of the relativistic
correction term proportional to hp4=E3i in Eq. (28) lies in
the same ballpark, affecting the relic density by at most
∼10% in the region very close to the resonance (and below
the percent level elsewhere).
In Appendix Awe discuss in depth the time evolution of

both the coupled Boltzmann equations and the full phase-
space density in the resonance region. Let us here just
mention that the characteristic features of the curves
displayed in Figs. 2 and 3 can indeed all more or less
directly be understood in terms of the highly enhanced
annihilation rate in a relatively narrow kinematic region
around the resonance,

ffiffiffi
s

p
∼mh � Γh. As the full numerical

solution reveals, furthermore, the shape of fχðpÞ can in
some cases be quite different from the Maxwell-Boltzmann
form (34) that is consistent with the coupled system of
Boltzmann equations (27) and (28). Whether this has a

FIG. 2. Temperatures at which DM number density and
velocity dispersion (“temperature”) start to deviate from their
equilibrium values, defined for the purpose of this figure as
jY − Yeqj ¼ 0.1Yeq and jy − yeqj ¼ 0.1yeq, respectively. These
curves are based on solving the coupled system of Boltzmann
equations (27) and (28), for the same parameter combinations as
in Fig. 1 (resulting thus in the correct relic density).

FIG. 3. The impact of the improved treatment of the kinetic
decoupling on the relic density for parameter points that would
satisfy the relic density constraint in the standard approach
(dotted line in Fig. 1), both for the minimal (solid) and maximal
(dashed) scenario for scattering with quarks. The numerical result
(full BE) implements minimal quark scattering; note that this
does not take into account the effect of DM self-interactions
(while the other curves are consistent with assuming a maximal
self-scattering rate). The green dashed curve shows the impact of
implementing the elastic scattering term in the highly non-
relativistic limit, cf. Eq. (5).
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noticeable impact on the resulting relic density (like for
mS ∼ 57 GeV) or not (like for mS ∼mh=2) again mostly
depends on whether or not the shape is affected for those
momenta that can combine to

ffiffiffi
s

p
∼mh during chemical

freeze-out.
For illustration, we pick a DMmass ofmS ¼ 57 GeV and

show in Fig. 4 the full phase-space distribution for a few
selected values of x (left panel) as well as the relevant
evolution of Y and y (right panel). For models with DM
masses in this range, the relatively large difference between
full solution and coupled equations (as visible in Fig. 3) can
mostly be understood in terms of the dip in the ratio of DM
phase-space distributions at intermediate values of q ¼ p=T
that starts to develop for x≳ 20. Concretely, the fact that the
actual distribution for those momenta is slightly suppressed
compared to a distribution fully characterized only by its
second moment, as in Eq. (34), causes the DM particles to
annihilate less efficiently, hσvineq < hσvi, because this is the
momentum range probed by the resonance for these x
values. This in turn leads to the DM particles falling out
of chemical equilibrium earlier, and hence a larger asymp-
totic value of Y. The reason for this momentum suppression
to develop in the first place is also to be found in the
particularly efficient annihilation close to the resonance,
which leads to a depletion of DM particles with correspond-
ing momenta because the scattering rate is no longer
sufficiently large to redistribute the phase-space distribution
to a thermal shape.We note that the bulk part of this effect is
actually well captured by the coupled Boltzmann system,
cf. the dashed vs solid lines in the right panel of Fig. 4. For
further details, we refer again to Appendix A.

IV. DISCUSSION

From the above discussion, we have learned that very
early kinetic decoupling is not just a theoretical possibility. It
can appear in simple WIMP models, like the scalar singlet
case, and affect theDM relic density in a significant way.We
note that the size of the latter effect is, as expected, directly
related to the size of themomentum exchange rate and hence
to just how early kinetic decoupling happens compared to
chemical decoupling. Let us stress that, from a general point
of view, this is amuchmore importantmessage connected to
our choice of considering two scattering scenarios than the
question of which of those scenarios is more realistic for the
specific model we have studied here.
We have also seen that the coupled system of Boltzmann

equations (27) and (28) provides a qualitatively very good
description for the resultingDMabundance, see in particular
Fig. 1, even though for high-precision results it seems
mandatory to actually solve the full Boltzmann equation
in phase space. As discussed in AppendixA, differences can
arise when the true phase-space distribution is not of the
Maxwellian form assumed in Eq. (34)—though the two
methods can actually still give almost identical results for
the relic abundance even when the two distribution differ
vastly. The question of under which conditions the coupled
system of equations provides an accurate description of the
relic density is thus a somewhat subtle one, and requires a
careful discussion of the velocity dependence of the anni-
hilation term in the Boltzmann equation.
An exception to this general complication is a DM self-

interaction rate large enough to force the DM distribution
into the form given by Eq. (34) [30,32–34] and hence

FIG. 4. Phase-space distributions and their evolution for a scalar singlet DM particle with mS ¼ 57 GeV. Left panel: Unit normalized
phase-space distributions fnðqÞ from our full numerical solution of the Boltzmann equation (red lines) and thermal equilibrium
distributions feqn ðqÞ (blue lines) at four different temperatures x ¼ mS=T ¼ 16 (solid), 20 (dashed), 25 (dot dashed) and 50 (dotted). The
equilibrium distributions feqn are Maxwell-Boltzmann distributions evaluated at the temperatures Tχ , as defined in Eqs. (20) and (21).
The bottom part shows the fractional deviation from the respective thermal distribution fnðqÞ=feqn ðqÞ. Right panel: The evolution of Y
(blue) and y (yellow), assuming a Higgs-scalar coupling that leads to the correct relic density in the standard approach (dotted line in
Fig. 1). We show these curves for the standard case (dotted lines), the approach using coupled Boltzmann equations (dashed) and the full
numerical result (solid). The thin gray line indicates the asymptotic value of Y corresponding to the observed relic density.
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render the coupled system of Boltzmann equations (27) and
(28) exactly correct (up to, as discussed, corrections due to
quantum statistics). Sizable self-scattering rates can for
example arise due to corresponding contact interactions,
like the quartic coupling λSS in the scalar singlet case, or by
adding light mediators that couple to the DM particle
(which was indeed the first time such a coupled system of
Boltzmann equations was considered [30], albeit in a
different context). For the case of resonant annihilation,
furthermore, the same resonance also mediates an enhanced
self-interaction. For future work, it would hence be
worthwhile to extend our numerical framework to even
include those DM self-interaction processes. For the scalar
singlet case, in particular, we expect that adding the process
SS → h� → SS would bring all numerical results for the
full Boltzmann equation—e.g., those shown in Fig. 3—
even closer to those resulting from the coupled system of
Boltzmann equations.
Let us finally stress that both the coupled Boltzmann

equations and the numerical setup that we have described
here are very general, and can be used to consistently study
early kinetic decoupling for a much larger range of models
than the scalar singlet case. Obvious applications are other
scenarios where resonant annihilation and/or annihilation
to heavy final states is important in setting the relic
abundance, see also Ref. [31]. Further examples where
the ratio of the scattering rate to the annihilation rate can be
smaller than usual, hence potentially leading to early
kinetic decoupling, include Sommerfeld-enhanced annihi-
lation [30,34,65,66] (if the light mediators are not abundant
enough to take part in the scattering process) and annihi-
lation to DM bound states [67,68]. Quite in general, our
methods provide a powerful means to check whether the
DM particles are indeed in local thermal equilibrium with
the heat bath around the time when their abundance freezes
out—which is the usual assumption, though rarely explic-
itly tested, not only in WIMP-like scenarios but also when
so-called semiannihilations [69] are important in setting the
relic density, when computing the relic abundance for
modified expansion histories [70,71], or in scenarios that
go beyond simple 2 → 2 annihilation processes [72–74].

V. CONCLUSIONS

The standard way of calculating the thermal relic density
of self-annihilating DM particles rests on the assumption of
local thermal equilibrium during freeze-out, and that hence
kinetic decoupling occurs much later than chemical decou-
pling. Here, we demonstrated for the first time that
departure from kinetic equilibrium can instead happen
much earlier, even simultaneously with the departure from
chemical equilibrium.
By introducing a coupled system of equations for the

DM number density and its “temperature”, or rather
velocity dispersion, we improved the standard way of
calculating the relic density in such cases. For an even

higher accuracy in predicting the DM abundance, we also
found a way of solving the full Boltzmann equation
numerically. The latter approach has the additional advan-
tage of obtaining the full phase-space distribution, rather
than only the number density, which in particular allows to
test in detail the assumption of a Maxwellian velocity
distribution adopted in the standard approach. A numerical
solver for the coupled system of Boltzmann equations,
s. (27) and (28), will be available in an upcoming version of
DARKSUSY [28] and our implemented solver for the full
Boltzmann uation at the phase-space level, . (38), will be
released separately.2

Applied to the simplest renormalizable WIMP model—
the scalar singlet, extensively discussed in the literature—
we somewhat surprisingly found that the relic abundance
predicted in the standard approach can differ by up to an
order of magnitude from the correct treatment presented in
this paper. This is rather remarkable not only in view of the
simplicity of this model, but also because the affected
region in parameter space happens to coincide with the
best-fit region resulting from most recent global scans. We
thus expect our results to have a noticeable phenomeno-
logical impact, and that our treatment will prove useful also
when applied to other examples of relic density calculations
in cases where the standard assumption of local thermal
equilibrium during freeze-out is not exactly satisfied.

ACKNOWLEDGMENTS

We thank Mateusz Duch, Joakim Edsjö, Bohdan
Grządkowski, Andreas Hohenegger and Ayuki Kamada
for very useful conversations during the preparation of
this work. A. H. is supported by the University of Oslo
through the Strategic Dark Matter Initiative (SDI). M. G.
and T. Binder have received funding from the European
Union’s Horizon 2020 research and innovation program
under Grants Agreements No. 690575 and No. 674896. T.
Binder gratefully acknowledges financial support from the
German Science Foundation (DFG RTG 1493).

Note added.—Recently, we became aware of a dedicated
study on resonant DM annihilation [31], which also found
that DM can kinetically decouple much earlier than usual in
this case.

APPENDIX A: PHASE-SPACE DENSITY
EVOLUTION OF THE SCALAR SINGLET

In Sec. III B, we investigated the impact of our improved
treatment of the Boltzmann equation on the expected DM
relic abundance in the scalar singlet model. Here, we
supplement this by discussing in some more detail the
evolution of the DM phase-space density. The main focus

2Please contact any of the authors if you need these numerical
routines prior to their public release.
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of this discussion, however, will be a more thorough
qualitative understanding of the specific features seen in
Figs. 2 and 3, and the underlying interplay of chemical and
early kinetic decoupling. Specifically, we can distinguish
three mass regimes:
(1) A regime with 53GeV≲mS≲60.5GeV, which we

will refer to as subresonant becausefχ starts to deviate
from its equilibrium value, fχ;eq¼expð−E=TÞ, at a
temperature where the typical DM momenta are too
small to hit the resonance, i.e.

ffiffiffi
s

p ≲mh − Γh. As
a result, we have hσviðneqÞ < hσvi2;ðneqÞ3 during the
whole freeze-out process in this regime—this is
because p2fχðpÞ peaks at a higher value of p than
fχðpÞ, which brings its bulk distribution closer to (or
even on) the cross-section resonance.

(2) A regime with 60.5 GeV≲mS ≲ 62.5 GeV that we
will refer to as resonant. Here, we have hσvi >
hσvi2 around the time when the DM particles
start to leave thermal equilibrium, because the larger
mass combines with the relevant momenta to
s ∼m2

h. At slightly later times, on the other hand,
still relevant in changing the DM abundance, the
DM momenta have redshifted so much that we are

back to a situation where typically
ffiffiffi
s

p ≲mh − Γh
and hence hσvi < hσvi2.

(3) Finally, there is a superresonant regime with
62.5 GeV≲mS ≲ 65 GeV, where decoupling oc-
curs at such high temperatures that we have hσvi >
hσvi2 during the whole time it takes for YðxÞ to reach
its asymptotic value (determining the relic density).

To help our discussion, let us look at a selection of
benchmark points with scalar snglet masses mS ¼ 45, 57,
60.5, 62, 62.5, 63 GeV and coupling constants λSðmSÞ that
result in the correct relic density in the standard approach
(dotted line in Fig. 1). In Fig. 5, we show the DM
distribution function for these benchmark points that we
find with our full numerical approach, for selected values of
x, and in Fig. 6 the full evolution of YðxÞ and yðxÞ for the
different approaches. These figures thus extend the infor-
mation in Fig. 4 by covering a range of DM masses.
The first thing to note, as exemplified by the benchmark

points with mS ¼ 45 GeV and mS ¼ 63 GeV, is that for
masses sufficiently far away from the resonance we find a
phase-space distribution which remains almost exactly
Maxwellian in shape. For these points, we therefore find
as expected a very good agreement for the evolution of
YðxÞ and yðxÞ when comparing the numerical solution and
the coupled Boltzmann approach, as well as with Y in the
standard Gondolo and Gelmini setup (which assumes
T ¼ Tχ). We note that this provides an important consis-
tency check for both methods.
An example for a model in the subresonant region is the

case with mS ¼ 57 GeV, which we discussed in the main

FIG. 5. Same as the left panel of Fig. 4 in the main text, but now for comparison for various DM masses mS ¼ 45, 57, 60.5, 62, 62.5,
63 GeV. Note that for cases where the equilibrium distributions appear to be missing in the top panels, it is just because it agrees very
well with the actual phase-space distribution (as also visible in the fractional deviation plotted in the bottom panels).

3For the sake of better readability, we will suppress the
subscript “neq” for the remainder of this section. We note that,
once chemical decoupling has started, the contribution of thermal
averages without this subscript is suppressed by a factor of Yeq=Y
in Eqs. (27) and (28).
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text. Here, the resonant annihilation depletes fχðqÞ for
momenta just above the peak of the distribution, leading to
a relative decrease with respect to a thermal distribution at
these momenta, and hence a decrease in the DM velocity
dispersion (also known as “temperature”). This effect is
visible in Fig. 5 starting with a slight suppression at q ∼ 8
for the curve with x ¼ 20 (note that the relative enhance-
ment at larger values of q is not relevant for our discussion
given that fχ is already highly suppressed here), and results
in the decrease in the evolution of y seen in Fig. 6. The
latter can also directly be understood from inspection of
Eq. (28): in the subresonant regime we have hσvi < hσvi2,
which drives y to smaller values after decoupling (with a
strength proportional to Y—which explains why the
scattering term ∝ γðTÞ can increase y again, slightly, once
the DM abundance has decreased sufficiently). A second
effect of this depletion in fχðqÞ is that hσvineq decreases,
which in turn leads to an earlier chemical decoupling and
hence an increased relic density. The difference between
the numerical and the coupled Boltzmann approach can in
this case thus exclusively be understood as resulting from
the slight offset in the yðxÞ curves during the freeze-out
[which in turn results from the fact that the scattering term
is not strong enough to maintain an exact Maxwellian shape
of fχðqÞ when the velocity dispersion decreases as
explained above].
As we increase the DM mass, we leave the subresonant

regime and enter the resonant regime, with the transition
point marked by the benchmark model withmS¼60.5GeV.
We note that this transition is also clearly visible in Fig. 2,
as a sharp decrease in the temperature at which the DM
velocity dispersion deviates from its equilibrium value.
The origin of this feature is not an actual delay of
kinetic decoupling, but that DM annihilation now starts
to deplete fχðqÞ below the peak of the would-be

Maxwellian distribution.4 This leads to an increase of
the velocity dispersion, once equilibrium is left, rather
than a decrease as in the subresonant regime. This effect is
very clearly seen in Figs. 5 and 6, up to DM masses at the
higher end of this regime, where the influence of the
resonance starts to become less important because we haveffiffiffi
s

p ≲mh þ Γh only for DM momenta well below the peak
of the phase-space distribution.
In the superresonant regimewithmS ≳mh=2, finally, we

have necessarily
ffiffiffi
s

p ≳mh. A resonantly enhanced annihi-
lation rate is thus only possible for a very small portion of
phase space, with almost vanishing relative DM momenta.
This implies not only that we always have hσvi > hσvi2 in
this regime, but also that the effect of the resonance rapidly
becomes negligible.
Lastly, it is interesting to note that for

ffiffiffi
s

p ≳mh the
annihilation rate effectively features a 1=v2 velocity depend-
ence. This is similar to resonant Sommerfeld-enhanced
annihilation, which leads to a suppressed relic density after
a prolonged freeze-out phase [30]. This can clearly be seen
in the evolution of YðxÞ in Fig. 6, formS ∼mh=2, where the
differences between the numerical and the coupled
Boltzmann approach are mostly due to the late-time
differences in yðxÞ—which in turn come about because
of the rather significant differences infχðqÞ at largevalues of
x (cf. Fig. 5).

FIG. 6. Evolution of YðxÞ and yðxÞ, for the same DM masses as shown in Fig. 5.

4In a similar way, the sharp rise around mS ∼ 54 GeV in Fig. 2
should not be interpreted as a feature in the momentum exchange
rate γðTÞ. Rather, it can be understood as the point where the
shape of the yðxÞ evolution starts to develop from something
close to the one in the top left panel in Fig. 6 into something that
is much closer to the one in the top center panel (which in turn is
driven by the annihilation terms, as explained in the text). As a
result, the temperature at which y departs from yeq increases very
quickly as the mass increases beyond this transition point.
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APPENDIX B: SEMIRELATIVISTIC
KINETIC THEORY

In this Appendix, we discuss how to generalize the
highly nonrelativistic elastic scattering term in Eq. (5) to
incorporate the most important relativistic corrections
needed for the numerical implementation of the full
Boltzmann equation. Throughout, we refer to this result
as “semirelativistic” scattering.
The starting point is to expand the full collision term Cel

in small momentum transfer compared to the typical DM
momentum—similar to what is done in order to arrive at
Eq. (5), but not only keeping lowest-order terms in
p2=m2

χ∼T=mχ . From this, we can derive a Fokker-Planck
scattering operator in a relativistic form (for details, see [21]):

Cel ≃ E
2
∇p · ½γðT;pÞðET∇p þ pÞfχ �: ðB1Þ

Being a total divergence, this scattering operator manifestly
respects number conservation, as it should. Another impor-
tant property, which one can directly read off from the part
inside the brackets, is that it features a stationary point given
by the relativistic Maxwell-Boltzmann distribution,

feqχ ∝ e−E=T: ðB2Þ
The nonrelativistic limit of Eq. (B1) gives the scattering
operator (5), but in this limit the stationary pointwould instead
be the nonrelativistic version feqχ ∝ exp½−p2=ð2mχTÞ�—
which would cause a problem in the full BE as this does
not correspond to the actual equilibrium distribution fed into
the annihilation term of Eq. (37).
In general, themomentum transfer rate γðT;pÞ in Eq. (B1)

depends on the DM momentum p. However, the stationary
point is independent of γ, which motivates us to restrict

ourselves to the leading order term γðTÞ≡ γðT; 0Þ, neglect-
ing any momentum dependence, and use the nonrelativistic
limit in Eq. (B1) only to evaluate themomentum transfer rate
γðTÞ as it appears in Eq. (6). To this order, we could thus also
replace the leading E in Eq. (B1) bymχ ; here, we choose to
still keep it as it leads to a much more compact analytical
form of the equation governing the DM temperature (see
below). Explicitly performing the first partial derivative in
Cel then leads to the final form of our semirelativistic
Fokker-Planck operator as given by Eq. (8). This operator
is our default choice for the numerical implementation of the
full Boltzmann equation.
As already pointed out in Sec. II C, it is mandatory for

the full phase-space calculation to have a scattering
operator with a fixpoint that matches the equilibrium
distribution of Eq. (B2) assumed in the annihilation term.
For the coupled integrated Boltzmann system, on the other
hand, this issue is fully addressed by using the relativistic
temperature definition of Eq. (21)—rather than its non-
relativistic version typically adopted in the literature in the
context of kinetic decoupling—because this automatically
leads to the correct fixpoint Tχ ¼ T for both the semi-
relativistic Eq. (8) and, to the lowest order, for the non-
relativistic version Eq. (5); see the discussion in Sec. II B.
Another advantage of our semirelativistic Fokker-Planck

operator is that the differential equation for Tχ, often quoted
when discussing kinetic decoupling, takes a very simple
form even beyond the highly nonrelativistic limit. To see
this, let us for the moment ignore the impact of annihila-
tions, and take the second moment of the Boltzmann
equation with this operator (using the relativistic definition
of Tχ). This leads to

_Tχ þ 2

�
1 −

hp4=E3i
6Tχ

�
HTχ ¼ γ

�
T

�
1 −

5

6
hp2=E2i þ 2

6
hp4=E4i

�
− Tχ

�
1 −

hp4=E3i
6Tχ

��
; ðB3Þ

which of course is equivalent to Eq. (28) in the main text,
when neglecting the annihilation terms and implementing
the replacement given in Eq. (35). Let us repeat that the rhs
of the above equation only takes this particular formwith our
default choice of the semirelativistic Fokker-Planck term,
whereas the moment appearing on the left-hand side is an
exact result. This equation is in general not closed in terms of
Tχ . However, if we make the ansatz of a Maxwellian DM
phase-space distribution, cf. Eq. (34), we get a relation
between the different momentum moments,

5hp2=E2i − 2hp4=E4i ¼ hp4=E3i=Tχ ; ðB4Þ

such that the differential equation closes in terms of Tχ .
Indeed, introducing

2ð1 − wÞ≡ gχ
3Tχnχ

Z
d3p
ð2πÞ3

p4

E3
fχðpÞ ¼

hp4=E3i
3Tχ

; ðB5Þ

it takes a very simple form:

_Tχ þ 2wðTχÞHTχ ¼ wðTχÞγðTÞðT − TχÞ: ðB6Þ

This generalizes the highly nonrelativistic result [18], for
whichw → 1 andwe hence find the familiar scalingTχ ∝ T2

after kinetic decoupling (i.e. when γ ≪ H). In the ultra-
relativistic limit, on the other hand, we have wðTχÞ → 1=2
and the likewise familiar scaling of Tχ ∝ T for relativistic
particles.We note that in the region x≳ 10 relevant for early
kinetic decoupling, the correction to the nonrelativistic limit
is already sizable; e.g., wðx ¼ 10Þ ≈ 0.8.
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