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We study Dirac fermionic dark matter (DM, »°) and confront it with recent data. To evade the stringent
direct search limits from PandaX-II, XENONIT, and LUX experiments, the quantum numbers of the
Dirac DM are taken to be /5 = Y = 0 to remove the tree-level Z-exchange diagram. Loop amplitudes can
contribute to the elastic scattering cross section. We find that there are cancellations in the one-loop
diagrams, which largely reduce the cross section and make the Dirac DM viable in the direct search. For a
generic isospin /, we survey the Dirac DM mass constrained by the latest results of PandaX-II, XENONIT,
and LUX experiments, the observed DM relic density, and the H.E.S.S. and the Fermi-LAT astrophysical
observations. Sommerfeld enhancement effects on DM annihilation processes are investigated. We find that
the cross section of y°7° annihilating to the standard model gauge bosons are in general significantly
enhanced, and the Fermi-LAT, the H.E.S.S. upper limits on (6v)(W*W~,yy), and the observed relic
density become serious constraints on the Dirac DM mass. The I < 4 cases are ruled out, and for / > 4, the
lower bounds on the Dirac DM mass are forced to be 260 TeV. The elastic scattering cross section for m,
of a few tens of TeV with a generic I is found to be 65 = I>(I 4 1)> x 7 x 10~*° ¢cm?. The predicted
(6(x°7° — 7°Z°, 2%, yy)v) and ¢ are sizable, and they will be useful to search for DM in astrophysical
observation and in a direct search in the near future.
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I. INTRODUCTION

The existence of dark matter (DM) in different astro-
physical scales of the Universe [1-7] provides strong
evidence for physics beyond the standard model (SM).
Weakly interacting massive particles (WIMPs) are prom-
ising DM candidates. The WIMPs are assumed to be
created thermally during the big bang and froze out of
thermal equilibrium escaping the Boltzmann suppression in
the early Universe. The DM relic density is approximately
related to the velocity averaged DM annihilation cross
section by a simple relation [8],

0.1 pb x ¢
QN ——. 1
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Comparing to the measured value of DM relic density
is [9]

Qe = 0.1186 + 0.0020, (2)

and it suggests the case of DM with mass in the range of
100 GeV to a few TeV and is governed by an electroweak
size interaction. That is well known as the WIMP
miracle [10].

There are three complementary searching strategies
to detect the DM particles in experiments (see [10,11]
for brief reviews). They are the direct detection of DM-
nucleus scattering in underground laboratories, the indirect
detection of DM annihilation processes in astrophysical
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observation, and the DM direct production at colliders
[10-20]. So far these searches only provide upper limits.
Recently upper limits on spin-independent (SI), spin-
dependent (SD) DM-nucleus scattering cross sections are
reported by PandaX-II [21], XENONIT [22], and LUX
[23,24] experiment groups, while those on velocity averaged
DM annihilation cross sections are from H.E.S.S. [25,26]
and Fermi-LAT [27] groups. In spite of the fact that DM
contains about 85% for the total mass in the Universe
[28,29], we still do not know much about its nature. In
the literature, the possibilities of a DM particle as a scalar
[30-36], a fermion [8,37-50], or a vector boson [50-60] are
considered.

In this paper, we study the case of a Dirac fermionic DM.
We investigate a renormalizable DM model by introducing
a pure weak eigenstate Dirac fermion as a DM candidate.
The DM only interacts through gravity and weak inter-
actions [40,41,44]. We will confront the model to the recent
experimental data of relic density, direct, and indirect
detection experiments.

This paper is organized as follows. In Sec. II we introduce
the model. In Sec. IIl we calculate the cross sections of
DM-nucleus elastic scattering and compare them with the
results of recent LUX, XENONIT, and PandaX-II experi-
ments in the direct search. In Sec. IV we calculate the
velocity averaged cross section of DM annihilating to the
SM particles and the DM relic density incorporating
the Sommerfeld enhancement effect. We compare our results
with the Fermi-LAT and the H.E.S.S. data and the observed
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relic density, respectively. Conclusions are given in Sec. V.
We collect the loop integral functions in Appendix A,
followed by a comprehensive derivation of Sommerfeld
factors in Appendix B.

I1. A DIRAC FERMIONIC DARK MATTER MODEL

We introduce a Dirac fermionic dark matter model by
adding onto the SM a Dirac fermionic multiplet y with
arbitrary I and Y, and the Lagrangian can be written
as [40,41,44]

L= ﬁSM +)_((l7/MD;4 - m)())(
= Lsm +7/r"(i0, — gWiT5, + gBY ;8 )" —m gy,
3)

where W and B, are the familiar electroweak SU(2); and
U(1) gauge fields, respectively. In this model, the SM is
minimally extended so that the DM can only interact
with the SM gauge bosons. Besides, there is only one free
parameter, the DM mass m,, that makes the model
predictive. As in most DM models, an additional discrete
symmetry is needed to assure the stability of DM. For
example, we may assign the Dirac DM with a Z,-odd
quantum number and the SM particles with a Z,-even
quantum number to maintain the stability of DM.

The Lagrangian for the WIMPs interacting with the SM
gauge bosons can be extracted from Eq. (3), giving

9 _; S
L= —ﬁ;ﬂyﬂ(W:{Tﬁ + Wi T0x"

=27 [(geos Oy Ty — ¢ sinOyY ;6,)Z, + eA,Q)ly*.
(4)

Here we have used the weak mixing angle 0y, and the
relation e = gsinfy = ¢ cos@y, with electric charge
Q=T+Y. As the DM is electrically neutral, the
Lagrangian for DM interacting with the Z boson can be
further extracted as

g
cos Oy

Lo=-

py 7z, (5)

The tree-level vector interaction of DM with the Z boson
leads to the SI elastic cross section with a nucleus N,

oS (yN —>;(N):'u—12\’ . A— 412 —l(A—Z)
A 4z \cosOyM,) 3| 4

+ G _sin eg) z} ’ (©)

where Z and A are the numbers of protons and nucleons
in the target nucleus, respectively, /5 is the weak isospin
quantum number, and py is the DM-nucleus reduced mass.
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It corresponds to the normalized cross section with a
nucleon,

oS, =13 x 107 cm?, (7)
for m, ranges from a few GeV to a few 100 TeV.

The above cross section has already been ruled out in the
direct search of SI experiments of DM-nucleus scattering
for many years, unless the quantum numbers of the Dirac
DM are either (i) I #0,1; =Y =0or (i) I = Y = 0 [44].
In this model, we shall consider the first case, i.e., I # 0,
but /3 = Y = 0. Nevertheless, we still need to check the
contribution to the SI elastic cross section from the loop
diagram.

As we know, the DM is highly nonrelativistic in the DM-
nucleus elastic scattering. In literature, the loop contribu-
tions to the DM-nucleus elastic cross section are explored
in the Majorana fermionic DM case [61-63]. In this paper
we will study the loop contribution to the elastic DM-
nucleus scattering in the Dirac fermionic DM case.

IT1. DIRAC FERMIONIC DARK MATTER
IN THE DIRECT SEARCH

A. Effective Lagrangian

In this paper, we only consider the case [ #0,
I3 =Y =0. Hence, the elastic cross section of Dirac
DM-nucleus scattering vanishes at tree level. Note that
the Majorana fermionic DM case were studied in [41,61].
The effective Lagrangian of Dirac DM with quarks and
gluon can be written as [8,62]

Eeff: Z ﬁ?]ff‘i‘ﬁsz, (8)

q=ud,s

L = a,[1°%1[aq] + by [7°r"x°Nar,d]
(1)
_ _ 4dq _o. v
+dg [Py v Nlarr’al + = 10 Ol
X
95’
+ =7 0(i0") (10" ) Ol 9)
My

£ = f67"n° Gl G, (10)
where the quark twist-2 operator, (’)Zy, is defined as

1

Of =
)

. 1
ql<D/ﬂ/y+Dy7ﬂ_§gﬂI/p)Q' (11)

Figure 1 shows the one-loop Feynman diagrams that
induce the effective interactions of DM y° with quarks.
Note that in the Dirac fermionic DM case, y° and 7° are
different particles. There is an additional set of diagrams
with ¥ in Fig. 1 replaced by 7°. These diagrams are related.
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FIG. 1. One-loop diagrams for the effective interaction of Dirac DM with quarks.

In fact, one can show that the former amplitude M o is equal to the latter one M. Now we let n,0 and n;0 be the number
density of the particle y° and the antiparticle }°, respectively. They add up to the total number density of DM,
npm = Ny + ny. Using Mo = My, we have n)|M p|* + nyo|Mo|* = (n) + nyp)|M o|* = npy|M s |*. Hence, we only
need to calculate M .

Note that the amplitudes correspond to the Feynman diagrams in Figs. 1(d) and 1(e) and turn out to be vanishing
individually. Both diagrams have two subdiagrams. The relative sign differences between the trilinear couplings of the
vector bosons WHW*V? and W-W~V? (V? = Z or A) are responsible for the cancellation of the diagrams in Fig. 1(d),
while relative sign differences between the couplings y~y~V? and y*y*V? are responsible for the vanishing of the sum of
diagrams in Fig. 1(e).! Hence, only the Feynman diagrams in Figs. 1(a)-1(c) contribute to the effective interactions.
¢ and d, from Fig. 1 and use gfll), g[(f) obtained in Ref. [62]. In the
nonrelativistic (NR) limit with m, > m,, my, and ignoring the mass splitting among the neutral DM (¢°) and the single
charged WIMP partners (y¥), we have’

We calculate the effective couplings a,, b

'For example, the photon exchange diagram in Fig. 1(d) contains two subdiagrams, with y*, W~ or =, W™ running in the loop. The
corresponding matrix elements are

o e G35 ) G o)

x {qc i'sin By [(pl = P3),9u + (k= 3+ P1),9u + (2p3 = 2p1 — k)pga,,} } (klgM%V) (p;g;: 2l (Pa)(=iQyer)uy(p2)]
(12)

where pj3) and p,(4 are the momenta of incident (outgoing) y and g, respectively, and T, = Thy=T =TZy=+/I(I+1).
Consequently, we have M| + M_ = 0 from the relative sign difference between the trilinear couplings of the vector bosons W W*A
and W-W~A.

*Our a, and d,, agree with those in [62] up to an additional factor of 2 for m, > m,, my. Note that b, = 0 for Majorana DM in
Ref. [62]. The ad(iiitional factor is from the differences of the Lagrangians and amplitudes in the Dirac and Majorana cases. We apply the

factor of 2 to gﬁ,]) and gg,z) when adapting the results from Ref. [62].
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FIG. 2. Two-loop diagrams contributing to the effective scalar coupling of Dirac DM with gluons.

g s m,
—I(I+1 S F3
I+ )16”2 _MWm (qu)+MW (qu)}
g | mg v [
b I 1 F s Ay 7F Ny l
=I(I+ )16” W, (qu)+M%v Wz(qu)}
dy=1(I+1)-2— g [1 (g.x.3) L pa (%9,
= X, X,
167[ _MW W, q y X W, q y
4
(1) g 1
g =1(I1+1) gr1(x),
! 167> M3,

@ _ g'

=10+ 1) o). (13)

where we define x = M3,/m2, y = mi/m} with m,, m,,
and my, the quark ¢, ¢, and the W-boson masses, respec-
tively. Note that a,, b,, and d,, contribute to the so-called
the scalar-scalar (SS), vector-vector (VV), axial vector-

axial vector (AA) interactions, respectively, while ggw

i

and
also contribute to the SS interaction. All loop integral
functions F§(g. x,y), Fy" (¢, %, ¥), gr1(x), and g (x) are
collected in Appendix A.

The two-loop diagrams shown in Fig. 2 produce the
effective scalar coupling of Dirac DM with gluon in a
nucleon, and f; defined in Eq. (10). These diagrams
contribute to the effective scalar coupling, f; giving

fo =16 +15 + 5. (14)
where the superscripts correspond to the labels of the
diagrams in Fig. 2. We use the results obtained in Ref. [62]

for these f<cl:>

The heavy quark contribution to the mass of the nucleon
through the triangle diagram [64] shown in Fig. 2(a) gives
the effective scalar coupling,

4
o g

127 1672

g aQ

a 1
16 =~ 114 Ve g —gul) = -

127 mQ ’
(15)

where the loop integral function gy (x) with x = M%,V /m
is basically from [62] and is collected in Appendix A’ co=
1+ 1lay(mgp)/4x with Q = c, b, t, and a is defined in
Eq. (13). Note that in the above equation we have taken
co =1 for Q =c, b, t for simplicity, while in Ref. [62],
c. =132, ¢, =1.19, and ¢, = 1 for a,(m,) = 0.118 are
used. From Figs. 2(b) and 2(c), we have [62]

4
a, g 1
=——=I(I+ I)M_39W(x7y)’
W

(b) (c)
fo' +Tg 47 1672

(16)

and the loop integral function gy (x,y) with x = M3%,/m2,
y=m?/ m is collected in Appendix A. Note that the
contnbuuon of the twist-2 operators of gluon which are
suppressed by the strong coupling constant o, have been
ignored (see Ref. [65]).

In Appendix A, the loop integral functions S, V A

L(a.x.y)
can be classified into three classes where the external line in
Fig. I involves light, b, or t quarks. For the light quark case,
we only keep the effective coupling up to the leading order in
m,. For the b-quark case, the top quark is in the loop of the
box diagrams and the loop integral functions can be analyti-
cally solved under the assumption m,, > m,. For the ¢-quark
case, the bottom quark is in the loop of the box diagrams and
the loop integral functions can only be numerically solved
(with the assumption m, > m,). Note that there is a can-
cellation in the V'V interaction so that the large component
(~1/M3,) of the effective coupling b, vanishes for all quark
flavors; in other words, Fy, (g, x,y) = 0. We will see later
that it makes the Dirac DM model viable in the direct search.
Note that a similar cancellation in the Majorana case was
reported in Ref. [62].

B. Spin-independent and spin-dependent cross sections

To compare with the results of recent PandaX-II [21],
XENONIT [22], and LUX [23,24] experiments, we

*Similarly, @ & (i = a, b, c) used here have an additional factor
of 2 compared to those in Ref. [62]. See footnote 2.
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calculate the normalized ST and SD cross sections of Dirac
DM elastic scattering off '>*13Xe nuclei. We shall obtain
the averaged unpolarized amplitude squared S |M wil* at
g*> = 0 first. Note that there is no interference between
various interaction terms in iMy. From the effective
Lagrangian of DM-nucleus elastic scattering, the unpolar-
ized matrix element square can be written as [43]

E\MHZ q°=0)
_Z|MSI|2q _0 +Z|M2SD q —O)
(17)

The first two terms are from the effective SS and VV
interactions, respectively, contributing to |M5?, while the
last term from the AA interaction contributes to |MSP|2.

|

fspiz qf Z

q= uds q=u.d.s.c.b
3

=S g Y @+ a@)e
q= uds g=u,d,s,c.b

with

<p|mqZ]CI|p> = mpf?qv

] 2
(p|moQQ|p) :ﬁmprG’ fre =1- Z qu’
q=u,d,s
1 1
P10klr) = o (o, = g ) (4@ + 202
(22)

In the above, a, = g2/4n (g, is the coupling constant of
SU(3)¢), and q(2) and g(2) are the second moments of the
parton distribution functions (PDFs). The matrix elements
of the light quark currents in nucleon are obtained in
chiral perturbation theory from measurements of the pion-
nucleon sigma term [67-72]. Similarly, f,, can be written
by replacing p with n in Egs. (21) and (22).

In the center of mass frame, the differential cross
section is

do(Gg=0) 1
d|q|?

> IMgP(q
Here v is the DM velocity relative to the target, \/s ~ m,, +
myy 1s the total energy, and . is the reduced mass of DM

and the target nucleus \. The “standard” total cross section
at zero momentum transfer defined in [8] is

0). (23)

B 647rs;4j2\/112

2 (4@ +a@)(6
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For the VV interaction, we have

Quy = Z(2b, +by) + (A= Z)(2b, +b,).  (18)

For the AA interaction, we have

Qav = Y d, (A4, +A1d,). 4 :M, (19)
q\=4q"p q’n p.n J/\/

q=u,d,s

where A?") is the quark spin component in proton
(neutron), (S () )esr iS the proton (neutron) spin expectation
value (including the contributions of two-body current [66])
and J is the total angular momentum of the nucleus N
Note that we have (S,(,))er = (Sp(n)) £a1((S,) = (S,))/2

[43,66]. For the effective scalar interaction, we have

fon = (Zfsp + (A - Z)fsn)v (20)
and [62]
+9) — g frolf6) + £6) +16)
2 .

RV e f1o= o 1ol + 1), (21)
[

_ [ 2do(§=0)

[} _/) d|q| d|q|2
2
=X [(2 4+ Q) +4Q% I + 1)
= GOI + a (24)

The spin-dependent cross section at zero momentum trans-
fer can be further decomposed as

(S)D - 00])]) +00nn +60pn7 (25)
where
O (o) = [(Zd AP ) NN +1)}
UOpn [(Zd d /AZAZ’>A’P’1nJAi(JA;+])i|'
(26)

Hence, the total cross section of DM-nucleus N scattering
can be written as [43]
do

(7,/\/:/ |q|2d| |2

SI
( rstt 60 pplpp + O-O annn + 60 .pn Pn)

(27)
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where

r.,E/ A AaE g, (28)
0

4y v
with j = SI, pp,nn, pn and
Soo(la]) + S1i(lal) £ Soi(lal)

Fopton 19D =5 (0751, (0) = 5 (0)
Note that we have Sy (0) + S1;(0) & Sp;(0) = ((2J4, + 1)
(Ja, + 1)/2d 5 )(Sp)&s and Spp(0) =811 (0) = ((274,+1)

(Ja, 1)/ 74 )(Sp) et (St [43].
Equation (27) can be shown [43] to be equivalent to the
usual expression [8,73]

G(S)I 4;41, v?
oy =——
N =3 /42 2

R B SD
P / daPFp(lal) = o + . (30
Hprv

dlal*F§(lal)

where F,(|q|) is the spin-dependent form factor, which
involves both short and long distance physics, a feature we
try to avoid in this work.

To compare with the experimental results, we define
the scaled SI and SD cross sections, respectively, for the
nucleus with atomic mass number A; and isotope abun-
dance #; as the following4:

GSI = _Lii%A; Z 7710/\ (31)
AT
and
4ﬂA pn eff(]A +1)
<Z’716A ) (Z ’1] 3/'lp nJA > '
(32)

where u,, and p,, , are the reduced masses of the DM with
the target nucleus and the DM with a proton or a neutron,
respectively.

C. Numerical results for direct search

Now we are ready to do the numerical calculation.
PandaX-II, XENONIT, and LUX experiments [21-24]
use the Xenon nuclei as the target material. They provide

*The terminology of the spin-(in)dependent cross section is
somewhat misleading. There are, in fact, two different normal-
izations, where both spin-dependent and spin-independent inter-
actions are involved in ¢%' and 63",
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the most stringent upper limits on ¢° and ¢°°. We will
compare our calculation results with these experimental data.
We shall specify the inputs of our numerical analysis.
For the calculation of ¢!, we adopt the Helm form factor
[74,75] used in the XENONIT and LUX experiments,

F2(la)) = (—3" “"RN))ZeW, (33)

qR N

where the nuclear radius R}, = ¢? +%7%a® — 55% with
c = (1.23A'3 -0.6) fm, a = 0.52 fm, and the nuclear
surface thickness s = 1 fm. We use the following updated
data of nucleon mass fractions: fTu =0.017, fF,=0.023,

%, =0.012, f%,=0.033, " =0.053 from Ref. [72].
We follow Ref. [76] and use u(2) = 0.223, &(2) = 0.036,
d(2) =0.118, d(2) =0.037, s(2) =5(2) = 0.0258,
c(2) = &(2) = 0.0187, b(2) = b(2) = 0.0117, for the sec-
ond moments of PDFs of quarks and antiquarks. These
values are evaluated at the scale u = M, using the CJ12
next-to-leading order PDFs given by the CTEQ Jefferson
Lab Collaboration [77]. For the calculation of 3" .p» We adopt
the structure factors Sog o1.11(|q|) for the '*13Xe nucleus in
Refs. [24,66], and use the following data of the quark spin
components: A} =A"=0.85, Al=Al=-042, A} =
A% = —0.08 from Ref. [72], which are slightly different
from those in Refs. [78,79]. For '?*131Xe nuclei, we use the
nuclear total angular momentum J and the predicted spin
expectation values (S, ,) from Refs. [66,80] for (S, )
and the isotope abundance of '?13'Xe (1;) from Refs. [24].

For the '**13'Xe nucleus with an odd number of neutrons
and an even number of protons, the nuclear spin is dominant
by the neutron from the odd-group model [81]. Hence, the
constraint on o,° is more stringent than that on ¢5° in
experiments using these nuclei. Consequently, we only give
predictions on 65! and aﬁD. Furthermore we only focus on the
discussion of the plot of 6> versus m,, in Fig. 3(a) since the
constraint on 5! is found to be more stringent than that on ooP.

In Fig. 3 we show our predictions on ¢ and o3P for
isospin I =1, 3, 5, 9. These are the main results of this
work on the DM-nuclei elastic scattering cross sections. We
concentrate on the parameter space where the DM masses
are greater than the W-boson mass and below 100 TeV. In
Fig. 3(a), the solid (dashed) lines denote the prediction with
(without) the contributions of the quark twist-2 operator
and the two-loop diagrams in Figs. 2(b) and 2(c). After
considering these twist-2 and two-loop contributions, we
find that the predicted values are roughly reduced by factors
of 1.85, 2.32, 2.36, 2.37, and 2.38 for m, = 1, 10, 30, 60,
and 100 < m, <500 TeV, respectively, regardless of the
isospin 1. Hence, the orders of magnitude of ¢>' obtained in
both calculations are roughly the same. From Fig. 3(a) we
see that the dependence of 65" on m, becomes mild for
m,, 2 1 TeV. In fact, the following equation:
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Spin-Independent Scattering Cross Section vs m,

10740+ Dirac DM model prediction
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Dirac DM model prediction on ST and SD cross sections of DM scattering off the nuclei '?%'3'Xe in the direct search for I = 1,

3,5, 9. The dashed lines in Fig. 3(a) denote the results without considering the contributions of the quark twist-2 operator and the two-

loop diagrams from Figs. 2(b) and 2(c).

Sl P2(I +1)? x 7.2 x 107% cm?, (34)
can nicely approximate the SI elastic scattering cross
section for m, in the range of a few to a few tens TeV.

We now compare our results with the data. Since the
constraint from ¢! is much more severe than that from 65,
we will concentrate on the SI part. From Fig. 3(a), we see
that there are plenty of parameter spaces for 5! to satisfy
the upper limits from the LUX, PandaX-II, and XENONIT
SI experiments [21-23]. Note that the cancellation in the
large component of the VV interaction (see the previous
section) is at work, and it significantly reduces the cross
section of DM-nucleus elastic scattering and makes the
Dirac DM model viable in the direct search.

For I =1 and 2, all Dirac DM masses in this surveyed
region are allowed in principle. However, for / =1 we
cannot distinguish the DM event from the neutrino event
when m, is greater than 1.7 TeV, as the predicted cross
section is below the curve of the neutrino background
[82—84]. Similarly, if we extrapolate the curve of the
neutrino background up to m, = 100 TeV, we find that
we cannot distinguish the DM event from the neutrino
event when m, > 14.6 and 52.6 TeV for I =2 and 3,
respectively. We show the lower mass bound m,* and
corresponding ¢! for I = 3-9 in Table I. The lower bounds
on these Dirac DM masses are extracted by comparing to
the PandaX-II ¢%' data [see Fig. 3(a)].

IV. DIRAC FERMIONIC DARK MATTER
IN THE INDIRECT SEARCH

A. Thermal relic dark matter density

The DM particles are thought to have been created
thermally during the big bang and frozen out of thermal
equilibrium in the early Universe, contributing to the
relic density. The evolution of DM abundance obeys the
following Boltzmann equation:

dn)(o
dt

<6annvM¢1> 05 O[I’lxonxo - n;gn;q]

(35)

where n,0 (n,0) is the number density of y° (7°), H =

aja = \/ 4n3g, (T)T*/(45Mp; %) is the Hubble parameter,
My, is the Planck mass, g, is the total effective numbers
of relativistic degrees of freedom [85,86] and n®? the
equilibrium number density. Note that Eq. (35) is
measured in the cosmic comoving frame [87] and
(Gann¥mg1) is the thermal averaged annihilation cross

section times Mgller velocity, which is defined by vy =
\/(Pl p2)? = mim3/(E\Ey) = \/|V1 - Vo> = vy x v,
with subscripts 1 and 2 labeling the two initial DM
particles and velocities v; =p;/E;(i =1,2). For the
Dirac fermionic DM particle y° and antiparticle 7°, we
define the total number density of DM as npy = npo +

nyp = 2n, ) and the above equation can be written as

anM

dt

(npw)?]-

1
+3Hnpy = > (Gann UMg1) 070 DM — (36)

Following the standard procedure [85] to solve Eq. (36),
the relic DM density Qpy = p,,/peric can be approximately
related to the velocity averaged annihilation cross section
<6annv> as

TABLE L The lower limits m’" on the Dirac DM mass are

obtained from recent direct dark matter search experiments. The
corresponding ¢! are also shown.

1 3 4 5 6 7 8 9

Direct mL= (TeV) 0.19 0.37 0.72 1.18 228 3.55 5.94
S1(107% cm?)  2.08 4.14 7.64 13.96 23.57 38.21 58.86
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GeV~!

QDMhZ ~ 1.04 x 109 s (37)
Mpy +/ g*(Tf)J(xf)
where
2 x 0.038m, M on
xR ln[ " P%jzaa v)} ; (38)
\ /g*(Tf)xf
and
I <6annv> [ <0annvM¢1> 0,0
J(.Xf) = [(‘f T X = y T“dx (39)

In the above, x; = m, /T, and T is the freeze-out temper-
ature. For convenience, the velocity averaged annihilation
cross section (o,,,v) with v the “relative velocity” is
defined as’

<6ann UMyl >;(0;‘(°

<6annv>E 2
N P C L) SR
_\/. 3 dvv > e 0

vy Jo

T Jo

where we define vy = (v*)!/? and vy = |/6/x; has been
used in the last expression. It is straightforward to obtain

1)) = [;o (o)

X

- Am dv%v[l —erf(vy/x/2)]. (41)

PHYSICAL REVIEW D 96, 115006 (2017)

W+
| ow o
X s
x W X ;
AV w

FIG. 4. The Feynman diagrams of DM annihilation for W+W~
channel.

B. Dirac dark matter annihilation

DM relic density is determined by the velocity averaged
cross section (6,,,v) of DM annihilation processes, which
have been ceased after the freeze-out stage in the cosmo-
logical scale. Nevertheless, the DM annihilation to the SM
particles can still occur today in regions of high DM
density. These annihilations result in the end products as
excesses relative to products from the SM astrophysical
processes, where the excesses are actively searched for in
the indirect search experiments. As the DM particles
became nonrelativistic when they froze out of thermal
equilibrium in the early Universe, nonperturbative effects,
such as the so-called Sommerfeld enhancement effect, can
be important [88—94].

In this work, we only consider the / #0,/3 =Y =0
case. The interactions of DM with the Z boson and y are
vanishing at tree level, and hence, the DM particles cannot
annihilate into a pair of neutral gauge bosons, such as
ZZ,Zy, and yy. On the other hand, the DM particles can
annihilate into a pair of WHW~ at tree level as shown in
Fig. 4, as the tree-level interaction of DM with the W boson
is allowed. It is interesting that through the diagrams shown
in Fig. 5, the Sommerfeld effect opens the possibilities for
27°7° to annihilate into a pair of neutral gauge bosons.

The »°¢° — WTW~ annihilation process can occur
through diagrams shown in Fig. 4. The corresponding
cross section can be calculated to be [44]

g Vs = 4my, (sm2 + 4m} + 2mi)

— 2
<Gannv);(°;‘(0 - [I<I + 1)] 3271'S1/2(S _ 2m)2()

(4m2 (s — 2m3,) — 8mj + 4m3, + s%)

(3 (s — 4miy) + miy)

\/(s —4m2)(s —4m},) — 2m3, + s

(s —4m2)(s —2m})

log |- . (42)
\/(s —4m2) (s — 4m},) + 2my, — s

After substituting s = 2m)2((1 + 1/v1 = v?) into the above equation and expanding around »?, one obtains

(Gam?) = (at™ + b0 + O(v*)), (43)

’In general, the collision is not collinear in the comoving frame. We have to use the Mgller velocity. The Mgller velocity is not equal
to the relative velocity v = |v; — v,|. Nevertheless, it has been shown [87] that (G Unig1) = (GannV1ab)"™® Where vy = V) b — Va1 | i
calculated in the lab frame with one of two initial particles being at rest.
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FIG. 5. »°%° — VV annihilation diagrams with the Sommerfeld effect.

where we have

40,2 0 \3/2
ot = (1 + I m m)
1672m, (2m;, — my,)
4 2—21/27642—6624—|—236
b = (11 4 1) LU = ) (76 myy Ty ) (44)

with g = e/ sin 8y,. For nonrelativistic annihilation of DM,
neglecting v* and higher order terms is a good approxi-
mation. From Eq. (40), we have (v?) = 6x;1, and hence,
the velocity averaged cross section becomes

b=
<6annv> =a""+ 6—.
s

at=+3b"" [xs

(45)
Xr

J(xp) =

For an indirect search, we will compare our calculation
result with the Fermi-LAT result [27], which is from a
combined analysis of 15 dwarf spheroidal satellite galaxies
(dSphs) of the Milky Way and the H.E.S.S. result [25]
using y-ray observation toward the inner 300 parsecs of the
Milky Way. As we know, the DM halo is immersed in the
Galaxy. The speed of the sun moving around the Galactic
center is about 220 km/s at the local distance r ~ 8.5 kpc,
and the Galactic circular rotation speed is about 230 km/s
at radii 100 kpc [8,95]. On the other hand, the shortest
and longest distance of these 15 dSphs from the sun are
~23 and 233 kpc, respectively [27]. Hence, we will use a
typical DM velocity v =300 km/s in the indirect-
detection calculation. In (ov) the b term is subleading.
For m, 2 100 GeV, it can be shown that we have
bv*/(a + bv*) <5x 1077 and 15% for v = v, and c/2,
respectively. Hence, neglecting b is a good approximation
for indirect-detection calculations, while it introduces a
15% error in the relic abundance calculation, as the DM
velocity is about half the speed of light in the latter case.
To simplify the calculation, we only keep the first term (the
a term) in Eq. (43) for both relic density calculation and
the indirect annihilation processes, namely, the S-wave
contribution.

Now we consider the Sommerfeld enhancement effect
through diagrams shown in Fig. 5 [44]. The Sommerfeld

enhancement is rather complicated here, since the y%y°

384xm,(2m%: —m

)4

w

[

state can rescatter into other states, such as y*y* and so on,
through #-channel diagrams by exchanging W and Z with
the rescattered state annihilated into W*W~. Hence, we
need to consider the scattering processes in a general form:
X = iyt = Vv (withi, j=—I,-1+1,...,1 = 1,I)for
a generic isospin /. In other words, the nonperturbative
scattering of y/y/ — y'y' follows the main perturbative
scattering of y'y’ — VV. To simplify the calculation we
follow [44,61,96] to consider the SU(2) symmetric limit,
which is expected to be a good one when the DM mass m,
is much greater than my, ;.

We consider the nonperturbative scattering process

2 (P07 (p2) » W*(ps)W=(p) as shown in Fig. 6.
The y/%’ annihilation amplitude iM/S can be expressed as

. iS —
iMy (P> P2s P1s P4)0(P2)Ua(P1)
= iM}, (3. P2. P1- P4)Ds(P2)tta(p1)

d4pg .

+ / 2n)* iM}, ;(P3, Py D5 Pa)

X (iSpae(P5))(=iSEsp(=P4))

x i (P P23 P1s P)0s(P2)Ua(pr),  (46)
ipy %, T . O'KW
rw iS70r (P Y

o (B B3 PP Y M, (P.BP P
7'(®) O %W’“’J
)

A f)

FIG. 6. The Feynman diagram for WIMPs annihilation in the
W*W~ channel.
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V .
(P ‘ - g > (P,
1 BB 7 x'(5)

il (PP ;P ,P,)
g (P, B3 B R P

—iS.,, (=P,
7P O
B A P

7'(P)
B

FIG.7. The diagram corresponds to the second term in Eq. (47)
of the y/%/ — y'%' process. Note that i["/ contains an infinite
series of the ladder diagrams.

where iV is the amputated nonperturbative 4-point vertex

function for the ¥/ (p )i/ (p2) = x'(p3)7'(p4) scattering as
shown in Fig. 7. The vertex function satisfies the following

equation:

ir;{[)’,a(‘i(p:ia P2, p17p4)
= l'I:‘17][7,0t¢$(p37 P2, P1s p4)

d*p .
o L Iy
X T (P P23 P P (=i, (=PL), (47)

where we have py = —p5 + p3 + p4, Sp,, and S, are the
fermion propagators, and the relevant lowest order pertur-
bative 4-point vertex function in the SU(2) symmetric limit
is given by

il:‘}irjl.}aé(p:%’pZ’pl?p“)

= —ig? Z TT5(

a=1273

Guw
- P3)2 -

m )ﬂé (Pl
(48)

Recall that the hypercharge Y of y' is vanishing; hence, the
U(1) field B* does not contribute to T' in the SU(2)
symmetric limit. Note that through iteration i/ contains
an infinite series of the ladder diagrams [see Fig. 7 and
Eq. (47)]. In the NR limit, Eq. (47) can lead to the
Lippmann-Schwinger equation (see Appendix B for details).

For the case of S-wave rescattering, Eq. (46) can be
expressed as (see Appendix B)

iM;},S(l(P3, P2, P1> P4)Vs(P2)Ua(P1)
:ZiMf;,a(ﬁ37l32§131,134)17;)(1?2)”0(171)%]', (49)
f

where we have

with

PHYSICAL REVIEW D 96, 115006 (2017)
Uz; = (=1)/{1jI(=))|Z0), (51)

the matrix that diagonalizes ) T fj T;‘l [see Eq. (B4)] [44],
and (1jI(—j)|Z0) is the Clebsch-Gordan coefficient (in the
(jimy jom,|JM) notation). Note that Z is the total isospin of
the yjy pair. The wave function satisfies the Schrodinger

equation,

=5 Vs () V() = EeF) = Sy (),
(52)
where V7(r) is a Yukawa-type potential
ot
Vi(r)=—a I+ 1)-Z(Z + 1)/2} . (53)

with a,, the weak fine structure constant, E = |p|?/2u=
uv?/2, and the wave function goes to 7" asymptotically.
Consequently, the rate is modified as

|5(p2)M?S(p3. pa. pi. pa)u(py)
= Z(@Mﬂ(lzs,ﬁz;ﬁpﬂt)“)*

ii’

X (DMf),a(ﬁ%ﬁZ;ﬁlvﬁ4)u)QijQ;,’/’ (54)

where the additional term (Q; ; QJT.I.,) is the Sommerfeld
enhancement factor, which cannot be factorized in this
work and will be dealt with later. As a cross-check we note
that in the V7 = 0 limit, we have y7(F = 0) = 1 giving
Q = 6;j, and, consequently, Eq. (49) and the above
equation are just trivial identities.

Using the Hulthén potential to approximate the Yukawa
potential [97],

(71' mW/6) —2myr/6

1l—e " 2myr/6

V(r) = ; (55)

one obtains (see Appendix B 3)

with®

®Note that the p in the formula of [97] is, in fact, »/2 in this
work.
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v myy
61, = _— N €W = E}
ar (Zz'm)(

(57)

is just the Sommerfeld factor shown

. 2re,
sinh (ﬂ'zew ; 6)

Note that the phase convention of the above w7 (7 = 0) is
fixed by its asymptotic behavior (see Appendix B 3) and
wz(7 = 0) indeed goes to 1 in the a; = 0 limit. Also note
that the phase of w7 (7 = 0) is simple in the S-wave phase
shift, §,_y (see Appendix B 3). We find that the above
w7 (7 = 0), including its size and phase, agree well with the
results obtained by numerically solving the Schrodinger
equation with the Yukawa potential (see below and
Appendix B 4).

It is usually advocated that in the m, > my, limit, the
Yukawa potential can be approximated by a Coulomb
potential,

Vo(r) = —{I(I+1)-T(T + 1)/2}"‘7W. (59)

The corresponding wave function is given by [99]

yS (F) =T(1 +iyg)e ™12eP7 | F (=iyr, 1 ipr—ip-7),

(60)
where
yr=—{II+1)=I(Z+1)/2} =
— I+ 1)=T(T +1)/2} "’rf")f . (61)
In this approximation we have
w7 =0) = T(1 + iyg)e /2, (62)
Note that as a cross-check, we have
wi™ (F = 0)P = (1 + irp)T(1 = iyz)e~™s
_ 82327]?1 — gleou)) (63)

which is the usual Sommerfeld enhancement factor, S, in
the Coulomb potential case. In fact, the Sommerfeld factor
in Eq. (58) does reduce to $€°") in the large m,, region, as

PHYSICAL REVIEW D 96, 115006 (2017)

one can check it directly, or by considering the limiting
behavior of |7 (7 = 0)|, which goes to 5! (¥ = 0)| in the
large m,, limit [97,100]. We expect the Coulomb approxi-
mation to be a good one in the large m, region, but we will
see shortly that this is not really the case.

The y%° — W*W~ amplitude with Sommerfeld
enhancement, Ag, is now given by

A = WEW™) = AQriy - WiWT) Q. (64)

where i is summed over all )(i)? states. Therefore, the
Sommerfeld enhanced S-wave contribution of (6,,,v) in
Eq. (45) is given by

ag” = Quaj Q. (65)
i.j

In the above, i and j are summed over )(’? and )51)7 states,
respectively, and a;;_ corresponds to the S-wave contribu-
tion from A*(y'y' — WHW7)A(yly/ — WHW-).
It is straightforward to obtain
+-

aij =da

+_{[1(1+ D=2 +1) - /]
(11 + D

4 2,2 4
e
and, consequently,7
ai™ = Sy (v). (67)
with
Suwl®) = 512707 =0) +ra(F=O)F.  (68)
Finally, we obtain
(677 v) = (@™ Syw(v)). (69)

In the w7 (7 = 0) = 1 limit, (6"~ v) reduces ((¢*7v),). Itis
reasonable that the total isospin of the yjy pair, Z, cannot be
greater than 2 in the yy — W™ W~ process, since the total
isospin of WW can at most be 2 and we are considering the
SU(2) symmetric limit.

Note that through rescattering we can also have
2°4° — 7°7° 7%, yy annihilations, with

"For a generic [, we have the following property:
ot e Quilis i 1%, %) Qjo = (0,0,0,0,0).
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As(° = 2°20) = > "AG'y = 2°2°) Qy.
A2 = 2%) = > _Ald'x' = 2°%) Qu.
AS()(())(_() —yy) = ZA()(i)(_i = 77) Qi (70)

and, consequently,

00,0y.yy __ i 00,07.yy
ag = ZQOiaij Qjo, (71)
ij
with
0 g4cos49W(m§ — 111%)3/21'2j2
ij — 2 22 ’
Y 8xm,, (2my; — m3)
o €2gicosOy(4my — m3)i*
” 647, ’
4:2 2
e¥i*j
v
ajl = 5 (72)
32mm;,

We obtain the annihilation cross sections for ;(OP -
7970, 7% . yy as

(6%v) = (a®Syoyo(v)), (73)
with a = 00, Oy, vy,

1

Syoyo(v) = 9 Wi—o(F=0) —ywr_(r = 0)|2’ (74)

and

00 _ +-
a” =2a |g—>gc039w,mw—>mzv

P
am =2a |g—>e,mw—>07
2,22 2 2
, e°g-cos Oy (4m; — mz)
4
64mm;,

a” = [I(I1+1)] (75)

It is clear that these (c%w)’s go to zero in the
wz(F=0) =1 limit.

In this model, y°7° cannot directly annihilate into a
fermion pair, but it may be produced through loop diagrams
by diagrams similar to Fig. 5(c) but with the final state
replaced. Through rescattering 4°7° can go to y'7',
which can decay to a fermion pair ff. The amplitude
for y'¥' — ff is proportional to Ts(=i). Hence, the
Sommerfeld enhanced rate is proportional to Q'O" 71900
(see footnote 7), which is, in fact, vanishing.

In Fig. 8 we compare results of the Sommerfeld factors
Sww and Syoy0 obtained from the Hulthén approximation,
and the Coulomb approximation results with the numerical
ones, which are obtained by solving the equation with the

PHYSICAL REVIEW D 96, 115006 (2017)

Yukawa potential numerically (see Appendix B4), for
I=1, 3, and 9. We see that the Hulthén results can
successfully mimic the numerical ones. In general, the
Sommerfeld factors Sy, are enhancements, but occasion-
ally the interference is a destructive one leading to a
suppression (Syw < 1) instead (see also [92]). For exam-
ple, for I =3 the factor Sy is smaller than one for
m, = 0.4 TeV. One can also see the behaviors of these
Sommerfeld factors for different /. These Sommerfeld
factors oscillates as m, changes. When I increases, the
oscillations get faster in the low m, region, while simple
oscillation patterns at the high m, region are occurring.

The shapes of these Sommerfeld factors are governed by
the norms of y7_(, and the relative phases between them.
The former exhibit resonantlike behavior; see Eq. (58) and,
for example, Fig. 9(a). They approach |y5" (7 = 0)| in the
large m, region [see Fig. 9(a)]. The phase differences
between y7_o(7 = 0) and yw7_, (7 = 2), which are also the
phase shift differences, 5= — 822, for I =1, 3, 9 are
shown in Figs. 9(b), 9(c), and 9(d). We see indeed for
I=3, w;_o(F=0) and w;_,(F =2) are out of phase
around m, =0.4 TeV, giving the above mentioned
destructive interference in Syy. Note that when Sy have
destructive interference, Syoy0 are enjoying constructive
interference, instead, as one can see from Egs. (68) and
(74). From Figs. 9(a), 9(c), and 9(d), we see that the
norms of wz(7=0) and the phase differences oscillate
rapidly with m, in the low mass region, but in the large m,
region the norms approach constants, while the phase
differences increase monotonically (with modulus 2x).
The above features are more prominent when / increases.
This explains the simple oscillation patterns of Sy and
Syoyo in the large mass region.

From Figs. 8 and 9, we see that although |y 7 (7 = 0)| can
go to |y (7 = 0)| in the large m,, limit [see Fig. 9(a), in
particular], the Coulomb approximation of the Yukawa
potential does not reproduce the interference effects in the
large m, region. Nevertheless, the numerical and Hulthén
results seems to hover around the Coulomb ones (see
Fig. 8). The latter seems to provide the “averaged” (about
the neighboring m,) behaviors of the former. In this work
we shall use the Hulthén approximation for y7(7 = 0) in
the later numerical analysis.

C. Numerical results for relic density
and indirect search

We present our numerical results of relic density and
indirect search here. Figure 10 shows the predicted relic
density using Xp = 24 forl = 1, 2,4, 6, 8 cases. The shadow
area shows the observed dark matter relic density Q4> =
0.1186 £ 0.0020 [9]. The solid (dashed) lines denote the
results with (without) considering the Sommerfeld enhance-
ment effect. Note that the relic density ., is inversely

e
proportional to (o), which is enhanced by the Sommerfeld
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The Sommerfeld factors Sy and Syoy0 in the cases of the Yukawa potential [Eq. (53)], the Hulthén potential [Eq. (55)], and

the Coulomb potential [Eq. (59)] for I = 1, 3, 9 with v = 1073 are plotted. The (7 = 0) in the Yukawa case are obtained by solving

the differential equation numerically (see Appendix B 4).

effect. Hence, €, is reduced, and the DM mass satisfying the
relic constraint is shifted to a larger value. We consider the
possibility that y may not saturate the DM relic density, i.e.,
Q, < Q. Hence, the observed relic density provides the
upper mass bounds for DM particles with different isospin /.
We see that the upper limit on the Dirac DM mass becomes
larger for a larger isospin /.

Figures 11(a) and 11(b) show the plots of velocity
averaged cross section (ov) of DM annihilation in
W+W~ channel without and with considering the
Sommerfeld enhancement effect for 7 =1, 3, 5, 7, and 9,
respectively. We see that the pattern of (c(yy — W W™ )v)
versus m, in Fig. 11(b) determines the shape of the original

(6(xy = WTW7™)v) inFig. 11(a) and the Sommerfeld factor
Sww (v) (see Fig. 8). Note that the Sommerfeld enhancement
in Galactic DM annihilations is much stronger than cosmo-
logical DM annihilations, as the velocity of the Galactic
DM is much slower. In each plot, we compare our results
with WT W~ data from H.E.S.S. [25] and Fermi-LAT [27]
astrophysical observations. Fermi-LAT provides upper limits
on (ov) for DM annihilating into W*W~ and various SM
fermion pairs at 95% confidence level with WIMPs masses
between 2 GeV to 10 TeV, while H.E.S.S. gives the
corresponding upper limits with masses from 160 GeV to
70 TeV. In the WFW~ channel, for m, <0.55 TeV the
Fermi-LAT limit dominates, while for 0.55 < m, < 70 TeV
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[wz—o2(F = 0)|* for I =2 with v = 1073 are plotted in (a). The phase shift differences, 65=° — §5=2, in the cases of the

Yukawa potential, the Hulthén potential, and the Coulomb potential for (b) I = 1, (c) I = 3, and (d) I = 9 with » = 1073 are plotted.

the H.E.S.S. limit dominates. We see that the low mass
regions with m, < 0.55 TeV are ruled out by the Fermi-LAT
constraint, and the H.E.S.S data are used to constrain the
mass region with 0.55 < m, <70 TeV. The combining
WTW- data basically exclude light DM and provide us
with the lower mass bounds and allowed mass regions for the
Dirac DM particles with different isospin /. The Sommerfeld
enhancement increases the cross sections by 1 to 4 orders of

DM Thermal Relic Density
0.20

0.15

Sc0.10
c

0.00

m,(TeV)

FIG. 10. Predicted DM thermal relic density for / = 1,2, 4, 6, 8.

magnitude, and hence, the lower limits on the Dirac DM
masses are in principle shifted to larger values.

In Table II, we show the lower mass limits m-" from the
direct search of PandaX-II and XENONIT constraints, the
indirect search of Fermi-LAT and H.E.S.S. constraints, and
the upper mass limits m{“ from the observed DM relic
density. Note that we require that the contribution to relic
density does not exceed the upper 1o range of the observed
dark matter relic density, Q.,4%. The upper values (lower
values within the parentheses) for indirect m’% and relic
m7" in the table denote the results with (without) consid-
ering the Sommerfeld effect. The XENONIT constraint
does not provide lower limits on DM masses for / < 2. For
the larger I case, the lower mass limit constrained from the
indirect search is more stringent than that from the direct
search. Without considering the Sommerfeld effect, all
cases (with different isospin /) are allowed, while after
turning on the Sommerfeld effect, the / = 1 case is ruled
out, since the lower mass limit m,“ = 3.00 TeV is greater
than the upper mass limit m{“ = 2.15 TeV.

Figure 12 shows the plots of the velocity averaged
cross section of DM annihilating to WTW~=, z20Z0, 7%,
and yy channels for I =2-7 separately. Besides the
constraints from H.E.S.S. (ov)(W*W~) and Fermi-LAT
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(a) without Sommerfeld enhancement effect

FIG. 11.

(ov)(WTW™), we also show the constraint from H.E.S.S.
(ov)(yy), which provides 95% confidence level with
WIMPs masses from 300 GeV to 60 TeV [26]. The solid
(dashed) lines are our numerical results with (without)
considering the Sommerfeld enhancement effect. DM can
annihilate into a pair of neutral gauge bosons only through
the Sommerfeld enhancement effect. In general, we see that
(6(°%%° = WTW)) = (6(4°7° — VOV®)2), but occa-
sionally it is the other way around. As mentioned in the
previous subsection, the Sommerfeld factor can occasion-
ally be suppressed due to the destructive interference
between y7_o(7 = 0) and yw7_, (7 = 0) resulting in smaller
lower mass bound. It can be seen that the lower mass bound
originally from 2.38 TeV is shifted to a smaller value of
1.09 TeV for the I = 2 case [see Fig. 12(a)] after consid-
ering the Sommerfeld effect.

From Figs. 12(a) and 12(b), we see that the H.E.S.S.
constraint on (ov)(yy) rules out m, < 17.8 and 42.3 TeV in
the cases of / = 2 and 3, respectively. Note that there are a
few dips in the predicted (ov)(yy) for m, below the above
mentioned lower limits that can satisfy the H.E.S.S. yy
constraint, but they are ruled out by the H.E.S.S. WTW~
constraint. Furthermore, since the upper bounds on m,
from the relic density are 10.6 and 30.3 TeV for [ =2
and 3, respectively (see Table II), these two cases are ruled
out by the H.E.S.S. and relic density constraints.
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(b) with Sommerfeld enhancement effect

Predicted velocity averaged cross sections of galactic DM annihilation to W+ W~ processes for I = 1, 3, 5, 7, and 9 cases.

We summarize our results for the / =4-7 cases in
Table III. We show the allowed DM mass regions after
imposing the Fermi-LAT (ov)(WTW~), H.E.S.S.
(ov)(WTW~™,yy) constraints, and the relic density con-
straint (requiring the contribution to relic density does not
exceed the upper lo range of the observed dark matter
relic density, Qgph?). Predictions on (o) for Galactic
xx — WYW~,ZZ, Zy,yy annihilations, Q h?, and ¢ are
also shown.

From Table III, we see that the allowed mass regions are
greater than ~60 or ~70 TeV for these cases. For I = 5, 6,
7, the allowed Dirac DM masses are mostly in the range of
70 TeV to a few hundreds TeV. For I =4, 5 with
m, <70 TeV, the allowed values for (ov)(W"W~) are
less than the corresponding (6v)(Z°Z°) and (ov)(Z%),
due to the destructive interference effect in the former
channel. In addition to the WTW~ and yy channels, the
x7 — Z°Z° and Z° annihilations are also useful to search
for DM. In most cases, the predicted relic density does not
saturate the observed relic density. We see that ¢ =
PP(I+1)?x7 %107 c¢m? for m, in the range of a few
tens to 100 TeV, giving ¢ =107% —10™% cm?. In
conclusion, the predicted (c(¥°7° — Z°Z°, 2%, yy)v)
and 65 are sizable, and they will be useful to search
for DM in astrophysical observation and in direct search in
the near future.

TABLEII.  The lower limits m." obtained from recent direct and indirect dark matter search experiments and the
upper limits mf/ L obtained from the observed relic density are shown. Note that m,, for I =1, 2 cases are not
constrained by direct search. The upper values (lower values within the parentheses) for indirect mﬁL and relic m}/ L
denote the results with (without) considering the Sommerfeld effect. The Dirac DM mass is given in the unit of TeV.

1 1 2 3 4 5 6 7
Direct mﬁL e e 0.19 0.37 0.72 1.18 2.28
Indirect m*- 3.00 1.09 6.64 41.16 67.33 >70 >70
(0.60) (2.38) (4.29) (6.38) (8.55) (10.86) (13.34)
Relic mY* 2.15 10.58 30.31 66.54 123.20 205.23 316.94
(1.36) (4.30) (8.60) (14.34) (21.51) (30.11) (41.14)
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FIG. 12. Predicted velocity averaged cross sections of Galactic DM annihilation to WHW~, 7070, Zoy, and yy processes for

1 =2, 3,4,5,6,7 cases.

TABLE III.  The allowed region of m,, in the I = 4-7 cases after imposing Fermi-LAT (cv)(W*W~) and HE.S.S. (cv)(W W™, yy)
constraints and the relic density constraints are given. Predictions on (o) for Galactic yy — WTW~,ZZ, Zy, yy annihilations, thz,
and ¢! are also shown. The DM mass is given in the unit of TeV, while {(¢v) in the unit of 10723 c¢m?/s and 65! in 10746 cm?. The values
in the parentheses for ¢! denote the prediction value without considering the contributions of the quark twist-2 operator and the two-

loop diagrams.

1 Allowed m, (ov)(WHW™) (ov)(Z2°Z°) (ov)(Z°%) (ov)(ry) Q,n* (%) o

4 (61.45, 63.49) (5.6,9.1) (14.6, 21.9) (8.4, 12.6) (1.2, 1.8) (10.30, 11.00) ~2.85(6.76)

5 (67.33, 68.04) (94, 9.8) (43.7, 54.9) (25.1, 31.6) (3.6, 4.5) (3.60, 3.68) ~6.41(15.21)
(70, 123.25) (9.4, 144.6) 6.5, 101.2) (3.7, 59.5) (0.54, 8.5) (3.89, 12.06) ~6.41(15.2)

6 (70, 205.23) (18.2, 42.8) (5.2, 550.8) (3.0, 316.7) (0.4, 45.6) (1.38, 12.06) ~12.6(29.9)

7 (70, 317.94) (29.2, 734.2) (2.4, 720.6) (1.4, 410.7) 0.2, 57.0) (0.59, 12.06) ~22.3(53)
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V. CONCLUSION

In this paper, we work on a Dirac DM model by adding
onto the SM a Dirac fermionic DM multiplet with quantum
numbers /3 =Y =0 to evade the dangerous tree-level
Z-exchange diagram in elastic DM-nucleus scattering.
Nevertheless, there are loop diagrams contributing to the
cross section 65!, We consider loop diagram contributions
and find that there are some cancellations in W-exchange
diagrams that make the model viable. We find that the
dependence of 6" on m,, is mild for m, > 1 TeV, and ¢! =
PP(I+1)?* x7.1 x107* cm? for m,, in the range of a few
to a few tens TeV. By comparing to PandaX-II and
XENONIT constraints on SI cross section ¢!, we find
that the constraints do not give a lower bound on the DM
mass for I = 1 and 2. For I = 3-5, the lower bounds on
DM mass are sub-TeV, while for I = 6-9, the lower bounds
are as large as a few TeV.

For an indirect search, since the Galactic DM particles
are nonrelativistic, the Sommerfeld enhancement effect in
DM annihilation processes should be included. In this
model, the DM can only annihilate into W W~ at tree level,
but can annihilate into ZZ,Zy, and yy through the
Sommerfeld enhancement effect, while fermionic final
states are still prohibited. Analytic formulas of the
Sommerfeld enhancement factors for arbitrary [ are

obtained using the SU(2) symmetric limit and the
|

PHYSICAL REVIEW D 96, 115006 (2017)

Hulthén approximation. We find that the Galactic DM
annihilation cross sections are in general significantly
enhanced by the Sommerfeld effect, but it can occasionally
be suppressed by some destructive interference.

The calculated velocity averaged cross sections
(ov)(WTW~,yy) are compared with the data from Fermi-
LAT and H.E.S.S. astrophysical observations. We consider
the possibility that y may not saturate the DM relic density,
ie., Q, < Q. The observed relic density provides the upper
mass bounds for DM particles. The Fermi-LAT and H.E.S.S.
upper limits on (ov)(W*W~,yy) provide lower bounds on
m,,, while the relic density provides upper bounds. Working
together they exclude the / = 1-3 cases and force the Dirac
DM mass to be within the ranges of a few tens to a few
hundreds TeV for I > 4. In the allowed parameter space, the
corresponding DM-nucleus cross section ¢°! is in the range of
10746 — 10~ cm?. In conclusion, the predicted ((y°%°
7°7°, 7%, yy)v) and 65" are sizable, and they will be useful to
search for DM in astrophysical observation and in a direct
search in the near future.
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APPENDIX A: LOOP INTEGRAL FUNCTIONS IN THE LOOP INDUCED EFFECTIVE COUPLINGS

The loop integral function F5 (g, x, y) withx = M3,/ mZ andy = m?/ my, 2 from the SS interaction of the nggs exchange is

the same for all flavors of quarks since there is no quark propagator in the loop. Hence, F3(q,x,y) =

Fi(x) = : xl/2 - 2o [tan"(—ﬁ
2" 2\/4—x 4—x

)t (A2 L

F3(x) is given by

2—x

(A1)

For the effect couplings of quarks g = u, d, s, c, all these quarks are much lighter than the W-boson mass, and we only keep
the effective coupling up to the leading order of m,. Hence, all these quarks have the same loop integral functions

(independent on y) as follows:

12 _

Fy,(u,x,y)

sec™!(24/1/x)

—x12
(4—x)x 4

Fyvl(u,x,y) =

F%Z(u,x,y) =0,

1 2x — Tx% +2x° .
F*v‘vl(u,x,y):§x+ 6/ =) { g x>+tan <
1 (8- 5x+2x / 4 —
F’{},z(u,x,y):—z —(1-x)
1
~3 (3 —x)In(x)

o2 () )] e

1 2x — x? 2 — 1
b B [ (5 (22 )] L
4+/4 — x 4-x (4—-x)x 8

(A2)
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For the effective couplings of the bottom quark, the top quark is in the loop of the box diagrams. Hence, the top quark mass
in the loop calculation cannot be ignored. With the assumption that m, > m,, the corresponding loop integral functions are

given by

Fy,(b.x.y)

F}’/V](b’x’y) ==

Fly,(b.x.y)

Fiy (b.x,y) =

F“A)Vz(b’x’y) ==

3/2
— +x7]2 2xyIn(x) —2yIn(x/y) — x*In(x) — y2In(y) — 2y + 2x
8(x—y)"

+2(x% = 2x = 2xy + 6y)\/z {ta“_l < 4fx> ot (ﬁ)]
e () o 25

x3? 2(x+y—xy)+l
2(x—y)?

x(4—x) 2(y—x)

+ <%x2 —x—xy+ 3y> \/Z[tan_l < 4ix> +tan™ <ﬁ>}
_ <1 +§> y(4—y) [tan" Q/g) + tan~! <ﬁ

N————
| I
_|_
=
5
N

=
N—
_|_
=
NI
|
|5
N———
—
=
SN—
+
<
[3e]
5
on
<
S—
—

=0,

ﬁ {2(2x2 =3y +52) + B (1 +) =227 = 63y]In(x) +y*(3 ) In(y)

+2[2(x = 3y) +x(12y — 7x) + x%(2x — 3)] \/Z {tan‘l ( 4 f x) + tan”! (ﬁ)}
0= (75 e (225

1
60 =) {2(2)62 —3xy +y?) + (6x% — 12xy — 2x* + 3x2y) In(x) + y*(6 — y) In(y)
xX=y

+20/x(% = x)(2x — 6y — 22> + 3x) {tan" (\/Z) +tan” (ﬁ)]

1294 —y)V/yE—y) [tan" < 4yTy> + tan”! <¢%ﬂ } (A3)

For the effective couplings of the top quark, the top quark is in the external line of the box diagrams, and it still
involves the top quark mass. In this case, we cannot have an analytical form for each loop integral function. With
the assumption that m, > m,, the corresponding loop integral functions can be numerically calculated from the
following expressions:

1 1-u 1 —u-—
it 26 [ [ e

Fy (t,x,)
Fy,(tx,y) =

Fiy (t,x,y)

Fy,(t.x,y) =

[(1-u-v) —l—xu—yv—le]

lu lu 1—u-—
) = —x3/2 /du/ /du/ u(l—u—v) 1
l—u—v) + xu — yv — ie]? 1—u—v) + xu — yv — ie

1

l\.)l'—‘

lu 1—u—12v)?
/ du/ d 3 el 2
1—14—1)) +xu—yv—l€]

lu
5/ du/ (Ad)
4 l—u—v) +xu—yv—1e
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The loop integral functions with x = M3,/ mf( and y =
mj7/m? derived from the quark twist-2 operator are [62]
(see footnote 2)

Vx
+E[1 —2x — x(2 — x) In(x)],
gra(x) = \/i_x x(2—4x+ xz)tan—l < 4 ; x)
_Vx

[1 —2x—x(2 - x)In(x)]. (A5)

The loop integral functions with x = M3, /m; and y =
mi /m;; derived from two-loop diagrams in Fig. 2 are [62]
(see footnote 3)

PHYSICAL REVIEW D 96, 115006 (2017)

gH(x) == \/44Tx(2 + 2x + )cz)'[an_1 ( 4 ;x>
+2v/x(2 = xIn(x)), (A6)
gw(x,y) = 2gp(x) + 9213) (x,y) + cbg%)(x,y), (A7)
where
(6% = 2x + 4)tan~! | /4=
9gp1(x) Zi\/;c(xln(x) -2)+ ( )

24 12vV4 —x '

(A8)

and
32 32,2 —x52(x -2 3/2 NJE=V h
91(913)(X,y) S y— 7 5 In(y) B Cl)) zy) (x) _r >2 Yan | 22
12(y—x)  24(y—x) 24(y - x) 12(y - x) y
x| =2(y + 1)x2 +4(y + 1)x + 4y] ! 4—x
12(y —x)*/4 =y x )
_ 32 —15/2 —52(x =2 /2 —6y + xy> — 2xy — 2x 4 —
WDry) =Y SOy X (x 3y) (x) + VY (=6y Y — 2% ). y
12(y—x)*  24(y - x) 24(y = x) 12(y —x)*V4 -y y
—xy(x?y —2xy —6x—=2y) < 4 — x> (A9)
12(y —x)*V4—x x )
|
APPENDIX B: SOMMERFELD ENHANCEMENT  where we have p), = —p + ps + pa. Sy is the fermion

IN 7 ANNIHILATIONS
1. Lippmann-Schwinger equation in ¥/ — y'%' process

The Feynman diagram of nonperturbative scattering

2 ()7 (p2) = x'(p3)i'(ps) is shown in Fig. 7. Note that
p3 and p, are not necessarily on shell as these two lines will
be connected to y'y7' annihilation diagrams later. We will
basically follow [101] but will depart from it and obtain the
Lippmann-Schwinger equation at the end. The amputated
nonperturbative 4-point vertex function can be written as

ir;{ﬁ,aé(p:i’ P2, DP1» p4)
= if;]ﬂaﬁ(p?av P2, P1s p4)

d'p .
+/(2 ) lrypaa(l’%P4aP3,P4)(lSFm(P/3)>

x i~

. (P> P23 P Pa) (—iSE3,(—PY)),s (B1)

propagator and the relevant lowest order perturbative 4-point
vertex function in the SU(2) symmetric limit is given by8

if%a{s(m,l’z,]’hlﬁt)

= _ng Z Tz] ]1(}/ ya

a=1273

I
p1—D3)?

)/fﬁ (

_ M%V :
(B2)

We make use of the instantaneous approximation, where the
time component of the momentum transfer is neglected, and
obtain

*Note an additional minus sign from different pairing for
particle and antiparticle lines. We will return to this later. Also
note that in the SU(2) symmetric limit the U(1) field B does not

contribute to I" as the hypercharge of y is vanishing.
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if;j/.j.a&(p:% P2, D1 p4)

= —ig’ Z T3 TS val wpo G
a=123 1

-1
- D32+ My,

(B3)

Now using [44]9

21

S7TTeTs =" (UT) I+ 1) = (T + 1)/2} Uy,

a=123 7=0
(B4)

with
Uzj = (=1)(1jI(=))|Z0), (B5)

where (IjI(—j)|Z0) is the Clebsch-Gordan coefficient (in
the (j,m, j,my|JM) notation), we can diagonalize '/ in the
flavor space as

21
Flyjﬁ,aa(P3,P2,P17P4) = Z(UT)iIrfﬁ,aé(p%p27p17p4)UIj’
7=0
(B6)
where we have
iffﬂué(l’mpz,l?l,m) = —leta?’uﬂ&vz(z]))’ (B7)
with Vz(p, — p3) the potential given by
Vi(py = p3) = —daa {I(1 +1) - I(Z + 1)/2}
X (B8)

(P1— P3)* + M7y,

and with «a,, the electroweak fine-structure constant. Note
that 7 is the total isospin of the yjy pair.

It can easily be shown (by iteration) that I'/ can be
diagonalized in the flavor space similarly,

21

T =" (UT) I Uy;.
=0

(B9)

To proceed we define two auxiliary functions as follows:

"The expression is obtained with the help of Zch"iji =

=22 T5T¢,_;(—=)"/ and the standard method of addition of
angular momentum.

PHYSICAL REVIEW D 96, 115006 (2017)
il/lgﬁ,ap(p:% P23 P1s P4)
= iSFm(P3)iF%ﬁ,a,1(P37 P2; D1 Pa)(=iSF(=Pa)).
i)?f/;,a,D(P& P2 P1s P4)
= iSFar(FS)ifzﬁ,aﬂ (P37 P2 P1s p4)(_iSFﬂp(_p4))’
(B10)

and the master formula, Eq. (B1), can be expressed as

iﬂ?ﬁ,a&(l’a P2 D1, P4)
= i)?g/z,a{s(l?&m?l’hm)

d4p/ ~ .
+ / (27[;4 7L 65(P3s Pl Py Pa) Ny 0, (D5 P23 P15 PL)-

(B11)

Adding §,,845(27)*5*(p3 — p1) to both sides of the above
equation,  and defining
T )
leﬂ,aﬁ(p3’ p27 p17 p4)
= 6,4045(27)*6* (3 = p1) + i 45(P3> P23 P1s Pa),
(B12)

now the master formula, Eq. (B11), becomes

0215 a5(P3s P25 P15 Ps)
= 8,a0p5(27)*6* (p3 — p1)
d*py g ro 7 . /
+ Wl)(yp,m?(pﬁiv Pas P3s p4)l)(0'ﬁ,ap(p3’p27p1,p4).

(B13)

In the NR limit, the fermion and antifermion propagators
can be approximated as

1
(kg —m,) — l?/ZmX + ie

(1+5°)g(k),

Sr(k) =5 (1£7°)

(B14)

N = N =

where the projection operators correspond to uit/2m, and
—v9/2m,, in the NR limit. Using the above approximation
and Eq. (B10), we have

i77).05(P3: P43 D5 Pa)

=/

1 1 -
= 15(1 +70)}/y’yl;’o-yﬂp5' 5(70 —1)z59(P3)9(ps)Vz(P5—P3)-
(B15)

"With this we depart from [101].
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On the other hand, iy, ,; Will eventually contract with u(p3, s3) and 7(p4, s4), and in the NR limit,

we should take

1 1
8ya0ps = 5 (1 +70)ya5 (1 = 70) gs-

2
Hence, Eq. (B13) becomes

S~—
N

~~

=)
[

W

N~—
I

-

u(0, s3) = u(ps, s3),

(B16)

5 (B17)

. 1 1 dpl (1 1
yp.as(P3 P23 21 Pa) =5 (1470) 105 (1=70) 35 (27) 8" (P3 = p1) + 9(P3)9(p4) / (zﬂ;;{1_(1"‘70);/7’}”;/07,4/;5’_(70—1)5’5

2

xixgﬁ,ap<p3,pa;pg,m)vz@g—ﬁg}-

ThF: solution of the above equation, i)(fﬁw, can be
written as

i)(fﬂ,aé(p.% P2 D1, D4)

1 1 .
= 5(1 + 7/0)]/(1_(1 - YO)/}EI)(I(va P2: D1 p4) (Blg)

2

Substitute it into the above equation, and we obtain the
equation for y7,

i)(I(P3,P2;P1,P4>
= (2”)454(17/3 - p3) —9(P3)9(ps)

d4p/3 =/ - ! !
X V(P = P3)xz(P5» P2s P1s Ph)-

(2m)*

(B20)

The above equation can readily be brought into the
Lippmann-Schwinger equation.
Define

1 -
p) = 5(171(3) — pawy) = (e, pV),

)

P=pi+p,=pV+p =(E+2m.0), (B21)

and redefine

. ) 1 1
ixz(p'.P.p) = ixz (2 (p3—pa).p3 + Pasy (p1— pz))

= iyz(p3. P2; P1. Pa)- (B22)

We now have for Eq. (B20)

2 2
(B18)
[
ixz(p'. P, p)
1 1
= (2n)*8*(p' = p) —g<2P+ p’)g(zP - p’>
d3q/ dq/
V(3 -p7) | =2y7(¢.P,p), (B23
X/(2”)3 7(q p)/zﬂ)(z(q p), (B23)

where we use ¢' = p5 — P/2 and ps — p3 = ¢ — p’, and
note that the integration of g only applies to y7.

There are further simplifications by using the center of
mass frame,

(B24)

It is useful to recall that p;, are on shell, but p;, are
not necessarily so as noted in the beginning. Therefore,
at the center of mass frame, €= (p)—p9)/2=
[(|B[?/2m,) = (1B|*/2m,)]/2 =0, but € = (p§ - p3)/2
and p’ are not fixed as pg.4 are not necessarily equal
to p’?/2m.

Define

1

vi@p) =5, [ duirtapop). (529

and integrate both sides of Eq. (B23) with respect to
p"° = ¢/, and we obtain
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Wl(ﬁ/7ﬁ)
=(27)*8* (p' - p)—L/wde’g 1P+p’ g 1P—p’
2mi ) 2 2

3
x / (d—c)lsz(é'—ﬁ’)wI(éiﬁ),

- (B26)

where we redefine the integration variable g’ to ¢ in the last
line. After integrating over € M we finally obtain

1
2 353 2 _ 3

d*q . - -
X/WVI(C]_P,)WI(‘LP)’

=) =

wr(p',p) =

(B27)

where y = m,, /2 is the reduced mass of the yy system. The
above equation is simply the Lippman-Schwinger equation
in the momentum space representation.

Furthermore, using

- &
i) = [ G

. dSI-)'/ R o
vilr) = / (2r)3 e yz(p', p).

eV 1(q).
(B28)
the Lippmann-Schwinger equation can be written in the

position space as

1
E—H, + ic

w(7) = 77 4 / (7| WP w(P).
(B29)

The wave function satisfies the Schrodinger equation,

=5 V() + Vo (P F) = Ewr(P) = 3uriy (7).

(B30)
with

—er

Vi(r) = —a, {10 +1) = (T +1)/2} —

(B31)

E = |p|*/2u = uv?/2, and the boundary condition that the
wave function goes to ¢”” asymptotically.

2. Sommerfeld enhancement

For a y/%/ annihilation process, there may be interaction
among the initial state as depicted in Fig. 6 going into y'y’,
before the main annihilation process takes place. The y/z/
annihilation amplitude iM’5 can be expressed as

"Note that gGP£p) =

1/(£€ +1E - (p?/2m,) + ie).

PHYSICAL REVIEW D 96, 115006 (2017)

. iS —
lM},a<P3,P2,P1,P4)Uﬁ(l92>ua(l?1)
:iMéa(l% P2, P1:P2)Vp(P2)uta(p1)

+/ép)3 iM}, (3, Pl P Pa) (iSpoe(P5)) (=iS s, (—PY)

il (5. P2: 1. P Ts(P2)ita(p1).

(B32)

In the above equation, iM' represents the main y'j’
annihilation, while TV contains an infinite series of the
ladder diagrams (see Fig. 7) representing the initial state
interaction. With the help of Egs. (B9) and (B12), we have

M w(P3: P2 P1,P4)Uﬁ(172)”a(171)

[
21

x Z(UT)iIiﬂffﬂ,ap(Pév P2; P, Py)Uz;Vs(p2)ua(p1),
=0

LM}, (3. Pl Py pa)

(B33)

where p), =
on shell.
As shown previously, in the NR limit, we have

p1+ py—p5 and pi, are not necessarily

L5 0p (P P23 P1- P4)T5(P2)ua(p1)

1 1 : _
25(] +y0)0a§(1 _yO)ﬂpl)(I(pgvPZ;plvpit)y/}(p2)ua(pl)
=iyz(P5 P23 P1:P4) 0, (P2) s (P1)- (B34)

Furthermore, we assume the energy dependence of iM
in the integral can be neglected, which is called the
instantaneous approximation. Therefore, the integration
on E% only applies to y(p5, p2: p1, p,), and the above
equation becomes

iMY, (3. P22 Pr. Pa)Bs(P2)uta(P1)

d3->/
/(2 )3 lMpa(PS A P4)11p(p2) »(p1)

— Py P1—P
XZ IKWI( T 2>UI,, (B35)

where we made use of

dE,
B —iyr(py. P2s P1. Ph)

_ /d(E’ 2ﬂE’)/2

ixz(P5. P2 P1- DY)

_ . (Ps—Py Pr—P>

(B36)
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with w7 (p’, p) the solution of the Lippmann-Schwinger
equation, Eq. (B27). Note that in the V; =0 case,
wz(p',p) reduces to (27)38°(p' — p) and Eq. (B35) is
just a trivial identity equation.

In the case of S-wave rescattering, M, ,(p3. Py: P3. Pa)
is independent of the momentum; therefore, we can move
the iM' out from the integration

iMf‘fa(P& P2 P1s P4)17/1(P2)ua(p1)
= iM]i/p,mS(ﬁi% ﬁZ; 1_7)1 ’ ﬁ4)17p(P2)”a(P1)

33 7 21
o [ FETIS Wnaws

7=0
P3— Dy P~ D2
x ( > 5 )Un (B37)
and obtain
ZM;)’Sa(p?av P2, P1» p4)1_1/3(p2)ua(pl)
= iM;),o(ﬁ%ﬁZ;ﬁl’1_54)511(172)”5(]71)@5] (B38)
with
21
Qij= Z(UT)iIll/I<7 =0)Uz;, (B39)

=0

where y7(7) is normalized to give /7" asymptotically.
Finally, we have

|oM75(ps3. pa. p1. pa)ul?
= Z(EMil(ﬁaﬁz;f% Pa)u)*

X (77Mf;,a<l_53, P2 D1 54)“)91'19;,-“ (B40)

where the additional term (Q;; Q;i,) is the Sommerfeld
enhancement factors, which cannot be factorized in this
work. In the V7 = 0 limit, we have w7 (¥ = 0) = 1 giving
Qij QJT.I./ = 6;;0;#, and the above equation is just a trivial
identity.

3. Hulthén approximation

Following [97], we use the following Hulthén potential:

(”2mw/6)e—n'2mwr/6

1— e—ﬂszr/6

V(F)=- , (B41)

to approximate the Yukawa potential. The parameters are
chosen to match the wave functions in the Yukawa potential
and the above potential in the Born approximation for
p,r — 0 [97]. The solution of the Schrodinger equation
with v, = R;Y,,, is found to be [97]

PHYSICAL REVIEW D 96, 115006 (2017)

Y T(A—a )T(A—ah)
— 12 —ipr F -, +;/1;l‘ ,
L= T TG at — a2 @A
(B42)
with p = p,v = m,v/2,
_ 3vm,
t=1=—¢rrlo,  w==—% 1=2+42l,
T~ My
at =1 +l+iw(1 + I—ZaI/(va))). (B43)

Note that the phase of R; is different from [97]. It is
determined from the asymptotic behavior of R; as
shown below.

For a large r, the ,F|(a",a™;A;t) behaves asymptoti-
cally as [97,102]

FAC(A—at —a")

L(A)C(at +a™ —2)
FA—a )l'(A—a") -

i2pr
T T e @)

(B44)

which is, in fact, equal to

FWrid-at—a) , (TAT(A—-—a"—a)\*
fa—aria) ¢ <m —a )= a+))

(B45)

As usual we consider an incident wave along the positive z
direction, the radial wave function is related to y/(7) as (see,
for example, [103])

w(7) =) (21 + 1)R,(r)P(cosB).  (B46)
l

In the large r limit, the radial wave function R,(r) for an
incident plane wave with an outgoing spherical wave can be
expressed as [103]

i(pr+26;) _ e—i(pr—lir)

Ri(r) = (i)'

, B47
2ipr ( )

which reduces to the asymptotic form of j,(pr) = sin(pr —
Iz/2)/pr in the plane wave case when the phase shift &,
is switched off. The normalization of R; as shown in
Eq. (B42) is determined accordingly with the phase shift
given by

6 = arg <£Ej);&_zl;(i:zt§> +(+1)

(B48)

TR

Note that from Eq. (B46), the wave function at 7 = 0, i.e.,
w (7 =0), can be obtained from
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w(7 = 0) = lim [ (dQ/4n)y1(7) = Ri_o(r = 0). (B49)

r—0
Using the above equation and the explicit form of Ry(r) in
Eq. (B42), we finally obtain Eq. (56). Note that the phase
shift & is just the phase of w(7 = 0). This is a general result
(see below).

4. Solving y(r=0) numerically

We follow [104] to solve for y(7 = 0) numerically. We
will pay attention to the phase of w (7 = 0) as well as its
size, as the interference between y7_(0) and w7_,(0) is
important in this work [see Eqgs. (68) and (74)]. Defining
®,(p) = Np'R,(r), where p = pr, the normalization N is
to be determined later. The function ®,(p) satisfies the
Schrodinger equation as

2 1 1
o+ (I+ )(D? + (—Z—V(F) 4 1>CDZ =0, (B50)
pv

where the initial conditions are taken to be [104]

o 0)=1.  @j0) =2V

R

p—0

(B51)

for a regular solution. We now concentrate on the [ = 0
case. As one can see by taking p > 1, in the case that
|pV(r)| < 1, the differential equation and its solution
become

2 sin(p + 6
@) +/_)‘D/o + @, =0, D)(p) - C%,

(B52)

PHYSICAL REVIEW D 96, 115006 (2017)

with C a real number. The above @) is to be compared to
Ry(r) = e sin(p + 8y)/p [see Eq. (B47)], as p > 1. To
work out the normalization N it is useful to note that, in the
p > 1 region,

cos(p + &)

Dy(p—n/2) > -C —2

(B53)

which can be used with ®y(p) to construct

k= lim e [—ip®(p) ~ (p — 7/2)®y(p — /2)] = Ce™.

p—>00

(B54)
Consequently, we see that Ry(r) can be obtained as

Ro(r) = k™' ®@(p), (B55)
since it satisfies the Schrodinger equation and has the
correct asymptotic behavior. Finally, we have

(7 =0) =k1®y(0) =«
= lim — e .
p=0 —ip®(p) — (p — 7/2)@y(p — /2)

Note that the phase of y/(7 = 0) is just &y [see Eq. (B54)].

The differential equation for the case of the Yukawa
potential can be solved numerically, and we find that it is
enough to take p = 200 to obtain the limit in Eq. (B56). The
Sommerfeld factors, |y7(7 = 0)|* and §Z=° — 52=2 using
the above (7 = 0) are shown in Figs. 8 and 9. They are
compared with those obtained in the Hulthén potential.
Both results agree with each other reasonably well.

(B56)
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