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The very high precision of current measurements and theory predictions of spectral lines in few-electron
atoms allows us to efficiently probe the existence of exotic forces between electrons, neutrons and protons.
We investigate the sensitivity to new spin-independent interactions in transition frequencies (and their
isotopic shifts) of hydrogen, helium and some heliumlike ions. We find that present data probe new regions
of the force-carrier couplings to electrons and neutrons around the MeV mass range. We also find that,
below few keV, the sensitivity to the electron coupling in precision spectroscopy of helium and positronium
is comparable to that of the anomalous magnetic moment of the electron. Finally, we interpret our results in
the dark-photon model where a new gauge boson is kinetically mixed with the photon. There, we show that
helium transitions, combined with the anomalous magnetic moment of the electron, provide the strongest
indirect bound from laboratory experiments above 100 keV.
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I. INTRODUCTION

Fundamental interactions of known elementary particles
are well described by the Standard Model (SM) of particle
physics. Nevertheless, the SM cannot be the complete
description of Nature since it does not account for neutrino
oscillations, does not provide a viable dark matter candidate
and cannot explain the baryon asymmetry of the Universe.
Moreover, the SM suffers from several hierarchy problems,
such as the stability of the Higgs mass to quantum correc-
tions and the strong CP problem. In addition, it contains
intriguing puzzles related to the observed large hierarchies in
the charged fermion masses and quark mixing angles.
However, non of these pending issues which call for new
physics (NP) beyond the SM indicate a specific energy scale
at which the associated NP phenomena will manifest
themselves. Hence, a broad experimental program must
be pursued.
While accelator-based experiments search directly for

new particles over many orders of the mass and couplings,
precision low-energy measurements may also reveal indi-
rectly in a complementary approach the existence of new
phenomena. Precise atomic physics table-top experiments
are promising in this regard. For example, observables
which violate discrete symmetries of QED, as in parity-
violating transitions [1–8], are a powerful tool to probe
NP [9].
Parity-conserving transitions are also interesting probes

of NP which, however, require higher theoretical control.
Frequency measurements of narrow atomic transitions in
heavy elements are possible within a few × 10−16 relative
accuracy [10,11] thanks to the optical frequency comb

technique [12,13]. Moreover, the experimental uncertainty
in some systems now reaches the 10−18 level [14,15], thus
indicating the possibility of significant improvement in the
near future. A limitation in translating the experimental
precision to a bound on NP is the theory uncertainty, which
is by far larger than the experimental precision. However,
the high accuracy achieved in frequency measurements of
narrow atomic transitions in heavy elements can be
exploited to probe NP provided new observables largely
insensitive to theory uncertainties are identified. For exam-
ple, Refs. [16–19] proposed to bound new interactions
between neutrons and electrons by testing linearity of King
plots [20] of isotope shift (IS) measurements.
The situation is different for atoms and ions with few

electrons and a small number of nucleons. There, QED
calculations are carried out to high accuracy. For instance,
low excited states in helium can be calculated up to Oðα6Þ
corrections, which yields theoretical predictions often more
accurate than the measurements, see e.g. Refs. [21,22]. In
addition, nuclear finite size effects are also well described
thanks to the extraction of the nuclear radius from electron
scattering experiments and muonic atom spectroscopy. This
allows us to directly compare theory and experiment in
order to probe NP interactions [23–26].
In this work we derive new limits on spin-independent

NP interactions between the proton/neutron and the elec-
tron from optical frequency measurements, as well as from
frequency shifts between different isotopes, in hydrogen
and helium atoms, heliumlike ions such as lithium and
nitrogen. In addition, we constrain new electron-electron
interactions via precision spectroscopy of helium and
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positronium atoms. We compare the resulting bounds on
the product of the electron and neutron couplings and on
the electron coupling separately, with existing indirect
constraints and future prospects from IS measurement in
heavier systems with many electrons. Furthermore, we
perform global fits using all available transitions to con-
strain simultaneously the electron, neutron and proton
couplings in a model-independent way. Finally, as a
phenomenological application, we interpret the bounds
within the dark photon model.

II. CONSTRAINING NEW SPIN-INDEPENDENT
INTERACTIONS IN ATOMS

Consider a new force mediated by a boson ϕ of mass mϕ

and spin s ¼ 0, 1, 2 with spin-independent couplings to the
electron, proton and neutron ye, yp and yn, respectively. At
atomic energies, the exchange of ϕ is described by an
effective potential between a nucleus N of charge Z and
mass number A and its bound electrons as

VNðrÞ ¼
ð−1Þsþ1

4π
yeyN

e−mϕr

r
; ð1Þ

where yN ≡ ypZ þ ðA − ZÞyn and r is the electron-nucleus
distance.
For atoms with more than one electron, like helium, an

effective potential between electron pairs is also induced

Veðr12Þ ¼ ð−1Þsþ1
y2e
4π

e−mϕr12

r12
; ð2Þ

where r12 ≡ jr⃗1 − r⃗2j is the distance between electron 1 and
electron 2, with r⃗1, r⃗2 describing their positions relative to
the nucleus.
The total frequency shift induced by the above potentials

for a transition i between atomic states a and b (with
Eb > Ea) is described by first-order perturbation theory as

δNPν
A
i ¼ ð−1Þsþ1ðyeyNXi þ y2eYiÞ; ð3Þ

where Xi and Yi are overlap integrals with the electronic
wave functions depending only on the ϕ boson mass. In this
paper, we focus on electronic transitions in heliumlike and
hydrogen atoms, for which the Xi and Yi functions are
calculated within first-order perturbation theory using
nonrelativistic wave functions as detailed in Appendices B
and C. While QED calculations rely on much more
sophisticated wave functions, the use of the nonrelativistic
ones is a sufficient approximation to the dominant NP
effects. Helium wave functions are very well approximated
by antisymmetrized combinations of hydrogenic wave
functions with effective nuclear charges accounting for
the electronic screening [27], except for the 2S spin-singlet
state where an accurate description of the interelectron
repulsion requires the use of Hylleraas functions [28,29].

Taking into account the NP contribution in Eq. (3), the
theory prediction for the frequency of an electronic
transition i in an isotope A is given by

νAi ¼ νAi;0 þ Fihr2iA þ δNPν
A
i ; ð4Þ

where νAi;0 is the dominant contribution calculated in the
pointlike nucleus limit (including spin effects and nuclear
polarizability), whereas the second term describes the
leading finite nuclear size effects, hr2iA being the nuclear
charge radius squared and Fi is the field-shift (FS) constant.
The IS between two isotopes A and A0 for this transition is
then described as

νA;A
0

i ¼ νA;A
0

i;0 þ Fiδhr2iA;A0 þ yeynXiðA − A0Þ; ð5Þ

where νA;A
0

i ≡νAi −νA
0

i and δhr2iA;A0≡hr2iA−hr2iA0 . Higher-
order effects of nuclear charge radius and finite magnetic
radius are not resolvable by the current experimental accu-
racy [21,30] and are therefore omitted in Eqs. (4) and (5).
Absolute frequencies and IS in hydrogen and helium are

calculated to high accuracy in the limit of pointlike nuclei.
However, the full theoretical prediction is often limited by
the uncertainty related to the finite nuclear size effects. For
a comparison between the experimental value and the QED
prediction in the point-nucleus limit, we define

ΔA
i ≡ νAi;exp − νAi;0: ð6Þ

The NP contribution generically depends on the three
coupling constants, ye, yp, and yn, and the mediator mass,
mϕ. At fixed mϕ the product yeyn can be probed inde-
pendently of yp from a single IS measurement (for any
transition i) using Eq. (5)

yeyn ¼
ΔA;A0

i − Fiδhr2iA;A0

XiðA − A0Þ ; ð7Þ

whereΔA;A0
i ≡ ΔA

i − ΔA0
i using Eq. (6). Hence the NP bound

depends on the change in the mean-square nuclear charge
radius, δhr2iA;A0 , which is measured either in electron
scattering or in muonic atom spectroscopy experiments.
Whenever applicable, the latter typically yields much more
precise values of the charge radii. In principle, the charge
radius determination via electron scattering may be affected
by NP. However, we find that NP is only noticeable there for
large coupling values that are already excluded by more
sensitive probes. Hence the charge radius extraction from
electron scattering cannot be contaminated by NP. Muonic
atom spectroscopy measurements are more sensitive to NP
contributions, especially in the keV–MeV mass range, and
existing constraints on the yμyn coupling product do not
rule out the possibility of NP contaminations in this region
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[31–33]. Therefore, for simplicity we will henceforth
assume yμ ¼ 0.
Alternatively, the charge radius dependence can be

eliminated using an IS measurement in a second transition,
yielding

yeyn ¼
F2ΔA;A0

1 − F1ΔA;A0
2

ðF2X1 − F1X2ÞðA − A0Þ ; ð8Þ

which, besides X1;2, depends only on quantities known
theoretically with high accuracy, namely F2=F1 and νA;A

0
i;0 .

The main drawback of Eq. (8) relative to Eq. (7) is the
possible loss of sensitivity when ðF2X1 − F1X2Þ → 0
[16,19]. The latter is rather severe for all mϕ when
close-by transitions with F1 ≈ F2 and X1 ≈ X2 are used,
for example in transitions involving different states of the
same fine-structure multiplet. Another disadvantage of
Eq. (8) is represented by how rapidly the sensitivity to
yeyn weakens at large mass. While Xi ∝ m−2

ϕ above
mϕ ∼Oð10 keVÞ, this leading term cancels out in the
difference ðF2X1 − F1X2Þ ∝ m−3

ϕ [19]. Equation (8) bears
resemblance to the method proposed in Ref. [19] for heavy
elements. However, there, the less accurate theory calcu-
lations for νA;A

0
i;0 are traded for IS measurements between

two additional isotope pairs.
NP contributions to the electron-electron and electron-

proton interactions cancel out to first approximation in the
IS. Thus, they can be probed more efficiently in absolute
frequency measurements, despite the lower absolute accu-
racy. Helium transitions are sensitive to both kinds of
interaction. In fact a combination of two frequency mea-
surements can resolve the yeyN and y2e coupling products,
thanks to transition-dependent Xi, Yi constants in Eq. (3).
Hydrogen frequencies are sensitive to electron-proton
interactions and have been used previously to probe
yeyp [23–25]. However, presently unresolved issues related
to the well-known proton radius puzzle [34,35] limits the
application of hydrogen spectroscopy for constraining new
atomic forces. Therefore, we will not use absolute spec-
troscopy measurements of hydrogen or deuterium as a
probe of NP. Instead, we will consider hydrogen-deuterium
IS spectroscopy since in this case there is no tension
between δhr2i values extracted from electronic and muonic
measurements [36].

III. BOUNDS FROM ISOTOPE SHIFT
MEASUREMENTS

Let us first discuss probes of new electron-neutron
interactions. We focus here on spectroscopic probes
based on IS measurements in helium, heliumlike and
hydrogen/deuterium atoms. The comparison of theory to
experiment directly probes yeyn independently of the
presence of a NP coupling to protons. As shown in

Table I (a full list of our input values is given in
Appendix A), the theory uncertainty (in the point-like
nucleus limit) is currently smaller than the experimental
error for transitions involving low excited states, and the
sensitivity to NP is limited by the experimental deter-
mination of charge radius differences. Our results are
summarized in Fig. 1 which show the best constraints on
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FIG. 1. Summary of the indirect constraints on a new electron-
neutron interaction: isotope shift spectroscopy of helium and
hydrogen/deuterium (this work) with the charge radius deter-
mined from electron scattering (“e-scat” or Lamb shift in muonic
atoms (“muon LS”; comparison with King plot analyses of IS in
heavy atoms (Caþ, Ybþ) [19,37], fifth force experiments [38,39],
electron-neutron scattering [40], neutron-nucleus scattering
[41–44] combined [19] with ae, and globular cluster [45]. The
existing bounds are in solid lines, while the projections are in
dashed lines. The He projection assumes a combined theory and
experimental uncertainty of 100 Hz; the Ybþ projection assumes
King linearity at 1 Hz.

TABLE I. Allowed NP contributions δNPν for the most accurate
IS measurements in helium and hydrogen isotopes, along with the
standard uncertainties from experiment, σνexp , QED calculation
(point-nucleus limit, σν0 ) and charge radius difference extracted
from electron-scattering data, σδhr2i. Only for 2S − 12D in H/D,
σν0 refers to the complete theory prediction including the FS.
All numbers are in kHz. For references and input values, see
Tables III and IV.

Isotopes Transition δNPν σνexp σν0 σδhr2i

3He=4He
21S − 23S þ9� 14 2.4 0.19 14
23P − 2S −2� 78 3.3 0.9 78

H=D
1S − 2S þ76� 61 0.02 0.9 61
2S − 12D þ1.2� 10 9.3 4.2
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yeyn, as a function of the mediator mass, arising from
transitions in hydrogen and helium(-like) atoms.
For comparison, we also show constraints derived from

King linearity in heavy atoms [19] and from other (nona-
tomic) observables. Those include laboratory constraints
resulting from the anomalous magnetic moment of the
electron ae ≡ ðg − 2Þe=2 [46,47], neutron scattering on
atomic electrons [40] or nuclei [41–44] and fifth force
experiments [38,39], as well as astrophysical constraints
from SN 987a [48] and globular clusters [45,49–52]. Note
that also spectroscopy in molecular ions and antiprotonic
helium constrains spin-independent interactions of nucle-
ons [53–56], but it results in weaker bounds than from
neutron scattering and is therefore not shown in Fig. 1.
Some of these constraints can be evaded in specific models
[57–61]. We notice that bounds from few-electron atoms
provide the strongest (indirect) constraints in the region
above 300 keV where astrophysical bounds lose sensitivity.
Note, however, that direct constraints (not shown here) also
exist, which are particularly sensitive for mϕ > 1 MeV.
Yet, they strongly depend on the assumed branching ratios
for relevant ϕ decay modes, see e.g. Ref. [62] for a review.
In the near future a higher sensitivity to NP is still expected
in the King linearity test of Ybþ [19] compared to few-
electron atom spectroscopy, despite the projected improve-
ments in helium transitions. In addition, it is interesting to
notice that very light scalar spin-independent interactions
can be tested by macroscopic systems, see e.g. [63–68]. In
the following subsections, we discuss in detail the bounds
obtained from IS measurements in helium, heliumlike ions
and hydrogen/deuterium atoms.

A. Helium and heliumlike isotope shifts

We derive here IS bounds using precision spectroscopy
in two-electron atoms. This includes constraints from
measurements in helium and heliumlike lithium and nitro-
gen ions, all of which are presented in Fig. 2, while the
strongest one is also reported in Fig. 1 for comparison with
constraints from other atoms and different sources.
The most accurate IS in helium are measured within a

few kHz uncertainty between A ¼ 3, 4 for the 21S − 23S
[69] and 23P − 23S [70,71] transitions around 1557 nm and
1083 nm, respectively. While QED calculations in the
point-nucleus limit reached sub-kHz accuracy, the theory
prediction for the IS is limited by the charge radius
difference δhr2i3;4 [21]. The latter can be extracted within
a few percent from e-He scattering data [72],

δhr2ie-scat3;4 ¼ ð1.067� 0.065Þ fm2: ð9Þ

Using Eq. (9) as an input for the theory predictions of He IS
yields a good agreement between theory and experiment for
both transitions, thus allowing to constrain NP electron-
neutron interactions.

A higher sensitivity could be reached by combining the
two transitions in order to eliminate δhr2i3;4. In that case,
Eq. (8) results in

yeyn ≈
ð−51� 14Þ kHz
ð5.7X1557 − X1083Þ

; ð10Þ

which is ∼4σ away from zero. Thus, it is not justified, given
such a disagreement, to use the above to set limits on NP.
Note, however, that this large deviation is the mere conse-
quence of a known tension between the two transitionswhich
may originate from underestimated uncertainties [21].
Despite this circumstance, it remains interesting to observe
that in the case that the tension will be resolved by refined
QED calculations and/or measurements, the expected sensi-
tivity to yeyn is stronger by a factor ∼6 relative to the use of
δhr2ie-scat3;4 . In the (yet implausible) event that the above
deviation is an evidence for a new electron-neutron inter-
action, the latter should be visible in other atomic systems.
For instance, Eq. (10) would imply a violation of King
linearity in ytterbium ion clock transitions at theOð100 HzÞ
level [19].
Alternatively, δhr2i3;4 can be extracted with high accu-

racy from muonic helium spectroscopy. The CREMA
collaboration is currently conducting Lamb shift
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FIG. 2. Isotope shift bounds on new electron-neutron inter-
action from helium spectroscopy. The solid red and blue lines are
the limits from the 1557 nm and 1083 nm transitions, respec-
tively, using the charge radii from e-He scattering. The dotted-
dashed purple line is an illustration of the potential limit obtained
by combining the two transitions (due to a 4σ tension, see text for
details). The solid orange line is the upper bound derived from IS
in unstable isotopes. The dashed red line represents the projected
sensitivity with the 1557 nm transition using charge radii from
muonic helium and assuming a combined experimental and
theory uncertainty of 100 Hz.

DELAUNAY, FRUGIUELE, FUCHS, and SOREQ PHYSICAL REVIEW D 96, 115002 (2017)

115002-4



measurements in muonic Heþ aiming at a determination of
3;4He charge radii with a relative uncertainty of 3 × 10−4

[73]. Assuming this will result in a δhr2i3;4 value consistent
with e-He scattering and (electronic) helium spectroscopic
data, the sensitivity to NP will hence be limited by the
experimental accuracy in helium IS measurements.
Moreover, future IS measurements in the 21S − 23S tran-
sition down toOð100 HzÞ precision are expected [74], with
a comparable theory improvement. Hence, this would
potentially improve sensitivity to NP effects for that
transition by two orders of magnitude. As shown in
Fig. 1, this is still weaker than the sensitivity expected
from King linearity violation in ytterbium ions, except for
mϕ ≳ 10 MeV due to the different scaling of the bound
with the mediator mass (m2

ϕ vs m3
ϕ).

Precision measurements are also achievable in heavier
(unstable) helium isotopes. For instance, IS between A ¼ 4

and A ¼ 6, 8 isotopes for the 22S − 33P transition (389 nm)
are measured with ∼100 kHz accuracy [75]. However, the
situation is different here since there is no independent
measurement of the 6;8He charge radii and the FS cannot be
reliably predicted for the 389 nm transition. Nevertheless
one can still derive an upper bound on NP by saturating the
difference between theory (assuming a point-like nucleus)
and experiment, which corresponds to setting δhr2iAA0 ¼ 0

in Eq. (7). Since Δ8;4
389 ¼ −0.918 MHz [75], the NP con-

tribution is not strongly constrained. Yet, the resulting
bound on yeyn is strengthened by a factor of A − A0 ¼ 4
which makes it comparable to the IS bound from the
1083 nm transition. An order of magnitude improvement
could be obtained with an independent determination of the
charge radii of A ¼ 6, 8 isotope of helium.
Finally, IS in heliumlike ions are also well measured. The

highest accuracy is obtained in singly-ionized lithium [76]
and five-times ionized nitrogen [77]. The measured fre-
quency shifts are between A ¼ 6, 7 in the 23S − 23P
transition for Liþ, and between A ¼ 14, 15 in the 21S −
23P transition forN5þ.We rely on the theory predictions used
in the quoted references. This assumes nuclear charge radii
determined from electron-scattering data [78] with a relative
accuracy of ∼2% for lithium and from electron-scattering
data [79] and muonic x-ray line measurements [80] with
∼0.5% for nitrogen. The resulting bounds are weaker than
the ones from helium. Further precision measurements with
heliumlike boron and carbon ions are also underway [21].

B. Hydrogen-deuterium shifts

Hydrogen-deuterium shifts are complementary probes
of new electron-neutron interactions. The most accurate IS
measurement is for the 1S − 2S transition (121.6 nm), with
∼10−11 relative uncertainty [81,82]. The QED calculation
is less precise by a factor of ∼60, being equally limited by
the experimental value of the proton-to-electron and
deuteron-to-electron mass ratios as well as higher-order

corrections to the Lamb shift and nuclear polarizability [81].
Additional IS measurements exist with lower precision,
including the 2S − nS=D transition series for n ¼ 8, 12
states [83–85], and the frequency differences [86]

νLLS ≡ ν2S−4L −
1

4
ν1S−2S; ð11Þ

with L ¼ S, D. The latter is constructed such that the
leading contribution from Coulomb-like potentials cancels
out, thus making it directly sensitive to Lamb shift (LS)
corrections. As a result, νLLS becomes less sensitive to NP
with an interaction range longer than the atomic size
∼a0 ¼ ðαmeÞ−1 ≈ ð4 keVÞ−1. Since all transitions in the
2S − nS=D series have comparable sensitivity to NP, we
consider only the 2S − 12D transition for illustration.
Here again, the FS contributions are least known

theoretically as they are limited by the charge radius
difference δhr2i2;1 between the deuteron and the proton.
The latter can be extracted either from electron scattering
data,1 which yields [88]

δhr2ie-scat2;1 ¼ ð3.764� 0.045Þ fm2; ð12Þ

or muonic hydrogen/deuterium spectroscopy [36]

δhr2iμ2;1 ¼ ð3.8112� 0.0034Þ fm2: ð13Þ

Note that the charge radius differences in Eqs. (12) and (13)
are consistent within uncertainties, despite the (still puz-
zling) significant discrepancies between muonic and elec-
tronic determinations of the proton [34,35] and deuteron
[36] radii. Using δhr2iμ2;1 to predict the FS contribution
yields a sensitivity to NP larger by a factor ∼13 relative to
δhr2ie-scat2;1 , assuming the radii extraction from muonic
spectroscopy is not affected by a possible NP coupling
to muons.
The IS bounds on a new electron-neutron interaction

from hydrogen/deuterium are summarized in Fig. 3.

IV. BOUNDS FROM ABSOLUTE
FREQUENCY MEASUREMENTS

While IS are only sensitive to electron-neutron inter-
actions, absolute frequencies can also probe the electron-
proton and, in atoms with more than one electron or in
positronium, electron-electron interactions. As we dis-
cussed above, by measuring two transitions one can extract
ye and yN separately, and the combination with the IS data
will also allow for a separation of yp from yn.
In case ϕ couples both to protons and neutrons with a

similar strength, as in a Higgs portal or gauged B − L, the
sensitivity to probe NP with IS is expected to be stronger
than from the absolute frequency measurements. This can

1We use here the proton radius value extracted from the
so-called Mainz data [87].
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be understood as follows. In light atoms, the NP contri-
butions to the IS and to the absolute frequency are of
the same order. However, typically the absolute accuracy
of IS data (theory and experiment) is better by at least an
order of magnitude than the absolute frequency data, see
Appendix A. Thus, for yn ≈ yp IS measurements are a more
sensitive to NP than the absolute frequencies.
It is important to distinguish between the case of a

generic new force coupled to the electron and to the nucleus
(including the proton) and the case of a dark photon (kinetic
mixing) where the charges are proportional to the electric
charges and a more careful treatment of the definition of the
electromagnetic coupling, α, is required, see Ref. [25].

A. Bounds on ye from helium and positronium

The electron-electron interaction can be probed in atoms
with more than one electron, the simplest is helium, or in
purely electronic systems such as positronium. Starting with
the positronium, the 13S1 − 23S1 interval is measured at the
10−9 level [89] in a agreement with the theory prediction of
Ref. [90]. For helium we combine all the transitions that are
given in Table II of Ref. [21], where the agreement between
theory and experiment is better than 2σ; the full list is given
in Appendix A. Thus, we use the above to put upper bounds
onye as function of the force-carriermassmϕ. The results are
presented in Fig. 4, where we also added the constraint from
the electron magnetic moment, ae, for comparison. This

shows that ae is still the strongest probe among the three. Yet
the ϕ contribution to ae enters only at the loop level which
makes it more prone to cancelation against additional
contributions from other states present in a complete NP
model. Note that the helium bounds in Fig. 4 are evaluated
by assuming no electron-nucleus interactions. We have
verified that marginalizing over the latter does not signifi-
cantly change the bounds. The bounds frompositroniumand
helium are comparable and below few keVare weaker than
the bound from ae only a factor of few.

B. Model-independent bounds on ye, yp and ye
Here we combine observables from different atoms to

probe the NP couplings yp, yn and ye independently. In order
to do so we perform a global fit based on a χ2 function
constructed from IS in hydrogen and helium as well as
absolute transition frequencies in helium.Our χ2 is composed
of the 21S − 23S and 23P − 2S IS between 3He and 4He, the
helium/deuterium IS in the 1S − 2S transition and the νSLS
observable, and the absolute frequencies considered in
Sec. IVA. We present in Fig. 5, the 95% CL contours in
the ye − yp and ye − yn planes for several values of mϕ. For
each pair of couplings,wemarginalize over the third coupling
yn and yp, respectively. The generic shape of the bounds is
understood as follows. Since the overlap integrals Xi, Yi for
electron-nucleus and electron-electron interactions are of
comparable order when yp;n ≳ ye, absolute frequencies
and IS constrain the products yeyp and yeyn, respectively,
leading to contours at 45degrees. The latter are then truncated
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once ye reaches a large value (typically ye ≳ yp;n) so that the
y2e term dominates the NP contribution to absolute frequen-
cies in helium and the bounds become independent of yp or
yn. Note that helium absolute frequencies are in principle
sensitive to a possible relative sign between the nuclear and
the electron couplings. We checked that either sign yields
very similar bounds and thus, for simplicity, we present
global-fit results for positive couplings only.

C. Atomic bounds on kinetic mixing

For the sake of illustration, we apply now our result to a
specific NPmodel, that of a kinetically mixed massive gauge
boson, the dark photon, denoted as A0 [91]. As a result of the
mixingbetween the photon and the darkphoton,A0 couples to
the electromagnetic current, and its couplings to the protons,
electrons and neutrons are yp;n;e ¼ ϵe, 0, −ϵe, respectively,
where e is theQEDgauge coupling constant and ϵ is amixing
parameter. Since all A0 couplings are determined by a single
parameter, a single atomic transitionwould suffice to probe it.
However, when mA0 ≲ 1=a0, the dark photon induces a 1=r
atomic potential which is not distinguishable from the
Coulomb one and the A0 effect is a mere redefinition of
the fine-structure constant, α → ð1þ ϵ2Þα. Hence, in this
regime, we need at least two observables to probe the dark
photon, one of them being used to fix α. We follow here the
procedure of Ref. [25] and combine either two atomic
transitions together or one transition with ae, the anomalous
magneticmoment of the electron. Figure 6 shows the 95%CL
bounds that we derived from helium and positronium, each
combined with ae, as well as existing bounds from hydrogen
spectroscopy [23–25]. We find that helium and positronium
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bounds surpass the known hydrogen bounds above
∼100 keV. We chose to present only indirect constraints
from atomic spectroscopy on the kinetic-mixing parameter
since those do not depend on the A0 decay mode. In the sub-
MeV region, these atomic probes are the most sensitive ones,
after the LSND neutrino detector which directly searches for
A0 in the 3 photons decay [92], and the study of star cooling in
globular clusterswhich excludes, formA0 ≲ 300 keV,mixing
parameter values far below the displayed range of ϵ in Fig. 6.
For mA0 ≳ 1 MeV, the sensitivity of atomic spectroscopy is
also much weaker compared to probes based on A0 decay
(either visibly or invisibly) as in electron beam-dump experi-
ments or colliders, likeBABAR (see Ref. [62] for a review). In
conclusion, for mA0 ≳ 0.3 MeV, the most sensitive indirect
probe of dark photon is from combining ae with atomic
transitions in helium.

V. DISCUSSION

In this work we study the sensitivity to new spin-
independent forces of hydrogen and heliumlike atoms
considering both absolute frequency and isotope shift mea-
surements. We exploit the accuracy of both the measure-
ments and the theoretical predictions achieved in these
systems [21,22]. We demonstrate for the first time the power
of isotope shift measurements in few-electrons atoms to

constrain models where the new degree of freedom, ϕ,
couples not only to the proton, but also to the neutron as, for
instance, in the B − L and Higgs portal models. The derived
bounds represent, to date, the strongest laboratory bound on
yeyn for mϕ ≳ 100 eV. For masses heavier than 300 keV,
where astrophysical probes are ineffective, isotope shift
spectroscopy in few-electron atoms constrains new regions
of the parameter space in amodel-independentway. Previous
works on spin-independent new interactions [23–25] focused
on hydrogen which is only sensitive to new interactions
between the electron and the proton. The highly precise
spectroscopy of helium has the advantage to probe also the
electron coupling alone, reaching a sensitivity comparable to
ae below few keV. (See Ref. [26] for similar results regarding
spin-dependent electron-electron interactions.) Furthermore,
we show that current precision in positronium spectroscopy
has comparable constraining power.
The present work emphasizes how the effort in improv-

ing the knowledge of the nuclear size has the indirect effect
of improving the sensitivity to new spin-independent forces
between the constituents of the atoms.
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APPENDIX A: EXPERIMENTAL DATA
AND THEORETICAL PREDICTION

In this appendix we provide all experimental data and
theoretical predictions that have been used in this paper.
We start with the nuclear charge radii in Table II used

throughout the paper.

TABLE II. Charge radii rA used for the IS bounds for different
elements with isotopes A, obtained via electron-scattering experi-
ments (e-scat.) or spectroscopy in muonic atoms (μ-spec.).

Element A rA [fm] Method Reference

H=D

1 0.8791� 0.0079
e-scat.

[94]
2 2.130� 0.010 [94]
1 0.84087� 0.00039

μ-spec.
[34,35]

2 2.12562� 0.00078 [36]

He
3 1.973� 0.016

e-scat.
[72]

4 1.681� 0.004 [72]

Li
6 2.589� 0.039

e-scat. [95]
7 2.444� 0.042

N
14 2.560� 0.011 μ-spec. [80]
15 2.612� 0.009 e-scat. [79]

TABLE III. Theoretical and experimental input values for the IS bounds: measured IS νAA
0;exp

i , theory prediction for a point-like
nucleus νAA

0;th
i;0 , and the field shift constant Fi. See also Ref. [21]. For the IS of 2S − 12D in H=D, see the absolute frequencies in

Table IV. F1S−2S for H/D is an approximate value obtained from the quoted FS in Ref. [82].

A, A0 Transition i νAA
0;exp

i [kHz] Reference νAA
0;th

i;0 [kHz] Fi [kHz=fm2] Reference

3;4He
21S0 − 23S1 −8 034 286.259� 2.4

[96–98] −8 034 065.91� 0.19 −214.66� 0.02
[30,99–101]

23P − 23S1 −33 668 444.7� 3.2 −33 667 149.3� 0.9 −1 212.2� 0.1
4;8He 23S1 − 33P2 64 701 466� 52 [102] 64 702 409 1 008 [102]
H=D 1S − 2S 670 994 334.605� 0.015 [82] 670 999 566.90� 0.89 −1 369.88 [82]
14;15N 21S0 − 23P1 649 418 424.16� 29 979.2 [77] 649 469 388.8� 269 812.8 [77]
6;7Li 23P0 − 23S1 3 474 773� 55 [76] 34 747 876 [76]
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In Table III we continue with the input values used for
the IS bounds in Table I and Fig. 2 of Sec. III, see also
Table 5 of Ref. [21]. Finally, we provide the values of
measurements and calculations of absolute frequencies in
Table IV.

APPENDIX B: HELIUM WAVE FUNCTION

In this appendix we specify the approximate wave
functions we use in the helium calculations. It is conven-
tional to label the states of helium as

n2Sþ1LJ ðB1Þ
corresponding to the following electronic configuration
ð1sÞðnlÞ. L is the total orbital momentum, S is the spin
and J ≤ Lþ S is the total angular momentum. Since one
electron is always in the ð1sÞ orbital L ¼ l, and S ¼ 0, 1
corresponding to the singlet and triplet states, respectively.
For two-electron systems in the nonrelativistic limit, the

spin and spatial parts of the wave function are factorized.
The spin singlet (S ¼ 0) state is

jS ¼ 0; mS ¼ 0i ¼ j↑↓i − j↓↑iffiffiffi
2

p ; ðB2Þ

while the spin triplet (S ¼ 1) is with components

jS ¼ 1; mS ¼ 1i ¼ j↑↑i;

jS ¼ 1; mS ¼ 0i ¼ j↑↓i þ j↓↑iffiffiffi
2

p ;

jS ¼ 1; mS ¼ −1i ¼ j↓↓i: ðB3Þ

Using an antisymmetrized combination of hydrogenic
orbitals, the spatial part of the wave function takes the form

hr⃗1; r⃗2jψS
nlmi

¼ 1

2
ffiffiffi
π

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ NnlÞ

p

× ½Fnlðr1; r2ÞYlmðΩ2Þ þ ð−1ÞSFnlðr2; r1ÞYlmðΩ1Þ�;
ðB4Þ

where the 1=ð2 ffiffiffi
π

p Þ prefactor is the Y00 spherical harmonic
from the 1s electron, and Nnl ensures that the radial part of
the wave function is canonically normalized. We write the
Fnl’s as products of nonrelativistic hydrogen radial wave
functions as

Fnlðr1; r2Þ ¼ R10ðr1; ZiÞRnlðr2; ZaÞ; ðB5Þ
where (in units of a0 ¼ 1)

Rnlðr;ZÞ¼
�
2Z
n

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn− l−1Þ!
2nðnþ lÞ!

s
e−ρ=2ρlL2lþ1

n−l−1ðρÞ; ðB6Þ

where ρ ¼ 2rZ=n, Lα
kðxÞ are the generalized Laguerre

polynomials of degree k, and Zi and Za are the effective
nuclear charges for the core ð1sÞ and valence ðnlÞ electrons,
respectively. An important point is that Zi;a ≠ Z ¼ 2

because of screening effects; they depend on the electronic
configuration considered, see Table V. The Rnl’s form an
orthonormal basis for a fixed Z. However, because the two
electrons effectively feel a different nuclear charge
(Zi ≠ Za), there is an overall normalization constant for
S waves because of the cross term in the square of Eq. (B4)

Nnl ¼ ð−1ÞSδl;0
�Z

drr2R10ðr; ZiÞRnlðr; ZaÞ
�
2

; ðB7Þ

which vanishes for Zi ¼ Za and n ≥ 2 by orthogonality
of Rnlðr; ZÞ.

TABLE IV. Measurements and predictions of absolute transition frequencies in H, D, He and positronium (Ps). The H and D values are
used for the H/D IS in Sec. III B. The middle part of the table summarizes the experimental and theoretical frequencies of the Lamb shift
ð4L − 2S1=2Þ − 1

4
ð2S − 1SÞ for L ¼ S, D. The lower part of the table is used for constraining ye in Fig. 4: the transitions in 4He with an

agreement of better than 2σ between theory and experiment, as well as a transition in Ps.

Element Transition i νexpi [kHz] Reference νthi [kHz] Reference

H
2S1=2 − 12D3=2;5=2

799 191 727 402.8� 6.7
[83]

799 191 727 409.1� 3.0
[103]

D 799 409 184 967.6� 6.5 799 409 184 973.4� 3.0
H ð4S1=2 − 2S1=2Þ − 1

4
ð2S − 1SÞ 4797338� 10

[86]

4 797 329� 5

[86]
D 4 801 693� 20 4 801 692� 5
H ð4S1=2 − 2D5=2Þ − 1

4
ð2S − 1SÞ 6 490 144� 24 6 490 128� 5

D 6 494 841� 41 6 494 816� 5

4He

21S0 − 23S1 192 510 702 145.6� 1.8 [69] 192 510 703 400� 800

[21]

23P0 − 33D1 510 059 755 352� 28 [104] 510 059 754 000� 700

23S1 − 33D1 786 823 850 002� 56 [105] 786 823 848 400� 1 300

21S0 − 21P1 145 622 892 886� 183 [106] 145 622 891 500� 2 300

23P − 23S1 276 736 495 649� 2 [71] 276 736 495 400� 2 000

23S1 − 21P1 338 133 594 400� 500 [107] 338 133 594.900� 1 400

Ps 13S1 − 23S1 1 233 607 216 400� 3200 [89] 1 233 607 222 180� 580 [90]
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The total wave function for a fixed J and (its projection)
mJ ¼ −J…J are then constructed from L × S combination
of angular momentum using the Clebsch-Gordan coeffi-
cients CJ;mJ

L;m;S;mS
as

jn2Sþ1LJ;mJ
i ¼

XL

m¼−L

XS

mS¼−S
CJ;mJ
L;m;S;mS

jψnLmijS;mSi: ðB8Þ

We use the above wave functions for all helium states
with the exceptions of the 21S, 23S and 23P states where we
use non-relativistic wave functions based on Hylleraas
functions taken from Refs. [108,109] in order to better
describe the repulsion between the two electrons. This turns
out to be of particular importance for the 21S state. Indeed,
for spin-singlet states, the spatial part of the wave function
is symmetric under the exchange of the two-electrons so
that the wave function in Eq. (B4) may overestimate the
electronic density is in the region where the electrons are
close to each other, r1 ∼ r2. Hylleraas functions then
provide a more accurate description of the electron repul-
sion effect by introducing an explicit dependence on the
interelectronic distance r12 in the wave function. The
spatial part of wave function is then taken to be of the form

hr⃗1; r⃗2jψS
nlmi ¼

1ffiffiffiffi
N

p ½Fnlðr1; r2; r12ÞYlmðΩ2Þ

þð−1ÞSFnlðr2; r1; r12ÞYlmðΩ1Þ� ðB9Þ

where N is a normalization constant and Fnl now depends
on r12 and is expanded on Hylleraas functions as

Fnlðr1; r2; r12Þ ¼ ½κðsþ tÞ�le−κ
2
ðs−σtÞXk

i¼1

ciϕiðκs;−κt; κuÞ;

ðB10Þ

with s≡r1þr2, t≡r2−r1, u≡r12 and ϕiðs;t;uÞ¼spi tqiuri .
It is convenient to reorganize the Hylleraas terms according
to their powers of r12. We then write the radial function in
Eq. (B10) as

Fnlðr1; r2; r12Þ ¼
Xk

i¼0

fiðr1; r2Þri12: ðB11Þ

APPENDIX C: OVERLAP INTEGRALS
FOR HELIUM

In this appendix we give the analytical expressions for
the overlap integrals for the case of helium, i.e. the
electronic NP coefficients Xi and Yi.

1. Electron-nucleus interactions

Let us consider the potential of Eq. (1) between the
nucleus and its bound electron with the above helium wave
functions. In first-order perturbation theory we find

Xi ≡ X̂a − X̂b

¼ 1

4π

Z �Yne

k¼1

d3rk

��Xne

k¼1

e−mϕrk

rk

�

× ½jΨaðr⃗1;…; r⃗neÞj2 − jΨbðr⃗1;…; r⃗neÞj2�; ðC1Þ

where ne is the number of bound electrons and jΨj2 is the
electron wave function density. Using hydrogenic wave
functions in Eq. (B4) the contributions from each state is

X̂n2Sþ1LJ;mJ
¼ −

1

4πð1þ NnLÞ
�Z

drre−mϕr½R10ðr; ZiÞ2 þ RnLðr; ZaÞ2�

þ 2ð−1ÞSδL;0
Z

drre−mϕrR10ðr; ZiÞRnLðr; ZaÞ
Z

drr2R10ðr; ZiÞRnLðr; ZaÞ
�
: ðC2Þ

For the case of Hylleraas wave functions in Eq. (B9), we
need the following expansion of r12 raised to the power k
on spherical harmonics

rk12 ¼ 4π
X∞

l¼0

HðkÞ
l ðr1; r2Þ

Xl

m¼−l
YlmðΩ1ÞY�

lmðΩ2Þ; ðC3Þ

TABLE V. Effective nuclear charges for the excited states of
helium under consideration. Zi is the charge of the core ð1sÞ
electron and Za is the charge of the excited electron. These are
obtained by variational methods using the nonrelativistic hydro-
gen wave functions as trial functions. When the electron is
excited to a n ¼ 3 or higher orbital, the screening of the core
electron is found nearly perfect.

State Zi Za

ð2Þ1S 2.08 1.21
ð2Þ3S 2.01 1.53
ð2Þ3P 2.00 0.97
ð2Þ3P 1.99 1.09
n ≥ 3 2 1
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where the coefficients can be written in closed form in
terms of hypergeometric functions [110]

HðnÞ
l ðr1; r2Þ ¼

ð−n=2Þl
ð1=2Þl

rn>
2lþ 1

�
r<
r>

�
l

× F

�
l − n=2;−ðnþ 1Þ=2; lþ 3=2;

r2<
r2>

�
;

ðC4Þ

with Fðα; β; γ; xÞ denoting the Gauss hypergeometric
function and ðξÞs ≡ Γðξþ sÞ=ΓðξÞ. We then find

X̂n2Sþ1LJ;mJ
¼ −

1

4πN

Z
r21r

2
2dr1dr2

�
e−mϕr1

r1
þ e−mϕr2

r2

�

×
Z

dΩ1dΩ2jψS
nlmj2; ðC5Þ

where the square of the spatial wave function integrated
over the angular variables is

Z
dΩ1dΩ2jψS

nlmj2

¼ f0ðr1; r2Þ2 þ
X
iþj≥1

HðiþjÞ
0 ðr1; r2Þfiðr1; r2Þfjðr1; r2Þ

þ ½r1 ↔ r2� þ 2ð−1ÞS
�
f0ðr1; r2Þf0ðr2; r1Þδl0

þ
X
iþj≥1

HðiþjÞ
l ðr1; r2Þfiðr1; r2Þfjðr2; r1Þ

�
: ðC6Þ

2. Electron-electron interactions

Consider the NP potential between the bounded
electrons, Veðr12Þ see Eq. (1). It is useful to expand
the Yukawa potential over spherical harmonics as, see for
example [111],

e−mr12

r12
¼ 4π

X∞

l¼0

Glðr1;r2;mÞ
Xl

m¼−l
YlmðΩ1ÞY�

lmðΩ2Þ; ðC7Þ

where the coefficients are

Glðr1; r2; mÞ ¼ Ilþ1=2ðmr<Þffiffiffiffiffi
r<

p Klþ1=2ðmr>Þffiffiffiffiffi
r>

p ; ðC8Þ

with I and K the modified Bessel functions of the first
and second kind respectively and r> (r<) is the greater
(lesser) of r1 and r2. For Hylleraas wave functions
which involve additional powers of r12 it will be
convenient to use Eq. (C7) as a “generating functional”
in order to derive the expansion of any rk−112 e−mr12

functions (for k ≥ 1) by differentiating k-times the
coefficients Glðr1; r2; mÞ.

The first-order perturbation theory result is

Yi ≡ Ŷa − Ŷb

¼ 1

4π

Z �Yne

k¼1

d3rk

��Xne

i>j

e−mϕrij

rij

�

× ½jΨaðr1!;…; rne
�!Þj2 − jΨbðr1!;…; rne

�!Þj2�: ðC9Þ

Using the expansion of Eq. (C7) and the hydrogenic
wave functions from Eq. (B4) we find
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FIG. 7. Comparison of the electronic NP coefficients Xi, Yi
based on hydrogen-like and Hylleraas wave functions depending
on the mediator mass mϕ for the transitions 2S − 2S and 2P − 2S
in helium.
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Ŷn2Sþ1LJ;mJ
¼ −

1

4πð1þ NnLÞ
Z

dr1dr2r21r
2
2½G0ðr1; r2ÞR10ðr1; ZiÞ2RnLðr2; ZaÞ2

þ ð−1ÞSGLðr1; r2ÞR10ðr1; ZiÞR10ðr2; ZiÞRnLðr1; ZaÞRnLðr2; ZaÞ�: ðC10Þ

where only G0;L coefficients in the Yukawa expansion of
Eq. (C7) are needed. Note that the integrand above no
longer depends on m0 and mS hence the sum over Clebsch-
Gordan coefficients squared gives

P
m0;mS

½CJ;mJ
L;m0;S;mS

�2 ¼ 1

by orthonormality. Finally, note that the shift in Eq. (C10) is
independent of J and mJ, which is expected since the
potential in Eq. (1) is invariant under rotations. We also
used the fact the Glðr1; r2Þ ¼ Glðr2; r1Þ to simplify the
expression.
For the case of Hylleraas wave functions in Eq. (B9), we

find

Ŷn2Sþ1LJ;mJ
¼ −

1

4πN

Z
r21r

2
2dr1dr2

×
Z

dΩ1dΩ2

e−mr12

r12
jψS

nlmj2; ðC11Þ

where the angular integral simplifies to

Z
dΩ1dΩ2

e−mr12

r12
jψS

nlmj2

¼
X
ij

GðiþjÞ
0 ðr1;r2Þ½fiðr1;r2Þfjðr1;r2Þþfiðr2;r1Þfjðr2;r1Þ�

þ2ð−1ÞS
X
ij

GðiþjÞ
l ðr1;r2Þfiðr1;r2Þfjðr2;r1Þ; ðC12Þ

where ðkÞ indicates the kth differentiation with respect tom,

GðkÞ
l ðr1; r2; mÞ≡ ð−1Þk ∂

kGlðr1; r2; mÞ
∂mk : ðC13Þ

In Fig. 7 we evaluate the impact of the Hylleraas wave
functions on the electronic NP constants by calculating the
ratios to the respective quantity based on hydrogen-like
wave functions, XHylleraas

i =XH-like
i , YHylleraas

i =YH-like
i .
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