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Single crystals have high atomic electric fields as much as 1011 V=m, which correspond to magnetic
fields of ∼103 T. These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently
similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case
conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows
that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV
range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up toOð10 keVÞ
can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.
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I. INTRODUCTION

Some theories beyond the standard model predict addi-
tional particles which have weak couplings to photons. The
unknown particles of this sort include axionlike particles
(ALPs) [1–3], which are particles with similar properties to
an axion [4–7]. The standard axion is a Nambu-Goldstone
bosonassociatedwith an additionalUð1Þ symmetry,which is
first motivated to provide a solution for the strong-CP
problem [4,5]. In addition to the theoretical point of view,
ALPs are of astronomical interest. ALPs are one of viable
dark matter candidates [8,9], and they can provide possible
explanation for astronomical observations such as the γ-ray
transparency of theUniverse [10,11] and the stellar evolution
[12,13]. In particular, ALPs in the keV range can be related to
the anomalies of solar activities such as coronal heating [14]
and an unidentified x-ray emission line around 3.5 keV
recently detected in the galaxy clusters [15]. Search forALPs
in the keV range has a particular importance in astronomy as
well as elementary particle physics.
ALPs and photons can transform into each other via a

mixing process (Primakoff effect [16]), which may be
described by the Lagrangian density,

Lint ¼ −
gaγγ
4

F μν
~F μνa ¼ gaγγE ·Ba; ð1Þ

where F μν is the electromagnetic field strength, ~F μν ¼
1
2
ϵμνρσF ρσ is its dual, a represents the ALPs fields, gaγγ is

the coupling constant, and E ·B is the odd-parity product

of electromagnetic fields. The standard axion has propor-
tionality between its mass and coupling constant [17–20].
On the other hand, the ALPs’ mass ma and gaγγ are
considered to be not bound to each other.
Although upper limits on gaγγ in a broad mass range are

obtained by solar axion searches, their limits inevitably
depend on a solar model [21–26] and its magnetic activity
[27]. For example, the limit can be relaxed by postulating
that the ALPs’ mass and coupling depend on the environ-
mental condition such as the temperature and the matter
density [25]. Pure-laboratorial experiments have a big
advantage of model-independent searches for ALPs.
Various laboratorial experiments based on the Primakoff
effect have been carried out by using the LSW scheme [28].
The LSW scheme converts photons (E) into ALPs by
mixing them in the presence of an external magnetic field
(B) of ∼Oð1Þ T. The generated ALPs pass through a
shielding wall that blocks unconverted photons. Some of
the ALPs are subsequently reconverted into real photons
via an inverse process in another magnetic field. The
mixing takes place when ALPs’ mass ma is much less
than the energy of real photons. Most LSW experiments
are performed by using optical lasers as photon sources
[29–39], and experiments using x-ray sources [40,41] are
recently performed to probe heavier ALPs. The sensitive
ALPs’ mass of these x-ray experiments is up to Oð1 eVÞ.
It is well-known that there are extremely high electric

fields in crystals. The fields are as high as 1011 V=m, which
correspond to magnetic fields of ∼103 T. These electric
fields can also be used to transform x-rays into ALPs or
vice versa. The feasibility to use the electric fields in*yamaji@icepp.s.u-tokyo.ac.jp
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crystals for the conversion has been studied in Ref. [42,43].
These studies propose coherent x-ray-ALP conversion
similar to x-ray diffraction as shown in Fig. 1. The
conversion in Bragg-case reflection [Fig. 1(a)] is first
considered in the framework of the Darwin dynamical
theory of x-ray diffraction by Buchmüller and Hoogeveen
[42]. The Bragg-case reflection takes place when x-rays fall
on a crystal with reflecting lattice planes parallel to its
surface (Bragg-case). The reflection converts some x-rays
into ALPs at the Bragg angle θB. The calculated conversion
probability for nearly massless ALPs is as follows,

Pa↔γ ¼
�
1

2
gaγγETLB cos θB

�
2

; ð2Þ

where ET is an effective electric field shown afterwards,
and LB is an x-ray penetration length under the Bragg
condition. Solar axion searches using the crystal fields have
been proposed [44,45] and performed [46–50]. These
experiments use a crystal detector itself as a converter
from solar axions into x-rays. However, LSW experiments
using atomic electric fields have not been performed
because Bragg-case diffraction in crystals reduces the
x-ray penetration length LB ∼ 1 μm and the production
efficiency of ALPs significantly. It was also suggested in
Ref. [42] that the conversion is more effective when
reflecting lattice planes are perpendicular to crystal surfaces
(Laue-case). Later, Liao takes into account nonzero ALPs’
mass in Ref. [43] by approximating crystals as periodic
electric field [Fig. 1(b)]. The study showed that ALPs in the
keV range can be continuously searched by scanning

incident angles of x-rays. However, some effects of
x-ray absorption and scattering which exist in real crystals
are ignored in the previous calculation. Rigorous calcu-
lation including these effects is required to consider
realistic experiments using atomic electric fields.
In this paper, we propose a new conversion geometry

with reflecting lattice planes perpendicular to the crystal
surfaces (Laue-case) as shown in Fig. 1(c), and calculate
the conversion efficiency. This calculation is performed in
consideration of x-ray diffraction, x-ray absorption and
nonzero ma.

II. LAUE-CASE CONVERSION BETWEEN
X-RAYS AND ALPS IN CRYSTALS

In this section, we perform a theoretical calculation of
the Laue-case conversion between x-rays and ALPs in a
crystal. The calculation is based on the Darwin dynamical
theory [51].
We set up recurrence formulae for amplitudes of x-rays

and ALPs at first. In the next place, we provide a solution
of them by using the Born approximation. Finally, we
examine the effect of x-ray diffraction on the x-ray-ALP
conversion. In this paper, we apply natural units with
Lorentz-Heaviside units.

A. Recurrence relation between amplitudes
of x-ray and ALP waves

We consider Laue-case conversion in a crystal between
x-rays with a momentum of kγ and massive ALPs with a
momentum of ka. For the convenience of the calculation,

FIG. 1. Schematics of an x-ray-ALP conversion by atomic electric fields. (a) The Bragg-case conversion at the Bragg angle θB [42].
The x-ray penetration length is ∼1 μm. (b) The conversion away from the Bragg condition studied in Ref. [43]. The study takes into
account ALPs’ mass and the detuning angle Δθ. Massive ALPs can be generated only when the incident angle is detuned from θB. The
crystal is approximated just as a periodic field in the calculation. (c) The Laue-case conversion which we consider in this paper. The
effects of x-ray diffraction and ALPs’ mass are considered at the same time.
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we consider the geometry shown in Fig. 2, where x-ray
diffraction and the conversion take place in the X-Z plane,
the crystal surfaces are parallel to the Y-Z plane, and the
reflecting lattice planes with the spacing of d are parallel to
the X-Y plane. Since the conversion is the most efficient for
σ-polarization, we postulate that x-rays are linearly polar-
ized in the Y direction. We divide all atoms in the crystal
into virtual scattering planes parallel to the crystal surfaces.
Their spacing r and numberN are dummy variables subject
to the constraint rN ¼ H, where H is the thickness of the
crystal. These dummy variables vanish at the final phase of
the calculation.
The Laue-case conversion originates from a transition

between four waves in the crystal, transmitted/reflected
x-rays (Tγ=Sγ) andALPs (Ta=Sa). The transition takes place
due to x-ray scattering and x-ray-ALP conversion by atoms
on the scattering planes. The total conversion efficiency can
be calculated by solving recurrence relations of transmitted/
reflected amplitudes Tγ

n=S
γ
n and Ta

n=San at nth scattering
planes. The conversion and scattering take place coherently
when angles between lattice planes and the four waves
satisfy the Fresnel diffraction condition as follows [51],

kγ sin θ
γ
T þ kγ sin θ

γ
S ¼ kγ sin θ

γ
T þ ka sin θaS

¼ ka sin θaT þ kγ sin θ
γ
S ¼ qT; ð3Þ

where θγ=aT=S are the angles of transmitted/reflected x-rays/
ALPs, kγ=a ≡ jkγ=aj are the momentum of x-rays/ALPs, and
qT ≡ 2π

d is the reciprocal lattice spacing. The Fresnel

condition determines the angles θγ=aT=S and the momentum

transfer q as a function of the incident angle θγ=aT .
When θγT ¼ θγS, the condition is reduced to the Bragg
condition 2kγ sin θB ¼ qT . When the injection angle of

x-rays is detuned from θB by Δθ, θγT ¼ θB þ Δθ, θγ=aS ≃
θB − Δθ and θaT ≃ θB þ Δθ. Since the left-hand side of
Eq. (3) corresponds to the momentum transfer in the z

direction, q · ẑ ¼ qT where ẑ is the unit vector in the z
direction. The momentum transfer in the x direction is
calculated from Eq. (3) as

ðq · x̂Þij ¼
8<
:

2qT ðkγ sin θγT−
qT
2
Þ

2kγ cos θ
γ
T

ðTγ to Sγ; γγÞ

− m2
a−2qTðkγ sin θγT−

qT
2
Þ

2kγ cos θ
γ
T

ðTγ to Sa; γaÞ
; ð4Þ

where the subscript ðijÞ is γγ or γa, x̂ is the unit vector in the
x direction, and the approximation kγ cos θ

γ
T ≃ kγ cos θ

γ
S ≃

ka cos θaS is used in the denominator. Since q · x̂ is much
smaller than q · ẑ when Δθ ∼Oð1 mradÞ, we approximate
q≃ qT ẑ. The momentum transfer in the x direction is
directly related to phase differences between the four waves
as will be shown later.
The four waves which satisfy the Fresnel condition are

mixed with each other by x-ray scattering and x-ray-ALP
conversion on the scattering planes. For example, the
amplitude of transmitted x-ray wave, Tγ

nþ1, is made up
of the following three components: transmission and
forward scattering of Tγ

n, scattering of Sγn−1 and conversion
from San−1. On the contrary, the amplitude of reflected x-ray,
Sγn, is made up of reflection of Tγ

n, transmission and forward
scattering of Sγn−1 and conversion from Ta

n. The amplitudes
of ALPs can be described in the same way, except that
ALPs are not scattered by scattering planes. These recur-
rence relations between Ta;γ

n and Sa;γn are shown as,

Tγ
nþ1 ¼ Tγ

nð1þ iηT0Þe−iϕ
γ
T þ Sγn−1ðiηTÞe−iðϕ

γ
Sþϕγ

T Þ

þ San−1ðiζ0STÞe−iðϕ
a
Sþϕγ

T Þ; ð5Þ

Sγn ¼ Tγ
nðiηSÞ þ Sγn−1ð1þ iηS0Þe−iϕ

γ
S þ Ta

nðiζ0TSÞ; ð6Þ

Ta
nþ1 ¼ Ta

ne−iϕ
a
T þ Sγn−1ðiζSTÞe−iðϕ

γ
Sþϕa

TÞ; ð7Þ

San ¼ San−1e
−iϕa

S þ Tγ
nðiζTSÞ: ð8Þ

FIG. 2. Schematics of the x-ray-ALP conversion in the framework of the Darwin dynamical theory. Left: The crystal geometry for the
calculation. Atoms in the single crystal with a thickness of H are divided into scattering planes parallel to the crystal surface. Scattering
planes have an arbitral spacing of r. The overall conversion probability can be calculated by solving recurrence relations between
transmitted and reflected amplitudes Tγ;a

n , Sγ;an at each scattering planes. Right: The definition of θγ=aT=S.
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The variables in the formulas are defined as follows [42],

ηi ≡ ηiðqÞ ¼
reMλγfγðqÞ

cos θγi
; ð9Þ

ηi0 ≡ ηið0Þ; ð10Þ

ζjk ≡ gaγγMλafaðqÞ
4π cos θak

sinðθγj þ θakÞ; ð11Þ

ζ0jk ≡
gaγγMλγfaðqÞ
4π cos θγk

sinðθaj þ θγkÞ; ð12Þ

ϕl
i ≡ klr cos θli; ð13Þ

where the subscripts are i ¼ T=S, l ¼ γ=a, ðj; kÞ ¼
ðT; SÞ=ðS;TÞ, re is the classical electron radius, M ¼ Fc

V r
is the effective number density of atoms on the scattering
plane, Fc is the coefficient of the crystal structure factor, V
is the volume of the unit lattice cell, ηi are the x-ray
scattering amplitudes, ηi0 are the x-ray forward scattering
amplitudes, ζjk=ζ0jk are the x-ray-ALP/ALP-x-ray conver-
sion amplitudes, ϕl

i are the phase changes of four waves
during the propagation among scattering planes, λγ;a are the
wavelengths of x-rays and ALPs. fγ;aðqÞ are the atomic
form factor and a conversion form factor analogous to it,

fγðqÞ ¼
1

e

Z
d3rρðrÞ expðiq · rÞ; ð14Þ

faðqÞ ¼ k2a

Z
d3rϕðrÞ expðiq · rÞ; ð15Þ

where ρðrÞ;ϕðrÞ are the electron charge density and the
electric potential of an atom, e is the elementary charge.
The forward form factor fað0Þ vanishes since these
form factors have the relation faðqÞ ∝ ½Z − fγðqÞ� and
fγð0Þ ¼ Z, where Z is the atomic number of the crystal.

B. Solution of the recurrence formulas

Now we deduce the conversion amplitude by solving the
recurrence relations, Eqs. (5)–(8). We consider the con-
version from x-rays to ALPs under the boundary condition
of Tγ

0 ¼ T0 and Ta
0 ¼ 0 on the incident surface. The

reconversion contribution from ALPs in Eqs. (5), (6) are
Oðζ2Þ since Ta

n, San are estimated to be OðζÞ by Eqs. (7),
(8). We ignore the reconversion contribution, which cor-
responds to the Born approximation. By the approximation,
the recurrence relations between Tγ

n and Sγn become the
same as the conventional Laue-case x-ray diffraction. Their
solution can be deduced by using characteristic functions as
follows [51],

Tγ
n ¼ T0ðCαxnα þ CβxnβÞ: ð16Þ

The parameters in Eq. (16) are defined as

Cα=β ≡ 1

2

�
1� sinΔϕγð1þ iη0Þ

u

�
; ð17Þ

xα=β ≡ e−iϕγ ½ð1þ iη0Þ cosΔϕγ ∓ iu�; ð18Þ

u≡½η2 þ ð1þ iη0Þ2 sin2 Δϕγ�12; ð19Þ

η≡ ηðqÞ ¼ reMλγfγðqÞ
cos θB

; ð20Þ

η0 ≡ ηð0Þ ¼ reMλγZ

cos θB
; ð21Þ

ϕγ ≡ 1

2
ðϕγ

T þ ϕγ
SÞ; ð22Þ

Δϕγ ≡ 1

2
ðϕγ

T − ϕγ
SÞ ¼ −

r
2
ðq · x̂Þγγ; ð23Þ

where the approximation
ffiffiffiffiffiffiffiffiffi
ηTηS

p ≃ η,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηT0ηS0

p ≃ η0 and
ηT0 þ ηS0 ∼ 2η0 are used. Δϕγ is related to the momentum
transfer in the x direction shown by Eq. (4), which
represents the deviation from the Bragg condition. The
indexes α=β label x-ray standing waves (Bloch wave α=β)
explained later. The corresponding representation for the
ALP phases is introduced as

ϕa ≡ 1

2
ðϕγ

T þ ϕa
SÞ; ð24Þ

Δϕa ≡ 1

2
ðϕγ

T − ϕa
SÞ ¼ −

r
2
ðq · x̂Þγa: ð25Þ

The phase difference Δϕa, which is related to a resonant
condition for the x-ray-ALP conversion, has the following
relation,

ΔϕaN ¼ L
4kγ

�
m2

a − 2qT

�
kγ sin θ

γ
T −

qT
2

��
; ð26Þ

where we use Eq. (4), and L ¼ H
cos θγT

is the x-ray path length

in the crystal. It is important to note that the resonance of
x-ray-ALP conversion does not necessarily require the
Bragg condition as required in Ref. [42]. From these
parameters and Eqs. (8), (16), we can obtain the amplitude
of reflected ALPs at the Nth scattering plane as,

SaN ¼ ðiζTSÞ
XN
n¼0

Tγ
ne−iðN−nÞϕa

S

¼ T0ðiζTSÞe−iNϕa
S

X
j¼α=β

Cj
1 − ðxjeiϕa

SÞNþ1

1 − xje
iϕa

S
: ð27Þ

The parameters Δϕγ=a, ηð0Þ are proportional to the spacing
of scattering planes, r. Since r and N are dummy variables,
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higher order contributions of r can be ignored by taking
r → 0 with rN ¼ H. When we ignore terms higher than
Oðr2Þ, Eqs. (17), (18), (19) may be simplified as

Cα=β ¼
1

2

�
1� Δϕγ

u

�
; ð28Þ

xα=βe
iϕa

S ¼ 1þ iðη0 ∓ uþ Δϕγ − 2ΔϕaÞ; ð29Þ

u ¼½η2 þ Δϕ2
γ �12: ð30Þ

By using Eqs. (28), (29), (30) and the approximation
limr→0;rN¼constð1þ rÞN ¼ erN , Eq. (27) can be simplified
to be

SaN ¼ −
T0

2
ðζTSNÞe−iNϕa

S

X
�

��
1� Δϕγ

u

�
1 − expðiðη0 ∓ uþ Δϕγ − 2ΔϕaÞNÞ

ðη0 ∓ uþ Δϕγ − 2ΔϕaÞN
�
: ð31Þ

From the above equation, the conversion probability can

be calculated as Pγ→a ¼ j SaNT0
j2. The reconversion proba-

bility from ALPs to x-rays takes the same form as it, except
that ζTS is replaced by ζ0TS.
In the following subsections, we consider the conversion

probability in the two cases, where the Bragg condition is
fulfilled and where the incident angle is away from the
Bragg angle.

1. Under the Bragg condition

The most peculiar effect of Laue-case conversion takes
place under the Bragg condition (θγT ¼ θB and Δϕγ ¼ 0).
The conversion amplitude in this case is composed of two
components with the attenuation lengths of Latt;α=β ¼ Latt

1∓κ,
where Latt is the normal x-ray attenuation length of the

crystal and κ ≡ ImfγðqÞ
Imfγð0Þ. The components originate from

standing waves called Bloch waves α [the first term of
Eq. (31)] and β (the second term) due to x-ray diffraction.
Since κ is close to unity, the Bloch wave α has much longer
attenuation length than Latt, which is called as Borrmann
effect [52,53]. The amplitudes of the Bloch waves α=β in
Eq. (31) has their maxima under the following condition,

ðReðη0 ∓ ηÞ − 2ΔϕaÞN ¼ 0: ð32Þ

The condition is equivalent to the resonant ALPs’ mass of

m2
a ¼ m2

γ ∓ Δm2
γ ; ð33Þ

where we use Eqs. (20), (21), (26), mγ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πreFcZ

V

q
is the

plasma frequency of the crystal, and Δmγ ≡mγ

ffiffiffiffiffiffiffiffiffiffiffiffi
RefγðqÞ
Refγð0Þ

q
is

its modification caused by x-ray scattering. From the
expression Eq. (31), these resonances have a range of
resonant ALPs’ mass (a full width at half maximum of
ðPγ↔aÞ2) which can be described as

jm2
a− ðm2

γ ∓Δm2
γÞj<

8<
:

4kγ
L ðL≪Latt;α=βÞffiffiffiffiffiffiffiffiffiffiffi

2
p

−1
p

kγ
Latt;α=β

ðL≫Latt;α=βÞ
: ð34Þ

The right-hand side of Eq. (34) for L ∼ Latt;α=β can be

approximated to 4kγ
L without a large loss of precision. When

the Bragg condition and the resonant condition [Eq. (33)]
are fulfilled, the conversion probability can be evaluated as

Pa↔γ ¼
���� SaNT0

����2 ≃ 1

4
ðζTSNÞ2

�
1 − expð−Imðη0 ∓ ηÞN

iImðη0 ∓ ηÞN
�

2

:

ð35Þ

It is convenient to represent the amplitudes η and ζ
by means of macroscopic parameters of the crystal. The
imaginary part of the forward x-ray scattering amplitude
causes x-ray absorption determined by the relation,

Imη0N ¼ μH
2 cos θB

; ð36Þ

where μ ¼ 1
Latt

is the absorption coefficient of the crystal.

On the other hand, the conversion amplitude ζð0Þjk is related
to the effective electric fields ET in the crystal. ζTSN and
ζ0TSN can be rewritten to be

ζð0ÞTSN ¼ 1

2
gaγγETHD; ð37Þ

D≡
8<
:

ka
qT

sinðθγTþθaSÞ
cos θaS

ðγ → aÞ
k2a
kγqT

sinðθaTþθγSÞ
cos θγS

ða → γÞ
; ð38Þ

where the effective field is defined as

ET ¼ qT
Fc

V

Z
d3rϕðrÞ expðiq · rÞ: ð39Þ

The factor, D, can be reduced to unity under the Bragg
condition (kγ ≃ ka and θγ=aT=S ≃ θB). Since the integral is
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roughly proportional to q−2T , ET is inversely proportional to
qT . The uncertainty due to the approximation kγ ≃ ka is
Oð0.1%Þ for kγ ¼ Oð10 keVÞ and ma ¼ Oð1 keVÞ. From
Eqs. (35), (36), (37), (38) and Imη ¼ κImη0,

Pa↔γ ¼
�
1

4
gaγγETLα=β cos θB

�
2

¼ 8.6 × 10−8

×

�
gaγγ

10−3 GeV−1
ET

1011 V=m

Lα=β cos θB
1 mm

�
2

; ð40Þ

Lα=β ≡ 2Latt;α=β

�
1 − exp

�
−

L
2Latt;α=β

��
; ð41Þ

where Lα=β are effective conversion lengths of the Bloch
waves. This expression is quite analogous to the result of
the Bragg-case conversion as shown in Eq. (2). However,
the penetration length LB ∼OðμmÞ is replaced by the
effective conversion length Lα=β ∼ Latt ∼Oð100 μmÞ.
Therefore, the probability of the Laue-case conversion is
larger than that of the Bragg-case conversion. In particular,
Bormann effect [52,53] can enhance further the conversion
probability from the Bloch wave α by 1

1−κ ∼Oð10Þ.
Here, we consider the crystal dependence of the con-

version probability. Since ET is approximately inversely
proportional to qT , lattice planes with lower indexes have
higher ET. The coefficient Fc for diamondlike crystals can
be described as follows,

Fc ¼

8>><
>>:
8 ðh;k;lare all odd=even;hþkþ l¼ 4mÞ
4

ffiffiffi
2

p ðh;k;lare all odd=even;hþkþ l¼ 4m�1Þ
0 ðotherwiseÞ

;

ð42Þ

where ðhklÞ is the indexes of reflecting lattice plane, and m
is an integer. The dependency of Fc favors lattice planes
with hþ kþ l ¼ 4m. Therefore, the (220) lattice plane is
the most suitable one with the highest effective field. The
species of crystals also strongly influence on the conversion
probability through ET and Latt. Table I shows parameters
of C (diamond), Si and Ge (220) lattice planes for x-rays
with a photon energy of 20 keV as an example. Diamond

crystals have the most ideal specifications among them,
with a long attenuation length, high κ, and high ET .
Although a simplified calculation without x-ray absorption
[43] favors higher-Z crystals with higher ET such as Ge and
W, our realistic calculation prefers low-Z crystals (C and
Si) because they have longer effective conversion lengths of
the Laue-case conversion.
From Eq. (31), the ma dependence of the conversion

probability is calculated numerically. The results under the
Bragg condition (θγT ¼ θB) are shown as the black line in
Fig. 3. In this calculation, we assume that injected x-rays are
simple plane waves, the x-ray photon energy is 20 keV, the
converter is a C(220) 10 mm-thick single crystal and the
coupling constant is gaγγ ¼ 10−3 GeV−1. The assumed value
of gaγγ is the maximum sensitivity of previous LSW experi-
ments around ma ¼ 100 eV. The result of simplified
model done in Ref. [43] is also shown by the grey line.
As shown in Eqs. (33), (34), the conversion probability
has separated peaks corresponding to the Bloch waves

αð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mγ − Δm2

γ

q
¼ 32 eVÞ and βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mγ þ Δm2

γ

q
¼ 44 eVÞ,

and their full widths at half maximum of ðPγ↔aÞ2 are
determined from Eq. (34) as 35 and 48 meV, respectively.
TheBorrmann effectmakes the peak probability of theBloch
wave α larger than that of β. The conversion probability has
an oscillation structure and sub peaks around the main peak
due to the phase factor in Eq. (31). The oscillating contri-
bution from the Bloch waves α=β interfere destructively at
the plasma frequency mγ ¼ 38 eV. Although the result of
simplified model also has a structure similar to our calcu-
lation, there are two major differences between them. While
our result has separated peaks, the simplified calculation

TABLE I. The summary of parameters of C (diamond), Si and
Ge(220) lattice planes for x-rays with the photon energy of
20 keV.

crystal qT [keV] θB½deg� Latt κ ET [V=m] mγ [eV]

C(220) 9.83 14.2 13 mm 0.981 6.8×1010 38
Si(220) 6.46 9.3 1.1 mm 0.969 4.4×1010 31
Ge(220) 6.20 8.9 43 μm 0.965 7.3×1010 44

FIG. 3. Conversion probabilities by a C(220) 10 mm-thick
single crystal under the Bragg condition as a function of ma (the
black line). Injected x-rays are simple plane waves, the photon
energy of x-rays is 20 keV, and we assume gaγγ ¼ 10−3 GeV−1.
The result of simplified model done in Ref. [43] is also shown by
the gray line.
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without x-ray diffraction has a single peak at mγ ¼ 38 eV,
which is the most insensitive mass in our result. Moreover,
the peak probabilities of our result are smaller than that of the
simplified calculation because x-rays are divided into two
waves and absorbed partially by the crystal. These effects
are particularly important for the conversion of ALPs with
ma ∼mγ .

2. Where the incident angle is away from the Bragg angle

In this subsection, we consider the case where the
incident angle is much larger than θB (θγT ≫ θB). This
means u≃ Δϕγ, Cα ≃ 0 and Cβ ≃ 1 in Eqs. (4), (23), (28),
(30). In this case, the conversion probability is determined
only by the contribution of the Bloch wave β, the second
term of Eq. (31). The conversion in this case is resonant
under the condition,

ðReðη0Þ − 2ΔϕaÞN ¼ 0

↔ ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ 2qT

�
kγ sin θ

γ
T −

qT
2

�s

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ 2qTkγ cos θBΔθ
q

: ð43Þ

Here, we use the relation of Eq. (26), and Δθ≡ θγT − θB is
the detuning angle. The resonance has a range ofma similar
to Eq. (34),

����m2
a −m2

γ − 2qT

�
kγ sin θ

γ
T −

qT
2

�����≲ 4kγ
L

: ð44Þ

The right-hand side of Eq. (44) is approximated according
to the discussion below Eq. (34), and the expression can be
reduced to the one in Ref. [43] when L is much shorter than
Latt. From Eq. (44), the acceptable angular divergence of
injected x-rays/ALPs is calculated to be

ΔθCV ¼ 2d
πL cos θB

; ð45Þ

where the angular divergence is defined as a full width at
half maximum of ðPγ→aÞ2. As shown in Eq. (43), the
resonant mass strongly depends on the deviation of the
incident angle from the Bragg angle, Δθ. The resonant
mass ma has its maxima ma ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qTðkγ − qT

2
Þp

when
injected x-rays are nearly parallel to the crystal surface
(θγT ≃ π

2
). Figure 4 shows the sensitive ma as a function of

Δθ in the case when the converter is a C(220) crystal, and
x-ray photon energy is 20 keV. Although our results
deviates from that of Ref. [43] under the Bragg condition
as shown in the previous subsection, the sensitive mass for
Δθ ≫ 0 is almost the same. The sensitive mass reaches 1
and 10 keV when Δθ is 2.62 and 275 mrad, respectively.

The resonant mass has its maximum value of ∼17.2 keV
when Δθ ¼ 1.32 rad (θγT ¼ π

2
).

Under the resonant conversion condition of Eq. (43), the
conversion probability Pa↔γ can be calculated in the
similar way as Eq. (40) except that the approximation of
kγ ≃ ka and θγ=aT=S ≃ θB cannot be generally justified,

Pa↔γ ¼
�
1

2
gaγγETLeffD cos θT

�
2

¼ 3.5 × 10−7 × ðD cos θTÞ2

×

�
gaγγ

10−3 GeV−1
ET

1011 V=m
Leff

1 mm

�
2

; ð46Þ

Leff ≡ 2Latt

�
1 − exp

�
−

LT

2Latt

��
; ð47Þ

where Leff is an effective conversion length of the crystal,
LT ¼ H

cos θT
is the path length, and θT ¼ θγ=aT is the angle of

injected beams. The prefactor is 22 times larger than
Eq. (40) because x-rays are not divided into the Bloch
waves α=β in this case. The sensitivity to the coupling
constant gaγγ is proportional to the factor, D cos θT , which
depends on the detuning angle Δθ. The Δθ dependence of
the factor,D cos θT , for the conversion and the reconversion
is shown by Fig. 5. These factors are normalized to their
maxima, cos θB (Δθ ¼ 0). The factor decreases monoton-
ically and vanishes at θγT ¼ π

2
. The factor of the reconver-

sion is higher than that of the conversion due to
cos θγT < cos θaT according to the discussion below
Eq. (3). Figure 6 shows the conversion amplitude numeri-
cally calculated from Eq. (31) as a function of ma. In this
calculation, we assume the same condition as Fig. 3, except
that the injection angle is detuned by Δθ ¼ 2.62 mrad,

FIG. 4. The most sensitive ma as a function of the detuning
angle Δθ. The converter is a C(220) crystal, and the photon
energy of x-rays is 20 keV. The upper limit of Δθ ¼ 1.32 rad
corresponds to θγT ¼ π

2
.
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which corresponds to the resonant mass of 1 keV. In
contrast to the case under the Bragg condition, the con-
version probability has a narrow peak with the mean value
of ma ¼ 1 keV and the width of 1.5 meV, which are
determined by Eqs. (43), (44).

III. EXPERIMENTAL SETUP AND SENSITIVITY

Based on the above calculation, we design a new LSW
experiment using atomic electric fields. Figure 7 shows an
experimental setup using the Laue-case conversion in
crystals. The converter and reconverter are two independent
crystal blades, or a channel-cut crystal with two blades

fabricated on a monolithic single crystal. Their reflecting
lattice planes are perpendicular to the surfaces of blades.
The lattice planes of the converter and reconverter is
required to be parallel to each other with the precision
of Eq. (45). The alignment procedure can be more easily
performed by using a channel-cut crystal whose parallelism
between lattice planes is exact. The alignment of crystals
can be guaranteed by measuring the intensity of reflected
x-rays as a function of Δθ (a rocking curve). Between two
blades, a shielding wall is installed to block unconverted
x-rays.
X-rays are injected to the converter with an incident

angle of θB þ Δθ. When ALPs’ mass satisfies Eq. (43), the
Laue-case conversion from x-rays to ALPs takes place.
These ALPs pass through the shielding wall without
absorption, and some of them are subsequently re-
converted to signal x-rays by the reconverter. If the
parallelism between reflecting lattice planes of these
crystals is guaranteed, the resonant condition of the
reconversion is automatically satisfied when incident
x-rays are resonantly converted into ALPs. Finally, signal
x-rays are measured by an x-ray detector. As shown in the
previous section, the detectable ALPs’massma depends on
Δθ. In contrast to other ALPs searches, the sensitive mass
can be tuned quite easily by rotating crystals slightly.
From the calculations shown above, the number of

detectable signal x-rays may be represented as follows,

Nobs ¼ NγTDAQ
ΔθCV
ΔθBL

ϵdP2
a↔γ; ð48Þ

where Nγ is an x-ray flux, TDAQ is a data acquisition time,
ΔθBL is the effective angular divergence of x-rays including
their energy bandwidth, and ϵd is the detection efficiency.
The sensitivity to gaγγ (90% C. L.) when backgrounds do
not exist is shown by the following formula,

FIG. 5. The Δθ dependence of the factor D cos θT. The factor
corresponds to the relative sensitivity to gaγγ . The solid and dotted
lines show the factor for the conversion and the re-conversion,
respectively. The factors are normalized to their maxima, cos θB
(Δθ ¼ 0).

FIG. 6. The conversion probability when the detuning angle is
Δθ ¼ 2.62 mrad. The horizontal axis shows the mass deviation
from the most sensitive mass ma ¼ 1 keV. Other conditions are
the same as Fig. 3.

FIG. 7. The schematics of an experimental setup for a LSW
experiment utilizing a resonant x-ray-ALP conversion by atomic
electric field. The detuning angle Δθ is tuned by rotating the
system. The axis of rotation is located at the x-ray injection point.

YAMAJI, YAMAZAKI, TAMASAKU, and NAMBA PHYSICAL REVIEW D 96, 115001 (2017)

115001-8



gaγγ > 2 × 10−4
�

Nγ

1013 Hz

TDAQ

103s
ΔθCV
ΔθBL

ϵd

�
−1
4

×
�

ET

1011 V=m
Leff

1 mm
D cos θT

�
−1
; ð49Þ

for ma ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ 2qTkγ cos θBΔθ
q

with the bandwidth

determined by ΔθBL.
The experimental setup requires an x-ray source with

high photon flux. Third-generation large-scale synchrotron
radiation facilities are the most suitable x-ray sources for
the experiment since these facilities are optimized to
generate intense x-ray beams. There are four x-ray facilities
of this kind in the world today: PETRAIII, SPring-8, ESRF,
and APS. The maximum value of their x-ray flux is
Oð1013Þ photon=s at the photon energy of 20 keV
(SPring-8 BL19LXU [54]).
When a current third generation facility, C(220) crystals

with the thickness of 10 mm and x-rays with the photon
energy of 20 keV (θB ¼ 14.2 deg) are used, Nγ ∼
1 × 1013 Hz, ET ¼ 6.8 × 1010V=m and Leff ¼ 8.3 mm.
The effective angular divergence ΔθBL depends on
x-ray optics, and has the typical value of ∼30 μrad
(ΔθCVΔθBL

¼ 8.3 nrad
30 μrad ¼ 2.8 × 10−4). The experimental setup has

the sensitivity of gaγγ > 3 × 10−4 GeV−1 in the case when
ϵd ¼ 0.8, TDAQ ¼ 1500 s, Δθ≃ 0 and D cos θT ≃ cos θB.
Although the factor D cos θT is a monotonically decreasing
function of Δθ and ma, the sensitivity loss due to the factor
is less than ∼20% for ALPs with the mass up to 10 keV as
shown in Fig. 5. The sensitivity is much higher than prior
experiments in the keV region. A wide range of ma can be
searched by scanning Δθ with a step of ΔθBL ∼ 30 μrad.

IV. CONCLUSION

ALPs are particles predicted by theories beyond the
standard model whose existence is theoretically and astro-
nomically motivated. In particular, ALPs in the keV range
can provide possible explanation for anomalous solar
activities and unidentified x-ray emission line from galaxy
clusters.
In this paper, we performed the first theoretical calcu-

lation of the Laue-case conversion between x-rays and
ALPs in crystals. The effects of x-ray diffraction and
nonzero ALPs’ mass are taken into account at the same
time. This paper shows that the effective conversion length
of the Laue-case conversion isOð102Þ times longer than the
penetration length LB of the Bragg-case conversion as
pointed out by Buchmüller and Hoogeveen. The conversion
probability under the Bragg condition has two maxima
corresponding to the Bloch waves, and the sensitivity for
ALPs with the mass ma less than the plasma frequency of
crystals can be enhanced further due to the Borrmann
effect.
We also discussed a LSW experiment using the con-

version scheme at a current x-ray facility. Its experimental
setup is composed of diamond blades (a converter and a
reconverter) and a shielding wall between them. By
scanning the detuning angle, ALPs with the broad sensitive
ma up to Oð10 keVÞ can be searched.
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