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Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for
lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann
method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than
previously accessible. Our simulations are performed on a single set of gauge configurations with three
flavors of degenerate mass quarks corresponding to mπ ≈ 470 MeV. We are able to determine the
electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2, with results for the ratio
of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with
experimental results.
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I. INTRODUCTION

One of the great challenges of hadron physics is to build
consistent and informative pictures of the internal structures
of strongly interacting particles. An important aspect of
this endeavor is the calculation of electromagnetic form
factors for various baryons and mesons. These encode a
description of the distribution of electromagnetic currents
in hadrons and are key to describing the extended structure
of these composite states.
For most of the second half of the 20th century,

measurements of the electromagnetic form factors of the
nucleon were obtained using the Rosenbluth separation
technique [1] (also e.g. Ref. [2]). Broadly, these experi-
ments indicated that the electric and magnetic form factors
scaled proportionally for Q2 up to around 6 GeV2, with
μpG

p
E=G

p
M ≈ 1 (where μp is the magnetic moment of the

proton). This was later found to be in disagreement with
recoil polarization experiments at Jefferson Lab, which
showed μpG

p
E=G

p
M decreasing approximately linearly for

Q2 ≳ 0.5 GeV2 (see e.g. Refs. [3–7]). This discrepancy is

now largely understood through studies of two-photon
exchange effects in the Rosenbluth method [8,9].
Nevertheless, it is still unknown whether the linear Q2

trend continues and crosses zero or if the fall-off with Q2

slows down. This has important consequences for our
understanding of nucleon structure (see e.g. Refs. [10–13]).
Experimental results are so far unable to obtain precise
results at the relevant momentum scales, and so this
remains an open question. Resolving the scaling of the
form factors in this domain is one of the key physics goals
of the upgraded continuous electron beam accelerator
facility at Jefferson Lab.
The large-Q2 behavior of the pion electromagnetic form

factor Fπ has proven challenging to probe experimentally—
see Refs. [14–16] for recent innovative advances. Besides
providing information about the electromagnetic structure
of the pion, the Q2-behavior of Fπ provides insight into
the transition from the soft to the hard regime in QCD
(see Ref. [17] for a recent example). Owing to the present
limitations, experimental data are unable to reliably dis-
criminate different models describing the transition to the
asymptotic domain [18].*alexander.chambers@adelaide.edu.au
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Lattice QCD calculations of hadronic form factors have
typically focused on the study of processes at low-
momentum transfer (see e.g. Refs. [19–24]), with only
limited studies at large Q2 ≳ 3 GeV2 [25,26]. There is a
variety of reasons that have contributed to the difficulty
in accessing high-momentum transfer in lattice QCD.
Given that the form factors fall with Q2, it is immediately
clear that one is attempting to extract a much weaker signal
from data sets obtained with finite statistics. Further, in
terms of the numerical computation, the signal-to-noise
ratio of hadron correlators rapidly deteriorates as the
momentum of the state is increased. This had commonly
led to the study of three-point correlators which are
projected to zero momentum at the hadron sink. In this
case, the possible momentum transfers are limited by the
maximum momentum available at the source. With limited
statistical signal, it is therefore difficult to assess the degree
of excited-state contamination, which can lead to signifi-
cant systematic uncertainty [23,25,27–29].
In the present work, we demonstrate the ability to access

high-momentum transfer in hadron form factors in lattice
QCDusing an extension of the Feynman-Hellmann theorem
to nonforward matrix elements. This builds upon recent
applications of the Feynman-Hellmann theorem for had-
ronic matrix elements in lattice QCD [30–33]—see also
Refs. [34–41] for similar related techniques. Through the
Feynman-Hellmann theorem, one relates matrix elements to
energy shifts. In the case of lattice QCD, this allows one to
access matrix elements from two-point correlators, rather
than a more complicated analysis of three-point functions.
This greatly simplifies the process of neutralizing excited-
state contamination. As described below, the method most
naturally works in the Breit frame [Eðp0Þ ¼ EðpÞ], and
hence one maximizes the momentum transfer for any given
accessible state momentum jpj. Finally, the high degree of
correlations in the gauge ensembles makes it possible to
extract a weak signal from a relatively noisy state.
Although this method is introduced in the calculation of

electromagnetic form factors, the method is more broadly
applicable to other nonforward hadronic matrix elements.
The method could immediately be employed to determine
axial form factors of hadrons or nuclei at high momentum
transfer, for example. These quantities are particularly
relevant for high-energy neutrino-nucleus scattering experi-
ments. Extensions of the method recently published in
Ref. [42] use second derivatives of the energy to calculate
nucleon structure functions.

II. FEYNMAN-HELLMANN METHODS

Here we present briefly the extension of the Feynman-
Hellmann method to nonforward matrix elements. For
more detailed discussions of the Feynman-Hellmann
theorem in lattice QCD, see e.g. Refs. [31,41]. To extend
the Feynman-Hellmann analysis to nonforward matrix
elements, we first consider a simple quantum mechanical

situation. The familiar form of the Feynman-Hellmann
theorem reads

∂Eψ

∂λ ¼
D
ψ j ∂H∂λ jψ

E
; ð1Þ

where E is the energy eigenvalue of the state ψ . This
readily follows from first-order perturbation theory. In
the presence of spatially varying external fields, the
conventional theorem requires a slight modification. We
consider some first-order perturbation of the Hamiltonian,
H ¼ H0 þ λV, which couples to a definite (real) spatial
Fourier component,

∂H
∂λ ≡ ~VþðqÞ ¼ ~VðqÞ þ ~Vð−qÞ; ð2Þ

defined in terms of the complex Fourier modes ~VðqÞ ¼R
d3yeiq:yVðyÞ, for some Hermitian potential VðyÞ. Note

that periodicity of these fields on the lattice is ensured
by the choice of lattice Fourier modes (see Ref. [43]
for a discussion of more general implementations of
momentum-dependent background fields). The diagonal
matrix elements of this operator vanish in the basis of
definite momentum eigenstates

hpj ~VþðqÞjpi ¼ 0; ð3Þ

and standard perturbation theory would suggest that there
is no shift of the energy level at first order in λ. The
exception to this rule is in the case of a degeneracy in the
unperturbed eigenstates E0ðpÞ ¼ E0ðp� qÞ. The familiar
solution in this case is to invoke degenerate perturbation
theory where one diagonalizes the space of the degeneracy
with respect to the applied external potential. The degen-
eracy condition dictates that one is considering Breit-
frame transitions. For demonstrative purposes, we choose
the simple case in which p ¼ �q=2, and hence at lowest
order in the field strength the system is diagonalized by
the states jq=2i� ∝ jq=2i � j − q=2i. The corresponding
eigenvalues are given by E0ðq=2Þ � λΔEþOðλ2Þ, where
the energy shift corresponds to the matrix element of
interest,

ΔE ¼ þhq=2j ~VþðqÞjq=2iþ ¼ hq=2j ~VðqÞj − q=2i: ð4Þ

Owing to the discretized spectrum (and momentum) on
the lattice, this quantum mechanical argument translates
in a straightforward fashion to hadronic matrix elements.
In the case of continuous momenta, the presence of the
periodic potential induces a gap in the dispersion curve, as
in conventional band theory.
To implement within a lattice QCD calculation, the

Lagrangian is modified to incorporate a spatially varying
external potential,
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LðyÞ → LðyÞ þ λðeþiq·y þ e−iq·yÞOðyÞ; ð5Þ

where the phase of the exponentials is defined with
respect to the location of the hadron source at y ¼ 0.
The symbol O denotes a quark-bilinear operator, and λ
represents the strength of the external field—which is
kept small to ensure that the energy response is in the
linear regime. Alternatively, one may isolate the linear λ
dependence of the correlator directly by constructing
compound propagators [40,41].
To compute connected quark contributions, quark

propagators are inverted according the modified action
corresponding to Eq. (5)—sea-quark contributions would
require new gauge ensembles [33] or an effective reweight-
ing technique. Fourier-projected, hadron correlation func-
tions are defined by

Cλ
pðtÞ ¼

X
x

e−ip:xλhΩjχðt; xÞχ†ð0; 0ÞjΩiλ; ð6Þ

where subscript jΩiλ is the vacuum of the modified theory.
The spectrum can be directly isolated by constructing even
and odd linear combinations,

Cλ�
p;p0 ¼ Cλ

p � Cλ
p0 ; ð7Þ

of Breit-frame momentum pairs, p and p0ð¼ pþ qÞ.
To isolate an energy shift, it is more straightforward to
implement the “þ” combination Cλþ

p;p0 rather than the “−”
sum, which vanishes in the free-field limit.
Only the Breit-frame pairs will receive an energy shift

which is linear in the applied field strength λ. This energy
shift corresponds directly to the hadronic matrix element of
interest,

∂EHðp0Þ
∂λ

����
λ¼0

¼ hHðp0ÞjOð0ÞjHðpÞi
hHðp0ÞjHðp0Þi ; ð8Þ

or similarly for p ↔ p0. We have confirmed numerically
that non–Breit frame states do not receive a linear energy
response, as expected.

III. SIMULATION DETAILS

In the present work, we use an ensemble of 1700 gauge-
field configurations with 2þ 1 flavors of nonperturbatively
OðaÞ-improved Wilson fermions and a volume L3 × T ¼
323 × 64. The lattice spacing a ¼ 0.074ð2Þ fm is set
using a number of singlet quantities [44–47]. We use
hopping parameters ðκl; κsÞ ¼ ð0.120900; 0.120900Þ,
which correspond to a pion mass of ∼470 MeV. The
clover action used comprises the tree-level Symanzik-
improved gluon action together with a stout smeared
fermion action, modified for the implementation of the
Feynman-Hellmann method [31].

To study electromagnetic form factors, quark propaga-
tors are calculated by inverting a modified Dirac matrix,
determined by the Lagrangian

LðyÞ → LðyÞ þ ðeþiq·y þ e−iq·yÞq̄ðyÞλ · γqðyÞ: ð9Þ
Here, either λ2 or λ4 takes nonzero values of 1 × 10−4 or
−1 × 10−5, and the values of q are listed in Table I. Note
that we only use the simplest Breit-frame kinematics,
p0 ¼ −p. This choice allows us to minimize p2 for each
value of q2 and hence minimize the noise in the correlator.
As described below, this also projects the nucleon energy
shifts directly onto GE or GM. A single source is used on
each of the 1700 gauge configurations for each value of q.
We note that once an unmodified Dirac matrix has been
inverted (λ ¼ 0), the solution provides an excellent guess
for the λ ≠ 0-quark propagators, for small values of the
coupling. As such, each subsequent inversion of a modified
Dirac matrix only costs an additional 20%–30% over the
initial λ ¼ 0 propagator.

IV. RESULTS

A. Electromagnetic form factors of the nucleon

The (Euclidean) decomposition of the vector current for
the individual quark flavor contributions of the nucleon is
written in terms of the familiar Dirac and Pauli (Fq

1 and F
q
2)

form factors,

hNðp0; s0Þjq̄ð0Þγμqð0ÞjNðp; sÞi

¼ ūðp0; s0Þ
�
γμF

q
1ðQ2Þ þ σμνqν

2MN
Fq
2ðQ2Þ

�
uðp; sÞ; ð10Þ

where we denote the invariant 4-momentum transfer
squared as Q2 ¼ −q2 ¼ −ðp0 − pÞ2. The Sachs electro-
magnetic form factors are defined by

Gq
E ¼ Fq

1 −
Q2

ð2MÞ2 F
q
2 ð11Þ

Gq
M ¼ Fq

1 þ Fq
2: ð12Þ

For the incident-normal Breit frame (p0 ¼ −p), the
temporal and spatial components of the current give rise

TABLE I. Momentum insertions and the corresponding Breit-
frame momenta used in these calculations, where p0 ¼ −p.
Momenta are given in lattice Fourier units of 2π=L.

q p p2 Q2

(0,0,0) (0,0,0) 0 0
(2,0,0) (1,0,0) 1 4
(2,2,0) (1,1,0) 2 8
(2,2,2) (1,1,1) 3 12
(4,0,0) (2,0,0) 4 16
(4,2,0) (2,1,0) 5 20
(4,2,2) (2,1,1) 6 24
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to energy shifts which directly project out the electric and
magnetic form factors respectively,

∂EN

∂λ4
����
λ¼0

¼p0¼−pMN

EN
Gq

E; ð13Þ

∂EN

∂λi
����
λ¼0

¼p0¼−p ½ê × q�i
2EN

Gq
M; ð14Þ

where ê is the unit-normalized spin polarization vector of
the nucleon state determined by the Dirac projector.

ΓðeÞ≡ 1

2
ðI − iê · γγ5Þ: ð15Þ

In our calculations, ê≡ ð0; 0; 1Þ.
Utilizing ratios of correlators with and without the

applied external field, we can define “effective form
factors” by appropriate scaling of the effective energy shift
ΔENeff .,

Gq
EðeffÞ ¼

EN

MN

ΔEN ðeffÞ
λ

; ð16Þ

Gq
MðeffÞ ¼

2EN

½ê × q�i
ΔEN ðeffÞ

λi
; ð17Þ

where the effective energy is defined in the usual way in
terms of lattice correlation functions G,

ENeff

�
tþ a

2

�
¼ 1

a
ln

���� GðtÞ
Gðtþ aÞ

����: ð18Þ

The effective form factors should plateau to the relevant
form factors provided λ is small enough that the energy
shift is predominantly linear. Figure 1 shows results for
effective electromagnetic form factors for a subset of Q2

values. We note that for the λ values chosen, the signals are
statistically identical, indicating we are indeed in the linear
regime. We identify that quite clean plateaux are realized up
to a quite large momentum transfer. As a check on the
selected fit window, we ensure that the free-field correlators
are sufficiently saturating to the ground-state energy
dispersion. Figure 2 shows the raw energy shifts as a
function of λ for three different values of Q2 and further
emphasizes that we are most definitely in the linear regime.
Figure 3 shows results for the proton electric and

magnetic form factors—neglecting disconnected contribu-
tions, which are anticipated to be very small at large Q2

[48]. In the low-Q2 region, we compare with results
computed on the same ensembles using a variationally
improved three-point function approach, as described in
Ref. [29]. The experimental parametrization of Ref. [49] is
also included and demonstrates the effect of the unphysical
quark mass in the dropoff of the form factors. Very good
agreement is observed between the two different lattice

FIG. 1. Effective electric and magnetic form factors of
the u quark in the nucleon for different values of Q2. Results
for Q2 ¼ 4 are shown for both values of λ (10−4 and −10−5).

FIG. 2. Nucleon energy shift as a function of λ when the
u-quark Lagrangian is modified to include a coupling to the
temporal component of the vector current, for the calculation
of GE.
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QCD calculations in the region of overlap. The statistical
signal for the new Feynman-Hellmann approach is seen to
extend to much larger Q2 than has been accessible in the
past. Phenomenologically, the Q2 range we are now able to
access would allow for tighter constraints to be placed on
the distribution of charge and magnetization in the nucleon
at small impact parameter [50].
Figure 4 displays the extraction of the ratio GE=GM for

the proton as a function of Q2 and a comparison to
experiment [5–7]. Unlike early analyses of form factors,
which suggested a constant GE=GM, our results show a
general trend to fall off at larger Q2 (at this quark mass), as
seen in modern double-polarization measurements [3–7].
This is somewhat surprising given the unphysical simulated
pion mass of 470 MeV and suggests that the quark mass
dependence of this ratio warrants further study.

B. Electromagnetic form factor of the pion

Following an analysis similar to that for the nucleon, we
show the determination of the pion form factor and

comparison to experiment [16] in Fig. 5. The realized
statistical signal gives confidence that future lattice QCD
simulations will be able to provide important insight into
this transition between the perturbative and nonperturbative
regimes.

V. CONCLUSION

In this work, we have extended the Feynman-Hellmann
technique to access nonforward matrix elements. We dem-
onstrate that this provides for a dramatic improvement in the
ability to extract nucleon and pion form factors at much

FIG. 3. GE and GM for the proton from the Feynman-Hellmann
method and from a variational method described in Ref. [29]
employed on the same ensemble. The experimental parametriza-
tion is from Ref. [49].

FIG. 4. Ratio GE=GM for the proton from the application of the
Feynman-Hellmann method, from a variational analysis of three-
point functions [29], and from experiment [5–7]. Note this is not
scaled by the magnetic moment of the proton μp, as this would
require phenomenological fits to the low-Q2 data, which is not
the focus of this work.

FIG. 5. Scaled pion form factor Q2Fπ from the Feynman-
Hellmann technique and from experiment [16]. The solid lines
are the vector meson dominance at the relevant pion masses, and
the dotted lines are the asymptotic values predicted by perturbative
QCD (see [17] for a discussion of this value and its limitations).
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higher momentum transfers than previously possible. Before
making rigorous comparisons with phenomenology, standard
lattice systematics must be further quantified, including quark
mass dependence, discretization artifacts, and continuum
extrapolation. There is also further potential for increased
precision by using improved operators that have better access
to high-momentum states, as proposed in Ref. [51].
The high-momentum form factors extracted in this work

demonstrate a significantly expanded scope for lattice QCD
to address this phenomenologically interesting domain of
hadron structure and opens up a vista of possibilities for
determining other hadronic and nuclear quantities at high
momentum transfer.
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