
Statistics of baryon correlation functions in lattice QCD

Michael L. Wagman,1,2 and Martin J. Savage1

(NPLQCD Collaboration)

1Institute for Nuclear Theory, Box 351550, Seattle, Washington 98195-1550, USA
2Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195, USA

(Received 17 January 2017; published 22 December 2017)

A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD
is performed, with a particular focus on characterizing the structure of the noise associated with quantum
fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to
result from a sign problem. The log-magnitude and complex phase are found to be approximately described
by normal and wrapped normal distributions respectively. Properties of circular statistics are used to
understand the emergence of a large time noise region where standard energy measurements are unreliable.
Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and
“Lévy flights,” are found to play a central role in their time evolution. A new method of analyzing
correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant,
rather than exponentially degrading, with increasing source-sink separation time. This new method
includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the
signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new
method allows accurate results for the nucleon mass to be extracted from the large-time noise region
inaccessible to standard methods. The observations presented here are expected to apply to quantum
Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical
improvements in analysis of noisier systems.
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I. INTRODUCTION

Modern nuclear physics research relies upon large-scale
high-performance computing (HPC) to predict the proper-
ties of a diverse array of many-body systems, ranging from
the properties of hadrons computed from the dynamics
of quarks and gluons to the form of gravitational waves
emitted from inspiraling binary neutron star systems. In
many cases, the entangled quantum nature of these systems
and the nonlinear dynamics that define them preclude
analytic calculation of their properties. In these cases,
precise numerical evaluations of high-dimensional integra-
tions that systematically approach the quantum path inte-
gral are required. Typically, it is average quantities that are
determined by Monte Carlo (MC) path integral evaluations.
These average values are to be used subsequently in direct
comparison with experiment, as input to analytic frame-
works with outputs that can then be compared with
experiment, or as predictions for critical components of
systems that are inaccessible to experiment such as the
equation of state of dense matter in explosive astrophysical
environments. Enormous amounts of HPC resources are
used in such MC calculations to determine average values
of quantities and their uncertainties. The central limit
theorem and, in particular, the 1=

ffiffiffiffi
N

p
scaling anticipated

for the uncertainties associated with average values are

used to make estimates of projected resource requirements.
When a system has a “sign problem,” for which the average
value of a quantity of interest results from cancellations of
(relatively) large contributions, such as those found when
averaging the phase eiθ over θ, the HPC resources required
for accurate numerical estimates of the average(s) are
prohibitively large. This is the case for numerical evalu-
ations of the path integrals describing strongly interacting
systems with even a modest nonzero net baryon number.
While the quantum fluctuations (noise) of many-body

systems contain a wealth of information beyond average
values, only a relatively small amount of attention has been
paid to refining calculations based upon the structure of the
noise. This statement, of course, does not do justice to the
fact that all observables (S-matrix elements) in quantum
field theory calculations can be determined from vacuum
expectation values of products of quantum fields. However,
in numerical calculations, it is generally the case that noise
is treated as a nuisance, something to reduce as much as
needed, as opposed to a feature that may reveal aspects of
systems that are obscured through distribution among many
expectation values. In the area of lattice quantum chromo-
dynamics (LQCD), which is the numerical technique used
to evaluate the quantum path integral associated with
quantum chromodynamics (QCD) that defines the dynam-
ics of quarks and gluons, limited progress has been made
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toward understanding the structure of the noise in corre-
lation functions and the physics that it contains.
Strongly interacting quantum systems can be described

through path integral representations of correlation func-
tions. In principle, MC evaluation of lattice regularized path
integrals can solve QCD as well as many strongly interact-
ing atomic and condensed matter theories. In practice,
conceptual obstacles remain and large nuclei and nuclear
matter are presently inaccessible to LQCD. In the grand
canonical formulation, LQCD calculations with nonzero
chemical potential face a sign problem where MC sampling
weights are complex and cannot be interpreted as proba-
bilities. In the canonical formulation, calculations with
nonzero baryon number face a signal-to-noise (StN) prob-
lem where statistical uncertainties in MC results grow
exponentially at large times. Like the sign problem, the StN
problem arises when the sign of a correlation function can
fluctuate, at which point cancellations allow for a mean
correlation function of much smaller magnitude than a
typical MC contribution.
The nucleon provides a relatively simple and well-

studied example of a complex correlation function with
a StN problem. The zero-momentum Euclidean nucleon
correlation function GðtÞ is guaranteed to be real by
existence of a Hermitian, bounded transfer matrix and
the spectral representation

GðtÞ ¼ hCiðtÞi ¼
X
x

hNðx; tÞN̄ð0Þi

¼
X∞
n¼0

~ZnZ
†
ne−Ent ∼ e−MNt; ð1Þ

where Ci denotes an individual nucleon correlation func-
tion calculated from quark propagators in the presence of
the ith member of a statistical ensemble Ui of i ¼ 1;…; N
gauge field configurations; h·i denotes an average over
gauge field ensembles in hCiðtÞi and an average over quark
and gluon fields in the middle term; N̄ and N are nucleon
creation and annihilation interpolating operators; ~Z†

n and Zn
represent the overlap of these interpolating operators onto
the nth QCD eigenstates with quantum numbers of the
nucleon; En is the energy of the corresponding eigenstate; t
is Euclidean time; MN is the nucleon mass; and ∼ denotes
proportionality in the limit t → ∞. A phase convention for
creation and annihilation operators is assumed so that Cið0Þ
is real for all correlation functions in a statistical ensemble.
At small times CiðtÞ is approximately real, but at large
times it must be treated as a complex quantity. The
equilibrium probability distribution for CiðtÞ can be for-
mally defined as

PðCiðtÞÞ ¼ Z−1
Z

DUe−SðUÞδðCðU; tÞ − CiðtÞÞ

with Z ¼
Z

DUe−SðUÞ; ð2Þ

where U is a gauge field, CðU; tÞ is the nucleon correlation
function in the presence of a background gauge field U,
DU is the Haar measure for the gauge group, and SðUÞ is
the gauge action arising after all dynamical matter fields
have been integrated out. For convenient comparison with
LQCD results, a lattice regulator with a lattice spacing
equal to unity will be assumed throughout. Unless speci-
fied, results will not depend on details of the ultraviolet
regularization of PðCiðtÞÞ.
MC integration of the path integral representation of a

partition function, as performed in LQCD calculations,
provides a statistical ensemble of background quantum
fields. Calculation of CiðtÞ in an ensemble of QCD-
vacuum-distributed gauge fields Ui provides a statistical
ensemble of correlation functions distributed according to
PðCiðtÞÞ. Understanding the statistical properties of this
ensemble is essential for efficient MC calculations, and
significant progress has been achieved in this direction
since the early days of lattice field theory. Following Parisi
[1], Lepage [2] argued that CiðtÞ has a StN problem where
the noise, or square root of the variance of CiðtÞ, becomes
exponentially larger than the signal, or average of CiðtÞ, at
large times. It is helpful to review the pertinent details of
Parisi-Lepage scaling of the StN ratio.
Higher moments of CiðtÞ are themselves field theory

correlation functions with well-defined spectral represen-
tations.1 Their large-time behavior is a single decaying
exponential whose scale is set by the lowest energy state
with appropriate quantum numbers. Assuming that matter
fields have been integrated out exactly rather than stochas-
tically, CiðtÞ†CiðtÞ will contain three valence quarks and
three valence antiquarks whose net quark numbers are
separately conserved. This does not imply that jCiðtÞj2 will
only contain nucleon-antinucleon states, as nothing pre-
vents these distinct valence quarks and antiquarks from
forming lower energy configurations such as three pions.
Quadratic moments of the correlation function, therefore,
have the asymptotic behavior

hCiðtÞ2i ∼ e−2MNt; hjCiðtÞj2i ∼ e−3mπt: ð3Þ

At large times, the nucleon StN ratio is determined
by the slowest-decaying moments at large times, taking
the form

hCiðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjCiðtÞj2i

p ∼ e−ðMN−3
2
mπÞt; ð4Þ

1The nth moment hCiðtÞni represents the n-nucleon nuclear
correlation function in the absence of Pauli exchange between
quarks in different nucleons. This is formally a correlation
function in a partially quenched theory with nNf valence quarks
and Nf sea quarks. In general, such a theory is guaranteed to have
a bounded, but not necessarily Hermitian, transfer matrix [3].
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and is therefore exponentially small.2 The quantitative
behavior of the variance of baryon correlation function
in LQCD calculations was investigated in high-statistics
studies by the NPLQCD Collaboration [9–11] and more
recently by Detmold and Endres [12,13], and was found to
be roughly consistent with Parisi-Lepage scaling. One of us
[14] extended Parisi-Lepage scaling to higher moments of
CiðtÞ and showed that all odd moments of CiðtÞ are
exponentially suppressed compared to even moments at
large times; see Refs. [11,15] for further discussion.
Nucleon correlation function distributions are increasingly
broad and symmetric with exponentially small StN ratios at
large times, as seen, for example, in histograms of the real
parts of LQCD correlation functions in Ref. [11].
Beyond moments, the general form of correlation func-

tion distributions has also been investigated. Endres et al.
[16] found that correlation functions in the nonrelativistic
quantum field theory describing unitary fermions possess
approximately log-normal distributions. They presented
general arguments, that are discussed below, suggesting
that this behavior might be a generic feature of quantum
field theories. Knowledge of the approximate form of the
correlation function distribution was exploited to construct
an improved estimator, the cumulant expansion, that was
productively applied to subsequent studies of unitary
fermions [17–20]. Correlation function distributions have
been studied analytically in the Nambu–Jona-Lasinio
model [15,21], where it was found that real correlation
functions were approximately log-normal but complex
correlation functions in a physically equivalent formulation
of the theory were broad and symmetric at large times with
qualitative similarities to the QCD nucleon distribution.
DeGrand [22] observed that meson, baryon, and gauge-
field correlation functions in SUðNcÞ gauge theories with
several choices of Nc are also approximately log-normal at
small times where imaginary parts of correlation functions
can be neglected. Log-normal distributions have also been
observed and applications of the cumulant expansion have
been explored in theories relevant to condensed matter
systems [23,24]. These various observations provide strong
empirical evidence that the distributions of real correlation
functions in generic quantum field theories are approx-
imately log-normal.
A generalization of the log-normal distribution for

complex random variables that approximately describes
the QCD nucleon correlation function at large times is
presented in this work. To study the logarithm of a complex
correlation function, it is useful to introduce the magnitude-
phase decomposition

CiðtÞ ¼ jCiðtÞjeiθiðtÞ ¼ eRiðtÞþiθiðtÞ: ð5Þ

At small times where the imaginary part of Ci is negligible,
previous observations of log-normal correlation functions
[22] demonstrate that Ri is approximately normally distrib-
uted. It is shown below thatRi is approximately normal at all
times, and that θi is approximately normal at small times.
Statistical analysis of θi is complicated by the fact that it is
definedmodulo 2π. In particular, the samplemean of a phase
defined on −π < θi ≤ π does not necessarily provide a
faithful description of the intuitive average phase (consider a
symmetric distribution peaked around �π with a sample
mean close to zero). Suitable statistical tools for analyzing θi
are found in the theory of circular statistics and it will be
seen below that θi is described by an approximatelywrapped
normal distribution.3 This work is based on a high-statistics
analysis of 500,000 nucleon correlation functions generated
on a single ensemble of gauge-field configurations by the
NPLQCD Collaboration [28] with LQCD. This ensemble
has a pion mass of mπ ∼ 450 MeV, physical strange quark
mass, lattice spacing ∼0.12 fm, and spacetime volume
323 × 96. The Lüscher-Weisz gauge action [29] and
Nf ¼ 2þ 1 clover-improved Wilson quark actions [30]
were used to generate these ensembles, details of which
can be found in Ref. [28]. Exploratory data analysis of this
high-statistics ensemble plays a central role below.
Section II discusses standard statistical analysis methods

in LQCD that introduce concepts used below. In Sec. III,
the magnitude-phase decomposition of the nucleon corre-
lation function and connections to the StN problem are
discussed. Section III A describes the distributions of the
log-magnitude and its time derivative in more detail, while
Sec. III B describes the distribution of the complex phase
and its time derivative and explains how their features lead
to systematic bias in standard estimators during a large-time
region that is dominated by noise. Section IV draws on
these observations to propose an estimator for the nucleon
mass in which accurate results can be extracted from the
large-time noise region with a precision that is constant in
source-sink separation time t but exponentially degrading
in an independent time parameterΔt. Section V conjectures
about applications to the spectra of generic complex
correlation functions and concludes.

II. RELEVANT ASPECTS OF STANDARD
ANALYSIS METHODS OF

CORRELATION FUNCTIONS

Typically, in calculations of meson and baryon masses
and their interactions, correlation functions are generated
from combinations of quark- and gluon-level sources and
sinks with the appropriate hadron-level quantum numbers.

2QCD inequalities [4–8] have been used to prove that
MN ≥ 3

2
mπ . Assuming that interaction energy shifts in the

three-pion states contributing to the variance correlation function
are negligible, the nucleon StN ratio is therefore exponentially
small for all quark masses.

3See Refs. [25–27] for textbook introductions to circular
statistics.
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Linear combinations of these correlation functions are
formed, either using variational-method type techniques
[31], thematrix-Prony technique [9], or other less automated
methods, in order to optimize overlap onto the lowest lying
states in the spectrum and establish extended plateaus in
relevant effective mass plots (EMPs). In the limit of an
infinite number of independent measurements, the expect-
ation value of the correlation function is a real number at all
times, and the imaginary part can be discarded as it is known
to average to zero. The large-time behavior of such corre-
lation functions becomes a single exponential (for an infinite
time direction) with an argument determined by the ground-
state energy associated with the particular quantum num-
bers, or more generally the energy of the lowest-lying state
with non-negligible overlap.
The structure of the source and sink play a crucial role

in determining the utility of sets of correlation functions.
For many observables of interest, it is desirable to optimize
the overlap onto the ground state of the system, and to
minimize the overlap onto the correlation function dictating
the variance of the ground state. In the case of the single
nucleon, the sources and sinks, O, are tuned in an effort to
have maximal overlap onto the ground-state nucleon, while
minimizing overlap of OO† onto the three-pion ground
state [12]. NPLQCD uses momentum projected hadronic
blocks [32] generated from quark propagators originating
from localized smeared sources to suppress the overlap into
the three-pion ground state by a factor of 1=

ffiffiffiffi
V

p
, where V is

the lattice volume, e.g. Ref. [9]. For such constructions, the
variance of the average scales as ∼e−3mπ t=ðVNÞ at large
times, where N is the number of statistically independent
correlation functions, while the nucleon correlation func-
tion scales as ∼e−MNt. For this setup, the StN ratio scales as
∼

ffiffiffiffiffiffiffi
VN

p
e−ðMN−3mπ=2Þt, from which it is clear that exponen-

tially large numbers of correlation functions or volumes are
required to overcome the StN problem at large times. The
situation is quite different at small and intermediate times in
which the variance correlation function is dominated, not
by the three-pion ground state, but by the “connected”
nucleon-antinucleon excited state, which provides a vari-
ance contribution that scales as ∼e−2MNt=N.
This time interval where the nucleon correlation func-

tion is in its ground state and the variance correlation
function is in a nucleon-antinucleon excited state has been
called the “golden window” [9] (GW). The variance in the
GW is generated, in part, by the distribution of overlaps
of the source and sink onto the ground state, that differs at
each lattice site due to variations in the gluon fields. In the
work of NPLQCD, correlation functions arising from
Gaussian-smeared quark-propagator sources and pointlike
or Gaussian-smeared sinks have been used to form
single-baryon hadronic blocks. Linear combinations of
these blocks are combined with coefficients (determined
using the matrix-Prony technique of Ref. [9] or simply by
minimizing the χ2=dof in fitting a constant to an extended

plateau region) that extend the single-baryon plateau
region to earlier times, eliminating the contribution from
the first excited state of the baryon and providing access
to smaller time slices of the correlation functions where
StN degradation is less severe. High-statistics analyses of
these optimized correlation functions have shown that
GW results are exponentially more precise and have a
StN ratio that degrades exponentially more slowly than
larger time results [9,33,34] (for a review, see Ref. [10]).
In particular StN growth in the GW has been shown to be
consistent with an energy scale close to zero, as is
expected from a variance correlation function dominated
by baryon, as opposed to meson, states. Despite the
ongoing successes of GW analyses of few-baryon corre-
lation functions, the GW shrinks with increasing baryon
number [9,33,34] and calculations of larger nuclei may
require different analysis strategies suitable for a corre-
lation function without a GW.
EMPs, such as that associated with the Ξ-baryon shown

in Fig. 1, are formed from ratios of correlation functions,
which become constant when only a single exponential is
contributing to the correlation function,

MðtÞ ¼ 1

tJ
ln

� hCiðtÞi
hCiðtþ tJÞi

�
→ E0; ð6Þ

where E0 is the ground-state energy in the channel with
appropriate quantum numbers. The average over gauge
field configurations is typically over correlation functions
derived from multiple source points on multiple gauge-
field configurations. This is well-known technology and
is a “workhorse” in the analysis of LQCD calculations.
Typically, tJ corresponds to one temporal lattice spacing,
and the jackknife and bootstrap resampling techniques are
used to generate covariance matrices in the plateau
interval used to extract the ground-state energy from a
correlated χ2-minimization [10,11,35].4 The energy can
be extracted from an exponential fit to the correlation
function or by a direct fit to the effective mass itself.
Because correlation functions generated from the same,
and nearby, gauge-field configuration are correlated,
typically they are blocked to form one average correlation
function per configuration, and blocked further over
multiple configurations, to create a smaller ensemble
containing (approximately) statistically independent sam-
plings of the correlation function.
It is known that baryon correlation functions contain

strong correlations over ∼m−1
π time scales, and that these

correlations are sensitive to the presence of outliers.
Figure 2 shows the distribution of the real part of
small-time nucleon correlation functions, which resembles
a heavy-tailed log-normal distribution [22]. Log-normal

4For pedagogical introductions to LQCD uncertainty quanti-
fication with resampling methods, see Refs. [11,35–37].
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distributions are associated with a larger number of
“outliers” that arise when sampling a Gaussian distribu-
tion, and the sample mean of these small-time correlation
function will be strongly affected by the presence of these
outliers. The distribution of baryon correlation functions at
very large source-sink separations is also heavy tailed;
Kaplan has analyzed the real parts of NPLQCD baryon
correlation functions and found that they resemble a stable
distribution [39]. Cancellations between positive and
negative outliers occur in determinations of the sample
mean of this large-time distribution, leading to different
statistical issues that are explored in detail in Sec. III.
To analyze temporal correlations in baryon correlation

functions in more detail, results for inverse covariance
matrices generated through bootstrap resampling of the Ξ
baryon effective mass are shown in Fig. 3. The size of off-
diagonal elements in the inverse covariance matrix directly
sets the size of contributions to the least-squares fit result
from temporal correlations in the effective mass, and so it

is appropriate to use their magnitude to describe the
strength of temporal correlations. The inverse covariance
matrix is seen to possess large off-diagonal elements
associated with small time separations that appear to
decrease exponentially with increasing time separation
at a rate somewhat faster than m−1

π . Mild variation in
the inverse covariance matrix is seen when tJ is varied.
Taking tJ≫m−1

π decreases correlations between CiðtÞ and
Ciðt − tJÞ and is expected to reduce off-diagonal correla-
tions between MðtÞ and Mðt0Þ, but this effect is not clearly
visible in the inverse covariance matrix on the logarithmic
scale shown in Fig. 3.
The role of outliers in temporal correlations on time

scales ≲m−1
π is highlighted in Fig. 4, where inverse covari-

ance matrices determined with the Hodges-Lehmann esti-
mator are shown. The utility of robust estimators, such as
the median and the Hodges-Lehmann estimator, with
reduced sensitivity to outliers, has been explored in
Ref. [11]. When the median and average of a function

FIG. 2. The distribution of the real part of 103 nucleon correlation functions at time slices t ¼ 6 (left panel), t ¼ 16 (middle panel) and
t ¼ 24 (right panel).

FIG. 1. The EMP associated with the Ξ-baryon correlation function with tJ ¼ 2 (left panel) and the energy scale associated with the
standard deviation of the ground-state energy (right panel). This correlation function is a tuned linear combination of those resulting
from localized smeared and point sinks and from a localized smeared source at a pion mass of mπ ∼ 450 MeV calculated from
96 sources per configuration on 3538 statistically independent isotropic clover gauge-field configurations [28]. They have been blocked
together to form 100 independent samplings of the combined correlation function. These blocked correlation functions have been
bootstrap resampled, and averages across these bootstrap ensembles have been used to determine the mean results and standard error
intervals displayed. Bootstrap averages and covariance matrices for this and other figures in this work are provided as supplemental
material [38] and can be used to reproduce the least-squares fits used to determine results quoted in the main text. The red dashed line in
the right panel corresponds to the lowest energy contributing to the StN ratio that is expected to dominate at large times.
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are known to coincide, there are advantages to using the
median or Hodges-Lehmann estimator to determine the
average of a distribution. The associated uncertainty can be
estimated with the “median absolute deviation” (MAD) and
be related to the standard deviation with a well-known
scaling factor. Off-diagonal elements in the inverse covari-
ance matrix associated with time scales ≲m−1

π are visibly
smaller on a logarithmic scale when the covariance matrix
is determined with the Hodges-Lehmann estimator instead
of the sample mean. This decrease in small-time correla-
tions when a robust estimator is employed strongly
suggests that short-time correlations on scales ≲m−1

π are
associated with outliers.

III. A MAGNITUDE-PHASE DECOMPOSITION

In terms of the log-magnitude and phase, the mean
nucleon correlation function is

hCiðtÞi ¼
Z

DCiPðCiðtÞÞeRiðtÞþiθiðtÞ: ð7Þ

In principle, eRiðtÞ could be included in the MC proba-
bility distribution used for importance sampling. With this
approach, RiðtÞ would contribute as an additional term in
a new effective action. The presence of nonzero θiðtÞ
demonstrates that this effective action would have an

imaginary part. The resulting weight therefore could not
be interpreted as a probability and importance sampling
could not proceed; importance sampling of CiðtÞ faces a
sign problem. In either the canonical or grand canonical
approach, one-baryon correlation functions are described
by complex correlation functions that cannot be directly
importance sampled without a sign problem, but it is
formally permissible to importance sample according to
the vacuum probability distribution, calculate the phase
resulting from the imaginary effective action on each
background field configuration produced in this way, and
average the results on an ensemble of background fields.
This approach, known as reweighting, has a long history
in grand canonical ensemble calculations but has been
generically unsuccessful because statistical averaging is
impeded by large fluctuations in the complex phase
that grow exponentially with increasing spacetime volume
[40–42]. Canonical ensemble nucleon calculations aver-
aging CiðtÞ over background fields importance sampled
with respect to the vacuum probability distribution are in
effect solving the sign problem associated with nonzero
θiðtÞ by reweighting. As emphasized by Ref. [15], similar
chiral physics is responsible for the exponentially hard
StN problem appearing in canonical calculations and
exponentially large fluctuations of the complex phase
in grand canonical calculations.

FIG. 4. Ξ-baryon effective mass inverse covariance matrices with the same range of tJ , color scale normalization, and lines at
jt − t0j ¼ m−1

π as Fig. 3. In contrast to Fig. 3, the covariance matrices are determined using bootstrap resampling of the Hodges-Lehman
estimator.

FIG. 3. The logarithm of the inverse of the Ξ-baryon effective mass covariance matrix for tJ ¼ 1, 2, 3, 16 determined using bootstrap
resampling of the sample mean. Lines with jt − t0j ¼ m−1

π are shown to demonstrate expected hadronic correlation lengths. The
correlation function is the same as in Fig. 1. The normalization of the color scale is identical for all tJ .
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Reweighting a pure phase causing a sign problem
generically produces a StN problem in theories with a
mass gap. Suppose heiθiðtÞi∼e−Mθt for some Mθ ≠ 0. Then
because jeiθiðtÞj2¼1 by construction, θiðtÞ has the StN ratio

heiθiðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjeiθiðtÞj2i

q ¼ heiθiðtÞi ∼ e−Mθt; ð8Þ

which is necessarily exponentially small at large times.
Nonzero Mθ guarantees that statistical sampling of eiθiðtÞ
has a StN problem. Strictly, this argument applies to a pure
phase but not to a generic complex observable such
as CiðtÞ which might receive zero effective mass contri-
bution from θiðtÞ and could have important correlations
between RiðtÞ and θiðtÞ. MC LQCD studies are needed
to understand whether the pure phase StN problem of
Eq. (8) captures some or all of the nucleon StN problem
of Eq. (4).
To determine the large-time behavior of correlation

functions, it is useful to consider the effective-mass
estimator commonly used in LQCD spectroscopy, a special
case of Eq. (6),

MðtÞ ¼ ln

� hCiðtÞi
hCiðtþ 1Þi

�
: ð9Þ

As t → ∞, the average correlation function can be
described by a single exponential whose decay rate is
set by the ground-state energy, and therefore MðtÞ → MN .
The uncertainties associated withMðtÞ can be estimated by
resampling methods such as bootstrap. The variance of
MðtÞ is generically smaller than that of lnhCiðtÞi due to
cancellations arising from correlations between ln½hCiðtÞi�
and ln½hCiðtþ 1Þi� across bootstrap ensembles. Assuming
that these correlations do not affect the asymptotic scaling
of the variance of MðtÞ, propagation of uncertainties for

bootstrap estimates of the variance of ln½hCiðtÞi� shows that
the variance of MðtÞ scales as

VarðMðtÞÞ ∼ VarðCiðtÞÞ
hCiðtÞi2

∼ e2ðMN−3
2
mπÞt: ð10Þ

An analogous effective-mass estimator for the large-time
exponential decay of the magnitude is

MRðtÞ ¼ ln

� heRiðtÞi
heRiðtþ1Þi

�
; ð11Þ

and an effective-mass estimator for the phase is

MθðtÞ ¼ ln

� heiθiðtÞi
heiθiðtþ1Þi

�
¼ ln

� hcosðθiðtÞÞi
hcosðθiðtþ 1ÞÞi

�
; ð12Þ

where the reality of the average correlation function has
been used.
Figure 5 shows EMPs for MðtÞ, MRðtÞ, and MθðtÞ

calculated from the LQCD ensemble described previously.
The mass of the nucleon, determined from a constant fit in
the shaded plateau region 15 ≤ t ≤ 25 indicated in Fig. 5, is
found to be MN ¼ 0.7253ð11Þð22Þ, in agreement with the
mass obtained from the golden window in previous studies
[28] of MN ¼ 0.72546ð47Þð31Þ. MRðtÞ and MθðtÞ do not
visually plateau until much larger times. For the magnitude,
a constant fit in the shaded region 30 ≤ t ≤ 40 gives an
effective mass MRðtÞ → MR ¼ 0.4085ð2Þð13Þ which is
close to the value 3

2
mπ ¼ 0.39911ð35Þð14Þ [28] indicated

by the red line. For the phase, a constant fit to the shaded
region 25 ≤ t ≤ 29 gives an effective massMθðtÞ → Mθ ¼
0.296ð20Þð12Þ, which is consistent with the value
MN − 3

2
mπ ¼ 0.32636ð58Þð34Þ [28] indicated by the red

line. It is unlikely that the phase has reached its asymptotic
value by this time, but a signal cannot be established at
larger times. For t ≥ 30, large fluctuations lead to complex

FIG. 5. The left panel shows the nucleon effective mass MðtÞ as a function of Euclidean time in lattice units. The middle and right
panels show the effective massesMRðtÞ andMθðtÞ of the magnitude and phase respectively. The asymptotic values ofMRðtÞ andMθðtÞ
are close to 3

2
mπ andMN − 3

2
mπ respectively, whose values are indicated for comparison with horizontal red lines. The uncertainties are

calculated using bootstrap methods. Past t≳ 30 the imaginary parts of hCiðtÞi and hcos θiðtÞi are not negligible compared to the real
part. Here and below we display the real part of the complex log in Eqs. (9)–(12); taking the real part of the average correlation functions
before taking the log or some other prescription would modify the results after t≳ 30 in the left and right panels. All definitions are
equivalent in the infinite statistics limit where hCiðtÞi is real.
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effective mass estimates forMðtÞ andMθðtÞ and unreliable
estimates and uncertainties. MRðtÞ þMθðtÞ agrees with
MðtÞ up to ≲5% corrections at all times, demonstrating
that the magnitude and cosine of the complex phase are
approximately uncorrelated at the few percent level. This
suggests the asymptotic scaling of the nucleon correlation
function can be approximately decomposed as

hCiðtÞi ≈ heRiðtÞiheiθiðtÞi ∼ ðe−3
2
mπtÞðe−ðMN−3

2
mπÞtÞ: ð13Þ

For small times t≲ 10, the means and variances of MðtÞ
and MRðtÞ agree up to a small contribution from MθðtÞ.
This indicates that the real part of the correlation function is
nearly equal to its magnitude at small times. At inter-
mediate times 10≲ t≲ 25, the contribution ofMθðtÞ grows
relative to MRðtÞ, and for t≳ 15 the variance of the full
effective mass is nearly saturated by the variance of MθðtÞ,
as shown in Fig. 6. At intermediate times a linear fit
normalized to VarðMðt ¼ 22ÞÞ with slope e2ðMN−3

2
mπÞt

provides an excellent fit to bootstrap estimates of
VarðMðtÞÞ, in agreement with the scaling of Eq. (10).
VarðMθðtÞÞ is indistinguishable from VarðMðtÞÞ in this
region, and mθðtÞ has an identical StN problem.

VarðMRðtÞÞ has much more mild time variation, and
MRðtÞ can be reliably estimated at all times with no
significant StN problem. At intermediate times, the pres-
ence of nonzero θiðtÞ signaling a sign problem in impor-
tance sampling of CiðtÞ appears responsible for the entire
nucleon StN problem.
MðtÞ approaches its asymptotic value much sooner than

MRðtÞ or MθðtÞ. This indicates that the overlap of
N̄ð0ÞNð0Þ onto the three-pion ground state in the variance
correlation function is greatly suppressed compared to the
overlap of N̄ð0Þ onto the one-nucleon signal ground state.
Optimization of the interpolating operators for high signal
overlap contributes to this. Another contribution arises
from momentum projection, which suppresses the variance
overlap factor by ∼1=ðm3

πVÞ [33]. A large hierarchy
between the signal and noise overlap factors provides a
GW visible at intermediate times 10≲ t≲ 25. In the GW,
MðtÞ approaches its asymptotic value but VarðMðtÞÞ begins
to grow exponentially andMθðtÞ is suppressed compared to
MRðtÞ. Reliable extractions ofMðtÞ are possible in the GW.
The effects of blocking, that is averaging subsets of

correlation functions and analyzing the distribution of
the averages, are shown in Figs. 7 and 8. MθðtÞ is
suppressed compared to MRðtÞ for larger times in the

FIG. 6. Variances of the effective mass estimates shown in Fig. 5. The blue points common to all panels show the variance of MðtÞ.
The red line in the left plot shows a fit to e2ðMN−3

2
mπÞt variance growth, where the normalization has been fixed to reproduce the observed

variance at t ¼ 22. The orange points in the middle panel show the variance associated with MRðtÞ. The green points in the right panel
show the variance associated with MθðtÞ.

FIG. 7. EMPs from an ensemble of 500 blocked correlation functions, each of which is equal to the sample mean of 1000 nucleon
correlation functions. The left panel shows the effective mass MðtÞ of the blocked correlation functions. The middle panel shows the
magnitude contribution mRðtÞ and, for reference, a red line at 3

2
mπ and a blue line at MN are shown. The right panel shows the phase

mass mθðtÞ of the blocked correlation functions along with a red line at MN − 3
2
mπ .
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blocked ensemble, and the log-magnitude saturates the
average and variance of MðtÞ through intermediate times
t≲ 25. Blocking does not actually reduce the total variance
of MðtÞ. Variance in MðtÞ is merely shifted from the phase
to the log-magnitude at intermediate times. This is reason-
able, since the imaginary part of CiðtÞ vanishes on average
and so blocked correlation functions will have smaller
imaginary parts. Still, blocking does not affect hCðtÞi and
only affects bootstrap estimates of VarðMðtÞÞ at the level of
correlations between correlation functions in the ensemble.
Blocking also does not delay the onset of a large-time noise
region t≳ 35 where MðtÞ and mθðtÞ cannot be reliably
estimated.
Eventually the scaling of VarðMðtÞÞ begins to deviate

from Eq. (10), and in the noise region t≳ 35 the observed
variance remains approximately constant (up to large
fluctuations). This is inconsistent with Parisi-Lepage scal-
ing. While the onset of the noise region is close to the
midpoint of the time direction t ¼ 48, a qualitatively
similar onset occurs at earlier times in smaller statistical
ensembles. Standard statistical estimators therefore do not
reproduce the scaling required by basic principles of
quantum field theory in the noise region. This suggests

systematic deficiencies leading to unreliable results for
standard statistical estimation of correlation functions in the
noise region. The emergence of a noise region where
standard statistical tools are unreliable can be understood
in terms of the circular statistics describing θðtÞ and is
explained in Sec. III B. A more straightforward analysis of
the distribution of RiðtÞ is first presented below.

A. The magnitude

Histograms of the nucleon log-magnitude are shown in
Fig. 9. Particularly at large times, the distribution of RiðtÞ is
approximately described by a normal distribution. Fits to a
normal distribution are qualitatively good but not exact, and
deviations between normal distribution fits and RiðtÞ
results are visible in Fig. 9. Cumulants of RiðtÞ can be
used to quantify these deviations, which can be recursively
calculated from its moments by

κnðRiðtÞÞ ¼ hRiðtÞni −
Xn−1
m¼1

�
n − 1

m − 1

�
κmðRiðtÞÞhRiðtÞn−mi:

ð14Þ

FIG. 8. Bootstrap estimates of the variance of the effective mass using blocked correlation functions. The left panel shows the variance
of MðtÞ for blocked data in blue and the almost indistinguishable variance of MðtÞ for unblocked data in gray. The middle panel shows
the variance of blocked estimates of mRðtÞ in orange and the right panel shows the variance of blocked estimates of mθðtÞ in green.

FIG. 9. Normalized histograms of RiðtÞ derived from the LQCD results. The blue curves correspond to best-fit normal distributions
determined from the sample mean and variance, while the purple curves correspond to maximum likelihood fits to generic stable
distributions. See the main text for more details.
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The first four cumulants of a probability distribution
characterize its mean, variance, skewness, and kurtosis
respectively. If jCiðtÞj were exactly log-normal, the first
and second cumulants of RiðtÞ, its mean and variance,
would fully describe the distribution. Third and higher
cumulants of RiðtÞ would all vanish for exactly log-normal
jCiðtÞj. Figure 10 shows the first four cumulants of RiðtÞ.
Estimates of higher cumulants of RiðtÞ become succes-
sively noisier.
The cumulant expansion of Ref. [16] relates the effective

mass of a correlation function to the cumulants of the
logarithm of the correlation function. The derivation of
Ref. [16] is directly applicable toMRðtÞ. The characteristic
function ΦRðtÞðkÞ, defined as the Fourier transform of the
probability distribution function of RiðtÞ, can be described
by a Taylor series for ln½ΦRðtÞðkÞ� whose coefficients are
precisely the cumulants of RiðtÞ,

ΦRðtÞðkÞ ¼ heikRiðtÞi ¼ exp

�X∞
n¼1

ðikÞn
n!

κnðRiðtÞÞ
�
: ð15Þ

The average magnitude of CiðtÞ is given in terms of this
characteristic function by

heRiðtÞi ¼ ΦRðtÞð−iÞ ¼ exp

�X∞
n¼1

κnðRiðtÞÞ
n!

�
: ð16Þ

This allows application of the cumulant expansion in
Ref. [16] to the effective mass in Eq. (11) to give

MRðtÞ ¼
X∞
n¼1

1

n!
½κnðRiðtÞÞ − κnðRiðtþ 1ÞÞ�: ð17Þ

Since κnðRiðtÞÞ with n > 2 vanishes for normally distrib-
uted RiðtÞ, the cumulant expansion provides a rapidly
convergent series for correlation functions that are close to,
but not exactly, log-normally distributed. Note that the
right-hand side of Eq. (17) is simply a discrete approxi-
mation suitable for a lattice regularized theory of the time
derivative of the cumulants.
Results for the effective mass contributions of the first

few terms in the cumulant expansion of Eq. (17) are shown
in Fig. 11. The contribution κ1ðRiðtÞÞ − κ1ðRiðtþ 1ÞÞ,
representing the time derivative of the mean, provides an
excellent approximation to MRðtÞ after small times.
ðκ2ðRiðtÞÞ − κ2ðRiðtþ 1ÞÞÞ=2 provides a very small neg-
ative contribution to MRðtÞ, and contributions from
κ3ðRiðtÞÞ and κ4ðRiðtÞÞ are statistically consistent with
zero. As MRðtÞ approaches its asymptotic value, the log-
magnitude distribution can be described to high accuracy
by a nearly normal distribution with very slowly increasing
variance and small, approximately constant κ3;4. The slow
increase of the variance of RiðtÞ is consistent with obser-
vations above that jCiðtÞj has no severe StN problem. It is
also consistent with expectations that jCiðtÞj2 describes a
(partially quenched) three-pion correlation function with a
very mild StN problem, with a scale set by the attractive
isoscalar pion interaction energy.
As Eq. (17) relatesMRðtÞ to time derivatives of moments

of RiðtÞ, it is interesting to consider the distribution

FIG. 10. The first four cumulants of RðtÞ as functions of t. Cumulants are calculated from sample moments using Eq. (14) and the
associated uncertainties are estimated by bootstrap methods. From left to right, the panels show the cumulants κ1ðRðtÞÞ (mean), κ2ðRðtÞÞ
(variance), κ3ðRðtÞÞ (characterizing skewness) and κ4 (characterizing kurtosis).

FIG. 11. Contributions to MRðtÞ from the first four terms in the cumulant expansion of Ref. [16] given in Eq. (17). In the leftmost
panel, the gray points correspond to the unapproximated estimate forMRðtÞ (that are also shown in Fig. 5), while the orange points show
the contribution from the mean κ1ðRðtÞÞ. The other panels show the contributions to Eq. (17) associated with the higher cumulants
κ2ðRiðtÞÞ, κ3ðRðtÞÞ, and κ4ðRðtÞÞ, respectively.
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of the time derivative dRi
dt . Defining generic finite

differences,

ΔRiðt;ΔtÞ ¼ RiðtÞ − Riðt − ΔtÞ; ð18Þ

the time derivative of lattice regularized results can be
defined as the finite difference,

dRi

dt
¼ ΔRiðt; 1Þ: ð19Þ

If RiðtÞ and Riðt − 1Þ were statistically independent, it
would be straightforward to extract the time derivatives
of the moments of RiðtÞ from the moments of dRi

dt . The
presence of correlations in time, arising from nontrivial
QCD dynamics, obstructs a naive extraction ofMRðtÞ from
moments of dRi

dt . For instance, without knowledge of
hRiðtÞRiðt − 1Þi it is impossible to extract the time deriva-
tive of the variance of RiðtÞ from the variance of dRi

dt . While
the time derivative of the mean of RiðtÞ is simply the mean
of dRi

dt , time derivatives of the higher cumulants of RiðtÞ
cannot be extracted from the cumulants of dRi

dt without
knowledge of dynamical correlations.

The cumulants of dRi
dt are shown in Fig. 12. As expected,

the mean of dRi
dt approaches

3
2
mπ at large times. The variance

of dRi
dt is tending to a plateau which is approximately one

third of the variance of RiðtÞ. This implies there are
correlations between RiðtÞ and Riðt − 1Þ that are on the
same order of the individual variances of RiðtÞ and
Riðt − 1Þ. This is not surprising, given that the QCD
correlation length is larger than the lattice spacing. No
statistically significant κ3 is seen for

dRi
dt at large times, but a

statistically significant positive κ4 is found. Normal dis-
tribution fits to dRi

dt are found to be poor, as shown in Fig. 13,
as they underestimate both the peak probability and the
probability of finding “outliers” in the tails of the distri-
bution. Interestingly, Fig. 12, and histograms of dRi

dt shown

in Fig. 13, suggest that the distribution of dRi
dt becomes

approximately time independent at large times.
Stable distributions are found to provide a much better

description of dRi
dt , and are consistent with the heuristic

arguments for log-normal correlation functions given in
Ref. [16]. Generic correlation functions can be viewed as
products of creation and annihilation operators with many
transfer matrix factors describing Euclidean time evolution.
It is difficult to understand the distribution of products of
transfer matrices in quantum field theories, but following

FIG. 12. The first four cumulants of dRi
dt , determined analogously to the cumulants in Fig. 10.

FIG. 13. Histograms of dRdt , defined as the finite difference ΔRðt; 1Þ given in Eq. (18). The blue curves in each panel correspond to the
best-fit normal distribution, while the purple curves correspond to the best-fit stable distribution.
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Ref. [16] insight can be gained by considering products of
random positive numbers. As a further simplification, one
can consider a product of independent, identically distrib-
uted positive numbers, each schematically representing a
product of many transfer matrices describing time evolution
over a period much larger than all temporal correlation
lengths. Application of the central limit theorem to the
logarithm of a product of many independent, identically
distributed random numbers shows that the logarithm of the
product tends to become normally distributed as the
number of factors becomes large. The central limit theorem
in particular assumes that the random variables in question
originate from distributions that have a finite variance. A
generalized central limit theorem proves that sums of
heavy-tailed random variables tend to become distributed
according to stable distributions (that include the normal
distribution as a special case), suggesting that stable
distributions arise naturally in the logs of products of
random variables.
Stable distributions are named as such because their

shape is stable under averaging of independent copies
of a random variable. Formally, stable distributions form a
manifold of fixed points in a Wilsonian space of probability
distributions where averaging independent random varia-
bles from the distribution plays the role of renormalization
group evolution. A parameter α, called the index of
stability, dictates the shape of a stable distribution and
remains fixed under averaging transformations. All prob-
ability distributions with finite variance evolve under
averaging towards the normal distribution, a special case
of the stable distribution with α ¼ 2. Heavy-tailed distri-
butions with ill-defined variance evolve towards generic
stable distributions with 0 < α ≤ 2. In particular, stable
distributions with α < 2 have power-law tails; for a stable
random variable X the tails decay as X−ðαþ1Þ. The heavy-
tailed Cauchy, Levy, and Holtsmark distributions are
special cases of stable distributions with α ¼ 1; 1=2, and
3=2, respectively, that arise in physical applications.5

Stable distributions for a real random variable X are
defined via Fourier transform,

PSðX; α; β; μ; γÞ ¼
Z

dk
2π

e−ikXΦXðk; α; β; μ; γÞ; ð20Þ

of their characteristic functions

ΦXðk;α;β;μ;γÞ ¼ exp

�
iμk− jγkjα

�
1− iβ

k
jkj tanðπα=2Þ

��
;

ð21Þ

where 0 < α ≤ 2 is the index of stability, −1 ≤ β ≤ 1
determines the skewness of the distribution, μ is the
location of peak probability, and γ sets the width. For
α ¼ 1, the above parametrization does not hold and
tanðπα=2Þ should be replaced by − 2

π ln jkj. For α > 1 the
mean is μ, and for α ≤ 1 the mean is ill defined. For α ¼ 2

the variance is σ2 ¼ γ2=2 and Eq. (21) implies the dis-
tribution is independent of β, while for α < 2 the variance is
ill defined.
The distributions of RiðtÞ obtained from the LQCD

calculations can be fit to stable distributions through
maximum likelihood estimation of the stable parameters
α, β, μ, and γ, obtaining the results that are shown in
Fig. 14. Estimates of αðRiÞ are consistent with 2, corre-
sponding to a normal distribution. This is not surprising,
because higher moments of jCiðtÞj would be ill defined and
diverge in the infinite statistics limit if RiðtÞ were literally
described by a heavy-tailed distribution. βðRiÞ is strictly
ill defined when αðRiÞ ¼ 2, but results consistent with
βðRiÞ ¼ −1 indicate negative skewness in agreement with
observations above. Estimates of μðRiÞ and γðRiÞ are
consistent with the cumulant results above if a normal
distribution [αðRiÞ ¼ 2] is assumed. Fits of RðtÞ to generic
stable distributions are shown in Fig. 9, and are roughly
consistent with fits to a normal distribution, though some
skewness is captured by the stable fits.
Stable distribution fits to dRi

dt indicate statistically sig-
nificant deviations from a normal distribution (α ¼ 2), as
seen in Fig. 15. The large-time distribution of dRi

dt appears

time independent, and fitting αðdRi
dt Þ in the large-time

plateau region gives an estimate of the large-time index

FIG. 14. Maximum likelihood estimates for stable distribution fits of RiðtÞ in terms of the parameters of Eqs. (20)–(21). α ¼ 2
corresponds to a normal distribution. The associated uncertainties are estimated by bootstrap methods. Changes in β do not affect the
likelihood when α ¼ 2, and reliable estimates of βðRiðtÞÞ are not obtained at all times.

5Further details can be found in textbooks and reviews on
stable distributions and their applications in physics. See, for
instance, Refs. [43–47] and references within.
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of stability. Recalling that dRi
dt describes a finite difference

over a physical time interval of one lattice spacing, we have
the estimated index of stability

αðΔRðt → ∞;Δt ∼ 0.12 fmÞÞ → 1.639ð4Þð1Þ: ð22Þ
Maximum likelihood estimates for μðdRi

dt Þ are consistent

with the sample mean, and βðdRi
dt Þ is consistent with zero

in agreement with observations of vanishing skewness.
Therefore, the distribution of dRi

dt is symmetric, as observed
in Fig. 13, with power-law tails scaling as ∼ðΔRiÞ−2.65 over
this time interval of Δt ∼ 0.12 fm.
The value of αðdRi

dt Þ depends on the physical time
separation used in the finite difference definition
Eq. (18), and stable distribution fits can be performed
for generic finite differences ΔRiðt;ΔtÞ. For all Δt, the
distribution of ΔRi becomes time independent at large
times. Histograms of the large-time distributions ΔR for
Δt ¼ 4, 8 are shown in Fig. 16, and the best-fit large-time
values for αðΔRiÞ and γðΔRiÞ are shown in Fig. 17. Since
QCD has a finite correlation length, ΔRiðt;ΔtÞ can be
described as the difference of approximately normally
distributed variables at large Δt. In the large Δt limit,
ΔRi is therefore necessarily almost normally distributed,
and correspondingly, αðΔRiÞ, shown in Fig. 17, increases
with Δt and begins to approach the normal distribution

value αðΔRiÞ → 2 for large Δt. A large Δt plateau in
αðΔRiÞ is observed that demonstrates small but statistically
significant departures from αðΔRiÞ < 2. This deviation is
consistent with the appearance of small but statistically
significant measures of non-Gaussianity in RiðtÞ seen in
Fig. 10. Heavy-tailed distributions are found to be needed
only to describe the distribution of ΔRi when Δt is small
enough such that RiðtÞ and Riðt − ΔtÞ are physically
correlated. In some sense, the deviations from normally
distributed differences, i.e. αðΔRiÞ < 2, are a measure of
the strength of dynamical QCD correlations on the scaleΔt.
The heavy-tailed distributions of ΔRi for dynamically

correlated time separations correspond to time evolution dRi
dt

that is quite different from that of diffusive Brownianmotion
describing the quantum mechanical motion of free point
particles. Rather than Brownian motion, heavy-tailed jumps
inRiðtÞ correspond to a superdiffusive randomwalk or Lévy
flight. Power-law, rather than exponentially suppressed,
large jumps give Lévy flights a qualitatively different
character than diffusive random walks, including fractal
self-similarity, as can be seen in Fig. 18. The dynamical
features of QCD that give rise to superdiffusive time
evolution are presently unknown; however, we conjecture
that instantons play a role. Instantons are associated with
large, localized fluctuations in gauge fields, and we expect
that instantons may also be responsible for infrequent, large

FIG. 16. Histograms of ΔRiðt;ΔtÞ for selected large-time values of t. The top row shows results for Δt ¼ 4, the bottom row shows
results for Δt ¼ 8, and Fig. 13 shows the results for Δt ¼ 1. The blue curves represent fits to a normal distribution, while the purple
curves represent fits to a stable distribution.

FIG. 15. Maximum likelihood estimates for stable distribution fits of dRi
dt similar to Fig. 14. The associated uncertainties are estimated

by bootstrap methods.
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fluctuations in hadronic correlation functions generating the
tails of the dRi=dt distribution. It would be interesting to
understand if αðdRi

dt Þ can be simply related to observable
properties of the nucleon. It is also not possible to say from
this single study whether αðdRi

dt Þ has a well-defined con-
tinuum limit for infinitesimal Δt. Further LQCD studies are
required to investigate the continuum limit of αðdRi

dt Þ. Lattice
field theory studies of other systems and calculations of
αðdRi

dt Þ in perturbation theory, effective field theory, and
models of QCD could provide important insights into the
dynamical origin of superdiffusive time evolution.6

One feature of LQCD dRi
dt results is not well described by a

stable distribution. The variance of heavy-tailed distribu-
tions is ill defined, and were dRi

dt truly described by a heavy-

tailed distribution then the variance and higher cumulants of
dRi
dt would increasewithout bound as the size of the statistical
ensemble is increased. This behavior is not observed. While
the distribution of dRi

dt is well described by a stable distri-
bution near its peak, the extreme tails of the distribution of
dRi
dt decay sufficiently quickly that the variance and higher
cumulants of dRdt shown in Fig. 12 give statistically consistent
results as the statistical ensemble size is varied. This
suggests that dRi

dt is better described by a truncated stable
distribution, a popular model for, for example, financial
markets exhibiting high volatility butwith a natural cutoff on
trading prices, inwhich some formof sharp cutoff is added to
the tails of a stable distribution [46]. Note that the tails of the
dRi
dt distribution describe extremely rapid changes in the
correlation function and are sensitive to ultraviolet proper-
ties of the theory. One possibility is that dRi

dt describes a stable
distribution in the presence of a (perhaps smooth) cutoff
arising from ultraviolet regulator effects that damps the
stable distribution’s power-law decay at very large dRi

dt .
Further studies at different lattice spacings will be needed

FIG. 18. The two-dimensional motion of test particles with their random motion taken from symmetric stable distributions. At each
time step, the angle of the outgoing velocity is chosen randomly with respect to the incident velocity while the magnitude of the velocity
is chosen from a symmetric stable distribution with α ¼ 2 corresponding to Brownian motion (left panel), and α ¼ 1.5 corresponding to
a Holtsmark distribution (right panel). In the right panel, the large separations between clusters achieved during one time interval
correspond to Lévy flights.

FIG. 17. Maximum likelihood estimates for the index of stability αðΔRiðt;ΔtÞÞ and width γðΔRiðt;ΔtÞÞ, in the large-time plateau
region as a function of Δt. Associated uncertainties are estimated with bootstrap methods.

6For example, an analysis of pion correlation functions from
the same ensemble of gauge-field configurations shows that Ri

and dRi
dt are both approximately normally distributed, with α ¼

1.96ð1Þ and α ¼ 1.97ð1Þ, respectively. We conclude that the pion
shows only small deviations from free particle Brownian motion.
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to understand the form of the truncation and whether the
truncation scale is indeed set by the lattice scale. It is also
possible that there is a strong interaction length scale
providing a modification to the distribution at large dRi

dt ,
and it is further possible that stable distributions only
provide an approximate description at all dRi

dt . For now we
simply observe that a truncated stable distribution with an
unspecified high-scale modification provides a good empir-
ical description of dRi

dt .
Before turning to the complex phase of CiðtÞ, we

summarize the main findings about the log-magnitude:
(i) The log-magnitude of the nucleon correlation func-

tion in LQCD is approximately normally distributed
with small but statistically significant negative skew-
ness and positive kurtosis.

(ii) The magnitude effective mass MRðtÞ approaches
3
2
mπ at large times, consistent with expectations

from Parisi-Lepage scaling for the nucleon variance
jCiðtÞj2 ∼ e−3mπ t. The plateau of MðtÞ marks the
start of the golden window where excited-state
systematics are negligible and statistical uncertain-
ties are increasing slowly. The plateau of MRðtÞ,
which begins at much larger t than the plateau of
MðtÞ, roughly coincides with the plateau ofMθðtÞ to
MN − 3

2
mπ and occurs after variance growth ofMðtÞ

reaches the Parisi-Lepage expectation e2ðMN−3
2
mπÞt.

Soon after, a noise region begins where the variance
of MðtÞ stops increasing and the effective mass
cannot be reliably estimated.

(iii) The log-magnitude does not have a severe StN
problem, and MRðtÞ can be measured accurately
across all 48 time steps of the present LQCD
calculations. The variance of the log-magnitude
distribution only increases by a few percent in 20
time steps after visibly plateauing.

(iv) The cumulant expansion describesMRðtÞ as a sum of
the time derivatives of the cumulants of the log of the
correlation function. At large times, the time derivative
of the mean of RiðtÞ is constant and approximately
equal to MRðtÞ. Contributions to MRðtÞ from the
variance and higher cumulants of RiðtÞ are barely
resolvedin thesampleof500,000correlationfunctions.

(v) Finite differences in RiðtÞ, ΔRiðt;ΔtÞ, are described
by time-independent distributions at large times. For
large Δt compared to the QCD correlation length,
ΔR describes a difference of approximately inde-
pendent normal random variables and is therefore
approximately normally distributed. For small Δt,
ΔRi describes a difference of dynamically correlated
variables. The mean of dRi

dt is equal to the time
derivative of the mean of RiðtÞ and therefore
provides a good approximation to MRðtÞ. The time
derivatives of higher cumulants of RiðtÞ cannot be
readily extracted from cumulants of dRi

dt without
knowledge of dynamical correlations.

(vi) At large times, dRi
dt is well described by a symmetric,

heavy-tailed, truncated stable distribution. The pres-
ence of heavy tails in dRi

dt indicates that RiðtÞ is not
described by free particle Brownianmotion but rather
by a superdiffusive Lévy flight. Deviations of the
index of stability of dRi

dt from a normal distribution
quantify the amount of dynamical correlations
present in the nucleon system, the physics of which
is not yet understood. Further studies are required to
determine the continuum limit value of the index of
stability associated with dRi

dt and the dynamical origin
and generality of superdiffusive Lévy flights in
quantum field theory correlation functions.

B. The phase

The reality of average correlation functions requires that
the distribution of θiðtÞ be symmetric under θiðtÞ → −θiðtÞ.
Cumulants of θiðtÞ calculated from sample moments in
analogy to Eq. (14) are shown in Fig. 19. The mean and κ3
are noisy but statistically consistent with zero as expected.
The variance and κ4 are small at small times since every
sample of θiðtÞ is defined to vanish at t ¼ 0, and grow
linearly at intermediate times 10 < t < 20 around the
golden window. After t ¼ 20, this linear growth slows
and they become constant at large times, and are consistent
with results from a uniform distribution. Histograms of
θiðtÞ shown in Fig. 20 qualitatively suggest that θiðtÞ is
described by a narrow, approximately normal distribution at

FIG. 19. The first four cumulants of θiðtÞ. In these fits, no special care is given to the fact that θiðtÞ is a phase defined on −π <
θiðtÞ ≤ π and standard sample moments are used to determine these cumulants in analogy to Eq. (14). Uniform distribution results of π

2

3

variance and − 2π4

15
fourth cumulant are shown as green lines for reference.
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small times and an increasingly broad, approximately
uniform distribution at large times. θiðtÞ is only defined
modulo 2π and can be described as a circular variable
defined on the interval −π < θi ≤ π. The distribution of
θiðtÞ can therefore be described with angular histograms, as
shown in Fig. 21. Again, θiðtÞ resembles a uniform circular
random variable at large times.
A cumulant expansion can be readily constructed for

MθðtÞ. The mean phase is given in terms of the character-
istic function and cumulants of θiðtÞ by

heiθiðtÞi ¼ ΦθðtÞð1Þ ¼ exp

�X∞
n¼0

in

n!
κnðθiðtÞÞ

�
; ð23Þ

and the appropriate cumulant expansion for MθðtÞ is
therefore, using Eq. (12),

MθðtÞ ¼
X∞
n¼0

in

n!
½κnðθiðtÞÞ − κnðθiðtþ 1ÞÞ�: ð24Þ

Factors of in dictate that a linearly increasing variance of
θiðtÞ makes a positive contribution to MθðtÞ, in contradis-
tinction to the slight negative contribution to MRðtÞ made
by linearly increasing variance of RiðtÞ. Since the mean of
θiðtÞ necessarily vanishes, the variance of θiðtÞ makes
the dominant contribution to Eq. (24) for approximately
normally distributed θiðtÞ. For this contribution to be
positive, the variance of θiðtÞ must increase, indicating

FIG. 20. Histograms of θiðtÞ with fits to wrapped normal distributions using Eq. (27) shown in blue and fits to wrapped stable
distributions using maximum likelihood estimation of the parameters of Eq. (37) shown in purple. See the main text for details.

FIG. 21. Angular histograms of θiðtÞ. The unit circle is split into a uniform sequence of bins, and the number of θiðtÞ samples falling in
each bin sets the radial length of a bar at that angle. Colors ranging from orange to blue also denote angle, and are included to indicate the
θi ¼ π location of the branch cut in θiðtÞ ¼ argCiðtÞ.
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that θiðtÞ has a StN problem. For the case of approximately
normally distributed θiðtÞ, nonzero Mθ requires a StN
problem for the phase.
Contributions to Eq. (24) from the first four cumulants

of θiðtÞ are shown in Fig. 22. Contributions from odd
cumulants are consistent with zero, as expected by θiðtÞ →
−θiðtÞ symmetry. The variance provides the dominant
contribution to MθðtÞ at small and intermediate times,
and is indistinguishable from the total MθðtÞ calculated
using the standard effective mass estimator for t≲ 15.
Towards the end of the golden window 15≲ t≲ 25, the
variance contribution to the effective mass begins to
decrease. At very large times t≳ 30 contributions to
MθðtÞ from the variance are consistent with zero. The
fourth cumulant makes smaller but statistically significant
contributions to MθðtÞ at intermediate times. Contributions
from the fourth cumulant also decrease and are consistent
with zero at large times. The vanishing of these contribu-
tions results from the distribution becoming uniform at
large times, and time independent as a consequence. These
observations signal a breakdown in the cumulant expansion
at large times t≳ 25 where contributions from the variance
do not approximate standard estimates of MθðtÞ. Notably,
the breakdown of the cumulant expansion at t≳ 25
coincides with plateaus to uniform distribution cumulants
in Fig. 19 and with the onset of the noise region discussed
in Sec. III.
Observations of these unexpected behaviors of θiðtÞ in

the noise region hint at more fundamental issues with the
statistical description of θiðtÞ used above. A sufficiently
localized probability distribution of a circular random
variable peaked far from the boundaries of −π<θiðtÞ≤π
can be reliably approximated as a standard probability
distribution of a linear random variable defined on the
real line. For broad distributions of a circular variable, the
effects of a finite domain with periodic boundary con-
ditions cannot be ignored. While circular random variables
are not commonly encountered in quantum field theory,
they arise in many scientific contexts, most notably in
astronomy, biology, geography, geology, meteorology and
oceanography. Familiarity with circular statistics is not
assumed here, and a few basic results relevant for

understanding the statistical properties of θiðtÞ will be
reviewed without proof. Further details can be found in
Refs. [25–27] and references therein.
A generic circular random variable θi can be described

by two linear random variables cosðθiÞ and sinðθiÞ with
support on the line interval ½−1; 1�where periodic boundary
conditions are not imposed. It is the periodic identification
of θi ¼ �π that makes sample moments poor estimators
of the distribution of θi and, in particular, allows the
sample mean of a distribution symmetrically peaked about
θi ¼ �π to be opposite the actual location of peak
probability. Parameter estimation for circular distributions
can be straightforwardly performed using trigonometric
moments of cosðθiÞ and sinðθiÞ. For an ensemble of N
random angles θi, the first trigonometric moments are
defined by the sample averages,

C̄ ¼ 1

N

X
i

cosðθiÞ; S̄ ¼ 1

N

X
i

sinðθiÞ: ð25Þ

Higher trigonometric moments can be defined analogously
but will not be needed here. The average angle can
be defined in terms of the mean two-dimensional vector
ðC̄; S̄Þ as

θ̄ ¼ arg ðC̄ þ iS̄Þ: ð26Þ

A standard measure of a circular distribution’s width is
given in terms of trigonometric moments as

ρ̄2 ¼ C̄2 þ S̄2 ð27Þ

where ρ̄ should be viewed as a measure of the concentration
of a circular distribution. Smaller ρ̄ corresponds to a
broader, more uniform distribution, while larger ρ̄ corre-
sponds to a more localized distribution.
One way of defining statistical distributions of circular

random variables is by “wrapping” distributions for linear
random variables around the unit circle. The probability
of a circular random variable equaling some value in
−π < θ ≤ π is equal to the sum of the probabilities of
the linear random variable equaling any value that is

FIG. 22. Contributions from the first four terms in the cumulant expansion of Eq. (17). The variance, shown second from left, is
expected to provide the dominant contribution if a truncation of Eq. (17) is reliable. Standard estimates ofMθðtÞ from Eq. (12) are shown
as the gray points, alongside the cumulant contribution (green points) in the second from left panel. Other panels only show cumulant
contributions (green points).
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equivalent to θ modulo 2π. Applying this prescription to a
normally distributed linear random variable gives the
wrapped normal distribution

PWNðθi; μ; σÞ ¼
1ffiffiffiffiffiffi
2π

p
σ

X∞
k¼−∞

exp

�
−
ðθi − μþ 2πkÞ2

2σ2

�

¼ 1

2π

X∞
n¼−∞

einðθi−μÞ−σ2n2=2; ð28Þ

where the second form follows from the Poisson summa-
tion formula. Wrapped distributions share the same char-
acteristic functions as their unwrapped counterparts, and
the second expression above can be derived as a discrete
Fourier transform of a normal characteristic function. The
second sum above can also be compactly represented in
terms of elliptic-ϑ functions. For σ2 ≲ 1 the wrapped
normal distribution qualitatively resembles a normal dis-
tribution, but for σ2 ≳ 1 the effects of wrapping obscure the
localized peak. As σ2 → ∞, the wrapped normal distribu-
tion becomes a uniform distribution on ð−π; π�. Arbitrary
trigonometric moments and therefore the characteristic
function of the wrapped normal distribution are given by

heinθiiWN ¼ einμ−n
2σ2=2: ð29Þ

Parameter estimation in fitting a wrapped normal distribu-
tion to LQCD results for θiðtÞ can be readily performed by
relating θ̄ and ρ̄ above to these trigonometric moments as

μ ¼ θ̄ and e−σ
2 ¼ ρ̄2: ð30Þ

Note that Eq. (30) holds only in the limit of infinite
statistics. Estimates for the average of a wrapped normal
distribution are consistent with zero at all times, as
expected. Wrapped normal probability distribution func-
tions with σ2ðθiðtÞÞ determined from Eq. (30) are shown
with the histograms of Fig. 20 and provide a good fit to the
data at all times.

The appearance of a uniform distribution at large times is
consistent with the heuristic argument that the logarithm
of a correlation function should be described by a stable
distribution. The uniform distribution is a stable distribu-
tion for circular random variables, and in fact is the only
stable circular distribution [27]. The distribution describing
a sum of many linear random variables broadens as the
number of summands is increased, and the same is true of
circular random variables. A theorem of Poincaré proves
that as the width of any circular distribution is increased
without bound, the distribution will approach a uniform
distribution. One therefore expects that the sum of many
well-localized circular random variables might initially
tend towards a narrow wrapped normal distribution while
boundary effects are negligible. Eventually as more terms
are added to the sum this wrapped normal distribution will
broaden and approach a uniform distribution. This intuitive
picture appears consistent with the time evolution of θiðtÞ
shown in Figs. 20 and 21.
The wrapped normal variance estimates for θiðtÞ that

are shown in Fig. 23 require further discussion. At
intermediate times, the wrapped normal variance calculated
from Eq. (30) rises linearly with a slope consistent with
MN − 3

2
mπ . This is not surprising because assuming an

exactly wrapped normal θiðtÞ, MθðtÞ becomes

MWN
θ ðtÞ ¼ ln

� heiθiðtÞiWN

heiθiðtþ1ÞiWN

�

¼ −
1

2
½σ2ðθiðtÞÞ − σ2ðθiðtþ 1ÞÞ�: ð31Þ

Equation (31) resembles the first nonzero term in the
cumulant expansion given in Eq. (24) adapted for circular
random variables. Results for MWN

θ ðtÞ are also shown in
Fig. 23, where it is seen that MWN

θ ðtÞ is indistinguishable
from MθðtÞ at small and intermediate times. In the noise
region, both MWN

θ ðtÞ and standard estimates for MθðtÞ are
consistent with zero.MθðtÞ has smaller variance thanMθðtÞ
in the noise region, but this large-time noise is the only

FIG. 23. The left panel shows estimates of the wrapped normal mean μðθiðtÞÞ calculated from Eq. (30) as a function of time. The
center panel shows analagous estimates of the wrapped normal variance, σ2ðθiðtÞÞ. The right panel shows the wrapped normal effective
mass,MWN

θ ðtÞ, defined in Eq. (31) (green points) along with the standard complex phase effective massMθðtÞ defined in Eq. (24) (gray
points).
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visible signal of deviation between the two. This is not
surprising, because MWN

θ ðtÞ is actually identical to MθðtÞ
when S̄ðθðtÞÞ ¼ 0. Since S̄ðθiðtÞÞ vanishes in the infinite
statistics limit by θiðtÞ → −θiðtÞ symmetry, MWN

θ ðtÞ must
agree with MθðtÞ up to statistical noise. At large times
t≳ 30, the wrapped normal variance shown in Fig. 23
becomes roughly constant up to sizable fluctuations. The
region where σ2ðθiðtÞÞ stops increasing coincides with the
noise region previously identified.
The time at which the noise region begins depends on

the size of the statistical ensemble N. Figure 24 shows
estimates of σ2ðθiðtÞÞ from Eq. (30) for statistical ensemble
sizes N ¼ 50, 5, 000, 500, 000 varying across four orders
of magnitude. The time of the onset of the noise region
varies logarithmically as t ∼ 20; 27; 35. The constant noise
region value of σ2ðθiðtÞÞ is also seen to vary logarithmically
with N. Equality of MWN

θ ðtÞ and MθðtÞ up to statistical
fluctuations shows that MθðtÞ must be consistent with
zero in the noise region. Since corrections to MðtÞ ≈
MθðtÞ þMRðtÞ from magnitude-phase correlations appear
small at all times, it is reasonable to conclude that standard
estimators for the nucleon effective mass are systematically
biased in the noise region and that exponentially large
increases in statistics are required to delay the onset of the
noise region.
Besides these empirical observations, the inevitable

existence and exponential cost of delaying the noise region
can be understood from general arguments of circular
statistics. The expected value of the sample concentration
ρ̄2 can be calculated by applying Eq. (29) to an ensemble of

independent wrapped normal random variables θi in
Eq. (27). The result shows that ρ̄2 is a biased estimate of
e−σ

2

, and that the appropriate unbiased estimator is [25,27]

e−σ
2 ¼ N

N − 1

�
ρ̄2 −

1

N

�
: ð32Þ

For ρ̄2 < 1=N, Eq. (32) would lead to an imaginary estimate
for σ2 and therefore no reliable unbiased estimate can be
extracted. A similar calculation shows that the expected
variance of ρ̄2 is

Varðρ̄2Þ ¼N − 1

N3
ð1− e−σ

2Þ2½ð1− e−σ
2Þ2þ 2Ne−σ

2 �: ð33Þ

In the limit of an infinitely broad distribution, all circular
distributions tend towards uniform and the variance of ρ̄2 is
set by the σ2 → ∞ limit of Eq. (33) regardless of the form
of the true underlying distribution. When analyzing any
very broad circular distribution, measurements of ρ̄2 will
therefore include fluctuations on the order of 1=N. For
e−σ

2

< 1=N, the expected error from finite sample size
effects in statistical inference based on ρ̄2 is therefore larger
than the signal to be measured. In this regime ρ̄2 has both
systematic bias and expected statistical errors that are larger
than the value e−σ

2

that ρ̄2 is supposed to estimate. ρ̄2 cannot
provide accurate estimates of e−σ

2

in this regime.
Inability to perform statistical inference in the regime

e−σ
2

< 1=N matters for the nucleon correlation function
because e−σ

2ðθiðtÞÞ ¼ ρ̄2ðθiðtÞÞ ¼ hcosðθiðtÞÞi2 and there-
fore e−σ

2ðθiðtÞÞ decreases exponentially with time. At large
times there will necessarily be a noise region where
e−σ

2ðθiðtÞÞ < 1=N is reached and ρ̄2ðθiðtÞÞ is not a reliable
estimator. Keeping e−σ

2ðθiðtÞÞ larger than the bias and
expected fluctuations of ρ̄2ðθiðtÞÞ requires

N > eσ
2ðθiðtÞÞ ∼ e2ðMN−3

2
mπÞt: ð34Þ

Equation (34) demonstrates that exponential increases in
statistics are required to delay the time where statistical
uncertainties and systematic bias dominate physical results
estimated from ρ̄2ðθiðtÞÞ. Formally, the noise region can be
defined as the region where Eq. (34) is violated. Lines at
σ2ðθiðtÞÞ ¼ lnN are shown on Fig. 24 for the ensembles
with N ¼ 50, 5, 000, 500, 000 shown. By this definition,
the noise region formally begins once σ2ðθiðtÞÞ (extrapo-
lated from reliable estimates in the golden window) crosses
above the appropriate line. Excellent agreement can be seen
between this definition and the above empirical character-
izations of the noise region based on constant σ2ðθiðtÞÞ and
unreliable effective mass estimates with constant errors.
Breakdown of statistical inference for sufficiently broad

distributions is a general feature of circular distributions.

FIG. 24. Wrapped normal variance of the phase σ2ðθiðtÞÞ for
statistical ensembles of various sizes. Results for an ensemble
of N ¼ 50 nucleon correlation functions are shown in yellow,
N ¼ 5, 000 in brown, and N ¼ 500, 000 in green. Lines of each
color are also shown at σ2ðθiðtÞÞ ¼ lnðNÞ. Above the relevant
line, Eq. (34) is violated for each ensemble and measurements of
σ2ðθiðtÞÞ are expected to be roughly equal to lnðNÞ instead of the
underlying physical value of σ2ðθiðtÞÞ. Estimates of σ2ðθiðtÞÞ
reaching these lines mark the beginning of the noise region
defined by violations of Eq. (34) for each ensemble.
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Fisher notes that circular distributions are distinct from
more familiar linear distributions in that “formal statistical
analysis cannot proceed” for sufficiently broad distribu-
tions [25]. The arguments above do not rely on the
particular form of the wrapped normal model assumed
for θiðtÞ, and the basic cause for the onset of the noise
region for broad θiðtÞ is that ρ̄2 has an uncertainty of order
1=N for any broad circular distribution that begins
approaching a uniform distribution.7 Analogs of Eq. (34)

can be expected to apply to statistical estimation of the
mean of any complex correlation function. As long as the
asymptotic value of Mθ is known, Eq. (34) and analogs for
other complex correlation functions can be used to estimate
the required statistical ensemble size necessary to reliably
estimate the mean correlation function up to a desired
time t.
The pathological features of the large-time distribution

of θi are not shared by dθi
dt . As with the log-magnitude, it is

useful to define general finite differences,

Δθiðt;ΔtÞ ¼ θiðtÞ − θiðt − ΔtÞ; ð35Þ

and a discrete (lattice) time derivative,

dθi
dt

¼ Δθiðt; 1Þ: ð36Þ

The sample cumulants of dθi
dt are shown in Fig. 25, histo-

grams of dθi
dt are shown in Fig. 26, and angular histograms

are shown in Fig. 27. Much like dRi
dt ,

dθi
dt appears to have a

time-independent distribution at large times. While dθi
dt

is a circular random variable, its distribution is still well
localized at large times and can be clearly visually
distinguished from a uniform distribution. This suggests
that statistical inference of dθidt should be reliable in the noise
region.

FIG. 25. The first four cumulants of dθi
dt .

FIG. 26. Histograms of dθi
dt with fits to a wrapped stable mixture distribution shown as the purple curves. See the main text for details.

7One may wonder whether there is a more optimal estimator
than ρ̄2 that could reliably calculate the width of broad circular
distributions with smaller variance. While this possibility cannot
be discarded in general, it is interesting to note that it can be in
one model. The most studied distribution in one-dimensional
circular statistics is the von Mises distribution, which has a
simpler analytic form than the wrapped normal distribution. The
vonMises distribution is also normally distributed in the limit of a
narrow distribution, uniform in the limit of a broad distribution,
and in general a close approximation but not identical to the
wrapped normal distribution. Von Mises distributions provide fits
of comparable qualitative quality to θiðtÞ as wrapped normal
distributions. For the von Mises distribution, N

N−1 ðρ̄2 − 1
NÞ is an

unbiased maximum likelihood estimator related to the width. By
the Cramér-Rao inequality, a lower mean-squared error cannot be
achieved if θiðtÞ is von Mises. Particularly in the limit of a broad
distribution where all circular distributions tend towards uniform,
it would be very surprising if an estimator could be found that
satisfied this bound for the von Mises case but could reliably
estimate the width of θiðtÞ in the noise region if a different
underlying distribution is assumed.
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Like dRi
dt ,

dθi
dt shows evidence of heavy tails. The time

evolution of RiðtÞ and θiðtÞ for three (randomly selected)
correlation functions are shown in Fig. 28, and exhibit large
jumps in both RiðtÞ and θiðtÞ more characteristic of Lévy
flights than Brownian motion, leading us to consider stable
distributions once again. Wrapped stable distributions can
be constructed analogously to wrapped normal distribu-
tions as

PWSðθi; α; β; μ; γÞ

¼
X∞
k¼−∞

PSðθi þ 2πk; α; β; μ; γÞ

¼ 1

2π

X∞
n¼−∞

exp

�
iμn − jγnjα

�
1 − iβ

n
jnj tanðπα=2Þ

��
;

ð37Þ

where, as in Eq. (21), tanðπα=2Þ should be replaced by
− 2

π ln jnj for α ¼ 1. This wrapped stable distribution is

still not appropriate to describe dθi
dt for two reasons. First,

dθi
dt describes a difference of angles and so is defined

on a periodic domain −2π < dθi
dt ≤ 2π. This is trivially

accounted for by replacing 2π by 4π in Eq. (37). Second,
θiðtÞ is determined from a complex logarithm of CiðtÞ with
a branch cut placed at �π. Whenever θiðtÞ makes a small
jump across this branch cut, dθi

dt will be measured to be
around 2π even though the distance traveled by θiðtÞ along
its full Riemann surface is much smaller. This behavior
results in the small secondary peaks near dθi

dt ¼ �2π visible

in Fig. 26. This can be accommodated by fitting dθi
dt to a

mixture of wrapped stable distributions peaked at zero
and 2π. Since θiðtÞ → −θiðtÞ symmetry demands that
both of these distributions are symmetric, a probability

FIG. 27. Angular histograms of dθi
dt . Since

dθi
dt is defined on −2π < dθi

dt ≤ 2π, normalizations are such that 1
2
dθi
dt is mapped to the unit

circle in analogy to Fig. 21.

FIG. 28. Time series showing RiðtÞ on the horizontal axis and θiðtÞ on the vertical axis for three individual nucleon correlation
functions, where the color of the line shows the time evolution from violet at t ¼ 0 to red at t ¼ 48. The evolution of RiðtÞ shows a clear
drift towards increasingly negative RiðtÞ. Some large jumps where θiðtÞ changes by nearly�2π correspond to crossing the branch cut in
θiðtÞ. There are also sizable jumps where θiðtÞ changes by nearly �π which likely do not correspond to crossing a branch cut.
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distribution able to accommodate all observed features of
dθi
dt is given by the wrapped stable mixture distribution

~PWSðθi; α1; α2; γ1; γ2; fÞ

¼ 1

4π

�
1þ 2

X∞
n¼1

ð1 − fÞe−jγ1njα1 cosðnθiÞ

þ fe−jγ2njα2 cosðnðθi − 2πÞÞ
�
; ð38Þ

where f represents the fraction of dθi
dt data in the secondary

peaks at dθi
dt ¼ �2π representing branch cut crossings. Fits

of dθi
dt to this wrapped stable mixture model performed with

maximum likelihood estimation are shown in Fig. 26 and
are in good qualitative agreement with the LQCD results.
If the widths of the main and secondary peaks in dθi

dt were
sufficiently narrow, it would be possible to unambiguously
associate each dθi

dt measurement with one peak or the other
and “unwrap” the trajectory of θiðtÞ across its full Riemann
surface by adding �2π to measured values of dθi

dt whenever
the branch cut in θiðtÞ is crossed. This should become

increasingly feasible as the continuum limit is approached.
However, the presence of heavy tails in the dθi

dt primary peak
prevents unambiguous identification of branch cut cross-
ings in the LQCD correlation functions considered here.
Due to the power-law decay of the primary peak, there is no
clear separation visible between the main and secondary
peaks, and in particular, points near dθi

dt ¼ �π cannot be
unambiguously identified with one peak or another.
For descriptive analysis of dθi

dt , it is useful to shift the
secondary peak to the origin by defining

gΔθi ¼ ModðΔθi þ π; 2πÞ − π: ð39Þ

gΔθi is well described by the wrapped stable distribution of
Eq. (37). Histograms of the large-time behavior of gΔθi
are shown in Fig. 29 for Δt ¼ 4, 8 and fits of the index
of stability of ~Δθi are shown in Fig. 30. The large-time
distribution of ~Δθiðt;ΔtÞ appears time independent for all
Δt. Heavy tails are visible at all times, even as Δt becomes
large. The large Δt behavior visible here is consistent with
a wrapped Cauchy distribution. The estimated index of

FIG. 29. Histograms of gΔθi along with fits to wrapped normal distributions in blue and wrapped stable distributions in purple.

FIG. 30. Maximum likelihood estimates for the wrapped stable index of stability αðgΔθiÞ (left) and width γðgΔθiÞ (right) extracted from
the large-time plateau region as functions of Δt.
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stability of gΔθi differs significantly from that of ΔR, and
for Δt ¼ 1, the large-time behavior is found to have

αð ~Δθiðt → ∞;Δt ∼ 0.12 fmÞÞ → 1.267ð4Þð1Þ: ð40Þ
This result is consistent with maximum likelihood estimates
of α1ðdθidt Þ in the wrapped stable mixture model of Eq. (38).

α2ðdθidt Þ, associatedwith the peak shifted from θi ¼ �π in the
wrapped stable mixture model, cannot be reliably estimated
from the available LQCD correlation functions. The con-
tinuum limit index of stability of dθi

dt cannot be determined
without additional LQCD studies at finer lattice spacings.
As seen in Fig. 30, the large-time width of ~Δθiðt;ΔtÞ

increases with increasing Δt. This behavior is shared by
Δθiðt;ΔtÞ. In accordance with the observations above that
the wrapped normal variance of θiðtÞ increases linearly
with t, the constant large-time wrapped normal variance of
Δθiðt;ΔtÞ increases linearly with Δt. This is consistent
with a picture of Δθiðt;ΔtÞ as the sum of Δt single time
step differences, dθidt , that make roughly equal contributions
to Δθiðt;ΔtÞ. In accordance with the scaling σ2ðθiðtÞÞ ∼
ðMN − 3

2
mπÞt discussed previously, this linear scaling

gives σ2ðΔθiðt;ΔtÞÞ ∼ 2ðMN − 3
2
mπÞΔt.

We summarize our observations on the phase of CðtÞ:
(i) The phase of the nucleon correlation function is

described by an approximately wrapped normal
distribution whose width increases with time. At
small times the distribution is narrow and resembles
a normal distribution. At large times the distribution
becomes broad compared to the 2π range of defi-
nition of θiðtÞ and resembles a uniform distribution.

(ii) The phase effective mass MθðtÞ appears to plateau
to a value close to MN − 3=2mπ . Since jeiθiðtÞj2 ¼ 1
is time independent by construction, this nonzero
asymptotic value of Mθ implies that θiðtÞ has a
severe StN problem.

(iii) MθðtÞ can be determined from the time derivative of
the wrapped normal variance of θiðtÞ in analogy to
the cumulant expansion. The effective mass ex-
tracted from growth of the wrapped normal variance
is identical to MθðtÞ up to statistical fluctuations.
This leads to scaling of the wrapped normal variance
of θiðtÞ consistent with σ2ðθiðtÞÞ ∼ 2ðMN − 3

2
mπÞt.

(iv) Standard estimators for the wrapped normal variance
have a systematic bias and for a sufficiently broad
distribution the minimum expected statistical un-
certainty is set by finite sample size 1=N effects.
Once the wrapped normal variance becomes larger
than lnN, finite sample size fluctuations become
larger than the signal required to extract MθðtÞ.
Since the width of θiðtÞ increases with time,
a region where finite sample size errors prevent
reliable extractions of MθðtÞ will inevitably occur at
sufficiently large times. This is the noise region

empirically identified above. Standard effective
mass estimates are systematically biased in the noise
region. Exponentially large increases in statistics are
necessary to delay the onset of the noise region.

(v) Finite differences, Δθiðt;ΔtÞ, are described by time-
independent distributions at large times. Δθi is
heavy tailed for all Δt considered here, and dθi

dt is
well described by a wrapped stable mixture distri-
bution. Further studies will be needed to understand
the continuum limit of the index of stability of dθi

dt .

IV. AN IMPROVED ESTIMATOR

The preceding observations suggest that difficulties in
statistical analysis of nucleon correlation functions arise
from difficulties in statistical inference of θiðtÞ. The same
exponentially hard StN and noise region problems obstruct
large-time estimation of the wrapped normal variance of
θiðtÞ and of MðtÞ. Conversely, the width of Δθiðt;ΔtÞ
distributions does not increasewith time, and there is no StN
problem impeding statistical inference of Δθiðt;ΔtÞ. This
suggests that it would be preferable to construct an effective
mass estimator relying on statistical inference ofΔθiðt;ΔtÞ.
First consider the magnitude for simplicity. The mean

correlation function magnitude can be expressed in terms
of ΔRi as

heRiðtÞi¼
�
exp

�
Rið0Þþ

Xt

t0¼1

dRi

dt

����
t0

�	

¼
�
exp

�
Rið0Þþ

Xt−Δt
t0¼1

dRi

dt

����
t0

�
exp

� Xt

t0¼t−Δtþ1

dRi

dt

����
t0

�	

¼heRið0ÞþΔRiðt−Δt;t−ΔtÞeΔRiðt;ΔtÞi: ð41Þ

The last expression above shows that eRiðtÞ can be
expressed as a product of two factors involving the
evolution of RiðtÞ in the regions ½0; t − Δt� and
½t − Δt; t� respectively. Because QCD has a finite correla-
tion length, these two factors should be approximately
decorrelated. Correlations should only arise from contri-
butions involving points near the boundary at t − Δt. At
large times, t can be assumed to be much larger thanΔt and
than any QCD correlation length, so boundary effects can
be assumed to be negligible for the first region. Boundary
effects cannot be neglected for the smaller region of length
Δt. Treating these boundary effects as a systematic uncer-
tainty allows the correlation function to be factorized
between the regions ½0; t − Δt� and ½t − Δt; t� as

heRiðtÞi ¼ heRið0ÞþΔRiðt−Δt;t−ΔtÞiheΔRiðt;ΔtÞi½1þOðe−δERΔtÞ�:
ð42Þ

where δER is the smallest energy scale responsible for
nontrivial correlations between the factors on the rhs
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associated with ½0; t − Δt� and ½t − Δt; t�, and terms sup-
pressed by e−δERðt−ΔtÞ are neglected.8 If both factors on the
rhs of Eq. (42) only receive contributions from the ground
state and have single-exponential time evolution, then the
product of the independently averaged factors on the rhs
has the same single-exponential behavior as the lhs. If
excited states make appreciable contributions to either
factor on the rhs, then the product of sums of exponentials
representing multistate evolution over ½0; t − Δt� and
½t − Δt; t� respectively will not exactly equal the sum of
exponentials representing multistate evolution over ½0; t�.
eRiðtþ1Þ can similarly be split into an approximately

decorrelated product. Performing this split with regions
½0; t − Δt� and ½t − Δt; tþ 1� gives
heRiðtþ1Þi ¼ heRið0ÞþΔRiðt−Δt;t−ΔtÞiheΔRiðtþ1;Δtþ1Þi

× ½1þOðe−δERΔtÞ�: ð43Þ
The common term in both expressions cancels when
constructing the magnitude effective mass, allowing us
to define

~MRðt;ΔtÞ ¼ ln

� heΔRiðt;ΔtÞi
heΔRiðtþ1;Δtþ1i

�
¼ MRðtÞ þOðe−δERΔtÞ: ð44Þ

Identical steps can be applied to the phase, leading to

~Mθðt;ΔtÞ ¼ ln
� heiΔθiðt;ΔtÞi
heiΔθiðtþ1;Δtþ1Þi

�
¼ MθðtÞ þOðe−δEθΔtÞ: ð45Þ

The same steps can also be applied to the full correlation
function CiðtÞ ¼ eRiðtÞþiθiðtÞ. Noting that

eΔRiðt;ΔtÞþiΔθiðt;ΔtÞ ¼ CiðtÞ
Ciðt − ΔtÞ ; ð46Þ

the analogous relation for the full effective mass takes the
simple form

~Mðt;ΔtÞ ¼ ln

� hCiðtÞ=Ciðt − ΔtÞi
hCiðtþ 1Þ=Ciðt − ΔtÞi

�
¼ MðtÞ þOðe−δEΔtÞ: ð47Þ

The correlation function ratio effective mass estimator
~Mðt;ΔtÞ has different statistical properties than the tradi-
tional effective mass MðtÞ when Δt is treated as an
independent t. Note that although Δt appears in the
numerator and denominator of correlation function ratios
superficially similarly to tJ in Eq. (6), these two parameters
induce quite different statistical behavior. Ciðtþ 1Þ in
Eq. (47) could be replaced by Ciðtþ tJÞ (with an appro-
priate 1=tJ overall normalization added). Taking tJ > 1
increases the time separation between Ciðt − ΔtÞ and
Ciðtþ tJÞ in the correlator ratio in the denominator of
Eq. (47), resulting in larger statistical uncertainties in
effective mass results, and will not be pursued further here.
The approximate factorization leading to Eq. (47) can be

understood from a quantum field theory viewpoint without
reference to the magnitude and phase individually.
Inserting a complete set of states in a correlation function
at t − Δt allows the correlation function to be expressed as
a sum of exponentials e−EnΔt times prefactors representing
the amplitude for the system being in the nth state at time
t − Δt. These prefactors for each e−EnΔt term are propor-
tional to e−Enðt−ΔtÞ, enhancing the amplitude for finding the
system in its ground state at large t − Δt. In this way, the
contribution to the correlation function from the region
½0; t − Δt� can be thought of as an effective source for the
correlation function in the region ½t − Δt; t� whose ground-
state overlap is dynamically improved compared to the
overlap of the original source at time zero. The prefactors
for each e−EnΔt will depend on the structure of this effective
source, but the exponents are fixed by the QCD spectrum.
The factor of Ciðt − ΔtÞ−1 in Eq. (47) can be considered
to be a modification of the effective source in the region
½0; t − Δt�. The presence of Ciðt − ΔtÞ−1 will modify the
prefactor of each e−EnΔt term, but it should not affect time
evolution of the system in the region ½t − Δt; t�. This
suggests that an effective mass designed to extract the
ground-state energy from the sum of e−EnΔt terms, as in
Eq. (47), should provide the exact ground-state mass at
large Δt up to corrections arising from excited-state
contributions to the e−EnΔt sum. These corrections should
decrease exponentially with increasing Δt at a rate set by
the energy gap between the ground and first excited state
in the system of interest. The size of this energy gap will
be set by the lowest-lying excitation consistent with the
quantum numbers of the system, a derivatively coupled
pion for the case of the nucleon,9 leading to the expect-
ation ~Mðt;ΔtÞ ¼ MðtÞ þOðe−mπΔtÞ.
It is not straightforward to construct a representation of

Ciðt − ΔtÞ−1 in terms of local quark and gluon operators that

8It is not proven that the magnitude of a correlation function
can be expressed as a sum of exponentials; however, the square of
the magnitude contributes to the variance correlation function and
must have a spectral representation as a sum of exponentials.
Results of Sec. III demonstrate numerically that the magnitude
decays exponentially at large times with a ground-state energy
equal to half the ground-state energy of the variance correlation
function. Equation (44), which further supposes exponential
magnitude excited-state contamination, is investigated numeri-
cally below; see Fig. 31.

9Multihadron correlation functions contain additional low-
lying excitations that may introduce larger correlation lengths
than m−1

π associated for instance with near-threshold bound
states. Such multihadron systems are outside the scope of this
work.
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would allow a rigorous proof of these statements, and so
numerical LQCD calculations are used to investigate the
validity of Eq. (47). Exponential reduction of systematic
error is numerically demonstrated, but at a faster rate than
m−1

π . This suggests that the structure of the effective source
plays an important role in determining which e−EnΔt terms
are appreciable at the large but finiteΔt accessible to LQCD
calculations in the same way that the structure of the source
at time zero determines which excited states make appreci-
able contributions to the standard effective mass at small t.
The LQCD results for ~MRðt;ΔtÞ and ~Mθðt;ΔtÞ with

Δt ¼ 1, 2, 8 are shown in Fig. 31, and results for ~Mðt;ΔtÞ
are shown in Fig. 32. The statistical uncertainties associated
with ~Mðt;ΔtÞ are the same as those of MðtÞ within the
golden window, but at large times they become constant in
time rather than exponentially increasing. This is in accord
with our observations about the form of the statistical

distributions associated with ΔRiðt;ΔtÞ and Δθiðt;ΔtÞ,
which, up to small magnitude-phase correlations, indicate
that

Varð ~Mðt;ΔtÞÞ∼VarðeRiðt;ΔtÞþiθiðt;ΔtÞÞ
heRiðt;ΔtÞþiθiðt;ΔtÞi2 ∼e2ðMN−3

2
mπÞΔt: ð48Þ

The statistical uncertainties associated with ~Mðt;ΔtÞ are
constant in t, although they do increase exponentially with
increases in Δt. Since Δθiðt;ΔtÞ has constant width at
large times, the inevitable onset of the noise region where
statistical inference fails for θiðtÞ can be avoided. The
constraint required for reliable statistical inference of
~Mðt;ΔtÞ at large times is that the wrapped normal variance
ofΔθiðt;ΔtÞ can be extractedwithout large finite sample size
errors. This constraint can be expressed as a bound on the
statistical sample size required for a particular choice of Δt,

N > eσ
2ðΔθiðt;ΔtÞÞ ∼ e2ðMN−3

2
mπÞΔt: ð49Þ

The statistical uncertainties of ~Mðt;ΔtÞ determined from the
LQCD correlation functions are shown in Fig. 33, from
which it can be seen that they become constant at large times
for all fixed Δt. For small and moderately large values of
Δt ¼ 1, 7, 15, the expected exponential increase in large-
time statistical uncertainties is observed, consistent with
Eq. (49). Once Eq. (49) is violated, exponential scaling of

statistical uncertainties with Δt ceases. For Δt≲ lnðNÞ
2ðMN−3

2
mπÞ,

the relative statistical uncertainty in ~Mðt;ΔtÞ compared to
~Mðt;Δt ¼ 1Þ is approximately equal to N rather than
e2ðMN−3

2
mπÞðΔt−1Þ.10 This is seen in Fig. 33 in the large-time

behavior of the standard effective mass.

FIG. 31. Results for the correlation-function-ratio-based estimators ~MRðt;ΔtÞ and ~Mθðt;ΔtÞ with Δt ¼ 1, 2, 8. The left panel shows
results formRðt;ΔtÞwithΔt ¼ 1 in black,Δt ¼ 2 in red, andΔt ¼ 8 in orange. The standard estimatormRðtÞ is shown in gray, and a red
line is shown for reference at 3

2
mπ . The right panel shows results for mθðt;ΔtÞ with Δt ¼ 1 in black, Δt ¼ 2 in brown, and Δt ¼ 8 in

green. The standard estimator mθðtÞ is shown in gray and a red line is shown for reference at MN − 3
2
mπ .

FIG. 32. Results for the correlation-function-ratio-based esti-
mator ~Mðt;ΔtÞ. The left panel shows results with Δt ¼ 1 in
black, Δt ¼ 2 in purple, and Δt ¼ 8 in blue, along with the
traditional effective mass estimator MðtÞ shown in gray and a red
line at MN shown for reference.

10These bounds only indicate scaling with N. To be made more
precise, proportionality constants can be computed using the
scaling indicated in Eq. (49).
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When Eq. (49) is violated, Δθiðt;ΔtÞ cannot be reliably
estimated at large times and increasingΔt does not improve
the accuracy of ~Mðt;ΔtÞ. The standard effective mass
estimator can be thought of as evolving with t ∼ Δt, and
will become unreliable because of finite sample size effects

at large times scaling as t≳ lnN=ð2ðMN − 3
2
mπÞÞ.

Similarly, our improved effective mass becomes unreliable
for Δt≳ lnN=ð2ðMN − 3

2
mπÞÞ. In this extreme case, the

bias associated with neglected correlations in ~Mðt;ΔtÞ
becomes less important than the bias associated with
statistical inference of overly broad circular random var-
iables. Exponential growth of statistical uncertainties with
Δt suggests that smaller choices of Δt where Eq. (49) holds
likely lead to smaller overall statistical plus systematic
uncertainties.
The systematic bias of ~Mðt;ΔtÞ can be explored through

calculations at various Δt. Figure 34 shows results for
Δt ¼ 1;…; 9. ForΔt≳ 7, results for the ~Mðt;ΔtÞ fit during
the large-time noise region 25 ≤ t ≤ 40 are statistically
consistent with fits extracted from the golden window
15 ≤ t ≤ 25. Late-time fits with ~Mðt;ΔtÞ have larger
statistical uncertainties than golden window fits. More
precise fits than either could be made by including both
the golden window and the noise region in fits of ~Mðt;ΔtÞ.
There is only a minor advantage in including the noisier
large-time points in fits that include a precise golden
window, and this exploratory work does not aim for a
more precise extraction of the nucleon mass. Practical
advantages of large-time fits of ~Mðt;ΔtÞ compared to
golden window fits of ~MðtÞ are more likely to be found
in systems where a reliable golden window cannot be
unambiguously identified. Large-time fits of ~Mðt;ΔtÞ
would also be more advantageous for lattices with larger
time directions.

FIG. 33. Variance in the estimates of ~Mðt;ΔtÞ as a function of
time t for various choices of Δt. The black points show Δt ¼ 1,
the purple show Δt ¼ 7, and the blue show Δt ¼ 15. The gray
points show uncertainties in the standard effective mass estimator
equivalent toΔt ¼ t. The purple and blue lines show the expected
large-time variance of ~Mðt;ΔtÞ with Δt ¼ 7, 15 predicted by
Eq. (48) with the overall normalization fixed by the Δt ¼ 1 case.
The red line shows the bound of Eq. 33 with overall normali-
zation again fixed by the Δt ¼ 1 case. Breakdown of statistical
inference of broad circular distributions predicts that the large-
time variance of ~Mðt;ΔtÞ will not systematically rise above the
red line for any Δt.

FIG. 34. In both the left and right panels, results for ~MðΔtÞ taken from correlated χ2-minimization fits of ~Mðt;ΔtÞ to a constant in the
region 25 ≤ t ≤ 40 with fixedΔt are shown as blue points. The tan bands show the results of correlated χ2-minimization fits of ~Mðt;ΔtÞ
in various rectangles of t and Δt to the three-parameter (constant plus exponential) form shown in Eq. (50). The three light-brown bands
all use data from 25 ≤ t ≤ 40 and then 1 ≤ Δt ≤ 10, 2 ≤ Δt ≤ 10, and 3 ≤ Δt ≤ 10. The black dashed lines show the extrapolated
prediction for the nucleon mass including statistical errors from the 2 ≤ Δt ≤ 10 fit added in quadrature with a systematic error
calculated as half the maximum difference in central values given by the three fits shown. The horizontal gray bands show MN � δMN
from the precision NPLQCD calculation of Ref. [28], which used a high-statistics ensemble of correlation functions with optimized
sources generated on the same gauge configurations used here. The right panel shows a much larger range ofΔt and also includes results
calculated with a smaller ensemble of N ¼ 5, 000 correlation functions as gray points. Deviations from the asymptotic prediction due to
finite statistics are clearly visible and lead to incorrect results at much earlier Δt in the smaller ensemble.
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Results for a range of Δt shown in Fig. 34 can also be
used to fit the systematic bias in ~Mðt;ΔtÞ and formally
extrapolate to the unbiased Δt → t → ∞ result. During the
development of a refined version of this improved estimator
[48], it was realized that the parametric form of the bias can
be deduced by considering a decomposition of ½0; t� into
an extended “source region” ½0; t − Δt� involving CiðtÞ
and C−1

i ðt − ΔtÞ and an “evolution region” ½t − Δt; t�
only involving CiðtÞ. Standard QCD time evolution
should apply after the boundary of the source region at
t − Δt, and so at large Δt correlation function ratios should
scale with ∼e−MNΔt relative to their t − Δt boundary
values. Corrections to this ground-state scaling will arise
from excited states, which will make contributions to
hCiðtÞC−1

i ðt − ΔtÞi scaling as ∼e−ðMNþδEÞΔt, where δE is
the gap between the nucleon ground and first excited-state
energies. This allows the dominant contribution to the bias
in ~Mðt;ΔtÞ to be parametrized as

~Mðt → ∞;ΔtÞ ¼ ln

�
e−MNΔtð1þ ce−δEΔt þ � � �Þ

e−MNðΔtþ1Þð1þ ce−δEðΔtþ1Þ þ � � �Þ

�
¼ MN þ cδEe−δEΔt þ � � � ; ð50Þ

where c is the ratio of excited- to ground-state overlaps
produced by the effective boundary at t − Δt. At suffi-
ciently light quark masses and large Δt, this excited-state
gap will be set by mπ. However, it is noteworthy that
Eq. (47) involves products of momentum-projected unaver-
aged correlation functions. It is familiar from studies of
two-baryon correlation functions formed from products of
momentum-projected one-baryon blocks that summing
over all points in the spatial volume separately for each
factor in a product leads to a suppression by Oðm−3

π V−1Þ in
the fraction of points in the product where the nucleons are
within one-pion Compton wavelength of one another. It is
expected that correlations between CiðtÞ and C−1

i ðt − ΔtÞ
described by one-pion excitations will be similarly volume
suppressed. The dominant excited-state bias is then
expected to arise from excitations that could be produced
throughout the lattice volume at the boundary of the source
region. Such excitations are generically far from the
nucleon and any other sources of conserved charge, so
they should have quantum numbers of the vacuum. The
dominant excited-state bias contributing to Eq. (50) is
therefore expected to be e−MσΔt, where Mσ is the mass of
the σ-meson, the lightest excited state with quantum
numbers of the vacuum. Performing a correlated χ2-
minimization three-parameter fit of ~Mðt;ΔtÞ to the constant
plus exponential form shown in Eq. (50) for noise region
data 25 ≤ t ≤ 40 gives

MN ¼ 0.7192ð49Þð42Þ; c ¼ −0.358ð26Þð17Þ;
δE ¼ 0.512ð65Þð73Þ; ð51Þ

where the first uncertainty is the statistical uncertainty and
the second uncertainty is a measure of systematic uncer-
tainty taken from the variation in the central value of the fit
as the fitting range in Δt varies. The extrapolated result in
Eq. 34 agrees within uncertainties with the intermediate-
time plateau result MN ¼ 0.7253ð11Þð22Þ and with the
high-precision GW result MN ¼ 0.72546ð47Þð31Þ of
Ref. [28]. For the extrapolated large-time result, the total
statistical and systematic uncertainty in quadrature is
δMN ¼ 0.0064, which is larger than the total uncertainty
of the plateau region determination δMN ¼ 0.0025. The
large-time plateau considered effectively comprises a two-
dimensional region 1 ≤ Δt ≤ 10 and 25 ≤ t ≤ 40 with 150
points. The value of the χ2-minimization fit to this two-
dimensional region is most sensitive to points with smaller
Δt and therefore exponentially smaller uncertainties but is
equally sensitive to points with all t that are expected to be
approximately decorrelated over intervals t≳m−1

π . The
intermediate-time plateau region 10 ≤ t ≤ 25 includes 15
points that are expected to be approximately decorrelated
over intervals t≳m−1

π . The value of the standard effective
mass fit is most sensitive to points with smaller t and
therefore exponentially smaller uncertainties, though the
variance correlation function is not dominated by the three-
pion ground state until t≳ 20. This indicates that results
from the intermediate-time plateau have smaller point-by-
point uncertainties than points from the large-time noise
region. The total uncertainty of the noise region result could
be reduced by increasing the length of the lattice time
direction, while the length of the smaller-time plateau
available to standard estimators is restricted by the StN
problem. The proof-of-principle calculation presented here
demonstrates that accurate results can be extracted from the
noise region. It remains to be seen in future calculations of
single- and multibaryon systems optimized for large-time
analysis whether the methods introduced in this work can
be used to achieve significantly higher precision with the
same resource budget as calculations optimized for smaller-
time analysis.
The best-fit excitation scale δE ¼ 866ð110Þð124Þ MeV

in Eq. (34) can be compared with the σ-meson mass
extracted from mesonic sector calculations to test the
heuristic arguments above that lighter excitations will make
volume-suppressed contributions. Calculations of the σ-
meson face a severe StN problem, particularly at light quark
masses where the σ-meson describes a broad ππ isoscalar
resonance rather than a compact QCD bound state, but a
recent calculation by the Hadron Spectrum Collaboration
has precisely determined Mσ ¼ 758ð4Þ MeV at mπ ∼
391 MeV where the σ-meson is weakly bound [49].
Similarly precise results at slightly higher quark masses
are not available for interpolation to mπ ∼ 450 MeV, but a
crude extrapolation can be made using the Hadron
Spectrum result and the (real part of the) physical position
of the σ-meson pole obtained from dispersive analysis of
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experimental data: Mσ ¼ 457ð14Þ MeV [50,51]. An
extrapolation linear in the pion mass gives Mσ ∼
830 MeV at mπ ∼ 450 MeV, in rough agreement with
the best-fit excitation scale determined above. This agree-
ment is insensitive to the form of the extrapolation used,
as the Hadron Spectrum σ-meson mass result at mπ ∼
391 MeV is itself less than one standard deviation smaller
than the best-fit nucleon excitation scale. Fits where δE ¼
Mσ is explicitly assumed can be performed more precisely
and lead to consistent results with smaller uncertainties for
the nucleon mass MN ¼ 0.7226ð18Þ, as shown in Fig. 35.
These fits provide another consistency check on δE but do
not appropriately capture the systematic uncertainties of
explicit assumptions about the excited-state spectrum.
The improved estimator proposed here exploits physical

locality and finite correlation lengths to extract the effective
mass from the evolution of CiðtÞ between times t − Δt and
t rather than the full evolution between source time t ¼ 0
and sink time t. The correlation function at time t − Δt is
effectively treated as a new source so that the effective
source/sink separation is fixed to be a constant length Δt
rather than an increasing separation t. The effective source
at t − Δt still incorporates the dynamical evolution of the
system between time 0 and t − Δt, and in particular has
exponentially reduced excited-state contamination in mag-
nitude compared to the original source. In principle t can be
taken arbitrarily large with Δt fixed in order to extract a
plateau in ~Mðt;ΔtÞ with arbitrarily small excited-state
contamination in the magnitude and constant statistical
uncertainties across the plateau. The length of the lattice
time direction becomes the only factor limiting the length
of the plateau in this case.
Similar physical ideas underlie the hierarchical integra-

tion approach of Ref. [52]. In that approach, locality is
exploited to decompose correlation functions into products
of factors that can be computed on subsets of a lattice
volume with exponentially reduced StN problems.

Hierarchical integration has been successfully implemented
in studies of gluonic observables [53–57] and recently
explored for baryon correlation functions in the quenched
approximation [58] and beyond [59]. For baryon correla-
tors, the method of Ref. [58] implements approximate
factorization with systematically reducible uncertainties,
as in the method proposed here. The benefits of the two
methods are distinct. Hierarchical integration also employs
standard statistical estimators for observables defined on
subvolumes to determine correlation functions at large t
with exponentially slower StN degradation. The new
estimators introduced here allow data to be extracted from
large-t correlation functions with constant StN, but remov-
ing all systematic uncertainties requires an extrapolation to
large Δt with exponential StN degradation of the same
severity as the original correlation function. Investigations
of the compatibility of and relations between these methods
are left to future work. In addition, this method also has
similarities to the generalized pencil-of-functions method
introduced to LQCD in Ref. [60], where correlation
functions involving shifted source and sink times are
combined in a variational basis. In the generalized
pencil-of-functions approach, shifted source and sink times
have primarily been investigated to reduce excited-state
contamination rather than StN improvement.
In some sense, Δt can be considered a “factorization”

scale in the time direction. The LQCD calculations are valid
for all energy scales below that defined by the inverse
lattice spacing, π=a. While well defined, the MC sampling
of the path integral and analysis of baryon correlation
functions fails to converge in the noise region because of
the quantum fluctuations encountered along the paths from
the source to large times, which include many incoherent
hadronic volumes. The new estimator provides exponen-
tially improved signal extraction at large times through
limiting the number of contributing hadronic volumes
to those within Δt, but does not provide a complete

FIG. 35. The blue points and light-brown bands show the same χ2-minimization fit results to large-time ~Mðt;ΔtÞ plateaus as Fig. 34.
The horizontal axis has been rescaled to coordinates that would show a linear bias for excited-state contributions from σ-mesons (left)
and pions (right). Black lines show the central values of χ2-minimization fits to constrained versions of Eq. (50) where δE is fixed to be
Mσ (left) ormπ (right). The horizontal gray bands correspond toMN � δMN from the high-precision NPLQCD calculation of Ref. [28].

MICHAEL L. WAGMAN and MARTIN J. SAVAGE PHYSICAL REVIEW D 96, 114508 (2017)

114508-28



description of the IR behavior of QCD, introducing a bias
in the extracted mass of the nucleon. An extrapolation in
Δt, using a form motivated by low-energy pion physics, is
used to remove this bias. While different, this reminds one
of matching LQCD calculations to the p-regime of chiral
perturbation theory to remove finite-spatial-volume effects.
The idea of performing an extrapolation to overcome a sign
problem is not new. It was introduced 30 years ago to deal
with the sign problem in MC calculations of modest size
nuclei [61], and recently used in lattice effective field
theory calculations to continuously evolve between the
eigenvalues of nuclear many-body systems described by a
Hamiltonian without a sign problem to one that does have a
sign problem [62].

V. SUMMARY AND CONCLUSIONS

This work presents observations about the nucleon
correlation function in LQCD that highlight the role of
the complex phase in the signal-to-noise problem. The
magnitude is found to have no StN problem and has the
large-time scaling hjCiðtÞji ∼ e−

3
2
mπ t. The nucleon log-

magnitude, RiðtÞ, is approximately described by a normal
distribution with linearly increasing mean and almost
constant variance. The complex phase, which gives the
direct importance sampling of CiðtÞ a sign problem, has the
large-time scaling of approximately heiθiðtÞi ∼ e−ðMN−3

2
mπÞt.

The StN problem arising from reweighting the complex
phase of the nucleon correlation function matches the
nucleon StN problem.
We present evidence that nucleon correlation functions

are statistically described by a nearly decorrelated product
of an approximately log-normal magnitude and wrapped
normal phase. Complex correlation functions with log-
normal magnitudes and wrapped normal phase factors are
consistent with the arguments of Endres et al. [16], who
suggested stable distributed correlation function logarithms
may be a generic feature of quantum field theory and
pursued a systematic statistical analysis of unitary fermion
correlation functions that provides inspiration for this work.
The wrapped normal phase distribution broadens with time,
and at large times cannot be reliably distinguished from a
uniform distribution. A noise region begins at this point
where the sample mean phase becomes biased and sys-
tematically deviates from the true mean phase. In contrast,
and importantly, dRi

dt and
dθi
dt are described by approximately

stable and wrapped stable distributions respectively that
become constant at large times and can be estimated in the
noise region with no StN problem.
It is remarkable that the Euclidean-time derivative of the

logarithm of the correlation function is described by a
heavy-tailed distribution while the logarithm itself is
nearly normally distributed at all times. Further studies
will be needed to understand the dynamical origin, con-
tinuum limit behavior, and universality of heavy-tailed

Euclidean-time evolution of correlation functions in quan-
tum field theory. LQCD calculations at finer lattice spac-
ings are needed to explore the continuum limit of the index
of stability describing time evolution of the nucleon
correlation function. Perturbative QCD and model calcu-
lations will provide useful insights into the dynamical
origin of the heavy-tailed time evolution of the nucleon
correlation function. Lattice and continuum studies of other
quantum field theories are required to understand the
universality of the heavy-tailed Euclidean-time evolution
of correlation functions. Implications for real-time evolu-
tion are also left for future investigations.
Building on the observation that dθidt has constant width at

large times,we have proposed a new estimator in Eq. (47) for
the effective mass of the nucleon correlation function that
relies on statistically sampling ratios of correlation functions
at different times. This estimator has a StN ratio that is
constant in t, the source-sink separation time, and the StN
problem instead leads to an exponentially degrading StN
ratio in Δt, the difference between the numerator and
denominator sink times. The independence of t and Δt in
this estimator allows similarly precise results to be extracted
from all sufficiently large t rather than from a window of
intermediate t with standard estimators. The new estimator
effectively includes Δt time steps of time evolution follow-
ing t − Δt time steps of dynamical source improvement and
it includes a systematic uncertainty that must be eliminated
by extrapolating to the limit Δt → t → ∞. The systematic
uncertainty of the new estimator is expected to decrease as
e−δEΔt for large Δt, where δE is the energy gap between the
ground state and the first excited state with appropriate
quantumnumbers and appreciable overlapwith the effective
source at t − Δt. Statistical uncertainties increase with

increasing Δt as ∼e2ðMN−3
2
mπÞΔt. For Δt≳ lnðNÞ

2ðMN−3
2
mπÞ addi-

tional systematic uncertainties associated with finite-
sample-size effects in the statistical inference of circular
random variables leads to unreliable results in the same

way that t≳ lnðNÞ
2ðMN−3

2
mπÞ leads to unreliable results in the noise

region of standard estimators.
The properties of the new estimator that we have

introduced may prove advantageous in the analysis of
LQCD calculations of nuclei. Such systems are plagued
by a reduced golden window compared to the single
nucleon, presently limiting the length of plateaus from
which to extract energy eigenvalues. A reanalysis of
existing nuclear correlation functions generated by the
NPLQCD Collaboration [28,63,64] is planned in order
to determine the utility of this work for such systems.
Binding momenta and other scales appearing in multibody
hadronic systems may affect the form of the extrapolation
used to remove the bias of the new estimator. It will be
important to verify and further understand the scaling of the
new estimator with pion mass and lattice spacing, as well as
to investigate dependences on smearing scales and other
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scales appearing in LQCD calculations. Studies of the
vacuum channel including glueballs and scalar mesons and
analyses of disconnected diagrams provide additional
directions for further studies. Forming ratios of position
space, rather than momentum space, correlation functions
may be advantageous in future studies. Other types of
LQCD calculations may also benefit from the new esti-
mator, for instance in the isoscalar meson sector and those
at nonzero baryon chemical potential.
It is not expected that the statistical properties of θiðtÞ

discussed here and, in particular, the constant large-time
width of dθi

dt , are unique to single-nucleon correlation
functions. If analogous statistical properties apply to
generic complex correlation functions in quantum field
theory, then estimators analogous to Eq. (47) can be
constructed to extract the spectra of complex correlation
functions and reweighted complex actions without StN
problems. It remains to be seen if the approaches developed
in this work can be fruitfully applied to other systems in
particle, nuclear, and condensed matter physics that
encounter sign and StN problems.
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