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We consider a linear sigma model describing 2N2
f bosons (σ, a0, η0 and π) as an approximate effective

theory for a SUð3Þ local gauge theory with Nf Dirac fermions in the fundamental representation. The

model has a renormalizable UðNfÞL ⊗ UðNfÞR invariant part, which has an approximate Oð2N2
fÞ

symmetry, and two additional terms, one describing the effects of a SUðNfÞV invariant mass term and the
other the effects of the axial anomaly. We calculate the spectrum for arbitrary Nf. Using preliminary and
published lattice results from the LatKMI collaboration, we found combinations of the masses that vary
slowly with the explicit chiral symmetry breaking and Nf. This suggests that the anomaly term plays a

leading role in the mass spectrum and that simple formulas such asM2
σ ≃ ð2=Nf − CσÞM2

η0 should apply in

the chiral limit. Lattice measurements of M2
η0 and of approximate constants such as Cσ could help in

locating the boundary of the conformal window. We show that our calculation can be adapted for arbitrary
representations of the gauge group and in particular to the minimal model with two sextets, where similar
patterns are likely to apply.
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I. INTRODUCTION

The linear version of the sigma models introduced by
Gell-Mann and Levy [1] has played an influential role [2] in
the establishment of the standard model. In today’s usage
[3,4], the nonlinear versions not involving the σ-particle
[f0ð500Þ] are favored in quantum chromodynamics (QCD)
based low-energy calculations. However, when dealing
with the explicit breaking of the axial Uð1ÞA symmetry,
linear models are used to describe the η0 [5–8]. In addition
to the η0 and π, the linear models involve the σ and the a0
[0þ isovectors, a0ð980Þ]. In QCD, the σ and the a0 are
correctly considered as “heavy” particles compared to the
“light” pions which—unlike their 0þ counterparts—
become massless in the chiral limit. However if enough
light flavors are added, the separation between light and
heavy changes, and the possibility of having a light σ is
quite attractive from the low-energy point of view.
The spectrum of multiflavor gauge theories has been

vigorously investigated in the context of finding hypothetical
strongly interacting particles responsible for the formation of
the Brout-Englert-Higgs particle and the electroweak sym-
metry breaking. For recent reviews of the physics motiva-
tions and the literature on this subject, we recommend
Refs. [9–11]. The estimation of the mass of flavor singlets
using lattice simulations involves disconnected diagrams
and is computationally expensive. There are only a few
available results. For instance, the estimation of the η0 in
QCD has only been achieved recently [12–14]. Similarly,
there are only a few results available in the multiflavor case.
Recently, light σ masses were found for SUð3Þ gauge

theories with eight [15–18] and twelve [17,19] fundamental
flavors and also for two sextets [20]. In addition, preliminary
results [21,22] concerning themass of the η0were announced

at recent conferences. With this information, we investigate
the possibility that the explicit breaking of the axial Uð1ÞA
symmetry, which depends in a distinct way on Nf, plays an
important role in the determination of the spectrum and the
boundary of the conformal window where a nontrivial
infrared fixed point is present [23–25]. As the models
mentioned above have a low-energy behavior significantly
different from QCD, it is very desirable from the point of
viewofmodel building to have a simple effective description
of this behavior.
In this paper, we consider a generalization of the models

discussed for Nf ¼ 2 [7], and Nf ¼ 3 [5,6,8] in the context
of QCD. This is a linear sigma model describing 2N2

f

bosons (σ, a0, η0 and π), using the QCD terminology. We
use it here as an approximate effective theory for a SUð3Þ
local gauge theory with Nf Dirac fermions in the funda-
mental representation. The Lagrangian has a renormaliz-
able UðNfÞL ⊗ UðNfÞR invariant part and two additional
terms, one representing a SUðNfÞV invariant mass term and
the other the axial anomaly.
A SUðNfÞV invariant effective theory for pions is

discussed in [26] for arbitrary Nf. There has been a recent
interest to include the σ in dilatonic effective theories
[27–29]. We briefly motivate the inclusion of the “complex
partners,” the η0 and a0. In the case of Nf ¼ 2, the term that
we use to describe the axial anomaly effect is simply a mass
term with alternate signs,

VajNf¼2 ∝ ðη02 − σ2 þ a20 − π2Þ: ð1Þ

The Nf ¼ 2 model was used by ’t Hooft [7] to explain the
role that the instantons play in the spectrum because if we

PHYSICAL REVIEW D 96, 114507 (2017)

2470-0010=2017=96(11)=114507(7) 114507-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.114507
https://doi.org/10.1103/PhysRevD.96.114507
https://doi.org/10.1103/PhysRevD.96.114507
https://doi.org/10.1103/PhysRevD.96.114507


replace the effective bosonic degrees of freedom in (1) by
their quark content (a0 ∼ ψ̄τψ etc.), we recognize a term of
the ’t Hooft determinant [30]. In the following, we discuss
the generalization for an arbitrary number of flavors Nf. As
we see, the axial anomaly term is essential to get a light σ.
The main goal of the article is to show that linear

combinations of ratios of meson masses given in Eq. (26)
vary slowly with Nf and the quark mass. The slow
variations are shown in Figs. 1 and 2. The linear coef-
ficients depend only on Nf and are thus model indepen-
dent. These empirical results suggest that in the chiral limit,

M2
mes: ≃ ð2=Nf − Cmes:ÞM2

η0 ; ð2Þ

where the subscript mes. refers to a σ or a0 meson and
Cmes. is positive, significantly smaller than 1 and approx-
imately Nf independent.
This leads to a simple picture where mesons which are

considered heavy for Nf ¼ 3 become light and possibly
massless for larger Nf. This picture does not depend
crucially on the details of the linear model we used to
guess the slow variations in Eq. (26). The Cmes. can be
expressed in terms of the parameters and couplings entering
in the simple linear sigma model used in this article;
however refinements are needed to get a more complete
description of the spectrum. Recent work on linear sigma
models [31–34] discusses variations of the form of the
anomaly term, inclusion of tetraquarks and vector mesons.
In addition, the inclusion of finite-temperature effects
[35,36] could help clarify the nature of the transition for
Nf ¼ 8 [37]. It would be interesting to calculate accurately
the Cmes: and test the hypothesis that they are meson
independent and approximately equal to 2=Nfc, where Nfc

is the smallest value of Nf in the conformal window.
The linear sigma model is presented in Sec. II. The tree

level spectrum is calculated for arbitrary Nf in Sec. III.

In Sec. IV, we introduce dimensionless quantities involving
the masses. Preliminary [22] and published [17] lattice
results indicate that they vary slowly with the explicit chiral
symmetry breaking and Nf. This provides approximate
mass formulas that, if properly refined by future lattice
calculations may help identify instabilities for large enough
Nf and pinpoint the boundary of the conformal window.
In Sec. V we show how to extend our results for fermions in
an arbitrary representation of the gauge group. In the
conclusions, we discuss possible improvements and the
relevance of the results for future lattice calculations.

II. THE MODEL

Following Refs. [5–8], we consider a Nf × Nf matrix of
effective fields ϕij having the same quantum numbers as
ψ̄RjψLi with the summation over the color indices being
implicit. Under a general transformation of UðNfÞL ⊗
UðNfÞR, we have

ϕ → ULϕU
†
R: ð3Þ

We now use a basis of Nf × Nf Hermitian matrices Γα such
that

TrðΓαΓβÞ ¼ ð1=2Þδαβ; ð4Þ

to express ϕ in terms of N2
f scalars (0þ in JP notation),

denoted Sα, and N2
f pseudoscalars (0−), denoted Pα,

ϕ ¼ ðSα þ iPαÞΓα; ð5Þ

with a summation over α ¼ 0; 1;…N2
f − 1. We use the

convention that Γ0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
2Nf

p
while the remainingN2

f − 1

matrices are traceless.

FIG. 1. Rσ for Nf ¼ 8 (diamonds) and 12 (upside-down
triangles) and Ra0 for Nf ¼ 8 (squares) and 12 (triangles),
versus amf.

FIG. 2. Rσ for Nf ¼ 8 (diamonds) and 12 (upside-down
triangles) and Ra0 for Nf ¼ 8 (squares) and 12 (triangles), versus
Mπ=Mη0 .
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We introduce the diagonal subgroup UðNfÞV defined by
the elements of UðNfÞL ⊗ UðNfÞR such that UL ¼ UR.
Using Eqs. (5) and (3) we see that underUðNfÞV, S0 and P0

are singlets denoted σ and η0 respectively while the remaini-
ng components transform like the adjoint representation
and are denoted a0 and π respectively.
We consider the effective Lagrangian

L ¼ Tr∂μϕ∂μϕ† − V ð6Þ

with the potential split into three parts

V ¼ V0 þ Va þ Vm; ð7Þ

that we now proceed to define and discuss. The first term is
the most general UðNfÞL ⊗ UðNfÞR invariant renormaliz-
able expression,

V0 ≡ −μ2Trðϕ†ϕÞ þ ð1=2Þðλσ − λa0ÞðTrðϕ†ϕÞÞ2
þ ðNf=2Þλa0Trððϕ†ϕÞ2Þ: ð8Þ

The use of λσ − λa0 becomes clear when we write the mass
formulas. The stability of V0 is discussed in Sec. IV. Note
that the first two terms and the kinetic term have a larger
group of symmetry Oð2N2

fÞ. The second term

Va ≡ −2ð2NfÞNf=2−2Xðdetϕþ detϕ†Þ; ð9Þ

is invariant under SUðNfÞL ⊗ SUðNfÞR but breaks the
axial Uð1ÞA. It takes into account the effect of the axial
anomaly for the fundamental representation. The generali-
zation to arbitrary representations is discussed in Sec. V.
The prefactor 2ð2NfÞNf=2−2 is chosen in order to make the
expression of the spectrum as simple as possible. The
parameter X has a mass dimension 4 − Nf. Related
effective descriptions of the breaking of the Uð1ÞA can
be found in the literature [38–41].
Finally the third term represents the effect of the mass

term which is the same for the Nf flavors,

Vm ≡ −ðb= ffiffiffiffiffiffiffiffiffi
2Nf

p ÞðTrϕþ Trϕ†Þ ¼ −bσ: ð10Þ

It is invariant under SUðNÞV.
In the following, we assume that chiral symmetry is

spontaneously broken by a SUðNfÞ invariant vacuum
expectation value (vev),

hϕiji ¼ vδij=
ffiffiffiffiffiffiffiffiffi
2Nf

p
: ð11Þ

This amounts to saying that hσi ¼ v while the other vevs
are 0. We impose that

∂V=∂ϕjhϕi ¼ 0: ð12Þ

Thanks to the simple form of the vevs in Eq. (11), these N2
f

equations reduce to a single one,

−μ2vþ ð1=2Þλσv3 − ðX=NfÞvNf−1 ¼ b: ð13Þ

III. THE SPECTRUM

We can now calculate the tree level spectrum. The
normalization (4) implies that the kinetic term in Eq. (6)
is canonical,

Tr∂μϕ∂μϕ† ¼ ð1=2Þ
X
α

ð∂μSα∂μSα þ ∂μPα∂μPαÞ: ð14Þ

The mass of the fields is then obtained as the second
derivatives in an obvious way (as for free Klein-Gordon
fields). In addition, the unbroken SUðNfÞV symmetry
simplifies the formulas which can be expressed in terms
of four masses,

∂2V=∂S0∂S0jhϕi ¼ M2
σ;

∂2V=∂Si∂Sjjhϕi ¼ δijM2
a0;

∂2V=∂P0∂P0jhϕi ¼ M2
η0 ;

∂2V=∂Pi∂Pjjhϕi ¼ δijM2
π: ð15Þ

By convention, in the four above equations, the latin
indices run from 1 to N2

f − 1 (isovector indices in the
Nf ¼ 2 language). The notation M2

σ does not mean that
this quantity is automatically positive. A negative value
could indicate an instability. Since hϕi is proportional to the
identity, the second derivatives can be easily calculated at
the assumed vevs. For instance, the derivative of the
determinant involves the inverse which can then be easily
evaluated. This would not be the case for an arbitrary
breaking where we would need to use f and d symbols [8].
For the pions, we have

M2
π ¼ −μ2 þ ð1=2Þλσv2 − ðX=NfÞvNf−2: ð16Þ

Using the minimization condition (13), this can be recast in
the form

M2
πv ¼ b: ð17Þ

In other words in the absence of the explicit mass breaking
(b ¼ 0), we have the familiar result M2

πv ¼ 0 and v ≠ 0
implies that in this chiral limit, the pions are exactly
massless Nambu-Goldstone bosons. The vev v is related
to the pion decay constant in the following way:

fπ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=Nf

q
v: ð18Þ
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This result can be obtained by considering a UðNfÞA
transformation,

ϕ → UϕU ≃ ϕþ iωαfΓα;ϕg; ð19Þ

and showing that the Noether current satisfies the PCAC
relation

∂μJαμ ¼ b
ffiffiffiffiffiffiffiffiffiffiffi
2=Nf

q
Pα: ð20Þ

We used the convention that

hΩJαμðxÞjPβðpÞi ¼ iδαβfπpμe−ipx: ð21Þ

The other results for the spectrum can be written in a
compact way,

M2
η0 −M2

π ¼ XvNf−2;

M2
σ −M2

π ¼ λσv2 − ð1 − 2=NfÞXvNf−2;

M2
a0 −M2

π ¼ λa0v2 þ ð2=NfÞXvNf−2: ð22Þ

One can check that these results agree with the correspond-
ing results [8] for Nf ¼ 3 in the SUð3ÞV limit. In the chiral
limit (b ¼ 0), Eq. (22) reduce to

M2
σ ¼ λσv2 − ð1 − 2=NfÞM2

η0 ;

M2
a0 ¼ λa0v2 þ ð2=NfÞM2

η0 : ð23Þ

The sign of the interaction in the anomaly term Va has
been chosen in such a way that M2

η0 ≥ M2
π as in QCD.

This feature persists in more general situations. This
implies that for Nf ≥ 3 the mass of the σ has two
contributions of opposite sign. In order to have
Mσ ≃Mπ , the two contributions should either be small
separately or cancel each other. We see that the second
possibility seems to be realized in a certain number of
situations.
Notice that if b, λa0 and X are set to 0, Mη0 ¼ Ma0 ¼ 0

and the η0 and a0 could be interpreted as N2
f additional

Nambu-Goldstone bosons. This is because in this limit, the
effective Lagrangian has an Oð2N2

fÞ symmetry and the vev
of the σ breaks it down toOð2N2

f − 1Þ resulting in a total of
2N2

f − 1 Nambu-Goldstone bosons.
In the next section, we explain that (1) it is legitimate to

consider the λa0v2 contribution as small, and (2) theM2
η0 is a

significant contribution partially suppressed by the 1=Nf

factor in theM2
a0 formula. In that sense, it seems legitimate to

treat the a0 as light particles in some region of the (mf,Nf)
plane. We should add that the chiral limit obtained from a
linear fit of the data forMa0 (see Fig. 28 of Ref. [17]) gives a
value significantly smaller than masses quoted with a finite
mf. For instance, at amf ¼ 0.03, we have aMa0 ≃ 0.46,

while the chiral extrapolation is aMa0 ≃ 0.16. In other
words the slope in the aMa0 versus amf graph is rather
large (about 10).

IV. DIMENSIONLESS RATIOS

In order to allow comparisons of numerical results at
different lattice spacings, we introduce the dimensionless
ratios,

Rσ ≡ λσv2=M2
η0 ; ð24Þ

and

Ra0 ≡ λa0v2=M2
η0 : ð25Þ

We want to test the idea that these quantities vary slowly
with the explicit breaking of chiral symmetry (due to the
mass of the fermions mf) and Nf. If this is the case, the
mass formulas have a simple approximate form which
could provide a nice intuitive picture. To make things
completely clear, the ratios should be understood as
functions of the spectroscopic data, namely

Rσ ¼ ðM2
σ −M2

πÞ=M2
η0 þ ð1 − 2=NfÞð1 −M2

π=M2
η0 Þ;

Ra0 ¼ ðM2
a0 −M2

πÞ=M2
η0 − ð2=NfÞð1 −M2

π=M2
η0 Þ: ð26Þ

Using the preliminary results presented at Lattice 2017
[22] and the published results of Ref. [17] we obtained
Fig. 1. As explained in the appendix, these results have
been obtained by using the largest volume available for
each mass. The error bars do not take into account the finite
volume effects and could be significantly larger if we had
taken them into account. Nevertheless, Fig. 1 is consistent
with the idea of slowly varying ratios. We propose the order
of magnitude estimates,

Rσ ≃ 0.7þ δσðmf;NfÞ; ð27Þ

and

Ra0 ≃ −0.1þ δa0ðmf;NfÞ; ð28Þ
where the δðmf;NfÞ describe slow variations that need to
be studied carefully in the future. The spectroscopic data
are often given in terms of mf in lattice spacing units, but
we could as well parametrize the residuals in terms of
another symmetry breaking parameter, for instance M2

π .
Another possibility is to use the dimensionless ratio
Mπ=Mη0 which does not involve the lattice spacing and
may be more suitable to compare results at different Nf.
This is done in Fig. 2.
Figure 1 shows that for small mf, we have negative

values of Ra0 . Can λa0 be negative? The stability of the
effective potential requires that V0 defined in (8) stays
positive for large values of the field ϕ. Using the symmetry
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UðNfÞL ⊗ UðNfÞR of V0, we can diagonalize ϕ. ϕ†ϕ is
then a diagonal matrix with positive diagonal terms jαij2
and the sum of the two quartic terms of V0 remain positive
when λa0 ¼ −jλa0j is negative provided that

ð1=2Þðλσ þ jλa0jÞ
�XNf

i¼1

jαij2
�

2

≥ ðNf=2Þjλa0j
XNf

i¼1

jαij4:

ð29Þ
This inequality should remain valid for any choice of αi.
Considering the case where only one jαij becomes arbi-
trarily large, we get the requirement.

λσ ≥ ðNf − 1Þjλa0j: ð30Þ

Using the inequality

�XNf

i¼1

jαij2
�

2

≥
XNf

i¼1

jαij4; ð31Þ

we see that the requirement (30) is also a sufficient
condition in general.
Using the estimates of Eqs. (27) and (28) in the chiral

limit, we obtain the simple approximate picture,

ðMσ=Mη0 Þ2 ≃ 2=Nf − 0.3þ δσð0; NfÞ; ð32Þ

ðMa0=Mη0 Þ2 ≃ 2=Nf − 0.1þ δa0ð0; NfÞ: ð33Þ

The stability bound M2
σ ≥ 0 could provide an estimate of

Nfc. The idea of having Ra0 < 0 is attractive because it
implies additional stability bounds on Nf coming from
M2

a0 ≥ 0. For instance, if we use the rough chiral limit
estimates Rσ ≈ 0.8 and Ra0 ≈ −0.2, suggested by Fig. 1, we
obtain the same Nfc ≈ 10 from (32) with δσð0; NfÞ ¼ 0.1,
and (33) with δa0ð0; NfÞ ¼ −0.1, respectively. In addition,
the stability bound of Eq. (30) implies

Nf ≤ 1þ Rσ=jRa0 j: ð34Þ
With our chiral limit estimates this corresponds to Nfc ≈ 5.
These numbers should not be taken too seriously. They are
just meant to illustrate the fact that a careful study of the
residuals δðmf;NfÞ might help to pinpoint the boundary of
the conformal window.
Figure 1 suggests that we could try to find functional

relations that are approximatelyNf independent, at least for
sufficiently massive theories. For the common mass
amf ¼ 0.04, the ratios are almost identical despite signifi-
cantly different meson masses (see Table I in the appendix).
Results at smaller amf would be interesting to see if the
chiral limits are very different for Nf ¼ 12 and Nf ¼ 8, as
expected if they are on opposite sides of the conformal
window. Since amf depend explicitly on the lattice spacing

a, we have also plotted the ratios versus the dimensionless
ratioMπ=Mη0 in Fig. 2. This may be a better way to proceed
with the functional relations idea. We also have one data
point available [22] for Nf ¼ 4 at much smaller volume
and amf ¼ 0.01 providing Rσ ∼ 0.55 which is close to 0.7.
More data for this case as well as Nf ¼ 6 and 10 would be
very desirable to study the residual functions δ.

V. MODIFICATION FOR HIGHER
REPRESENTATIONS

If the microscopic theory is defined by fermions in
higher dimensional representations, for instance SUð3Þ
sextets (the twice symmetric representation), we need to
modify the axial anomaly term as

VaðKÞ ¼ −2ð2NfÞNf=2−2XððdetϕÞK þ ðdetϕ†ÞKÞ; ð35Þ
with K being the number of zero modes in an instanton
background. It also appears in the one-loop coefficient of
the Callan-Symanzik beta function. It can be written as
K ¼ 2T½R� where T½R� is the trace normalization of the
representation R (see Ref. [42] for a lattice discussion). For
instance, for SUð3Þ sextets, K ¼ 5. In general, T½R� can be
calculated in terms of the Casimir operator of the repre-
sentation C2ðRÞ using the relation T½R� ¼ dðRÞC2ðRÞ=
dðAdjointÞ. The couplingX has now a dimension 4 − KNf.
The minimization equation (13), M2

π and Ma2
0
, can be

generalized by changing

X → ~X ≡ XKðv= ffiffiffiffiffiffiffiffiffi
2Nf

p ÞNfðK−1Þ ð36Þ

into the equations for the fundamental representation
derived above. For M2

η0 and M2
σ , in addition to this

substitution we need to add a term ðK − 1Þ ~X with a
positive sign for η0 and a negative sign for σ. In the
“minimal” case of Nf ¼ 2 SUð3Þ sextets studied in
Refs. [20,43–46],

M2
η0 −M2

π ¼ ð25=256ÞXv8;
M2

σ −M2
π ¼ λσv2 − ð5=64ÞXv8;

M2
a0 −M2

π ¼ λa0v2 þ ð5=256ÞXv8: ð37Þ

Again we see that the M2
σ receives contributions of

opposite signs, making M2
σ < M2

π observed in Ref. [20]
possible in our model. In the chiral limit (b ¼ 0), Eq. (37)
reduce to

M2
σ ¼ λσv2 − ð4=5ÞM2

η0 ;

M2
a0 ¼ λa0v2 þ ð1=5ÞM2

η0 : ð38Þ

Calculating M2
η0 for this model would be quite

interesting.
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VI. CONCLUSIONS

In summary, we have adapted a linear sigma model
used in the context of the study of the QCD axial anomaly,
to an arbitrary number Nf of equal mass fermions.
Equations (22) provide simple formulas for the tree level
spectrum. Using preliminary [22] and published [17] results,
we found combinations of the masses that appear to vary
slowly with the explicit chiral symmetry breaking and Nf.
If confirmed by new numerical calculations at different
masses and Nf, this would imply that the axial anomaly
termplays a leading role in themass spectrum and is essential
to get a light σ. The measurement of M2

η0 is a crucial
ingredient to locate the boundary of the conformal window.
The ratios in Figs. 1 and 2 suggest looking for approx-

imately Nf-independent relationships. It is expected [10]
that for mf large enough, the fermions decouple and the
low-energy theory is confining. Consequently, it is plau-
sible that the massive theories at different Nf have effective
theories that can be smoothly connected. However, if
Nf ¼ 12 and Nf ¼ 8 are on opposite sides of the con-
formal window, the massless limit of their effective theory
should reveal important differences. Investigating the
massless limit of Nf ¼ 12 within the framework proposed
here should be quite interesting. Larger masses should also
be investigated. If Rσ stays approximately flat when mf

increases, one would expect that the σ remains the lightest
state. On the lattice, at sufficiently large mass and coupling,
the line of first order transition has an end point where one
expects a second order phase transition and a light scalar in
its vicinity [47–49]. If this is a lattice artifact or something

that could have a counterpart in the continuum is an open
question that is worth investigating.
Our main results are model independent and suggest that

instabilities appear for Nf large enough. More work needs
to be done in order to pinpoint a precise value for the critical
value Nfc. In addition to using more accurate results
expected from ongoing and future simulations, one could
also consider more refined sigma models. For instance, we
modeled the anomaly effect with a simple determinant term.
Variations of this form including powers, logarithms and
multiplication by traces are discussed in Refs. [6,31,34]. We
have also neglected the vector mesons and the mixing with
tetraquark states which are considered in Refs. [31–33].
If used together with numerical spectroscopic results, this
could lead to global fits and a better determination of Nfc.
Another interesting variation of the calculation performed
here would be to relax the equality of the masses of the Nf

flavors, for instance by splitting 12 flavors into four light and
eight heavy flavors [50]. This work is in progress.
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APPENDIX: DATA FOR FIGS. 1 AND 2

In this appendix, we explain how we selected the data used in Figs. 1 and 2. We used Tables XVII, XXI, XXII, XXIII,
XXVII, XXVIII and XXIX of [17] for Nf ¼ 8 and Table XXXVIII (with β ¼ 4) for Nf ¼ 12. We always used the largest
volume available. For instance, 363 × 48 for the four masses with amf ¼ 0.02 and Nf ¼ 8. So different masses may have
different volumes. The volume effects are typically a bit smaller than the quoted systematic and statistical errors but not
negligible. The rest of the data come from the graphs of Ref. [22] available on the Lattice 2017 link of Ref. [51]. This is
collected in Table I. After our article was submitted, the data presented in Ref. [22] appeared in a preprint [52]. In addition, a
linear sigma model (without an anomaly term) discussed for Nf ¼ 8 at the same conference appeared as a preprint [53].

TABLE I. LatKMI data used for the graph.

Nf amf aM2
π aM2

σ aM2
a0 aM2

η0

8 0.012 0.164(1) 0.151(15) 0.279(10) 0.875(55)
8 0.015 0.186(1) 0.162(23) 0.310 (10) 0.954(63)
8 0.020 0.221(1) 0.190(17) 0.365(11) 0.956(49)
8 0.030 0.281(2) 0.282(27) 0.480(39) 0.945(69)
8 0.040 0.335(2) 0.365(43) 0.567(23) 0.977(42)
12 0.040 0.2718(7) 0.24(1) 0.3820(21) 0.815(43)
12 0.050 0.3186(4) 0.28(2) 0.4469(25) 0.850(44)
12 0.060 0.3629(3) 0.30(2) 0.5032(36) 1.026(59)

Y. MEURICE PHYSICAL REVIEW D 96, 114507 (2017)

114507-6



[1] M. Gell-Mann andM. Levy, Nuovo Cimento 16, 705 (1960).
[2] B. Lee, in Chiral Dynamics, Documents on Modern Physics

(Gordon & Breach Science Publishers Ltd, Philadelphia,
USA, 1972).

[3] S. Scherer and M. R. Schindler, arXiv:hep-ph/0505265.
[4] J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007).
[5] J. Schechter and Y. Ueda, Phys. Rev. D 3, 2874 (1971).
[6] C. Rosenzweig, J. Schechter, and C. G. Trahern, Phys. Rev.

D 21, 3388 (1980).
[7] G. ’t Hooft, Phys. Rep. 142, 357 (1986).
[8] Y. Meurice, Mod. Phys. Lett. A 02, 699 (1987).
[9] B. Svetitsky, in 35th International Symposium on Lattice

Field Theory (Lattice 2017), Granada, Spain, 2017 (2017)
[arXiv:1708.04840].

[10] T. DeGrand, Rev. Mod. Phys. 88, 015001 (2016).
[11] D. Nogradi and A. Patella, Int. J. Mod. Phys. A 31, 1643003

(2016).
[12] N. H. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu, R. D.

Mawhinney, C. T. Sachrajda, A. Soni, and R. Zhou, Phys.
Rev. Lett. 105, 241601 (2010).

[13] E. B. Gregory, A. C. Irving, C. M. Richards, and C. McNeile
(UKQCD Collaboration), Phys. Rev. D 86, 014504 (2012).

[14] K. Ottnad, C. Urbach, and F. Zimmermann (OTM Collabo-
ration), Nucl. Phys. B896, 470 (2015).

[15] Y. Aoki et al. (LatKMI Collaboration), Phys. Rev. D 89,
111502 (2014).

[16] T. Appelquist, R. C. Brower, G. T. Fleming, A. Hasenfratz,
X. Y. Jin, J. Kiskis, E. T. Neil, J. C. Osborn, C. Rebbi, E.
Rinaldi, D. Schaich, P. Vranas, E. Weinberg, and O. Witzel
(Lattice Strong Dynamics Collaboration), Phys. Rev. D 93,
114514 (2016).

[17] Y. Aoki et al. (LatKMI Collaboration), Phys. Rev. D 96,
014508 (2017).

[18] A. D. Gasbarro and G. T. FlemingProc. Sci., LATTICE2016
(2017) 242 [arXiv:1702.00480].

[19] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai,
H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T.
Yamazaki (LatKMI Collaboration), Phys. Rev. Lett. 111,
162001 (2013).

[20] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and
C. H. WongProc. Sci., LATTICE2014 (2015) 244.

[21] Y. Aoki, in Lattice 2016.
[22] E. Rinaldi, in Lattice 2017.
[23] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[24] F. Sannino and K. Tuominen, Phys. Rev. D 71, 051901

(2005).
[25] D. D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018

(2007).
[26] J. Bijnens and J. Lu, J. High Energy Phys. 11 (2009) 116.
[27] M. Golterman and Y. Shamir, Phys. Rev. D 94, 054502

(2016).
[28] M. Golterman and Y. ShamirProc. Sci., LATTICE2016

(2016) 205 [arXiv:1610.01752].

[29] T. Appelquist, J. Ingoldby, and M. Piai, J. High Energy
Phys. 07 (2017) 035.

[30] G. ’t Hooft, Phys. Rev. D 14, 3432 (1976).
[31] A. H. Fariborz, R. Jora, and J. Schechter, Phys. Rev. D 77,

094004 (2008).
[32] D. Parganlija, F. Giacosa, and D. H. Rischke, Phys. Rev. D

82, 054024 (2010).
[33] D. Parganlija, P. Kovács, G. Wolf, F. Giacosa, and D. H.

Rischke, Phys. Rev. D 87, 014011 (2013).
[34] P. Kovács and G. Wolf, in Proceedings of the 5th Workshop

on Excited QCD 2013, Sarajevo, Bosnia-Herzegovina,
2013; Acta Phys. Pol. 6, 853 (2013).

[35] P. Kovács and Z. Szép, Phys. Rev. D 75, 025015 (2007).
[36] P. Kovács, Z. Szép, and G. Wolf, Phys. Rev. D 93, 114014

(2016).
[37] A. Deuzeman, M. P. Lombardo, and E. Pallante, Phys. Lett.

B 670, 41 (2008).
[38] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253

(1980).
[39] K. Kawarabayashi and N. Ohta, Nucl. Phys. B175, 477

(1980).
[40] N. Ohta, Prog. Theor. Phys. 66, 1408 (1981); 67, 993(E)

(1982).
[41] K. Kawarabayashi and N. Ohta, Prog. Theor. Phys. 66, 1789

(1981).
[42] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder,

J. High Energy Phys. 08 (2009) 084.
[43] D. D. Dietrich, F. Sannino, and K. Tuominen, Phys. Rev. D

72, 055001 (2005).
[44] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 79,

034501 (2009).
[45] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 87,

074507 (2013).
[46] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and

C. H. Wong, Phys. Lett. B 718, 657 (2012).
[47] X.-Y. Jin and R. D. Mawhinney, in Proceedings of the KMI-

GCOE Workshop on Strong Coupling Gauge Theories in
the LHC Perspective (SCGT 12), Nagoya, Japan, 2012
(World Scientific, Singapore, 2014), pp. 96–102.

[48] Z. Gelzer, Y. Liu, Y. Meurice, and D. K. Sinclair, Proc. Sci.,
LATTICE2013 (2014) 078 [arXiv:1312.3906].

[49] Z. Gelzer, Y. Liu, and Y. MeuriceProc. Sci., LATTICE2014
(2014) 255 [arXiv:1411.3360].

[50] R. C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, and O.
Witzel, Phys. Rev. D 93, 075028 (2016).

[51] Contributions to Lattice 2017, See https://makondo.ugr.es/
event/0/session/96/contribution/350/material/slides/0.pdf.

[52] Y. Aoki et al., in 35th International Symposium on Lattice
Field Theory (Lattice 2017), Granada, Spain, 2017 (2017)
[arXiv:1710.06549].

[53] A. Gasbarro, in 35th International Symposium on Lattice
Field Theory (Lattice 2017), Granada, Spain 2017 (2017)
[arXiv:1710.08545].

LINEAR SIGMA MODEL FOR MULTIFLAVOR GAUGE THEORIES PHYSICAL REVIEW D 96, 114507 (2017)

114507-7

https://doi.org/10.1007/BF02859738
http://arXiv.org/abs/hep-ph/0505265
https://doi.org/10.1016/j.ppnp.2006.08.002
https://doi.org/10.1103/PhysRevD.3.2874
https://doi.org/10.1103/PhysRevD.21.3388
https://doi.org/10.1103/PhysRevD.21.3388
https://doi.org/10.1016/0370-1573(86)90117-1
https://doi.org/10.1142/S0217732387000860
http://arXiv.org/abs/1708.04840
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1142/S0217751X1643003X
https://doi.org/10.1142/S0217751X1643003X
https://doi.org/10.1103/PhysRevLett.105.241601
https://doi.org/10.1103/PhysRevLett.105.241601
https://doi.org/10.1103/PhysRevD.86.014504
https://doi.org/10.1016/j.nuclphysb.2015.05.001
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.93.114514
https://doi.org/10.1103/PhysRevD.93.114514
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.96.014508
http://arXiv.org/abs/1702.00480
https://doi.org/10.1103/PhysRevLett.111.162001
https://doi.org/10.1103/PhysRevLett.111.162001
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.71.051901
https://doi.org/10.1103/PhysRevD.71.051901
https://doi.org/10.1103/PhysRevD.75.085018
https://doi.org/10.1103/PhysRevD.75.085018
https://doi.org/10.1088/1126-6708/2009/11/116
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1103/PhysRevD.94.054502
http://arXiv.org/abs/1610.01752
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.77.094004
https://doi.org/10.1103/PhysRevD.77.094004
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1103/PhysRevD.87.014011
https://doi.org/10.5506/APhysPolBSupp.6.853
https://doi.org/10.1103/PhysRevD.75.025015
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1016/j.physletb.2008.10.039
https://doi.org/10.1016/j.physletb.2008.10.039
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0550-3213(80)90024-3
https://doi.org/10.1016/0550-3213(80)90024-3
https://doi.org/10.1143/PTP.66.1408
https://doi.org/10.1143/PTP.67.993
https://doi.org/10.1143/PTP.67.993
https://doi.org/10.1143/PTP.66.1789
https://doi.org/10.1143/PTP.66.1789
https://doi.org/10.1088/1126-6708/2009/08/084
https://doi.org/10.1103/PhysRevD.72.055001
https://doi.org/10.1103/PhysRevD.72.055001
https://doi.org/10.1103/PhysRevD.79.034501
https://doi.org/10.1103/PhysRevD.79.034501
https://doi.org/10.1103/PhysRevD.87.074507
https://doi.org/10.1103/PhysRevD.87.074507
https://doi.org/10.1016/j.physletb.2012.10.079
http://arXiv.org/abs/1312.3906
http://arXiv.org/abs/1411.3360
https://doi.org/10.1103/PhysRevD.93.075028
https://makondo.ugr.es/event/0/session/96/contribution/350/material/slides/0.pdf
https://makondo.ugr.es/event/0/session/96/contribution/350/material/slides/0.pdf
https://makondo.ugr.es/event/0/session/96/contribution/350/material/slides/0.pdf
https://makondo.ugr.es/event/0/session/96/contribution/350/material/slides/0.pdf
https://makondo.ugr.es/event/0/session/96/contribution/350/material/slides/0.pdf
http://arXiv.org/abs/1710.06549
http://arXiv.org/abs/1710.08545

