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Using the example of a two-dimensional four-fermion lattice field theory we demonstrate that Feynman
diagrams can generate a mass gap when massless fermions interact via a marginally relevant coupling. We
introduce an infrared cutoff through the finite system size so that the perturbation series for the partition
function and observables become convergent. We then use the Monte Carlo approach to sample sufficiently
high orders of diagrams to expose the presence of a mass gap in the lattice model.
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I. INTRODUCTION

Understanding how a mass gap is generated in an asymp-
totically free theory like Yang-Mills theory continues to be a
fascinating topic of research. Using Wilson’s lattice formu-
lation the origin of the mass gap is easy to derive within the
strong coupling expansion [1].MonteCarlo calculations have
shown that the mass gap continues to exist and scales
appropriately even for much weaker couplings. However,
the challenge is to begin with a weak coupling expansion and
show the presence of the mass gap. A Monte Carlo method
that directly workswithin theweak coupling expansion could
perhaps shed more light on the subject.
Recently, Monte Carlo methods have emerged that

sample weak coupling Feynman diagrams in a variety of
models [2–7]. Can such methods also be applicable to
asymptotically free theories like Yang-Mills theories and
QCD? The obvious problem is that the weak coupling
approach is an expansion in powers of the coupling g, while
mass gaps in these theories arise nonperturbatively through
an essential singularity of the form M ∼ e−β=g

2

. So, at least
naively, it seems impossible that weak coupling diagrams
can be combined with Monte Carlo methods to generate
a mass gap. As a first step in addressing this impasse, one
can even ignore complications of a gauge theory and ask
whether these weak coupling approaches can generate a
mass gap in simpler two-dimensional spin models that are
known to be asymptotically free. This question was raised
recently and partially addressed within the context of the
two-dimensional OðNÞ and UðNÞ ×UðNÞ model in the
large N limit [8,9]. The strategy that seems to work is to
regulate the infrared divergences in a controllable way so as
to make the weak coupling series convergent. A resum-
mation of the convergent series then exposes the existence

of the mass gap. Other nonperturbative approaches have
also been used to compute mass gaps in two-dimensional
nonlinear sigma models at large values of N [10–12].
Instead of two-dimensional nonlinear sigma models, in

this work we consider an SUð4Þ symmetric two-dimensional
four-fermion model. Such models are known to be asymp-
totically free [13,14], and have a completely convergent
weak coupling expansion when formulated on a finite space-
time lattice. Thus, they are ideally suited to explore the
question of whether Feynam diagrams can generate a
nonperturbative mass gap. However, without the simplifi-
cations of large N, the weak coupling diagrammatic series
may converge only after summing over many terms. In our
model we accomplish this by using a Monte Carlo sampling
procedure, since there are no sign problems. Thus, we are
able to expose the presence of a nonperturbative mass gap
that is independent of the infrared regulator. By tuning the
bare coupling to zero we can also explore the continuum
limit. From a continuum quantum field theory perspective,
we believe there are connections of our approach to recent
ideas of using resurgent functions and trans-series combined
with boundary conditions that control infrared divergences to
define the perturbation series nonperturbatively [15–17].
The physics of our SUð4Þ symmetric lattice model is

interesting from other perspectives as well. For example it
was recently studied extensively in three and four dimen-
sions [18–22] and contains a weak coupling massless
fermion phase and a strong coupling massive fermion
phase without any spontaneous symmetry breaking. In
three dimensions one finds a second order phase transition
that separates these two phases. This quantum critical point
is exotic and may contain emergent gauge fields [23]. We
believe this critical point moves to the origin in two
dimensions. Thus, the mass generation mechanism in
our model is similar to the one discussed in [24].
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II. LATTICE MODEL

Two-dimensional lattice four-fermion models have been
studied extensively using Monte Carlo methods in the past,
but mostly within the Wilson fermion formulation [25–29].
Efficient Monte Carlo methods have also been designed
using the worldline representation [30,31]. However, none
of these studies have focused on the question whether weak
coupling perturbation theory using Feynman diagrams can
generate a nonperturbative mass gap. A simple model that
is suitable for addressing this question is the reduced
staggered fermion model whose action is given by

SðψÞ ¼ 1

2

X

x;y;a

ψa
xMx;yψ

a
y − U

X

x

ψ4
xψ

3
xψ

2
xψ

1
x; ð1Þ

where Mx;y is the free staggered fermion matrix

Mx;y ¼
1

2

X

α

ηα;xðδxþα̂;y − δx−α̂;yÞ; ð2Þ

with the phase factors η1;x ¼ 1, η2;x ¼ ð−1Þx1 and a labels
the four flavors. We can obtain (1) by naively discretizing
the continuum two-dimensional model,

Scont ¼
Z

d2x
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a;i;α

ψ̄ i
aðxÞðσαÞij∂αψ

j
aðxÞ

− Uðψ2
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þ ψ̄2
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2ðxÞψ̄1

2ðxÞÞ
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; ð3Þ

on a space-time lattice and using the well-known spin
diagonalization transformation to reduce the fermion dou-
bling [32,33]. In the continuum model (3), the flavor index
a ¼ 1, 2 runs only over two values and i ¼ 1, 2 refers to the
spin. The matrices σα, α ¼ 1, 2 are two Pauli matrices.
Such a connection between the continuum model and a
similar lattice model in four dimensions was recently
discussed in [21,34].
Note that there are no ψ̄a

x fields in our lattice action.
In the reduced staggered formulation, one keeps only the
minimal number of fermion fields per site and defines them
as ψa

x on all sites. The partition function of our model is
given by

Z ¼ Z0

Z
½dψ �e−SðψÞ; ð4Þ

where Z0 is a constant chosen so that Z ¼ 1 in the free
theory. The Grassmann integration measure ½dψ � is a
product of ðdψ1

xdψ2
xdψ3

xdψ4
xÞ on every site x.

At U ¼ 0, when we focus on the physics at very large
length scales as compared to the lattice spacing, our model
will describe four flavors of free massless (two-component)
Dirac fermions. As a probe of the long distance physics we
can take space-time to be a torus of side L (in lattice units)
in each direction with antiperiodic boundary conditions.

In two dimensions, a free fermion field is expected to have
a mass dimension ½ψ i

a� ¼ 1=2, which means the fermion
propagator has the mass dimension of one and must decay
as Gfðx; yÞ ∼ 1=jx − yj for large separations. In Fig. 1
we plot the scaling of the propagator at a separation of
jx−yj¼L=2 along one of the directions, R¼Gfð0;L=2Þ as
a function of L and find that R ∼ 1.671=L. In the same
figure we also show the scaling of the susceptibility

χ1 ¼
1

2Z

Z
½dψ �e−S

X

y

fψa
0ψ

b
0ψ

b
yψ

a
yg; ð5Þ

as a function of L. From continuum power counting,
χ1 is expected to be dimensionless and can only have a
logarithmic dependence on L. Indeed we see that it
diverges logarithmically. We will see later that U, which
is also expected to be dimensionless perturbatively,
becomes marginally relevant and generates an exponen-
tially small mass gap when U > 0. This is consistent with
asymptotic freedom as predicted originally by Gross and
Neveu [13].

III. THE PARTITION FUNCTION

When the partition function of our model is expanded in
powers of the coupling U,

Z ¼
X

k

zkUk ¼
X

k

�X

½x;k�
Ωð½x; k�Þ

�
Uk; ð6Þ

the coefficients zk can be written as a sum over weights of
all possible vertex configurations ½x; k� ¼ fx1; x2;…; xkg.
Each vertex configuration is an ordered set of k different
lattice sites where interactions occur and its weight,

Ωð½x;k�Þ¼Z0

Y

a

�Z
½dψa�e−1

2
ψa
xMx;yψ

a
yψa

x1ψ
a
x2 � ��ψa

xk

�
; ð7Þ

can be computed as a sum over Feynman diagrams. For
each flavor a the sum is given by the Pfaffian of a k × k
matrix Wð½x; k�Þ, whose matrix elements are given by the
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FIG. 1. Scaling of the fermion propagator at the midpoint (R)
and the susceptibility ( χ1) as a function of L in the free theory.
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free staggered fermion propagator Gfðxi; xjÞ between the
sites in the vertex configuration [21]. Thus, we obtain

Ωð½x; k�Þ ¼ ðPfðWð½x; k�ÞÞ4; ð8Þ

which is guaranteed to be positive. Hence we can use a
Monte Carlo method to sample vertex configurations ½x; k�
distributed according to the probability distribution

PkðU; ½x; k�Þ ¼ Uk

ZðUÞΩð½x; k�Þ: ð9Þ

Due to symmetries of our model, only configurations ½x; k�
with an equal number of even and odd sites have nonzero
weights. This implies that only even values of k contribute
to the expansion (6).
The partition function Z of four-fermion models, like the

one we study in our work, is a completely convergent series
in U on a finite lattice. In our model since the maximum
number of vertices that are allowed in the partition function
is L2, it is in fact a polynomial. Thus, wewish to understand
how the infrared divergences present in an asymptotically
free theory arise from this polynomial as L2 becomes
large. In order to gain some insight into the dominant terms
in the expansion we define the probability distribution
PkðUÞ ¼ zkUk=ZðUÞ, which is the sum of PkðU; ½x; k�Þ
over all vertex configurations ½x; k� with a fixed k. In Fig. 2
we plot this probability distribution of vertices at U ¼ 0.1
for different values of L obtained using Monte Carlo
sampling. As we can see, sectors with a large number
of vertices are suppressed exponentially and the average
number of vertices is much smaller than the maximum
value kmax ¼ L2. We also discover that a more useful
quantity is the average density of vertices ρðUÞ ¼ hki=L2.
In the inset of Fig. 3 we plot the density at U ¼ 0.1 for
various lattice sizes and observe that it does not change
much as a function of L. At U ¼ 0.1, the average density is

ρ ¼ 0.0027, but this changes with U as shown in the main
plot.
It is easy to understand why the average density of

vertices approaches a constant in the thermodynamic
limit. From a statistical mechanics point of view one
expects that the partition function scales as Z ¼
expðfðUÞL2Þ in the thermodynamic limit, where fðUÞ is
the free energy density. The average density of vertices is
related to fðUÞ through the relation

ρðUÞ ¼ hki
L2

¼ ðU=L2Þð∂ lnZðUÞ=∂UÞ ¼ Uð∂fðUÞ=∂UÞ:
ð10Þ

Since fðUÞ is independent of the volume for sufficiently
large volumes, so is ρðUÞ. The connection between ZðUÞ
and fðUÞ is well known in diagrammatic perturbation
theory; the former contains contributions from discon-
nected diagrams, while the latter gets contributions only
from connected diagrams. At a fixed value of L, like
ZðUÞ we can also expand fðUÞ ¼ f2U2 þ f4U4 þ � � � and
find connections between fk’s and zk’s. For example
f2 ¼ z2=L2 and f4 ¼ ðz4 − z22=2Þ=L2 and so on.
From the discussion above, we know that ZðUÞ is a

polynomial in U on a finite lattice, but this is not the case
for fðUÞ. In fact we cannot rule out the possibility that
fðUÞ will be divergent for some value of U even on a finite
lattice. If there are infrared divergences in perturbation
theory they would appear in fk in the thermodynamic limit.
In Fig. 4 we plot f2 and f4 as functions of L for our model
and see that both these coefficients are well behaved and do
not show infrared divergences. This seems to be a feature
of our current model due to its symmetries. We have not
explored higher order terms in this work. Note that even if
the fk’s contained divergences, we can still extract fðUÞ
through the integral

fðUÞ ¼
Z

U

0

ρðUÞ=U; ð11Þ
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FIG. 2. Probability distribution of vertices in the partition
function as a function of the lattice size at U ¼ 0.1 for L ¼ 32,
64 and 96. The average density of vertices ρk ¼ hki=L2 ≈ 0.00267
remains constant in all three cases.
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FIG. 3. Plot of the density of vertices ρðUÞ as a function of U.
The inset shows the density at U ¼ 0.1 as a function of L. We see
that the density of vertices remains the same as L increases.
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if we can compute ρðUÞ nonperturbatively by summing
over the distribution of vertices. In our work this is
performed using the Monte Carlo method. Thus, the usual
infrared divergences in perturbation theory disappear once
this resummation is performed at every finite value of L.

IV. THE MASS GAP

In order to see how Feynman diagrams generate the mass
gap in our model, we have studied two observables that are
sensitive to the mass gap and both of them give very similar
results [35]. Here we focus on one of them, which is the
finite size susceptibility χ1 defined in (5). As we already
pointed out earlier, in the free theory χ1 diverges logarith-
mically for large values of the lattice size L (see Fig. 1).
However, if a mass gap M is generated in the fermion
bilinear channel, we expect χ1 to level off roughly around
L ∼M−1. The calculation of χ1 can also be expressed as a
sum over Feynman diagrams through the relation

χ1 ¼
X

y;k

�X

½x;k�
Γ0;yð½x; k�ÞPkðU; ½x; k�Þ

�
; ð12Þ

where Γ0;yð½x; k�Þ is the ratio of two quantities. The
numerator is the sum over all Feynman diagrams with
two external sources ψa

0ψ
b
0 and ψ

b
yψ

a
y , the former located at

the origin and the latter at y, in addition to the configuration
of interaction vertices ½x; k� ¼ fx1; x2;…; xkg. The denom-
inator is Ωð½x; k�Þ, i.e., the sum over Feynman diagrams
without the sources. This ratio makes Γ0;yð½x; k�Þ scale like
a “connected” Feynman diagram for large volumes since a
factor that scales exponentially in the volume is canceled
between the numerator and the denominator.
In order to compute χ1 we first generate vertex configu-

rations ½x; k� with probability PkðU; ½x; k�Þ. For each con-
figuration we then compute Γ0;yð½x; k�Þ by choosing two
source points, one chosen at random (which becomes the
origin) and the other at the site y. We then sum over
Γ0;yð½x; k�Þ obtained by varying y over all possible loca-
tions, while keeping the other source fixed. The value we

thus obtain is a Monte Carlo estimate of χ1 for the particular
vertex configuration generated. If χ1 contains infrared
divergences, the Monte Carlo average of our estimates
will increase indefinitely with L. At U ¼ 0 the configu-
rations ½x; k� generated are always trivial with no vertices
(i.e., k ¼ 0), and the value of χ1 does increase with L as
shown in Fig. 1. On the other hand, as we discussed above,
in our model we expect χ1 to level off when L > M−1. In
the left plot of Fig. 5 we show χ1 as a function of L at
U ¼ 0.3 and 0.4. We observe that indeed χ1 begins to level
off around L ∼ 128 at U ¼ 0.3 and around L ∼ 32 at
U ¼ 0.4. The fact that it takes substantially larger lattice
sizes to level off at U ¼ 0.3 as compared to U ¼ 0.4 is an
indication thatM is decreasing rapidly. In the figure we also
plot the U ¼ 0 results for comparison.
Statistically speaking this implies that for most vertex

configurations ½x; k� the Monte Carlo estimate of Γ0;y½x; k�
begins to decay exponentially for points y far from the
origin. This implies that the infrared divergences of
perturbation theory disappear for sufficiently large lattices
when we take into account a constant density of vertices.
In other words we will need to consider large orders of
perturbation theory, especially when U is small, before a
mass gap will be observed. But what about divergences that
we know exist at even small orders of perturbation theory?
We believe these are the ones that cause the enhancement
in χ1 at small values of L (see the left part of Fig. 5) but
eventually become statistically insignificant at large values
of L. In other words they are rare and hidden in the
Monte Carlo estimate of χ1. We do see such rare fluctua-
tions in our data. For example in Fig. 6 we plot the
fluctuations in χ1 during a sample of the Monte Carlo time
history for L ¼ 64 and U ¼ 0.4. For these parameters a
mass gap has been generated and χ1 has almost saturated to
its thermodynamic value of approximately 3.7. However, as
Fig. 6 shows there are still large but rare fluctuations in χ1
that are 5 times larger than the average value. The fact that
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FIG. 4. Plot of the perturbative coefficients f2 and f4 in the
expansion of the free energy as a function of L.
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FIG. 5. Plot of the susceptibility χ1 as a function of U for
different lattice sizes. For the value of L, we can define the mass
scale M0

b ¼ 1=L that is generated when the location of the peak
U ¼ Up determines the scale M0

b ¼ 1=L.
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these divergent contributions will be rare as compared to
finite contributions once the theory is regularized in the
infrared, cannot be easily uncovered in usual perturbation
theory.
For a quantitative analysis, instead of measuring the

conventional mass gapM, in this work we define a slightly
different mass scale Mb as follows. We first note that the
susceptibility χ1 has a peak when it is plotted as a function
of U for a fixed value of L. This behavior is clearly visible
in the right plot of Fig. 5, where χ1 is plotted as a function
of U at L ¼ 32 and 128. For a fixed L if the peak in χ1
occurs at U ¼ Up, then we define Mb ≡ L1 as the non-
perturbative mass scale generated at the coupling U ¼ Up.
Comparing the left and right plots of Fig. 5 we see that our
definition of Mb is also roughly consistent with the value
of M obtained using the value of L where χ1 begins to
saturate. We have accurately located the peaks at various
lattice sizes by fitting the data to quartic functions as shown
in Fig. 7. Table I gives the values of these peaks along with
systematic errors that arise from our fitting procedures [35].

In an asymptotically free theory we expect Mb ∼
Λ expð−β=UpÞ at leading order. Further, since χ1;p is
dimensionless it is expected to grow logarithmically in
the continuum limit. Thus, for sufficiently large values of L
we try to fit our data to the form

χ1;p ¼ α logðΛ1LÞ; Up ¼
β

logðΛ2LÞ
: ð13Þ

In Fig. 7 we show our results, which are consistent with
both these expectations. The parameters obtained from
the fit to our data are α ¼ 1.77ð4Þ, β ¼ 1.33ð4Þ, Λ1 ¼
0.20ð1Þ and Λ2 ¼ 0.88ð9Þ [35]. It is usually difficult to
match β with the results of one loop perturbation theory,
since this can require extremely large correlation lengths
[36]. On the other hand, qualitative exponential scaling of
mass gaps, as we do in the current work, can be observed
more easily with lattice sizes like the ones we study in this
work [37].

V. CONCLUSIONS

In this work we have shown how weak coupling
Feynman diagrams can contain the information of a
nonperturbative mass gap in an asymptotically free theory.
Using a specific lattice model we first tamed the infrared
divergences in the usual perturbation theory by formulat-
ing the problem in a finite volume. We then showed that
the physics of the mass gap arises at sufficiently large
volumes when we sample Feynman diagrams containing a
finite density of interactions. The infrared divergences of
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FIG. 6. Fluctuations of χ1 in a sample of 500 vertex configu-
rations generated consecutively during Monte Carlo sampling.
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FIG. 7. (Left) Plot of χ1 as a function of U for different values of L. The locations of the peak are obtained by fitting the data to a
quartic curve are listed in Table I. (Right) Plot of Up and χ1;p as a function of L and the fits to Eq. (13).

TABLE I. Fit values for χ1;p and Up as a function of L.

L χ1;p Up L χ1;p Up

16 2.293(2) 0.492(1) 32 3.368(5) 0.398(2)
64 4.520(20) 0.330(3) 128 5.760(30) 0.283(3)
256 6.950(60) 0.242(4)
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the original perturbative expansion seem to be hidden in a
few statistically insignificant vertex configurations. Our
work suggests that a perturbative expansion organized
in terms of Feynman diagrams containing a fixed density
of interactions may be worth exploring. Exploring
extensions of our work to gauge theories would also be
interesting.
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