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Smoothing of field configurations is highly important for precision calculations of physical quantities on
the lattice. We present a cooling method based on stochastic quantization with a built-in UV momentum
cutoff. The latter is implemented via a UV-regularized, hence colored, noise term. Our method is tested in a
two-dimensional scalar field theory. We show that UV modes can be removed systematically without
altering the physics content of the theory. The approach has an interpretation in terms of the nonperturbative
(Wilsonian) renormalization group that facilitates the physics interpretation of the cutoff procedure. It also
can be used to define the maximal colored cooling applicable without changing the theory.
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I. INTRODUCTION

Lattice field theory is a powerful nonperturbative
approach that allows for ab initio calculations of realistic
quantum field theories. It has been applied to many areas of
physics ranging from condensed matter systems to quan-
tum gravity. In nuclear physics applications range from the
details of the hadronic spectrum to the numerical study of
topological properties and configurations in Yang-Mills
theory and quantum chromodynamics (QCD). A further
task for lattice field theory and other nonperturbative
approaches is to map out the phase structure of strongly
correlated systems. However, lattice simulations for finite
density QCD are hampered by the sign problem. This
situation has triggered a plethora of work in this direction;
for a recent review, see [1].
Among the contenders for beating the sign problem,

stochastic quantization based on a complex Langevin
equation (CLE) is a very promising candidate [2]. The
complexification, however, is nontrivial; see [3] for a brief
account and [4] for a state of the art. If applied to gauge
theories it has to be equipped with cooling algorithms such
as gauge cooling [5] in order to even achieve convergence.
The CLE has been applied to explore the phase diagram of
QCD and that of related models [6–9].
Cooling algorithms, see e.g. [10], are set up to eliminate

configurations that carry large ultraviolet fluctuations. They
are based on the assumption that physics scales can be
safely separated from the ultraviolet scales where cooling is
applied. Then, cooling simply improves the signal-to-noise
ratio without altering the physics under investigation. For
example, this works very well for observables such as the
action density or the topological charge density. However,
if cooling is not stopped it produces classical configurations
for large cooling times. Hence, the crucial question is that
after a well-defined stopping time. This stopping time can
be related to the physical scale of the cooled theory of

interest; see e.g. [11]. The same intricacy also is present for
the recently put forward gradient flow cooling [12–16]; for
further applications, see [17,18]. A comparison of the two
approaches can be found in [19].
In the present work, we suggest using the stochastic

quantization approach cooled with colored noise. This
combines a Langevin equation (LE) with the gradient flow.
To that end, we first notice that the Langevin equation
without noise simply is the gradient flow. Hence, removing
the noise for high momentum modes above a UV cutoff
scale Λ leaves us with a gradient flow for these modes.
Then, the related colored noise Langevin evolution com-
pletely removes the momentum modes with p2 > Λ2. In
summary, a Langevin equation with such a colored noise
introduces a UV momentum cutoff Λ to the path integral.
By varying the cutoff Λ we interpolate between the full
quantum evolution characterized by the LE with Gaussian
white noise (Λ → ∞) and the classical evolution charac-
terized by the gradient flow (Λ ¼ 0Þ. This approach is
closely related to the concept of stochastic regulariza-
tion [20,21].
Here, our approach is put to work in a scalar theory and

numerical results are presented in two dimensions. Colored
noise is also related to standard Kadanoff block spin steps
[22], as well as to the realization of the latter within the
functional renormalization group; for reviews, see e.g.
[23–28]. We show that a large regime of ultraviolet fluctua-
tions can be removed without altering the physics content of
the theory. Hence, cooling with colored noise can signifi-
cantly reduce the numerical costs of lattice simulations done
within stochastic quantization. Such a procedure could, in
principle, also be applied to CLE simulations.
The paper is organized as follows. In Sec. II, we recall

basic concepts of stochastic quantization and introduce
stochastic regularization. The lattice field theory formu-
lation of the LE with colored noise is described in Sec. III.
In Sec. IV, we review real scalar field theory on the lattice
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providing a suitable model for our numerical studies. This
is followed by the discussion of the relation between
colored noise and the renormalization group in Sec. V.
In Sec. VI, we discuss numerical results from simulations
with colored noise. The approach is put to work in Sec. VII,
where also its relation to the functional renormalization
group is discussed and utilized. We finish with our
conclusions in Sec. VIII.

II. STOCHASTIC QUANTIZATION WITH
COLORED NOISE

In this section, we briefly review the main concepts of
stochastic quantization and stochastic regularization within
the example of a Euclidean real scalar field theory with the
action S ¼ S½ϕ�.
Stochastic quantization is based on the fact that a

Euclidean quantum field theory can be described by a
classical statistical mechanical system in thermal equilib-
rium with a heat reservoir [29,30]. This is formulated in
terms of a stochastic process with a stationary distribution
expð−S½ϕ�Þ=Z, where

Z ¼
Z

Dϕ expð−S½ϕ�Þ ð1Þ

denotes the partition function. The stochastic process
evolves the fields according to the corresponding
Langevin equation in a Langevin-time τ,

∂ϕðx; τÞ
∂τ ¼ −

δS
δϕðx; τÞ þ ηðx; τÞ: ð2Þ

Here, ϕðx; τÞ denotes the τ-dependent scalar field and
ηðx; τÞ is the white noise field representing the quantum
fluctuations. With vanishing noise the solution of the
Langevin evolution converges to a solution of the classical
equations of motion. The white noise is characterized by
Gaussian distributed random numbers with

hηðx; τÞi ¼ 0;

hηðx; τÞηðy; τ0Þi ¼ 2δðdÞðx − yÞδðτ − τ0Þ: ð3Þ

In the limit τ → ∞, thermal equilibrium is reached and the
equal Langevin-time correlation functions of the statistical
mechanical system converge to the Green’s functions of the
Euclidean quantum field theory. The real Langevin evolu-
tion (2) can be applied as an updating algorithm in lattice
simulations to sample field configurations from the
Boltzmann distribution.
For a given Langevin equation there is an associated

Fokker-Planck equation. The latter describes the Langevin-
time evolution of a probability distribution function Pðϕ; τÞ
and reads

∂Pðϕ; τÞ
∂τ ¼

Z
ddx

δ

δϕðx; τÞ
�

δS
δϕðx; τÞ þ

δ

δϕðx; τÞ
�
Pðϕ; τÞ:

ð4Þ

One can verify that the Boltzmann distribution expð−S½ϕ�Þ
is therefore the stationary distribution of (4) with
∂τPðϕ; τÞ ¼ 0. More generally, if the action is real and
positive semidefinite a stationary distribution of the
Fokker-Planck equation exists which equals expð−S½ϕ�Þ
and the solution converges exponentially fast [30,31]. In
summary, stochastic quantization provides an alternative to
the standard quantization approach based on the path
integral formalism.
In the Langevin formulation, the noise containing the

quantum fluctuations can be regularized in the ultraviolet
by introducing a cutoff parameter Λ [21]. The altered
stochastic process in terms of the Langevin equation with a
colored noise kernel then reads

∂ϕðx; τÞ
∂τ ¼ −

δS
δϕðx; τÞ þ rΛðΔxÞηðx; τÞ; ð5Þ

where the dimensionless regularization function rΛðΔxÞ is a
function of the ratio Δx=Λ2 of the Laplace operator and the
square of the cutoff Λ. Using a short-hand notation for the
functional derivatives (see Appendix D), the associated
Fokker-Planck equation is

∂Pðϕ; τÞ
∂τ ¼

Z
ddx

δ

δϕx

�
δS
δϕx

þ r2ΛðΔxÞ
δ

δϕx

�
Pðϕ; τÞ: ð6Þ

Note that with rΛðΔxÞ → 1 in the limit Λ → ∞, the full
quantum theory is recovered. For a detailed derivation of
the Fokker-Planck equation from the Langevin equation
with a noise kernel, see Appendix D. Note that the
regularization function can be chosen in different ways.
A simple and intuitive choice of the regularization function
is a sharp cutoff in momentum space

rΛðp2Þ ¼ θðΛ2 − p2Þ: ð7Þ

Using (7) in the Fokker-Planck equation (6) allows for a
simple relation of stochastic quantization with colored
noise with functional renormalization group equations;
for reviews, see [23–28]. A solution of the fixed point
equation ∂τP ¼ 0 in momentum space is given by

PΛðϕ; τÞ ¼ exp ð−S − ΔSΛÞ; ð8Þ

with the cutoff term

ΔSΛ½ϕ� ¼
1

2

Z
p
ϕpΛ2

�
1

rΛðp2Þ − 1

�
ϕ−p: ð9Þ

Inserting (8) with (9) into (6), we are led to the fixed point
equation
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�
ð1 − rΛðp2ÞÞ δS

δϕp
− rΛðp2Þ δΔSΛ

δϕp

�
PΛðϕ; τÞ ¼ 0: ð10Þ

Both terms in the square brackets in (10) vanish for p2 <
Λ2 as they are proportional to 1 − rΛðp2Þ. Note that in the
second term this comes from rΛð1=rΛ − 1Þ ¼ 1 − rΛ. In
turn, for p2 > Λ2 the measure Pðϕ; τÞ vanishes and hence
(10) is satisfied for all fields and momenta. In summary, this
entails that the ultraviolet modes satisfy the classical
equations of motion and no quantum effects are taken into
account. For more details on the connection between the
kerneled Fokker-Planck equation and the functional
renormalization group, see Appendix E.
The regularization function (7) defines the colored noise

field

ηcolðp; τÞ ≔ ηðp; τÞθðΛ2 − p2Þ; ð11Þ

with the spacetime representation

ηcolðx; τÞ ¼
1

ð2πÞd
Z

ddpηcolðp; τÞe−ip·x: ð12Þ

This leads us to the Langevin equation with colored noise,

∂ϕðx; τÞ
∂τ ¼ −

δS
δϕðx; τÞ þ ηcolðx; τÞ; ð13Þ

which is used throughout the work. A visualization of the
colored noise ηcolðx; τÞ in (12) with the sharp cutoff (11) is
illustrated in Fig. 1.

III. LATTICE QFT WITH COLORED NOISE

In this section, we present the implementation of our
method for lattice simulations of Euclidean quantum field
theories. We consider finite isotropic spacetime lattices
with lattice spacing a and N lattice points in each direction.
Hence, the physical volume is Ω ¼ ðaNÞd. Then, the
allowed lattice momenta on the dual momentum lattice
are given by

pμ ¼
2π

aN
nμ; with μ ¼ 1;…; d; ð14Þ

where nμ ¼ −N=2þ 1;…; N=2. In the thermodynamic
limit N → ∞, the d-dimensional Brillouin zone is given
by the interval ð−π=a; π=a�d.
In lattice simulations using the Langevin equation with

colored noise, we work with the sharp regulator (7)
introduced in the previous section. Similarly as in the
continuum, colored noise is generated by cutting off the
noise modes on the momentum lattice followed by a
discrete Fourier transformation back to the real space
lattice which leads to

ηcolðx; τÞ ¼
1

Ω

X
p

eip·xrΛðp2Þηðp; τÞ: ð15Þ

The discretized Langevin equation with colored noise thus
reads

ϕðx; τnþ1Þ ¼ ϕðx; τnÞ −
δS

δϕðx; τnÞ
Δτ þ

ffiffiffiffiffiffi
Δτ

p
ηcolðx; τnÞ

ð16Þ

with the Langevin time step Δτ. In our implementation, we
retain noise modes with p2 ≤ Λ2 and remove larger modes;
see Fig. 2. Modes are being removed as the decreasing
cutoff Λ sweeps over the discrete lattice momenta. Note
that the lattice theory only changes at the discrete values
Λ ¼ sΛπ=a with

sΛ ¼ max

�
1ffiffiffi
d

p
ffiffiffiffiffi
n2μ

q �
with p2ðnμÞ ≤ Λ2: ð17Þ

For the Λ dependence, see Fig. 3. For these values, the
cutoff Λ sweeps over the discrete momentum values; see
Fig. 2 for a two-dimensional dual lattice. We also notice
that integer values of sΛ indicate a standard cubic momen-
tum lattice of nonzero quantum fluctuations. Moreover
sΛ ¼ N=2 corresponds to the standard Langevin evolution
with Gaussian white noise. For sΛ ¼ 0 only the zero-
momentum mode contributes to the colored noise. For the
simulation with the gradient flow we use the Langevin
equation with the noise term set to zero.
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FIG. 1. Heat map plot of the absolute value of colored noise on
a 128 × 128 lattice for momentum cutoff sΛ ¼ 8 (see Sec. III for
the definition of the lattice cutoff). In contrast to the white noise
picture described in (3), non-delta-like spatially correlated
structures extending over several lattice spacings are visible.
The arrangement of the structures, however, appears to be random
for we require the UV-modified stochastic process to remain
Markovian.
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For the further discussion it is useful to split the full
field in momentum space in a classical and quantum
contribution,

ϕðpÞ ¼ ϕclðpÞ þ δϕquðpÞ; ð18Þ

with

δϕquðpÞ ¼ 0 for p2 > sΛ2: ð19Þ

Note that the field δϕqu, which carries the quantum
fluctuations, lives on the momentum lattice defined by
p2 ≤ sΛ2. Henceforth we call this generically smaller
lattice the “quantum” lattice. In turn, the classical field

ϕcl lives on the full momentum lattice which we therefore
call the “classical lattice.” In position space, this translates
into a fine classical lattice and a coarser quantum lattice.

IV. SCALAR FIELD THEORY

A. Lattice formulation

Scalar field theories on the lattice have been investigated
in numerous works over the recent decades and their
applications range over a broad spectrum of topics involv-
ing particle, statistical and condensed matter physics. Here,
we consider a Euclidean real single-component scalar field
theory in d dimensions with lattice action

S¼
X
x

ad
�
1

2

Xd
μ¼1

ðϕ0ðxþ aμ̂Þ−ϕ0ðxÞÞ2
a2

þm2
0

2
ϕ2
0 þ

g0
4!
ϕ4
0

�
;

ð20Þ

where μ̂ denotes the unit vector in μ-direction. The sub-
script 0 indicates bare quantities, i.e. the bare mass m0, the
bare coupling g0 and the bare field ϕ0 in the action. For
numerical simulations the action is cast in the following
dimensionless form

S¼
X
x

�
−2κ

Xd
μ¼1

ϕðxÞϕðxþ μ̂Þþð1− 2λÞϕðxÞ2 þ λϕðxÞ4
�
.

ð21Þ

The parameter κ is the so-called hopping parameter and λ
describes the quartic coupling of the theory. Note that, here,
the parameters κ and λ are positive. They are related to the
bare mass, bare coupling and the lattice spacing in the
following way

a
d−2
2 ϕ0 ¼ ð2κÞ1=2ϕ;

ðam0Þ2 ¼
1 − 2λ

κ
− 2d;

a−dþ4g0 ¼
6λ

κ2
; ð22Þ

where we have introduced the dimensionless field ϕ. The
white noise Langevin update step (τn → τnþ1) of a field
variable at lattice point x is given by

ϕðx; τnþ1Þ ¼ ϕðx; τnÞ þ K½ϕðx; τnÞ�Δτ þ
ffiffiffiffiffiffi
Δτ

p
ηðx; τnÞ;

ð23Þ

where the drift term K½ϕðxÞ� ¼ −δS½ϕ�=δϕðxÞ explicitly
reads

FIG. 2. Schematic illustration of the dual lattice in d ¼ 2
describing our implementation of the cutoff. The radius of the
red shaded circle corresponds to the cutoff Λ. Noise modes
outside of the circle have zero weight in the Langevin evolution.
Colored noise only receives finite contributions for momentum
modes from inside the red circle.
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FIG. 3. sΛðΛÞ for N ¼ 4 in two dimensions. The integer values
of sΛ characterize the standard cubic momentum lattices. The
latter will be used in the further analysis.
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K½ϕðxÞ� ¼ 2κ
Xd
μ¼1

½ϕðxþ μ̂Þ þ ϕðx − μ̂Þ�

þ 2ϕðxÞð2λð1 − ϕðxÞ2Þ − 1Þ: ð24Þ

The process (23) can be solved iteratively by using an
explicit Euler-Maruyama discretization scheme. Higher
order Runge-Kutta schemes are possible as well and are
discussed in [30,32].
Let us consider the case d ≥ 2. If the action contains no

explicit symmetry breaking term for each value of λ, there
exists a critical value of the hopping parameter κc at which
the system undergoes a second order phase transition. The
Z2 symmetry of the system becomes spontaneously broken
above the critical point. The phase transition for the case of
d ¼ 2 is illustrated in Fig. 4. Classically, the broken phase
is characterized by a negative mass term ðam0Þ2 < 0,
leading to two degenerated minima in the potential.
Within the dimensionless formulation, these minima are
at �ϕmin with

ϕmin ¼
�
1

2λ
ð2dκ − 1þ 2λÞ

�
1=2

: ð25Þ

The critical value for the hopping parameter in the classical
theory can be determined by requiring the mass term to
vanish, leading to

κcðλÞ ¼
1 − 2λ

2d
: ð26Þ

B. Observables

We now discuss some of the main observables to explain
the properties of the theory. Those are useful in the analysis
of the effects of colored noise. The vacuum expectation
value of the field also called the magnetization reads

hMi ≔
�
1

Ω

X
x

ϕðxÞ
�
: ð27Þ

It is zero in the symmetric phase of the theory and takes a
finite value in the broken phase. Note that Ω is given by the
number of lattice points since we consider the dimension-
less formulation. The connected two-point correlation is
defined as

Gcðx; yÞ ¼ hϕðxÞϕðyÞic ≡ hϕðxÞϕðyÞi − hϕðxÞihϕðyÞi:
ð28Þ

From this we obtain the two-point correlation function of
time slices by evaluating the spatial Fourier transform of
Gcðx; yÞ at vanishing spatial momentum

GcðtÞ ¼
1

V

X
x⃗

Gcðx; 0Þ: ð29Þ

It measures the decay of correlations over the time extent of
the lattice. The mass is related to the inverse correlation
length. Moreover, (29) is related to the connected suscep-
tibility by

χ2 ¼ V
X
t

GcðtÞ ¼ ΩðhM2i − hMi2Þ: ð30Þ

Hence, the susceptibility is the (d-dimensional) Fourier
transform of the correlator (28) evaluated at zero momen-
tum. The susceptibility measures the Gaussian fluctuations
of the magnetization. The fourth-order cumulant or Binder
cumulant [33] quantifies the curtosis of the fluctuations. It
can be used to study phase transitions and to determine
critical exponents. The Binder cumulant reads

UL ¼ 1 −
1

3

hM4i
hM2i2 : ð31Þ
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FIG. 4. The phase diagram of Oð1Þ scalar field theory on the lattice characterized by three of the main observables, here at (fixed)
coupling λ ¼ 0.02 for a 32 × 32 lattice. (Left) The plot on the left-hand side shows the susceptibility as a function of the hopping
parameter κ. (Middle) The central figure depicts the Binder cumulant. The critical value is given by κc ≈ 0.27. The range for κ <¼ κc
describes the symmetric phase. For values of κ larger than the critical point the theory is in the phase with spontaneously broken
symmetry. (Right) The figure on the right-hand side shows the renormalized mass mR in lattice units. The results were produced using
the Langevin equation with white noise taking 106 measurements in equilibrium τ → ∞. The data points are connected by lines to guide
the eye.
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It vanishes in the symmetric phase and assumes the value
2=3 in the phase with broken symmetry. The second
moment is defined by

μ2 ≔ dV
X
t

t2GcðtÞ: ð32Þ

From (30) and (32) the renormalized mass can be computed
according to

m2
R ¼ 2dχ2

μ2
: ð33Þ

This is derived in more detail in Appendix B. In Fig. 4, the
behavior of the connected susceptibility, the Binder cumu-
lant and the renormalized mass as a function of κ for
constant λ ¼ 0.02 are shown across the phase transition.

V. COLORED NOISE AND THE
RENORMALIZATION GROUP

Colored noise introduces a UV cutoff sΛ. The change of
the theory with an infinitesimal change of the cutoff is
governed by the renormalization group. In terms of our
lattice setup, colored noise leads to the separation into the
classical and the quantum lattice (18). The momentum
space quantum lattice (19) contains only field modes with
jpj ≤ sΛ. Those receive a nonzero contribution to fluctua-
tions from the colored noise term in the Langevin equa-
tion (16). The remaining contribution encoded in the drift
term is purely classical and applies to all field modes. Let
sΛ;max denote the maximum cutoff on the lattice with Nd

points. In general, for a given cutoff sΛ ≤ sΛ;max the
quantum lattice in momentum space has less points than
the classical lattice. In the limit τ → ∞, the field modes
with jpj > sΛ assume their classical value according to the
limit of the gradient flow. The fewer points of the quantum
momentum lattice translate into a coarser quantum real
space lattice as compared to the classical real space lattice;
see Fig. 5. With this in mind, we study the relation of the

colored noise Langevin evolution to the renormalization
group in more detail. We investigate if the effect of the
cutoff sΛ may be compensated by varying the lattice
spacing a, thus tuning the coarseness of the quantum real
space lattice (19). To this end we compare a simulation with
white noise at sΛ ¼ sΛ;max on a coarse lattice with spacing
a1 with a colored noise simulation at cutoff sΛ < sΛ;max on
a fine lattice with spacing a2 < a1.
Our procedure is to introduce scale factors for the

following parameters,

a→ a0 ¼ s−1a; N→N0 ¼ sN; p→ p0 ¼ sp; ð34Þ

where s ≥ 1 and a, a0 are the original coarse and the fine
lattice spacing. Correspondingly, the lattice size N as well
as the lattice momenta p are transformed. The physical
volume ðaNÞd is thereby kept constant. The cutoff is
transformed according to

sΛða;NÞ → sΛ0ða0; N0Þ ¼ s−1sΛða0; N0Þ: ð35Þ

To give an explicit example of our transformation logic we
consider the case N ¼ 4, s ¼ 2. Let the cutoff on the coarse
lattice be sΛða;N ¼ 4Þ≡ sΛ;maxða; 4Þ ¼ 2. This corre-
sponds to the white noise case. The transformed cutoff
reads sΛ0ðs−1a; sNÞ ¼ 2 ¼ sΛ;maxða=2; 8Þ=2. This corre-
sponds to a colored noise simulation at half the maximum
cutoff on the finer lattice.
The above scaling transformations result in a change of

the parameters κ and λ in the scalar theory introduced
in Sec. IV. From now on we explicitly consider the two-
dimensional theory. To derive the tree-level renormalization
group equations for the parameters κ and λ, we fix the bare
parameters m0, g0; see (22) in Sec. IV. The first expression
of (34) yields

ðam0Þ2 → s−2ðam0Þ2;
a2g0 → s−2a2g0: ð36Þ

FIG. 5. (Left) Illustration of the classical and the quantum lattice in two-dimensional real space (blue figure). The two lattices agree for
the Langevin equation with white noise where sΛ ¼ sΛ;max; see the left lattice sketch. Using a sharp regulator only field modes with
jpj ≤ sΛ receive a nonvanishing contribution from the colored noise term. This leads to a coarser quantum lattice (blue circles) compared
to its classical counterpart (black points) which is unaffected by the cutoff. (Right) A typical block spin transformation in two
dimensions is illustrated (red figure). A possible choice of the transformation is to define the blocked field variables by averages over the
four fields inside the red squares. This leads to a coarser lattice with double the lattice spacing and a quarter of the original lattice points.
The illustrations point out the analogy between colored noise coarsening the quantum lattice and standard block spin transformations.
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Next we use the definition (22) in (36), leading to

s−2
�
1 − 2λ

κ
− 4

�
¼ 1 − 2λ0

κ0
− 4

s−2
6λ

κ2
¼ 6λ0

κ02
: ð37Þ

These equations can be solved for κ0 and λ0 used in the
colored noise simulation with cutoff sΛ0. We remark that the
Eqs. (37) are akin with standard block-spinning equations.
Under a complete block spin transformation the partition
function is invariant. This requires an adjustment of the
couplings of the theory which completes the renormaliza-
tion group step. The right-hand side of Fig. 5 shows a
typical block spin transformation on a two-dimensional
lattice. Field variables are organized into blocks by local
averaging which reduces the number of lattice points and
renders the lattice coarser. The physical volume thereby
remains fixed. For the correlation length this entails

2ξðNB ¼ N=2; κB; λBÞ ¼ ξðN; κ; λÞ; ð38Þ

where NB, κB, λB are the number of lattice points and the
adjusted couplings on the blocked lattice. Our procedure is
therefore analogous to block spinning since decreasing the
cutoff sΛ generates the local averaging and the coarsening
of the quantum lattice.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the scalar
theory in two dimensions. All simulations in this work have
been carried out using the sharp regulator function defined
in (7) and a fixed Langevin time step Δτ ¼ 10−2. For a
comparison of different regularization choices, see
Appendix D 2. In the first part of this section, we study
the effect of the sliding cutoff scale sΛ by means of the
observables introduced in Sec. IV. Our simulation with
maximal sΛ (white noise) reproduces the results in [34]. In
the second part, we focus on the relation between colored
noise and the real space renormalization group.

A. Colored noise: Incomplete blocking

A first check of our colored noise approach is shown in
Fig. 6. The expectation value of the absolute magnetization
measured on a 32 × 32 lattice is plotted as a function of the
cutoff sΛ. Here, for the parameter choice (κ ¼ 0.26,
λ ¼ 0.02) the classical theory is in the broken phase and
the full quantum theory is in the symmetric phase. The
white noise result (sΛ ¼ 16) is indicated by the blue dashed
line. We find that colored noise (red data) allows for a
consistent interpolation between the full quantum theory
and the classical theory.
Next the interpolation between the two phases is inves-

tigated further by considering the fluctuation content of the

theory. Thereto, we analyze the susceptibility, the Binder
cumulant and the renormalized mass shown in Fig. 7. The
parameters are the same as for Fig. 6. Cutting off ultraviolet
modes gradually moves the susceptibility (left) and the
Binder cumulant (middle) across the phase transition. This
confirms the effects of colored noise observed in Fig. 6.
The right plot in Fig. 7 shows the renormalized mass
calculated from the second moment and the connected
susceptibility. The mass decreases with lowering the cutoff
which means that the correlation length (in lattice units)
increases. Beyond the critical point we expect the renor-
malized mass to increase again. However, for sΛ < 4 the
sharp regulator induces oscillations in the correlation
function of time slices. Then, mR as defined in (33) shows
a delayed transition from the symmetric to the broken
phase. This problem can be resolved with the application of
a smooth regulator function. In Appendix D 2, we analyze
the behavior of the correlation function of time slices
comparing two different regularization choices. From this
we can draw conclusions on the behavior of mR for any sΛ.
In summary, we find that the susceptibility, the Binder
cumulant and the renormalized mass represent quantities
that are sensitive to the application of colored noise if all
bare parameters (κ, λ) and the lattice size N are kept fixed.
To continue our analysis we investigate the susceptibility

as a function of κ for different cutoffs sΛ as shown in Fig. 8.
Here, the results were produced on a 64 × 64 lattice where
λ ¼ 0.02 is kept fixed. The violet curve depicts the white
noise result. Our observations are: The peak position
corresponding to κc is successively shifted towards lower
values of κ with decreasing cutoff. This is consistent with
the previous results in this section. Colored noise removes
quantum fluctuations rendering the theory more classical.
In the limit of the pure gradient flow, the peak of the
susceptibility would lie directly on the tree-level value of
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as given by (25). We find a consistent inter-

polation between the classical and the full quantum theory using
our colored noise setup.
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κðclÞc ¼ 0.24 according to (26). The stepwise UV regular-
ized theory shows its critical behavior in ranges of κ where
the full quantum theory (sΛ ¼ sΛ;max) lives in the sym-
metric phase.
Moreover, in the situations studied here the peak height

shrinks when lowering the cutoff below sΛ ¼ 4. This
suggests that the momentum fluctuations below this char-
acteristic momentum scale given by sΛ ¼ 4 are relevant for
the physics observed. Removing thesemomentawith a lower
cutoff therefore modifies the theory. In turn, the momentum
fluctuations above this scale are physically irrelevant.

B. Colored noise: Complete blocking at tree level

In this section, we relate the effects of colored noise
to the real space renormalization group. Following the

procedure outlined in Sec. V, we set up the white noise
reference simulation (s ¼ 1, sΛ ¼ sΛ;max) on an 8 × 8 lattice.
The parameters are chosen to be λ ¼ λð1Þ ¼ 0.02 and 0.22 ≤
κ ¼ κð1Þ ≤ 0.32 with lattice spacing a ¼ að1Þ. This deter-
mines the full quantum theory we want to compare our
colored noise results with. We proceed by setting s ¼ 2, 4, 8
and perform colored noise simulations with finer lattice
spacings aðsÞ on Nðs¼2Þ × Nðs¼2Þ ¼ 16 × 16, Nðs¼4Þ ×
Nðs¼4Þ ¼ 32 × 32 and Nðs¼8Þ × Nðs¼8Þ ¼ 64 × 64 lattices
at the corresponding cutoffs s−1sΛ;maxðaðsÞ; NðsÞÞ. Table I
summarizes the lattice spacingsaðsÞ and cutoffs sΛ used in the
simulations. Accordingly, the transformed parameters are
determined from (37). The resulting parameters (κðsÞ, λðsÞ) are
plotted in Fig. 9.
Fig. 10 shows the Gaussian fluctuations by means

of the volume rescaled connected susceptibility χ2=V
plotted as a function of the untransformed hopping para-
meter κð1Þ at fixed λð1Þ ¼ 0.02, that is, we consider
ðχ2=VÞ½κðsÞðκð1Þ; λð1ÞÞ; λðsÞðκð1Þ; λð1ÞÞ�. Analogously, the
Binder cumulant UL as well as the rescaled renormalized
mass NmR are presented in Fig. 11 and Fig. 12. The violet
curve represents the full quantum theory produced on the
8 × 8 lattice with white noise. We find that the colored
noise results (blue for Nðs¼2Þ ¼ 16, red for Nðs¼4Þ ¼ 32 and
dark yellow for Nðs¼8Þ ¼ 64) are in close agreement with
the results for the full theory. This meets the expectations of
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parameters N ¼ 32, κ ¼ 0.26 and λ ¼ 0.02 are fixed. (Left) The susceptibility shows a peak indicating that the quantum theory moves
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transition as the cutoff is lowered from sΛ ¼ 16 to sΛ ¼ 4. For sΛ < 4, mR as defined in (33) shows a delayed phase transition from the
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TABLE I. Lattice scales for the RG transformation (36) in two
dimensions. The last column shows the lattice cutoff with
reinstated lattice spacing.

N lattice spacing sΛ
ffiffiffi
d

p ð2π=aðsÞNÞsΛ
8 aðs¼1Þ ¼ a sΛ;max ¼ 4

ffiffiffi
2

p
π
a

16 aðs¼2Þ ¼ a=2 sΛ;max=2 ¼ 4
ffiffiffi
8

p
π
a

32 aðs¼4Þ ¼ a=4 sΛ;max=4 ¼ 4
ffiffiffiffiffi
32

p
π
a

64 aðs¼8Þ ¼ a=8 sΛ;max=8 ¼ 4
ffiffiffiffiffiffiffiffi
128

p
π
a
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our construction. Although the classical lattices for differ-
ent s do not coincide in size, the quantum lattices are the
same due to the rescaling (36). However, a few deviations
are clearly visible.
The correlation function of time slices for the choice

κð1Þ ¼ 0.22, λð1Þ ¼ 0.02 and the transformed parameters
κðsÞ, λðsÞ thereof are shown in Fig. 13. The sharp regulator
affects the colored noise correlators at small Euclidean
times and causes oscillations for larger times as already
mentioned in Sec. VI. However, the results seem to agree
well if we rescale the Euclidean time axis for the s ¼ 1, 2, 4
cases to the time extent of the Nðs¼8Þ ¼ 64 lattice. The
shape of the correlator hints also the behavior of
the correlation length regardless of the artifacts from the
sharp cutoff. In agreement with (38), we find that the
correlation lengths in lattice units fulfill ξðNðsÞ; κðsÞ; λðsÞÞ≈
sξðN; κð1Þ; λð1ÞÞ. The correlation length increases which is
consistent with the requirement a → aðsÞ ¼ a=s. This is
moreover in agreement with the concept of the block spin
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transformation (here in a kind of reverted sense) as
discussed in Sec. V. Accordingly, from investiga-
ting the renormalized mass in Fig. 12, we find that
mRðN; κð1Þ; λð1ÞÞ ≈ smRðNðsÞ; κðsÞ; λðsÞÞ.
In Fig. 14, the order parameter hjMji is plotted as a

function of κð1Þ. The colored noise results seem to converge
with increasing lattice size to the dark-yellow curve for
Nðs¼8Þ ¼ 64.
There are several error sources that have to be taken into

account. The deviations in the critical region are influenced
by critical slowing down; see Fig. 10 and Fig. 12. The latter
poses a hard issue for a local updating algorithm such as the
Langevin equation. Furthermore, finite size effects are a
possible error source for the mismatch of our data in the
critical region. Those are also clearly visible in the order
parameter in Fig. 14. Moreover, the deviations from the full
quantum theory observed in our data indicate that our
compensation procedure might be incomplete. One reason
is that our naive renormalization group transformation is
based on the tree-level relations (37). With increasing s the
deviation from the tree-level relations should increase as
well due to the running of m2

0 and g0 affecting κ and λ.
A further reason is that the number of blocking steps is
limited on a finite lattice. Here, only for the first RG step
our procedure seems to yield correct results.
To cope with the finite size effects, we repeat our analysis

considering larger lattices. We proceed analogously as
before but in contrast to the discussion above we carry
out the s ¼ 1 simulation using white noise on a larger
24 × 24 lattice and set the scale factors for the colored noise
simulations to s ¼ 2, 3, 4. The parameter set for the full
theory is again given by 0 ≤ κð1Þ ≤ 0.22 and λð1Þ ¼ 0.02.
Note that the lattice sizes for the simulations with
colored noise at half, third and quarter the maximum cutoff
are now Nðs¼2Þ × Nðs¼2Þ ¼ 48 × 48, Nðs¼3Þ × Nðs¼3Þ ¼
72 × 72 and Nðs¼4Þ × Nðs¼4Þ ¼ 96 × 96.
From the susceptibility shown in Fig. 15 and the Binder

cumulant in Fig. 16, we find that by halving the lattice

spacing the results from the Nðs¼1Þ ¼ 24 and the Nðs¼2Þ ¼
48 simulations are in good agreement. In the critical
regime, the results for larger lattices, however, deviate
from the white noise reference result.
The renormalized mass in Fig. 17 shows that the

Nðs¼1Þ ¼ 24 and the Nðs¼2Þ ¼ 48 data agree well over
the whole range in the hopping parameter in spite of the
deviation caused by the (remaining) finite size effect
around the critical point. The larger lattices, however,
indicate that the masses differ from the white noise result.
We remark that the simulations are plagued by a bad signal-
to-noise ratio, visible in the correlator for parameters
sufficiently far in the symmetric or broken phase, respec-
tively. The magnetization for the larger lattices in Fig. 18
shows an analogous behavior as observed on the small
lattices. We conclude that, except for the renormalized
mass, our renormalization procedure gives the same result
on large and small lattices.
The results in this section have been produced from 106

measurements of time slice configurations for each lattice
size. Between two measurements we have performed 100
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subsequent Langevin update sweeps corresponding to a
Langevin time τ ¼ 1 without measurement to reduce the
autocorrelation of the observables. After a standard data
blocking check, we find that this is not enough, especially
in the case of the large and fine lattices. The data is more
severely correlated. For example at κð1Þ ¼ 0.26 for an
N ¼ 96 lattice a block must have a minimum length of
5000 which we have used for a standard blocked Jackknife
error analysis.

VII. COOLING WITH COLORED
NOISE—APPLICATIONS

In the previous sections, we have shown that the cutoff
can be decreased stepwise without changing the physics
content of the theory if the cutoff is still sufficiently large.
The complementary Wilsonian picture is that of integrating
out degrees of freedom: with colored noise the path integral
measure PΛ½ϕ� only involves modes with p2 ≤ Λ2.
Accordingly, let us consider the colored stochastic process

(5), (6) with S → Seff;Λ, where the latter already contains
the quantum effects of fields with p2 > Λ2,

e−Seff;Λ½ϕ� ¼
Z

dϕp2>Λ2e−S½ϕ�; ð39Þ

This leads us to

∂ϕðx; τÞ
∂τ ¼ −

δSeff;Λ
δϕðx; τÞ þ rΛðΔxÞηðx; τÞ; ð40aÞ

with

∂Peff;Λ

∂τ ¼
Z

ddx
δ

δϕx

�
δSeff;Λ
δϕx

þ r2ΛðΔxÞ
δ

δϕx

�
Peff;Λ:

ð40bÞ
The stochastic process (40) gives the full correlation
functions for momenta p2 ≤ Λ2. The related generating
functional is that of the full theory

Z ¼
Z

dϕp2≤Λ2e−Seff;Λ½ϕ� ¼
Z

dϕe−S½ϕ�; ð41Þ

with the classical action S½ϕ� used in the original Langevin
evolution. The Wilsonian effective action Seff;Λ can be also
understood in terms of an improved or perfect lattice action
if an additional block spinning transformation is applied.
In summary, the following picture emerges: if the ultra-

violet cutoff is asymptotically large, lowering the cutoff only
changes the bare couplings κΛ, λΛ in the classical lattice
action to accommodate the RG-running of the theory.
Effectively this defines a scale Λphys, and for Λ ≫ Λphys

the above statement holds. Higher order operators are sup-
pressed by UV power counting with powers of Λphys=Λ and
can be safely dropped. This leads us to

Seff;Λ≫Λphys
≃ S½κΛ; λΛ� ð42Þ

(see also Fig. 19). In turn, for small cutoffs, Λ≲ Λphys,
physical fluctuations are removed from the lattice. Then,
RG-transformations of the bare parameters in the classical
lattice action do not suffice to keep the physics constant. Still,
the latter can be achieved by RG transformations leading to
improved or perfect actions,

Seff;Λ≲Λphys
≠ S½κΛ; λΛ�: ð43Þ

This idea is depicted in Fig. 19. It also suggests a systematic
way to use the Wilsonian picture in terms of the (lattice)
functional renormalization group (FRG) for improved lattice
computations as well as for effectively determiningΛphys. In
contrast to the previous section, we shall consider RG
transformations beyond tree-level on lattices of fixed size
and lattice spacing. These transformations are encoded in the
flow equation for the Wilsonian effective action Seff;Λ. In the
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present work, we concentrate on the sharp cutoff, a more
general analysis also including smooth cutoffs will be
presented elsewhere.
For the sharp cutoff Seff;Λ satisfies the Wegner-Houghton

equation [35]. For the sake of computational conveniencewe
formulate it for the 1PI effective action, the Legendre
transform of Seff;Λ (where the cutoff term is subtracted
[23–28]),

∂ΛΓΛ½ϕ̄� ¼
1

2
TrhϕðpÞϕð−pÞicΛ2∂Λ

�
1

rΛðp2Þ − 1

�
; ð44Þ

where the subscript c stands for the connected part of the
two-point function similarly as introduced in Sec. IV. The
trace Tr stands for the sum over momenta in the Brillouin
zone, and ϕ̄ ¼ hϕi. In the continuum limit, it turns into the
standard momentum integration

R
ddp=ð2πÞd. In (44), a

suitable smoothing of the sharp cutoff is assumed and
mandatory on the lattice. The propagator is the inverse of
the second derivative of ΓΛ with respect to the fields,

Γð2Þ
Λ ¼ δ2=ΓΛδϕ

2, and hence (44) is a closed equation for
ΓΛ. In the continuum, it takes the simple form

Λ∂ΛΓΛ½ϕ̄� ¼
1

2
Tr log ðΓð2Þ

Λ ½ϕ̄�Þðp2 ¼ Λ2Þ: ð45Þ

In the UV regime with Λ ≫ Λphys, the effective action is
given by the classical action; see (42). Then the flow equation

is a closed equation for κðtÞ and λðtÞ with t ¼ logΛ=ΛUV,
where ΛUV is a normalization scale, typically the initial UV
scale. In the present case, this is the maximal momentum on
the classical lattice. Another convenient definition originates
inΛ=ΛUV ¼ sΛ=sΛUV

. Since sΛ is already dimensionless we
drop the normalization and use

t ¼ log sΛ: ð46Þ

ForΛ≲ Λphys the simple closed flows for κðtÞ and λðtÞ donot
hold anymore, and the higher operators will be important. By
comparing the full flowswith the simplified ones thephysical
scale Λphys can be defined as the scale below which the
correlation functions computed from the stochastic processes
with either S and Seff show significant deviations. Note that
this procedure is less costly than the blocking procedure
which involves decreasing the lattice spacing while simulta-
neously increasing the number of lattice points.
A full analysis of this framework goes beyond the scope

of the present work. Here we want to provide some first
simple practical computations that also give indications of
the precision needed in fully quantitative analyses. To that
end, we approximate the lattice RG transformations by the
functional RG flow equations in the continuum theory (45).
In the asymptotic UV regime with Λ ≫ Λphys, the effective
action ΓΛ is given by the classical action, to wit

ΓΛ½ϕ�≃
Z

ddx

	
1

2
ϕð−∂2 þm2Þϕþ g

4!
ϕ4



; ð47Þ

for m2 ≥ 0. Taking two and four field derivatives at ϕ ¼ 0
and p ¼ 0, we are led to the flows

∂Λm ¼ Fmðm; gÞ; ∂Λg ¼ Fgðm; gÞ; ð48Þ

for the mass and the coupling. The latter can be converted
to flows for the dimensionless lattice parameters κ, λ using
the relations (22). Note that the flow of g runs like 1=Λ2

for large Λ up to logarithmic corrections. Hence, at leading
order, only m2 and κ run logarithmically proportional
to logðΛÞ and 1= logðΛÞ for large Λ. Accordingly, for
Λ → 1=2Λ the mass squared shifts by an amount propor-
tional to log(2). The prefactor can be computed from (48).
In explicit form, the dimensionful continuum flow equa-
tions for the mass m and the coupling g read

Λ∂Λm2 ¼ −
g
4π

1

1þm2=Λ2
; ð49Þ

and

Λ∂Λg ¼
3

4π

g2

Λ2

1

ð1þm2=Λ2Þ2 : ð50Þ

The flow equations are cast into dimensionless form by
multiplying both sides with the fixed square lattice spacing

FIG. 19. Sketch of colored noise cooling. Each point on a
horizontal line represents a pair of couplings (κ, λ). The vertical
axis denotes the cutoff scale Λ. The upper horizontal line depicts
the white noise limit, and the curves constitute lines of constant
physics. The couplings of UV-irrelevant operators are also
generated during the RG flow. The corresponding axes are
perpendicular to the plane in the plot, and are dropped. For
Λ ≫ Λphys, we have Seff;Λ ¼ S½κΛ; λΛ� [see (42)], depicted by the
dark-red straight and dashed lines. Changing Λ at fixed couplings
effectively changes the physics content; see vertical black dashed
line and also the observables in Fig. 7. The scale Λphys and the
orange band denote the bound below which the action in the
colored noise simulation must be described by the full quantum
effective action.
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a2. The dimensionless cutoff reads aΛ and the flow time is
defined by t ≔ logðaΛÞ. Using the relations (22) leads to
the flow equations for the lattice parameters.

∂tκðtÞ ¼
3

2

λðtÞ
π

κðtÞ e2t

1þ 2λðtÞ
κðtÞðe2t − 4Þ − 8λðtÞ þ 1

½κðtÞðe2t − 4Þ − 2λðtÞ þ 1�2 ;

ð51Þ

∂tλðtÞ ¼
3

2

λðtÞ2
π

e2t

1þ 2λðtÞ
2κðtÞðe2t − 4Þ − 10λðtÞ þ 5

½κðtÞðe2t − 4Þ − 2λðtÞ þ 1�2 :

ð52Þ

For a quantitative comparison between the continuum RG
and colored noise cooling on the lattice we consider the
peak positions κc of the susceptibilities for different sΛ as
shown in Fig. 20. The data stems from simulations on a
96 × 96 lattice. The coupling λ ¼ 0.02 is fixed as in the
previous sections. For the comparison we take into account
the data for sΛ ¼ 3, 6, 12, 24, 48. The flow equations (51)
and (52) are initialized at the maximum flow time tmax ¼
logðaΛmaxÞ using the parameters λðtmaxÞ ¼ 0.02 and
κðtmaxÞ ¼ κc;WN. Here, κc;WN indicates the critical hopping
parameter obtained from the simulation with white noise
(sΛ;max ¼ 48). Moreover, the continuum cutoff translates
into its lattice counterpart with aΛmax ¼

ffiffiffi
2

p
πC, where C is

a free RG-parameter. The running hopping parameter κðtÞ
is depicted in Fig. 21. To compute the remaining critical
hopping parameters κc from the RG flow corresponding
to lower values of sΛ we evaluate κðtÞ at scales
tmax − n logð2Þ, where n ¼ 1, 2, 3, 4. The red data points
in Fig. 22 show the critical values κc as a function of sΛ
from the lattice simulations. The blue points denote the
values of κc obtained from the RG flow (51).

We find that, at large cutoff scales, the critical values κc
measured on the lattice coincide with those calculated from
the flow equations. In contrast, for small cutoff momenta a
deviation is visible. This indicates that at lower momentum
scales the stochastic process in terms of the classical action
fails to describe the full theory. There the classical action
needs to be replaced by an effective action as mentioned
above. We conclude that, for the model considered in this
work, colored noise cooling is applicable at scales between
the UVand a specific IR scale. In the case investigated here,
this IR scale lies between sΛ;max=4 and sΛ;max=8. This is
also supported by the shifted susceptibility in Fig. 23. Here,
the peaks have been translated by the difference between
κc;WN and the values of κc from the RG prediction; see
Fig. 22. While the agreement between the curves is quite
good up to sΛ ¼ 12 (blue curve), for lower cutoffs the
results deviate from the full theory; see the green and
yellow curves.
There are a few caveats to mention. Firstly, we work at

fixed λ in our lattice simulations. When lowering sΛ, λ
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FIG. 20. Susceptibility χ2 as a function of the hopping
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should be adjusted properly. Secondly, we approximate RG
transformations of the lattice parameters by the continuum
functional RG. For a more exact comparison between the
RG transformations and the lattice results, we need to solve
the flow equations (49) and (50) on the lattice. This,
however, comes with a few technical complications since
the flow is only defined at the discrete lattice momenta.

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have investigated lattice theories with
stochastic quantization with UV-regularized colored noise.
Cooling the Langevin evolution by removing field con-
figurations in the UV may be a promising candidate to
optimize lattice simulations of systems with a clear scale
separation between the relevant physics and the asymptotic
UV regime. There are two possible interpretations of our
method. The first is that the colored noise LE can be applied
in the traditional sense of smoothing out UV-fluctuations.
The alternative interpretation is to sample smooth configu-
rations directly from theUV-regularized Langevin evolution.
Here we have exploited the latter interpretation which

also can be connected directly to the renormalization group.
The scale of the smooth fields is set by using an external
cutoff parameter Λ. By varying Λ the colored noise
Langevin equation interpolates between the full quantum
theory accessible in a standard white noise simulation and
the classical theory.
Our approach has been put to work within a real scalar

field theory in two dimensions using a sharp momentum
cutoff. We have shown that, for sufficiently large cutoff
scales Λ, no relevant physics is cut off. In Sec. VII, we have
analyzed the viability of the colored noise cooling by
sampling configurations with colored noise on lattices of
fixed size. Thereby the form of the classical action is kept
unchanged. This procedure is only valid for Λ ≫ Λphys.
In turn, for Λ ≲ Λphys deviations grow large. At this point a

description by means of an effective action might be
necessary. Furthermore finite size and volume effects on
the lattice certainly also play a rôle and prohibit the use of
the continuum approximation for small UV cutoffs. Hence,
a refined analysis may even lower the cooling range.
Even without the refined analysis, we have shown that a

remarkably large regime of ultraviolet fluctuations can
be removed without altering the physics content of the
theory. The next step is to probe the maximal colored
cooling by identifying the lowest possible cutoff scale at
which the use of the classical action is still valid. Thereto,
we compute the parameters κ and λ from the associated RG
flows at a desired scale Λ and use them in the lattice
simulation. This is current work in progress.
Moreover, in our ongoing work, we use a (Symanzik)

improved action and study the flow of the couplings of
operators with dimension larger than Oða2Þ. Further
perspectives of the method are to explore the effects of
regulator functions different from the sharp cutoff beyond
the effects shown in Appendix D 2.
Applications of the method to SU(N) gauge theories

and to finite density models are also work in progress. In
theories with a complex action induced, e.g., by a finite
chemical potential, the complex Langevin evolution might
be optimized by colored noise cooling.
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APPENDIX A: FOURIER TRANSFORMATION
ON THE LATTICE

On the lattice, the discrete Fourier transformation of the
field ϕðxÞ reads

ϕðpÞ ¼
X
x

ade−ip·xϕðxÞ; ðA1Þ

where the momenta p are elements of the discrete Brillouin
zone. The inverse Fourier transform of the field ϕðxÞ is
correspondingly given by

ϕðxÞ ¼ 1

adNd

X
p

eip·xϕðpÞ; ðA2Þ

where the sum runs over all momenta in the Brillouin zone.
In the thermodynamic limit N → ∞, the previous equation
converges to
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ϕðxÞ ¼ 1

ð2πÞd
Z

π=a

−π=a
ddpeip·xϕðpÞ: ðA3Þ

For the remaining part of this section, we work in the
thermodynamic limit.
The Oða2Þ discretized Euclidean Laplace operator has

the form

Δx;y ¼ −
1

a2
Xd
μ¼1

ðδxþμ̂;y − 2δx;y þ δx−μ̂;yÞ: ðA4Þ

Let Δ−1
x;y denote the inverse lattice Laplacian obeying

Δx;yΔ−1
y;z ¼

δx;z
ad

: ðA5Þ

Substituting the Fourier transform of the Laplacian accord-
ing to (A3) in the previous equation yields

Δx;y

�
1

ð2πÞd
Z

π=a

−π=a
ddpeip·ðy−zÞΔ−1ðpÞ

�

¼ 1

ð2πÞd
Z

π=a

−π=a
ddpeip·ðx−zÞ: ðA6Þ

Evaluating this further leads to the lattice Laplacian in
momentum space:

ΔðpÞ ¼ 4

a2
Xd
μ¼1

sin2
�
apμ

2

�
: ðA7Þ

The right-hand side of (A7) appears in a similar fashion in
the free propagator of a scalar field theory. It relates the
physical momenta to the lattice momenta (14) by

~pμ ≔
2

a
sin

�
apμ

2

�
: ðA8Þ

APPENDIX B: OBSERVABLES

In this section, we work in lattice units. Let V ¼ Nd−1
s

denote the spatial lattice volume and T ¼ Nt the time extent
of the lattice. Similarly as above we work with
Ns ¼ N ¼ Nt. The total lattice volume is Ω ¼ VT. In
the following, we derive in more detail a few of the key
observables of a real scalar field theory with the lattice
action given in (21). We keep our notation close to [36].
The connected two-point susceptibility is defined as the
integrated connected two-point correlation function (28). It
can be formulated in terms of the magnetizationM defined
in (27) using that hϕðxÞi ¼ hϕð0Þi ¼ hMi.

χ2 ≔
X
x

Gcðx; 0Þ ¼
X
x

hϕðxÞϕð0Þic

¼
X
x

�
hϕðxÞϕð0Þi − hϕðxÞihϕð0Þi

�

¼
X
x

�
1

Ω

�X
y

ϕðxþ yÞϕðyÞ
�
− hMi2

�

¼ 1

Ω

�X
x;y

ϕðxþ yÞϕðyÞ
�
−ΩhMi2

¼
�X

y

MϕðyÞ
�
−ΩhMi2

¼ ΩðhM2i − hMi2Þ ¼ ΩhM2ic: ðB1Þ
In the step from the third to the fourth as well as from the
fifth to the sixth equation translation invariance on the
lattice has been used. Moreover, we exploited the linearity
of the (path integral) expectation value. Alternatively, the
connected susceptibility is just the Fourier transform of the
connected correlation function with momentum set to zero

χ2 ≡ ~GðpÞjp¼0: ðB2Þ
Here, the momentum space correlator for small p has the
form

~GðpÞ ¼ 1

2κ

ZR

m2
R þ p2 þOðp4Þ : ðB3Þ

From this, the second moment is determined according to

μ2 ≡ −
∂2

∂pν∂pν

~GðpÞ
����
p¼0

: ðB4Þ

Explicitly, for the susceptibility it holds

χ2 ¼ ~Gð0Þ ¼ 1

2κ

ZR

m2
R
: ðB5Þ

The evaluation of (B4) for the second moment yields

μ2 ¼
2d
2κ

ZR

m4
R
: ðB6Þ

Thus, the renormalized mass is given by

m2
R ¼ 2d

χ2
μ2

: ðB7Þ

Next, we define the time slice as the spatial average of the
field over the lattice at each time t

SðtÞ ¼ 1

V

X
x⃗

ϕðx⃗; tÞ: ðB8Þ

In a similar way as discussed above, we can express χ2 in
terms of the integrated correlation function of time slices
using hSðtÞi ¼ hSð0Þi ¼ hMi.
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χ2 ¼
1

Ω

X
x;y

hϕðxþ yÞϕðyÞi−ΩhMi2

¼ 1

Ω

X
ðt;x⃗Þ;ðt0;y⃗Þ

hϕðx⃗þ y⃗; tþ t0Þϕðy⃗; t0Þi−ΩhMi2

¼
X
t;t0

V
T

�
Sðtþ t0ÞSðt0Þ

�
−V

X
t

hSðtÞihSð0Þi

¼ V
X
t

hSðtÞSð0Þic ¼ V
X
t

GcðtÞ: ðB9Þ

The second moment μ2 can be expressed in form of time
slices exploiting hϕðx⃗; tÞi ¼ hSðtÞi as follows

μ2 ¼
X
x

x2Gcðx; 0Þ ¼
X
x

x2hϕðxÞϕð0Þic

¼
X
t;x⃗

ðt2 þ x⃗2Þhϕðx⃗; tÞϕð0; 0Þic

¼ d
X
t;x⃗

t2hϕðx⃗; tÞϕð0; 0Þic

¼ d
X
t;x⃗

t2hϕðx⃗; tÞϕð0; 0Þi − d
X
t;x⃗

t2hϕðx⃗; tÞi2

¼ d
X
t;x⃗

t2hϕðx⃗; tÞSð0Þi − d
X
t;x⃗

t2hSðtÞi2

¼ dV
X

t

t2hSðtÞSð0Þi − dV
X

t

t2hSðtÞi2

¼ dV
X

t

t2hSðtÞSð0Þic: ðB10Þ

In the step from the third to the fourth equation we have
used the above premise that there is no distinguished
direction on the lattice.
The corresponding formulas for a scalar field theory in

d ¼ 2 read

χ2 ¼
1

N2

X
x;y

hϕðxþ yÞϕðyÞic ¼ N2hM2ic

¼
X
t;t0

hSðtþ t0ÞSðt0Þic ¼ N
X
t

hSðtÞSð0Þic; ðB11Þ

where

SðtÞ ¼ 1

N

X
x

ϕðx; tÞ ðB12Þ

and

M ¼ 1

N2

X
x

ϕðxÞ: ðB13Þ

For the second moment, we find

μ2 ¼ 2N
X
t

t2hSðtÞSð0Þic: ðB14Þ

Finally, the renormalized mass can be computed from

mR ¼
�
4χ2
μ2

�
1=2

: ðB15Þ

APPENDIX C: SPACETIME CORRELATION
FUNCTION OF COLORED NOISE

First, the spatial Fourier transform of the noise field
ηðx; τÞ is given by

ηðp; τÞ ¼
Z

ddxηðx; τÞe−ip·x: ðC1Þ

The white noise correlation function in momentum space is
obtained by applying the second relation from (3)

hηðp; τÞηðq; τ0Þi ¼ 2ð2πÞdδðdÞðpþ qÞδðτ − τ0Þ: ðC2Þ

In the continuum, colored noise is defined by the
convolution with the sharp regulator function (7):

ηðx; τÞcol ¼
1

ð2πÞd
Z

ddpηðp; τÞθðΛ2 − p2Þeip·x: ðC3Þ

The correlation function for the colored noise field in d
dimensions is derived in the following.

hηcolðx; τÞηcolðy; τ0Þi

¼
�

1

ð2πÞ2d
Z

ddpddqe−ip·xe−iq·y

× θðΛ − jpjÞθðΛ − jqjÞηðp; τÞηðq; τ0Þ
�

ðC4Þ

¼ 2

ð2πÞd
Z

ddpddqe−ip·xe−iq·y

× θðΛ − jpjÞθðΛ − jqjÞδðdÞðpþ qÞδðτ − τ0Þ ðC5Þ

¼ 2

ð2πÞd
Z

ddpe−ip·ðx−yÞθðjΛj − jpjÞδðτ − τ0Þ ðC6Þ

¼ 2

ð2πÞd
Z

Λ

0

djpjjpjd−1
Z

2π

ϑd−1¼0

Z
π

ϑd−2¼0

� � �
Z

π

ϑ1¼0

× e−ijpjjx−yj cosðϑd−2Þsind−2ðϑ1Þ � � � sinðϑd−2Þ
× dϑ1 � � � dϑd−2dϑd−1δðτ − τ0Þ ðC7Þ

¼ 2

ð2πÞd
Z

Λ

0

djpjjpjd−1 sinðjpjjx − yjÞ
jx − yj

Z
Ωdδðτ − τ0Þ

ðC8Þ
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¼ 1

2d−2πd=2Γðd
2
Þ
Z

Λ

0

djpjjpjd−1J0ðjpjjx − yjÞδðτ − τ0Þ:

ðC9Þ

Here ΓðtÞ ≔ R
dye−yyt−1 denotes the Euler gamma func-

tion and J0ðxÞ≡ sinðxÞ=x is a Bessel function of the first
kind. The Bessel profile is also visible in observables such
as the correlation function of time slices for sufficiently low
cutoff in numerical simulations. This is discussed further in
Appendix D 2.

APPENDIX D: ASPECTS OF STOCHASTIC
QUANTIZATION WITH COLORED NOISE

1. Fokker-Planck equation

In this section, we derive the Fokker-Planck equation
(FPE) with a noise kernel (6) which describes the evolution
of the probability distribution Pðϕ; τÞ in fictitious time τ.
The derivation presented in [21,30] is worked out in more
detail focusing on the important technical steps. Thereto,
we consider a real one-component interacting scalar field
theory in d dimensions whose Euclidean action reads

S ¼
Z

ddx

�
1

2

�Xd
μ¼1

ð∂μϕðxÞÞ2
�
þm2

2
ϕ2ðxÞ þ VðϕÞ

�
:

ðD1Þ

The regularized Langevin equation reads

∂ϕðx; τÞ
∂τ ¼ −

δS
δϕðx; τÞ þ rΛðΔxÞηðx; τÞ; ðD2Þ

where rΛðΔxÞ denotes the regularization function which
depends on the cutoff parameter Λ and the Laplacian Δx
with rΛðΔxÞ → 1 in the limit Λ → ∞. The field is evolved
in Langevin time according to

ϕðx; τÞ ¼
Z
x0

Z
τ

−∞
dτ0Gðx − x0; τ − τ0Þ

×

�
rΛðΔxÞηðx; τ0Þ −

δV
δϕ

ϕðx0; τÞ
�
; ðD3Þ

where the Langevin Green’s function (see [30] for the
derivation) is given by

Gðx − x0; τ − τ0Þ ¼ θðτ − τ0Þ
Z
p
e−ip·ðx−x0Þe−ðτ−τ0Þðp2þm2Þ:

ðD4Þ

Note that the lower bound in the fictitious time integral is
set to −∞ such that, at finite (positive) Langevin times, the
system is in thermal equilibrium. Stochastic averages are
equivalent to functional averages over a probability

distribution Pðϕ; τÞ. Moreover, let F½ϕ� be an arbitrary
functional of the field variables. To stress the explicit noise
dependence of the field obtained as a solution of the
Langevin equation, we write ϕη. Stochastic averages are
written as

hF½ϕη�iη ¼
Z

DηF½ϕη� exp
�
−
1

4

Z
dτddxη2ðx; τÞ

�

¼
Z

DϕF½ϕ�Pðϕ; τÞ: ðD5Þ

Before we proceed, we derive some useful identities. First,
it follows from (D3),

δϕðx; τÞ
ηðy; τÞ ¼ θð0Þ

Z
x0
rΛðΔxÞδðdÞðx − yÞ

Z
p
e−ip·ðx−x0Þ

¼ 1

2
rΛðΔxÞδðdÞðx − yÞ; ðD6Þ

where the convention θð0Þ ¼ 1
2
is used. Finally, we note the

trivial identity,

�
2

δ

δηy;τ
þ ηy;τ

�
exp

�
−
1

4

Z
τ

Z
x
η2x;τ

�
¼ 0: ðD7Þ

To derive the FPE we consider the derivative with respect to
fictitious time τ of the stochastic average given in (D5). For
simplicity, we drop the subscript η.

d
dτ

hF½ϕ�i ¼
�Z

x

δF½ϕ�
δϕx;τ

∂ϕx;τ

∂τ
�

¼
�Z

x

δF½ϕ�
δϕx;τ

�
−

δS
δϕx;τ

þ rΛðΔxÞηx;τ
��

¼
Z

Dη

	Z
x

δF½ϕ�
δϕx;τ

�
−

δS
δϕx;τ

þ rΛðΔxÞηx;τ
�

×exp

�
−
1

4

Z
τ

Z
z
η2z;τ

�


¼
Z

Dη

Z
x

δF½ϕ�
δϕx;τ

×

�
−

δS
δϕx;τ

− 2

Z
y
rΛðΔxÞδðdÞðx − yÞ δ

δηy;τ

�

× exp

�
−
1

4

Z
dτddzη2z;τ

�
: ðD8Þ

In the second equation, the Langevin equation (D2) was
inserted. The third equation follows by writing the noise
average in the functional integral form. In the fourth
equation, the identity for the functional derivative with
respect to the noise field from (D7) was used. This can be
simplified further as follows:

COOLING STOCHASTIC QUANTIZATION WITH COLORED … PHYSICAL REVIEW D 96, 114505 (2017)

114505-17



d
dτ

hF½ϕ�i ¼
Z

Dη exp

�
−
1

4

Z
τ

Z
z
η2z;τ

� Z
x

�
−

δS
δϕx;τ

þ 2

Z
y
rΛðΔxÞδðdÞðx − yÞ δ

δηy;τ

�
δF½ϕ�
δϕx;τ

¼
�Z

x

�
−

δS
δϕx;τ

þ 2

Z
y
rΛðΔxÞδðdÞðx − yÞ δ

δηy;τ

�
δF½ϕ�
δϕx;τ

�

¼
�Z

x

�
−

δS
δϕx;τ

þ 2

Z
y
rΛðΔxÞδðdÞðx − yÞ

Z
w

δϕw;τ

δηy;τ

δ

δϕw;τ

�
δF½ϕ�
δϕx;τ

�

¼
�Z

x

�
−

δS
δϕx;τ

þ r2ΛðΔxÞ
δ

δϕx;τ

�
δF½ϕ�
δϕx;τ

�
: ðD9Þ

Here, the first equation follows from an integration by parts with respect to η. The third equation uses the chain rule to
calculate the functional derivative of F with respect to η. The last equation is obtained by using the identity for the
functional derivative of the field ϕ with respect to η from (D6). Moreover, it follows

d
dτ

hF½ϕ�i ¼
Z

DϕF½ϕ� ∂Pðϕ; τÞ∂τ ¼
Z

Dϕ

�Z
x

�
−

δS
δϕx

þ r2ΛðΔxÞ
δ

δϕx

�
δF½ϕ�
δϕx

�
Pðϕ; τÞ

¼
Z

DϕF½ϕ�
Z
x

δ

δϕx

�
δS
δϕx

þ r2ΛðΔxÞ
δ

δϕx

�
Pðϕ; τÞ: ðD10Þ

The last equation is obtained by functional integration by
parts with respect to ϕ. Thus, we arrive at the Fokker-
Planck equation for the stochastic process with colored
noise

∂
∂τP½ϕ; τ� ¼

Z
ddx

δ

δϕx

�
δS
δϕx

þ r2ΛðΔxÞ
δ

δϕx

�
Pðϕ; τÞ:

ðD11Þ

2. Alternative regularization functions

The regularization scheme used in [21] is a Pauli-Villars
regularization with cutoff parameter Λ. Explicitly, the
regularization function is defined as

rΛðΔxÞ ¼
�
1 −

Δx

Λ2

�
−1
: ðD12Þ

For most purposes it suffices to use the sharp regulator
introduced in (7). However, for certain cases, smooth
regularization functions such as the Pauli-Villars type
cutoff (D12) or smooth approximations to the sharp cutoff
may be required. A crucial disadvantage of the sharp cutoff
is that it gives rise to artifacts appearing in the noise
correlation function, as discussed for the continuum in
Appendix C. Those are clearly visible in the correlation
functions of time slices and pose difficulties, for instance to
the determination of masses because standard exponential
fit techniques are not applicable. The lattice version of the
Pauli-Villars regularization function reads

r~sΛð ~p2Þ ≔
�
1 −

~p2

~s2Λ

�−m
δx;y; ðD13Þ

where m ∈ N as introduced in [21]. Here “∼” refers to the
physical momenta introduced in (A8). Alternatively, a
smooth approximation to the sharp regulator on the lattice
reads

r~sΛð ~p2Þ ≔ 1

2

�
1 − tanh

�
α

�
~p2

~s2Λ
− 1

���
; ðD14Þ

where the parameter α ∈ Rþ can be tuned to vary the
steepness around the cutoff momentum. Both of the
regulator functions mentioned here are currently under
study. They may reduce the above mentioned artifacts
arising from the use of the sharp regulator. However,
throughout the course of this work, we use the sharp
regulator for all quantitative studies. Smooth regulators are
only used in this section to illustrate a qualitatively different
behavior visible in the observables.
We discuss the effects of different choices of the

regularization function by means of the two-point
correlation function of time slices shown in Fig. 24.
The correlators were computed for parameters κ ¼ 0.26,
λ ¼ 0.02 on a 32 × 32 lattice, that is for the same choice as
for Fig. 6. Note that the curves are represented in
logarithmic scaling. The orange curve visible in both plots
was computed in a simulation with Gaussian white noise
(sΛ ¼ 16) and reproduces the hyperbolic cosine behavior,
typical for lattice correlators. The remaining correlators
were produced in simulations with colored noise. The left
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plot in Fig. 24 stems from a simulation with a smooth Pauli-
Villars regularization function. The external parameters κ
and λ are chosen such that by cutting off ultraviolet modes
we interpolate between the phases of the theory. Close to
the phase transition, the mass in lattice units approaches
zero. This is consistent with the flattening of the correlation
functions; see the violet (sΛ ¼ 8) and the red curve
(sΛ ¼ 4). For sΛ ¼ 2, 3, see the green and blue curve,
the theory is in the broken phase and the correlator bends
for small Euclidean times loosing its typical exponential
shape. This is a sign of an imprint of the regularization
function in the correlator well visible for small sΛ. This
observation is also in agreement with the fact that the
colored noise is correlated in Euclidean spacetime.
Moreover, consistently in the broken phase the mass grows
again. For large Euclidean times the correlator also seems
to retain the exponential behavior. This might allow for the
application of fits to extract mass values or the calculation
of effective masses.
The right-hand side of Fig. 24 shows the same setup as

on the left but for the sharp regularization function (7). For
intermediate sΛ ¼ 4, 8, see the red and violet curve, the
results qualitatively agree with the corresponding results
obtained with the Pauli-Villars regularization. For small
sΛ ¼ 2, 3, however (see the green and blue curve), the
correlator shapes differ. Although at small Euclidean times
the correlator bends similarly, at larger times it oscillates.
For illustrative reasons we show the modulus of the
correlator jGcðtÞj. The sharp regularization function leaves
an artifact imprinting a Bessel-like shape on the correlator;
see also the discussion in Appendix C. The qualitative
behavior of the mass or correlation length agrees for both

regularization functions used here. In Fig. 24, we do not
show the classical correlation function since it is trivially
zero. This is due to the gradient flow driving the field values
into the classical minimum approaching a constant value
as τ → ∞.

APPENDIX E: RELATION BETWEEN
STOCHASTIC REGULARIZATION

AND THE FRG

Using the sharp momentum cutoff,

rΛðp2Þ ¼ θðΛ2 − p2Þ; ðE1Þ

in the Fokker-Planck equation (6) allows for a simple
relation of stochastic quantization with colored noise with
functional renormalization group equations. To that
end, we write the probability distribution Pðϕ; τÞ in (6)
for τ → ∞ as

PΛðϕ; τÞ ¼ exp ð−S − ΔSΛÞ; ðE2Þ

where ΔSΛ is defined in (9). Inserting (E2) with (9) into (6)
leads to the fixed point equation ∂τPΛ ¼ 0 in momentum
space with

�
ð1 − rΛðpÞÞ

δS
δϕp

− rΛðpÞ
δΔSΛ
δϕp

�
PΛðϕ; τÞ ¼ 0: ðE3Þ

With ð1 − rΛÞrΛ ≡ 0, the two parts on the left-hand side of
(E3) have to vanish separately. Now we use that
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FIG. 24. Time slice correlation functions on a 32 × 32 lattice for fixed parameters κ ¼ 0.26 and λ ¼ 0.02. The orange curve shown in
both graphs is the result obtained from a Langevin simulation with white noise for cutoff sΛ ¼ 16. The full quantum theory is in the
symmetric phase for the given choice of parameters. (Left) The plot shows the correlation function of time slices using a Pauli-Villars
regularization function for different cutoffs. Halving the maximum lattice momentum cutoff to sΛ ¼ 8 yields the violet curve showing
that the mass decreases. It becomes minimal for sΛ ¼ 4 were the theory is close to the critical point and the correlator is flat; see the red
curve. Decreasing the cutoff further to sΛ ¼ 3 and sΛ ¼ 2, respectively, shows that the correlator decays stronger again, meaning that the
mass in lattice units grows, but now with the theory being in the broken phase. (Right) The same setup as on the left is shown but here the
sharp cutoff (7) is used. Note that for sΛ ¼ 2, 3 the correlator resembles a Bessel function which is an artifact of the noise
correlation (C9).
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1 − rΛðpÞ ¼ θðp2 − Λ2Þ ðE4Þ

only applies to UV modes. Accordingly, we have

ð1 − rΛðpÞÞ
δS
δϕp

PΛðϕ; τÞ ¼ 0: ðE5Þ

The prefactor in (E5) does not vanish on the ultraviolet
modes that do not satisfy the equations of motion,
δS=δϕp ≠ 0. For these modes, (E5) entails that the measure
has to vanish,

PΛðϕp; τÞjjpj>Λ¼
!
0; ðE6Þ

hence the name sharp (UV) cutoff. (E6) requires a
diverging ΔSΛ for the ultraviolet modes with p2 > Λ2.
In turn, the cutoff term is also constrained for p2 < Λ2 by
(E3) with

rΛðpÞ
δΔSΛ
δϕp

¼ 0; ðE7Þ

and ΔSΛ has to vanish for the infrared modes. A simple
choice for ΔSΛ with these properties is given by

ΔSΛ½ϕ� ¼
1

2

Z
p
ϕpΛ2

�
1

rΛðpÞ
− 1

�
ϕ−p: ðE8Þ

This cutoff term vanishes for momentum modes with p2 <
Λ2 and is infinite for p2 > Λ2 leading to PΛðϕ; τÞ ¼ 0. This
entails that the UV modes satisfy the classical equation of
motion, and no quantum effects are taken into account.
We close this section with the remark that smooth cutoff

functions rΛðpÞ for the noise do not lead to a measure of the
type (E2), as the related integrability relations are violated.
This has been already observed in [21] in a different
context.

APPENDIX F: A QUALITATIVE COMPARISON
OF THE GRADIENT FLOW WITH

COLORED NOISE

In this section, we briefly and qualitatively focus on the
analogous behavior of the gradient flow and the Langevin
evolution with colored noise. Thereto, we consider a one-
dimensional real scalar field theory and measure field
configurations from a Langevin evolution with white noise.
The configurations are stored and smoothed by means of
the gradient flow. At each cooling step observables and
corresponding errors are calculated. In Fig. 25, the two-
point correlation function of time slices is depicted. The
number of configurations is of Ncf ≈Oð104Þ for κ ¼ 0.47,
λ ¼ 0.01 and lattice size N ¼ 32. As configurations are
smoothed by the gradient flow the errorbars shrink. To
visualize this here, the errorbars are magnified by a factorffiffiffiffiffiffiffi
Ncf

p
. In comparison with the result obtained using the

sharp regulator in Fig. 24, we find the same behavior of the
correlator at small Euclidean times. As the configurations
are cooled the correlator bends. This signalizes the effect of
a heat diffusion equation which has been investigated in
[19] in the context of a massless scalar theory in d
dimensions. Note that the gradient flow for a scalar theory
has exactly the form of a heat diffusion equation.
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