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We present results for the form factors of the isovector axial vector current in the nucleon state using
large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge
configurations generated by the MILC collaboration using the HISQ action with 2þ 1þ 1 dynamical
flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09, and 0.12 fm and light-quark masses
corresponding to the pion masses Mπ ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to
quantify systematic uncertainties in the extraction of GAðQ2Þ and the induced pseudoscalar form factor
~GPðQ2Þ. We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark
masses of the axial charge radius rA data to obtain physical estimates. Using the dipole ansatz to fit the
Q2 behavior we obtain rAjdipole ¼ 0.49ð3Þ fm, which corresponds to MA ¼ 1.39ð9Þ GeV, and is
consistent with MA ¼ 1.35ð17Þ GeV obtained by the miniBooNE collaboration. The estimate obtained
using the z-expansion is rAjz−expansion ¼ 0.46ð6Þ fm, and the combined result is rAjcombined ¼ 0.48ð4Þ fm.

Analysis of the induced pseudoscalar form factor ~GPðQ2Þ yields low estimates for g�P and gπNN compared
to their phenomenological values. To understand these, we analyze the partially conserved axial current
(PCAC) relation by also calculating the pseudoscalar form factor. We find that these low values are due to
large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance
hypothesis.

DOI: 10.1103/PhysRevD.96.114503

I. INTRODUCTION

Spurred by the demonstration of neutrino oscillations
[1–4], a number of neutrino experiments are underway
worldwide [5,6] to probe more detailed properties of
neutrinos including CP violation in the lepton sector,
the mass hierarchy, the absolute mass scale and whether
the neutrino is its own antiparticle, i.e., a Majorana
neutrino. A major challenge to many of these experi-
ments is the precise determination of the flux of
neutrino beams and their cross-sections off nuclear
targets. The standard model provides the strength and
nature (V − A) of the interactions of the neutrinos with
quarks through charged and neutral current interactions.
To describe the interactions of neutrinos with nuclei,
these elementary interactions have to be first corrected
for the interaction between quarks and gluons, described
by QCD, to account for the binding of quarks into

nucleons and then by nuclear effects such as the binding
of the nucleons within the nuclei. Since the energy scale
of both neutrino oscillations and neutrinoless double
β-decay (0νββ) experiments is less than a few GeV,
nonperturbative analyses are needed for both QCD and
nuclear effects.
There is little experimental data, beyond old bubble

chamber results, on neutrino scattering off nucleons. A
recent analysis of the data off deuterium is given in Ref. [7].
The best data are for heavier nuclei such as carbon, oxygen
and iron. The current approach used to extract the axial
vector form factors of nucleons from these data is a
combination of phenomenology and modeling of nuclear
effects [8,9]. As an alternate, first principle determinations
of nucleon form factors using lattice QCD can be con-
voluted with nuclear effects to make predictions and
determine the cross sections of neutrinos off nuclei needed
to analyze experimental data.
The charged current interaction of the neutrino with the

nucleon is given by the matrix element of the isovector
axial vector current, defined to be Aμ ¼ ūγμγ5d, within the
nucleon state N. It is expressed in terms of two form factors
through the relativistically covariant decomposition
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hNðp⃗fÞjAμðq⃗ÞjNðp⃗iÞi

¼ ūNðp⃗fÞ
�
GAðq2Þγμ þ qμ

~GPðq2Þ
2MN

�
γ5uNðp⃗iÞ; ð1Þ

where GAðq2Þ is the axial vector form factor, ~GPðq2Þ is the
induced pseudoscalar form factor and the momentum
transfer q⃗ ¼ p⃗f − p⃗i. In this paper, we will express the
form factors in terms of the spacelike four-momentum
transfer Q2 ≡ p2 − ðE −mÞ2 ¼ −q2. Also, in the decom-
position in Eq. (1), we neglect the induced tensor form
factor ~GT since it vanishes in the limit of isospin symmetry
that is implicit in this work [10], i.e., the up and down
quarks are taken to be degenerate.
We also define the pseudoscalar form factor GP

hNðp⃗fÞjPðq⃗ÞjNðp⃗iÞi ¼ ūNðp⃗fÞGPðq2Þγ5uNðp⃗iÞ; ð2Þ

where the operator P ¼ ūγ5d. Contracting Eq. (1) with qμ

and using the partially conserved axial current (PCAC)
identity gives the following relation between the three form
factors

2m̂GPðQ2Þ ¼ 2MNGAðQ2Þ − Q2

2MN

~GPðQ2Þ; ð3Þ

where we define m̂≡ ZmZPðmu þmdÞ=ð2ZAÞ. It is the
average bare PCAC mass of the u and d valence quarks in
our isospin symmetric theory. This mass parameter, m̂, can
also be measured directly on the lattice using the PCAC
relation in the pseudoscalar two-point correlation function,
i.e., by requiring that, up to lattice artifacts, ΓðtÞ ¼
hΩjð∂μAμ − 2m̂PÞtP0jΩi ¼ 0 for all Euclidean times t.
Both measurements of m̂, using either Eq. (3) or the
pseudoscalar two-point correlation function and using
the same bare lattice operators in both cases, should agree
up to discretization artifacts.
The three form factors can be extracted directly from the

two matrix elements defined in Eqs. (1) and (2). PCAC
relates them, and GAðQ2Þ and ~GPðQ2Þ are usually taken to

be the two independent form factors. Since PCAC is an
operator relation, it should be satisfied at all values of a,Mπ

and Q2 up to lattice discretization effects. The first goal of
large scale simulations of lattice QCD is, therefore, to
calculate these three form factors with control over all
systematics and show that they satisfy the PCAC relation.
Only then can one compare them with phenomenological
extractions to constrain/guide the modeling of nuclear
effects in the calculation of the cross section of neutrinos
off nuclei.
A diagrammatic description of these form factors is as

follows. At Q2 ¼ 0 the axial current interacts with the
nucleon with strength given by the axial charge gA as
shown in Fig. 1 (left). At high Q2, the lowest order
Feynman diagram contributing to GAðQ2Þ requires two
gluons to be exchanged between the three quarks in all
possible combinations as illustrated in Fig. 1 (middle). This
two gluon exchange amplitude at large Q2 behaves as
1=Q4, and is the historical motivation for the dipole ansatz
we discuss below. In Fig. 1 (right), we show the interaction
via a pion intermediate state, i.e., the axial current creates a
pion intermediate state with coupling

ffiffiffi
2

p
qμFπ . This pion

state propagates with the factor 1=ðQ2 þM2
πÞ before

interacting with the nucleon with strength
ffiffiffi
2

p
gπNN. This

diagram constitutes the lowest order contribution to the
induced pseudoscalar form factor ~GPðQ2Þ and provides the
motivation for analyzing it using the pion pole-dominance
ansatz.
In this paper we present results for the isovector part of

GA and ~GP in the range 0.05 < Q2 ≲ 0.8 GeV2 using first
principle simulations of lattice QCD on eight ensembles
covering the range of lattice spacings (0.06≲ a≲
0.12 fm), pion masses (135≲Mπ ≲ 320 MeV) and lattice
volumes (3.3≲MπL≲ 5.5). These ensembles were gen-
erated using 2þ 1þ 1-flavors of highly improved stag-
gered quarks (HISQ) [11] by the MILC collaboration [12].
On four of these ensembles we have also calculated the
pseudoscalar form factor GP that is needed to check the
PCAC relation.

FIG. 1. The Feynman diagrams illustrating the decomposition of the matrix element of the axial current Aμ ¼ ūγμγ5d within a nucleon
state in terms of form factors. The plot on the left represents the interaction at Q2 ¼ 0 in which case the axial current interacts with the
nucleon with strength gA. The middle panel shows one of the lowest order two-gluon exchange Feynman diagrams that contributes to
GAðQ2Þ, and provides the basis for the dipole ansatz. The diagram on the right is the leading contribution to the induced pseudoscalar
form factor ~GPðQ2Þ by a pion intermediate state. Its coupling to the nucleon at the pion pole defines gπNN.
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The axial radius of the nucleon is determined from the
slope of GAðQ2Þ in the Q2 → 0 limit:

hr2Ai ¼ −6
d

dQ2

�
GAðQ2Þ
GAð0Þ

�����
Q2¼0

: ð4Þ

The challenge to the direct calculation of the slope using a
discrete derivative is that the value of the smallest momenta
and the intervals between the lowest few lattice momenta in
typical lattice simulations are large. In our calculations, the
lowest non-zero momenta is ≳220 MeV. It is, therefore,
customary to fit the data using a physically motivated
ansatz for GAðQ2Þ and then use the result to evaluate the
derivative given in Eq. (4). This modeling of GA introduces
a systmatic uncertainty in the value of hr2Ai that we estimate
by comparing results using different fit ansatz.
An ansatz that is commonly used to fit the experimental

data is the dipole approximation

GAðQ2Þ ¼ GAð0Þ
ð1þQ2=M2

AÞ2
⇒ hr2Ai ¼

12

M2
A
; ð5Þ

where MA is the axial dipole mass. It is the simplest one
parameter form that is normalized toGAð0Þ≡ gA atQ2 ¼ 0

and goes as Q−4 in the Q2 → ∞ limit in accord with the
leading contribution in perturbation theory as shown in the
middle panel of Fig. 1. Estimates of the RMS charge radius
rA ≡ ffiffiffiffiffiffiffiffiffi

hr2Ai
p

obtained from (i) a weighted world average of
(quasi)elastic neutrino and antineutrino scattering data [13],
(ii) charged pion electroproduction experiments [13], and
(iii) a reanalysis of the deuterium target data [7] are

rA ¼ 0.666ð17Þ fm ν; ν̄ − scattering;

rA ¼ 0.639ð10Þ fm Electroproduction;

rA ¼ 0.68ð16Þ fm Deuterium; ð6Þ

which correspond to the dipole masses

MA ¼ 1.026ð21Þ GeV ν; ν̄ − scattering;

MA ¼ 1.069ð16Þ GeV Electroproduction;

MA ¼ 1.00ð24Þ GeV Deuterium: ð7Þ

On the other hand, the MiniBooNE Collaboration, using
the dipole ansatz and a relativistic Fermi gas model [14],
find that MA ¼ 1.35ð17Þ GeV reproduces their double
differential cross section for charged current quasielastic
neutrino and antineutrino scattering data off carbon [9].
Lattice QCD, by providing first-principle estimates of
GAðQ2Þ for nucleons, aims to resolve the difference in
the phenomenological estimates and to pin down the Q2

behavior of the form factors.

The analysis presented here shows that the dipole ansatz
fits the lattice data surprisingly well, however, our result,
rAjdipole ¼ 0.49ð3Þ, is smaller than the phenomenological
estimates given in Eq. (6).
The second ansatz we use is a model-independent

parametrization called the z-expansion [15,16]:

GAðQ2Þ
GAð0Þ

¼
X∞
k¼0

akzðQ2Þk; ð8Þ

where the ak are fit parameters and z is defined as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ t̄0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þ t̄0
p ; ð9Þ

with tcut ≡Q2
cut ¼ 9M2

π . The nearest singularity in the form
factor GAðQ2Þ is the three-pion branch cut at Q2 ¼ 9M2

π .
In terms of z, the domain of analyticity of GAðQ2Þ is
mapped into the unit circle with the three-pion branch cut at
tcut ¼ 9M2

π moved to z ¼ 1 [16]. The value of the constant
t̄0 is typically chosen to be in the middle of the range of Q2

of interest to minimize zmax and possibly improve the
convergence of the z-expansion. The choice of t̄0 could
have been important in our calculation because we have
data at only the five lowest values of momenta on most
ensembles and can, therefore, perform an analysis keeping
terms only up toOðz4Þ. Our analysis of the data with t̄0 ¼ 0

and t̄0 ¼ t̄mid
0 ≡ f0.12; 0.20; 0.40g GeV2, corresponding

to the approximate midpoint of the range of Q2 on the
Mπ ≈ f130; 220; 310g MeV ensembles, respectively, how-
ever shows that the quality of the fits and the results are
insensitive to the choice of t̄0. For presenting our final
results, we choose the midpoint values, t̄mid

0 .
The asymptotic requirement, that GAðQ2Þ → Q−4 as

Q2 → ∞, requires QnGAðQ2Þ → 0 for n ¼ 0, 1, 2, 3
[17]. These constraints can be incorporated into the
z-expansion as four sum rules

Xkmax

k¼n

kðk − 1Þ…ðk − nþ 1Þak ¼ 0 n ¼ 0; 1; 2; 3; ð10Þ

where for n ¼ 0 it is
Pkmax

k¼0 ak ¼ 0. Incorporating these sum
rules ensures that the ak are not only bounded but must also
decrease at large k [17]. We have six data points (zero and
five nonzero momentum cases) for all but the two physical
quark mass ensembles, a09m130 and a06m135. The
analysis was therefore done using kmax ¼ 5, 6, 7, and 8.
Including the four sum rules, these values of kmax corre-
spond to 4, 3, 2, and 1 degrees of freedom, respectively. We
use the quality of the fits and the stability of the value of the
axial charge radius squared hr2Ai obtained from them as
checks on the consistency of the analysis, ensemble by
ensemble. Based on these checks, we drop kmax ¼ 5 fits as
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the associated χ2=d:o:f: are not good and the kmax ¼ 8 fits,
as they are unstable in many cases.
Our final result, rAjz−expansion ¼ 0.46ð6Þ fm, is obtained

as an average of the kmax ¼ 6 and 7 analyses, which we
label k2þ4 and k3þ4 to make explicit that four powers of z
are constrained by the sum rules. This lattice estimate is
again smaller than the current phenomenological estimates
given in Eq. (6). The uncertainty in the estimates, ensemble
by ensemble, is larger with the z-expansion versus the
dipole ansatz.
The induced pseudoscalar form factor ~GPðQ2Þ is typi-

cally analyzed assuming the pion pole-dominance ansatz:

~GPðQ2Þ ∝ GAðQ2Þ
�

1

Q2 þM2
π

�
; ð11Þ

where the coefficient of proportionality is often taken to
4M2

N as suggested by the Goldberger-Trieman relation [18].
This behavior is consistent with the PCAC relation, Eq. (3),
only if 2m̂GPðQ2Þ ¼ ðM2

π=2MNÞ ~GPðQ2Þ. If this ansatz is a
good approximation, then there is only one independent
form factor, which can be taken to be GAðQ2Þ or ~GPðQ2Þ.
Experimentally, ~GPðQ2Þ is probed in muon capture by a

proton, μ− þ p → νμ þ n [19,20]. From these measure-
ments, the induced pseudoscalar charge g�P is defined as

g�P ≡ mμ

2MN

~GPðQ2 ¼ Q�2 ≡ 0.88m2
μÞ: ð12Þ

Current estimates from the MuCap experiment [19,20], and
from chiral perturbation theory [13,21] are

g�PjMuCap ¼ 8.06ð55Þ;
g�PjχPT ¼ 8.29þ0.24

−0.13 � 0.52: ð13Þ
On the lattice, once the modeling of the Q2 behavior of

~GPðQ2Þ is under control, one can determine g�P by
extrapolation to Q2 ¼ Q�2 ≡ 0.88m2

μ and the pion-nucleon
coupling gπNN as the residue atQ2 ¼ −M2

π . To compare our
lattice QCD estimates with these phenomenological values,
we first extract g�P from fits to ~GPðQ2Þ versus Q2 for each
ensemble, and then extrapolate these data to a ¼ 0 and
Mπ ¼ 135 MeV. The result is a surprisingly low value,
g�P ¼ 4.44ð18Þ, compared to the values given in Eq. (13).
This discrepancy arises due to large deviations from the
PCAC relation involving the three form factors as discussed
further in Sec. VIII. We also show that using just the pion-
pole ansatz to extrapolate g�PðQ�2Þ obtained from simu-
lations at Mπ > 300 MeV to Mπ → MPhysical

π ¼ 135 MeV
does not match our lattice data at Mπ ¼ 220 or 135 MeV.
Lastly, we evaluate the pion-nucleon coupling gπNN

using the Goldberger-Treiman (GT) relation gπNN ¼
MNgA=Fπ, and as the residue at the pion pole at
Q2 ¼ −M2

π of ~GPðQ2Þ. As discussed in Sec. X, our
estimate, gπNN ¼ MNgA=Fπ ¼ 12.87ð34Þ using the lattice

data is consistent with that obtained using the experi-
mental values. Our direct calculation of gπNN, as the
residue of ~GPðQ2Þ at the pion pole, suffers from the same
problem as the analysis of g�P and gives gπNN ¼ 5.78ð57Þ,
much smaller than the phenomenological estimate
13.69� 0.12� 0.15 obtained from the πN scattering
length analysis [22].
This paper is organized as follows. In Sec. II, we describe

the parameters of the gauge ensembles analyzed and the
lattice methodology. The strategy used to isolate excited-
state contamination is described in Sec. III. In Sec. IV, we
present the analysis of the two-point correlation functions.
The extraction of the form factors from the three-point
functions is discussed in Sec. V, and of the axial charge
radius rA from these in Sec. VI. Simultaneous fits in the
lattice spacing a, the pion mass Mπ , and the lattice size
MπL to obtain our physical estimate of rA are presented in
Sec. VII. The analysis of the induced pseudoscalar form
factor is carried out in Sec. VIII, of g�P in Sec. IX, and of
the pion-nucleon coupling, gπNN, in Sec. X. In Sec. XI, we
present a heuristic analysis to understand violations of
the PCAC relation betweenGAðQ2Þ, ~GPðQ2Þ, andGPðQ2Þ.
We end with conclusions in Sec. XII.

II. LATTICE METHODOLOGY

The eight ensembles used in the analysis cover a range of
lattice spacings (0.06≲ a≲ 0.12 fm), pion masses (135≲
Mπ ≲ 320 MeV), and lattice volumes (3.3≲MπL≲ 5.5).
These were generated using 2þ 1þ 1-flavors of highly
improved staggered quarks (HISQ) [11] by the MILC
collaboration [12] and their parameters are summarized
in Table I. Results for the isovector charges, gu−dA , gu−dS ,
and gu−dT on these ensembles have already been published
in Refs. [23,24]. In this work we follow the same
computational strategy, so we only summarize the impor-
tant issues and point the reader to the appropriate refer-
ences for details.
The correlation functions used to calculate the matrix

elements on these HISQ ensembles are constructed using
Wilson-clover fermions after the lattices have been smoothed
using hypercubic (HYP) smearing [25]. This mixed-action,
clover-on-HISQ approach, leads to a nonunitary lattice
formulation that at small, but a priori unknown, quark
masses suffers from the problem of exceptional configura-
tions. As described in Ref. [23], tests performed by us did
not find configurations exhibiting large deviations from the
mean behavior on these ensembles.
The parameters used to construct the quark propagators

with the clover action are given in Table II. The
Sheikholeslami-Wohlert coefficient [26] used in the clover
action is fixed to its tree-level value with tadpole improve-
ment, i.e., csw ¼ 1=u30, where u0 is the fourth root of the
plaquette expectation value calculated on the HYP smeared
HISQ lattices.
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The masses of light clover quarks were tuned so that the
clover-on-HISQ pion masses, Mval

π , match the HISQ-on-
HISQ Goldstone ones, Msea

π . Both estimates are given in
Table I. All fits in M2

π to study the chiral behavior are made
using the clover-on-HISQ Mval

π since the correlation func-
tions, and thus the observables, have a greater sensitivity to it.
Henceforth, we denote the clover-on-HISQ pionmass asMπ .
On six ensembles, we have used the truncated solver

method with bias correction (labeled the AMA method)
[28,29] to cost-effectively increase the statistics in the
calculation of the two- and three-point correlation func-
tions. The details of our implementation are given in
Refs. [23,24,30].
The two- and three-point correlation functions were

constructed using the nucleon interpolating operator

χðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ ð14Þ

with color indices fa; b; cg, charge conjugation matrix
C ¼ γ0γ2, and q1 and q2 denoting the two different flavors

of light Dirac quarks. The nonrelativistic projection
ð1� γ4Þ=2 is inserted to improve the signal, with the plus
(minus) sign applied to the forward (backward) propaga-
tion in Euclidean time as described in Refs. [23,24,30]. On
the other hand, the γ4 part introduces mixing with spin 3=2
states at nonzero momentum, with concomitant excited-
state contamination.
All errors are determined using a single-elimination

Jackknife procedure. We first construct the configura-
tion average, i.e., the mean of the correlation functions
over multiple measurements on each configuration, and
then implement the Jackknife process over these con-
figuration averages. In all the fits to the two- and three-
point correlation functions based on minimizing the
χ2=d:o:f:, we used the full covariance matrix as described
in Ref. [30].
The value of the axial radius from each ensemble was

extracted from the form factors using two fit ansatz: the
model-independent z-expansion, and the dipole fit. ~GP was
analyzed using the PCAC relation and the pion pole-
dominance ansatz.

TABLE II. The parameters used in the calculation of clover propagators. The hopping parameter κ in the clover
action is given by 2κl ¼ 1=ðml þ 4Þ. ml is tuned to achieve Mval

π ≈Msea
π . The Gaussian smearing parameters are

defined by fσ; NKGg where NKG is the number of applications of the Klein-Gordon operator and the width of the
smearing is controlled by the coefficient σ, both in Chroma convention [27]. The resulting root-mean-square radius
of the smearing, defined in the text, is given in the last column.

ID ml cSW Smearing Parameters RMS smearing radius

a12m310 −0.0695 1.05094 f5.5; 70g 5.96
a12m220L −0.075 1.05091 f5.5; 70g 5.96
a09m310 −0.05138 1.04243 f5.5; 70g 6.08
a09m220 −0.0554 1.04239 f5.5; 70g 6.08
a09m130 −0.058 1.04239 f5.5; 70g 6.11
a06m310 −0.0398 1.03493 f6.5; 70g 7.22
a06m220 −0.04222 1.03493 f5.5; 70g 6.22
a06m135 −0.044 1.03493 f9.0; 150g 9.56

TABLE I. Parameters, including the Goldstone pion mass Msea
π , of the eight 2þ 1þ 1- flavor HISQ lattices generated by the MILC

collaboration and analyzed in this study are quoted from Ref. [12]. All fits are made versus Mval
π and finite-size effects are analyzed in

terms ofMval
π L. Estimates ofMval

π , the clover-on-HISQ pion mass, are the same as given in Ref. [23] and the error is governed mainly by
the uncertainty in the lattice scale. In the last four columns, we give, for each ensemble, the values of the source-sink separation tsep used
in the calculation of the three-point functions, the number of configurations analyzed, and the number of measurements made using the
HP and AMA methods. The HP calculation on the a12m220L ensemble was done at the single tsep ¼ 10. Since the bias correction term
for tsep ¼ 10 and all other ensembles was found to be less than the statistical errors, we use the LP data at tsep ¼ f8; 10; 12; 14g for the
analysis of the a12m220L ensemble.

Ensemble ID a (fm) Msea
π (MeV) Mval

π (MeV) L3 × T Mval
π L tsep=a Nconf NHP

meas NAMA
meas

a12m310 0.1207(11) 305.3(4) 310.2(2.8) 243 × 64 4.55 f8; 10; 12g 1013 8104 64 832
a12m220L 0.1189(09) 217.0(2) 227.6(1.7) 403 × 64 5.49 f8; 10; 12; 14g 1010 8080 68 680
a09m310 0.0888(08) 312.7(6) 313.0(2.8) 323 × 96 4.51 f10; 12; 14g 881 7048
a09m220 0.0872(07) 220.3(2) 225.9(1.8) 483 × 96 4.79 f10; 12; 14g 890 7120
a09m130 0.0871(06) 128.2(1) 138.1(1.0) 643 × 96 3.90 f10; 12; 14g 883 7064 60 044
a06m310 0.0582(04) 319.3(5) 319.6(2.2) 483 × 144 4.52 f16; 20; 22; 24g 1000 8000 64 000
a06m220 0.0578(04) 229.2(4) 235.2(1.7) 643 × 144 4.41 f16; 20; 22; 24g 650 2600 41 600
a06m135 0.0570(01) 135.5(2) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 322 1610 51 520
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All estimates, such as hr2Ai and g�P obtained on the eight
ensembles, were simultaneously fit versus the three vari-
ables, the lattice spacing a, the pion mass Mπ , and the
lattice size parametrized by MπL, keeping only the leading
order correction terms in each. From these fits, the final
value was obtained at the physical pion mass Mπ ¼
135 MeV with extrapolation to the continuum and the
infinite volume limits.
The renormalization factor for the axial current cancels

in the ratios used in the extraction of the axial charge radius,
defined in Eq. (4), and in the analysis of ~GPðQ2Þ using the
pole-dominance hypothesis given in Eq. (11). Thus, all
results presented in this work are the same as for renor-
malized operators.
Further details of the analysis are given at appropriate

places when discussing the results.

III. CONTROLLING EXCITED-STATE
CONTAMINATION

To extract the desired nucleon form factors we need to
evaluate the matrix elements of the axial current between
ground-state nucleons. The lattice nucleon interpolating
operator given in Eq. (14), however, couples to the nucleon,
all excitations and multiparticle states with the same quan-
tum numbers. Three strategies are used to reduce excited-
state contamination as described in Refs. [23,24,30].

(i) The overlap between the nucleon operator and the
excited states in the construction of the two- and three-
point functions is reduced by using tuned smeared
sources when calculating the quark propagators on the
HYP smeared HISQ lattices. We construct gauge-
invariant Gaussian smeared sources by applying the
three-dimensional Laplacian operator, ∇2, a fixed
number, NGS, of times, i.e., ð1þ σ2∇2=ð4NGSÞÞNGS .
The input smearing parameters fσ; NGSg for each
ensemble are given in Table II along with the resulting
root-mean-square radius defined as

R
r2

ffiffiffiffiffiffiffiffi
S†S

p
dr=R ffiffiffiffiffiffiffiffi

S†S
p

dr. We find that the modulus of the sum of
the values of the twelve spin-color components at each
site,

ffiffiffiffiffiffiffiffi
S†S

p
, is well described by a Gaussian as a

function of distance r, and use these fits to estimate
the quoted root-mean-square radius of the smearing.
As shown in Table II, for fixed fσ; NGSg, the root-
mean-square radius shows weak dependence on the
lattice spacing or the pion mass.

(ii) The analysis of the nucleon two-point functions,
C2pt, was carried out keeping four states in the
spectral decomposition:

C2ptðt; pÞ ¼ jA0j2e−E0t þ jA1j2e−E1t

þjA2j2e−E2t þ jA3j2e−E3t; ð15Þ
where the amplitudes and the energies with momen-
tum p of the four states are denoted by Ai and Ei,

respectively. The strategy for the selection of non-
trivial priors for the masses and amplitudes used in
the fits is the same as described in Ref. [30]. A
comparison between 2- and 4-state fits is shown in
Figs. 22–29 in Appendix A. In the 4-state fits used in
the final analysis, the starting time slice in the fit,
tmin, is chosen to be small to include as much data as
possible while maintaining the stability of the fit
parameters. Since the excited-state contamination is
observed to be similar, tmin is chosen to be the same
for all momenta for a given ensemble.

The analysis of the three-point functions,

Cð3ptÞ
Γ ðt; τ; p0; pÞ was carried out keeping two states

in the spectral decomposition:

Cð3ptÞ
Γ ðt; τ; p0; pÞ ¼ A0

0A0h00jOΓj0ie−E0t−M0ðτ−tÞ

þA0
1A1h10jOΓj1ie−E1t−M1ðτ−tÞ

þA0
0A1h00jOΓj1ie−E0t−M1ðτ−tÞ

þA0
1A0h10jOΓj0ie−E1t−M0ðτ−tÞ;

ð16Þ
where the source point is translated to t ¼ 0, the
operator is inserted at time t, and nucleon state is
annihilated at the sink time slice τ≡ tsep. The states
j0i and j1i represent the ground and all higher states
that we collectively label the “first excited” state,
respectively. The label A0

i denotes the amplitude for
the creation of state i with momentum p0 by the
nucleon interpolating operator χ. To extract the
matrix elements, we need the four amplitudes A0,
A1, A0

0, and A0
1, which we obtain from the 4-state

fits to the two-point functions. Note that the insertion
of the nucleon at the sink time slice t ¼ τ ¼ tsep is at
p ¼ 0 in all cases, and the insertion of the current at
time t is at a definite momentum p0. To ensure a good
signal for all p0, the nucleon state at the source time
slice, constructed from smeared sources, should
have a large overlap with all momentum states
analyzed. The data in Figs. 22–29 show that with
the smeared sources used, a decent signal is achieved
for Q2 ≲ 1 GeV2.

(iii) We calculate the three-point correlation functions for
a number of values of the source-sink separation tsep
that are listed in Table I. We fit the data at all tsep
simultaneously using the 2-state ansatz given in
Eq. (16). In these fits, we skip tskip points adjacent to
the source and sink for each tsep as these points have
the largest excited state contamination. As a result,
more points with larger tsep that have less excited-
state contamination and larger statistical errors are
included. The value of tskip for each ensemble is
chosen to be same for all momenta since the onset of
the plateau in the effective-mass plot is observed to
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start at roughly the same time slice, independent of
the momenta, as shown in Figs. 22–29.

From these fits we get h00jOΓj0i, the desired τ → ∞
estimate. The above procedure has been followed for all
values of momentum insertion and on each ensemble.

IV. FITS TO THE TWO-POINT FUNCTIONS

On each ensemble, we performed 2-, 3-, and 4-state fits
to the two-point correlation function data to extract the
amplitudes and the masses. On all ensembles, we collected
data for momenta p ¼ 2πn=aL with n ¼ fð0; 0; 0Þ;
ð1; 0; 0Þ; ð1; 1; 0Þ; ð1; 1; 1Þ; ð2; 0; 0Þ; ð2; 1; 0Þg. On the
a09m130 and a06m135 ensembles, we also collected data
for n ¼ fð2; 1; 1Þ; ð2; 2; 0Þ; ð2; 2; 1Þ; ð3; 0; 0Þ; ð3; 1; 0Þg.
We illustrate the quality of the two-point data by plotting

the effective-energy defined as

EeffðtÞ ¼ log
C2ptðtÞ

C2ptðtþ 1Þ ; ð17Þ

in Figs. 22–28 and 29 given in Appendix A. In each panel,
we show the data for the various momentum channels
analyzed. The panels on the left (right) show results of the
2-state (4-state) fits to the two-point function data for the
different momenta. The data with the largest errors and the
least convincing plateau at the larger momenta are from
(i) the a09m310 and a09m220 ensembles that have lower
statistics as they have not been analyzed using the AMA
method, and (ii) the a06m220 and a06m135 ensembles at
the weakest coupling that have the fewest gauge configu-
rations analyzed. Also, on a number of ensembles, we
observe correlated fluctuations in the data for Eeff ; both
over t for a given momenta and at a given t over the various
momenta. The former are taken into account by using the
full covariance matrix in the fits to correlators at a given
momenta. Since data at each momentum are analyzed
separately, the latter are ignored.
The results for theMi and theAi are given in Tables XII–

XVIII, and XIX in Appendix A. The results from the

2-state fit shown in these tables are slightly different from
those presented in Ref. [24] because, in this study, we use
the full covariance matrix when doing the fits, whereas in
Ref. [24] only the diagonal elements were used.
As shown in Tables XII–XIX, the ground state param-

eters, E0 and A0 are consistent between the 2-, 3-, and 4-
state fits. The parameters for the first excited state, E1 and
A1, also needed in 2-state fits to three-point functions show
stability only between the 3- and 4-state fits. When
analyzing the three-point correlation functions, we, there-
fore, used estimates obtained from the 4-state fits for all
four parameters,M0,A0,M1, andA1. It is worth noting the
change in the ratio ΔM1=M0 for the two ensembles
a06m220 and a06m135 to about 0.85 compared to ≲0.6
for the other six ensembles. With the current data, we
cannot ascertain whether this change is a statistical fluc-
tuation or implies that the combination and/or the nature of
excited-states contributing have changed.
When analyzing the three-point data to extract the form

factors, we need to decide what definition of momenta to
use, i.e., whether one should use api or sinðapiÞ or
2 sinðapi=2Þ for the lattice momenta in the expressionQ2 ¼
p2 − ðE −mÞ2. Since the three versions differ at Oða2Þ and
our calculation has errors starting at OðaÞ, there is no
theoretical reason to prefer one over the other. For guidance,
we examined the dispersion relation for the nucleon,
ðaEÞ2 −P

if
2
i ¼ ðaMÞ2, for the three cases fi ¼ api,

sinðapiÞ and 2 sinðapi=2Þ in Fig. 30 (Appendix A), for
four ensembles, two with the largest values of p and the two
physical mass ensembles. We find that, with our statistics,
the difference between the three forms is insignificant in all
cases for ðapÞ2 < 0.1. Only the data at the highest momenta
on the a12m310, a12m220L, and a09m310 ensembles, that
have results at ðapÞ2 ≳ 0.1, do we see some variation. In
short, no one form is uniformly preferred by the data on
all the ensembles.1 Nevertheless, we carried through the

TABLE III. The values ofQ2, in units of GeV2, versus the values of the 3-momentum transfer labeled by n⃗ for the
eight ensembles.

n⃗ a12m310 a12m220L a09m310 a09m220 a09m130 a06m310 a06m220 a06m135

(0,0,0) 0 0 0 0 0 0 0 0
(1,0,0) 0.177 0.067 0.183 0.086 0.049 0.189 0.110 0.051
(1,1,0) 0.344 0.133 0.351 0.170 0.097 0.365 0.216 0.102
(1,1,1) 0.500 0.197 0.522 0.250 0.145 0.532 0.318 0.152
(2,0,0) 0.652 0.258 0.653 0.325 0.191 0.683 0.414 0.197
(2,1,0) 0.796 0.318 0.801 0.402 0.237 0.846 0.509 0.246
(2,1,1) 0.282 0.294
(2,2,0) 0.370 0.383
(2,2,1) 0.411 0.428
(3,0,0) 0.407 0.422
(3,1,0) 0.449 0.464

1We did not investigate using alternate forms for energy such
as sinh aE.
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analysis to extract the axial charge radius rA from fits to
GAðQ2Þ using all three forms, and found no sensitivity
to the choice of the form. As illustrated in Fig. 6, the
difference between the three forms is not significant
enough to even estimate an associated systematic
uncertainty. We, therefore, present our final estimates
using the simplest version, fi ¼ api and the correspond-
ing values of Q2 are given in Table III.
In Fig. 30 (bottom panels), we show the two points with

momentum components ni ¼ ð2; 2; 1Þ and ni ¼ ð3; 0; 0Þ,
corresponding to n2 ¼ 9, in the a09m130 and a06m135
data. The difference between these two estimates is a
measure of the effect of the breaking of the rotational
symmetry on the lattice to the cubic group. Throughout this
work, we keep these two data points separate when
analyzing the a09m130 and the a06m135 ensembles data.

V. EXTRACTING FORM FACTORS
FROM FITS TO THE

THREE-POINT FUNCTIONS

To display the data for the three-point correlation
functions with the insertion of the axial current, we
construct the following ratio, R5Γ, of the three-point to
the two-point correlation functions,

Rγ5Γðt; τ; p0; pÞ

¼ Cð3ptÞ
Γ ðt; τ; p0; pÞ
Cð2ptÞðτ; p0Þ

×

�
Cð2ptÞðt; p0ÞCð2ptÞðτ; p0ÞCð2ptÞðτ − t; pÞ
Cð2ptÞðt; pÞCð2ptÞðτ; pÞCð2ptÞðτ − t; p0Þ

�
1=2

: ð18Þ

FIG. 2. The three-point data for R53 defined in Eq. (18) versus the operator insertion time t, shifted by τ=2. The labels give the
ensemble ID, the number of points, tskip, skipped on either end in the fits, the momentum label n2 and the values of τ simulated.
Prediction of the 2-state fit for various values of the source-sink separation τ is shown in the same color as the data. The result for the
matrix elements in the τ → ∞ limit is shown by the horizontal band. The plots on the top row are for the a06m310 ensemble, middle row
for the a06m220, and those on the bottom row for the a06m135 ensemble. The plots on the left are for momenta p2 ¼ n2ð2π=LaÞ2 with
n2 ¼ 1, while those on the right are with n2 ¼ 5.
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This ratio gives the desired ground state matrix element
in the limit τ → ∞, t → ∞ and ðτ − tÞ → ∞. For all the
two-point correlation functions, we used the results of
the 4-state fit. When calculating the matrix elements of the
axial vector current, defined in Eq. (1), we use the spin
projection operatorP ¼ ð1þ γ4Þð1þ iγ5γ3Þ=2. As a result,
the imaginary part of the following three ratios of corre-
lators have a signal and give the desired form factors in the
limit t, τ − t, and τ → ∞:

R51 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−
q1q3
2M

~GP

�
; ð19Þ

R52 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−
q2q3
2M

~GP

�
; ð20Þ

R53 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp

�
−

q23
2M

~GP þ ðM þ EÞGA

�
:

ð21Þ

where R5i implies the tensor structure Rγ5γi . We do not
consider the R54 channel as the signal in it is poor. The
pseudoscalar form factorGPðQ2Þ is given by the real part of
R5 ≡Rγ5 :

R5 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2EpðEp þMÞÞp ½q3GP�: ð22Þ

In Fig. 2 (and in Figs. 31 and 32 in Appendix B), we give
plots of the ratio R53, i.e., the ratio with tensor structure
γ5γ3 for the axial current, defined in Eq. (21). The data are
shown for all values of tsep and for two values of momenta,
p ¼ ð1; 0; 0Þ2π=La and p ¼ ð2; 1; 0Þ2π=La. Note that both
GA and ~GP contribute to this ratio. It is clear from the plots
that the excited-state contamination is significant in the data
with tsep ≈ 1 fm for our choice of the nucleon interpolating
operator, Eq. (14), and the smearing parameters given in
Table II.
From these data, the matrix element within the ground

state is obtained using Eq. (16), i.e., keeping two

FIG. 3. Plots of the ratiosRi that give the three form factors: GA fromR53 with q3 ¼ 0 but q1;2 ≠ 0 (left), ~GP fromR51 (middle), and
the pseudoscalar GP from R5 (right) versus the operator insertion time t shifted by τ=2 for the a06m135 ensemble. The figures in the
four rows are for data with p2 ¼ n2ð2π=LaÞ2 where n2 ¼ 2, 5, 8, and 10, respectively.
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intermediate states in the fit to the three-point correlation
function. The values of τ≡ tsep and tskip used in the fit are
given in the figure’s legend. All values of tsep are fit
simultaneously and the resulting τ → ∞ estimates are

shown by the horizontal band. Prediction of the fit for
various values of tsep are also shown as lines with error
bands using the same color as the data points. We note that
the τ → ∞ estimate for some cases, such as on the
a09m220, a09m130, and a06m310 ensembles with
n2 ¼ 5, is significantly below the data. Fits using only
the diagonal elements of the covariance matrix give τ → ∞
results closer to the data. This could reflect that the
statistical precision of the covariance matrix is inadequate.
However, for consistency, we keep fits using the full
covariance matrix in all cases.
We also illustrate how the excited-state contamination

impacts the extraction of individual form factorsGA and ~GP
by choosing two channels, R51 and R53 with q3 ¼ 0 but
nonzero q1 or q2, that give these directly. The data from the
a06m135 ensemble are shown in Fig. 3, while the data
from ensembles a12m310, a06m310, and a06m220 are
given in Figs. 33–35 in Appendix B. In these figures, fits to
the pseudoscalar form factor, defined in Eq. (22), are also
shown where available. For the small p2 values, the
convergence of the three form factors with respect to tsep
is from below, i.e., excited state contamination leads to an

TABLE IV. Results for the unrenormalized axial form factor GAðQ2Þ obtained from solving the overdetermined set of equations,
Eqs. (19)–(21), relating the form factors to the matrix elements as described in the text. The values of the momentum transfer Q2 for the
various n⃗ simulated are given in Table III.

n⃗ a12m310 a12m220L a09m310 a09m220 a09m130 a06m310 a06m220 a06m135

(0,0,0) 1.270(12) 1.304(20) 1.257(38) 1.291(44) 1.252(21) 1.231(25) 1.206(14) 1.204(24)
(1,0,0) 1.073(5) 1.211(14) 1.073(18) 1.178(29) 1.193(17) 1.018(10) 1.098(11) 1.136(20)
(1,1,0) 0.929(8) 1.132(10) 0.930(17) 1.081(21) 1.121(12) 0.853(19) 0.997(10) 1.094(20)
(1,1,1) 0.823(9) 1.058(9) 0.793(23) 0.984(21) 1.052(11) 0.721(30) 0.906(11) 1.031(26)
(2,0,0) 0.723(12) 1.007(10) 0.730(31) 0.918(24) 1.004(24) 0.635(36) 0.845(14) 1.005(20)
(2,1,0) 0.668(10) 0.950(11) 0.660(31) 0.856(24) 0.945(14) 0.529(42) 0.775(14) 0.953(23)
(2,1,1) 0.897(16) 0.900(31)
(2,2,0) 0.806(19) 0.837(35)
(2,2,1) 0.783(19) 0.793(36)
(3,0,0) 0.781(22) 0.824(37)
(3,1,0) 0.748(22) 0.793(32)

TABLE V. Results for the unrenormalized induced pseudoscalar form factor ~GPðQ2Þ. The values of the momentum transferQ2 for the
various n⃗ simulated are given in Table III.

n⃗ a12m310 a12m220L a09m310 a09m220 a09m130 a06m310 a06m220 a06m135

(1,0,0) 15.67(31) 31.21(2.32) 15.21(82) 25.43(2.12) 37.93(1.84) 14.41(53) 19.94(45) 31.88(1.19)
(1,1,0) 9.08(20) 20.79(1.56) 8.53(32) 16.57(1.46) 23.66(99) 8.16(27) 12.30(26) 22.00(82)
(1,1,1) 6.10(14) 15.51(1.10) 5.79(31) 12.57(1.16) 17.57(70) 5.25(20) 8.60(20) 16.24(69)
(2,0,0) 4.18(10) 12.27(83) 4.00(41) 9.50(75) 14.19(52) 3.78(19) 6.68(18) 13.05(43)
(2,1,0) 3.35(8) 9.79(57) 2.99(31) 7.73(53) 11.21(35) 2.73(16) 5.25(13) 10.44(41)
(2,1,1) 9.62(28) 8.82(36)
(2,2,0) 7.06(18) 6.88(34)
(2,2,1) 6.35(18) 5.79(26)
(3,0,0) 6.25(19) 6.19(31)
(3,1,0) 5.45(16) 5.42(27)

TABLE VI. Results for the unrenormalized pseudoscalar form
factor GPðQ2Þ obtained from the matrix element of the pseudo-
scalar operator ψ̄γ5ψ between nucleon states. The values of the
momentum transfer Q2 for the various n⃗ simulated are given in
Table III.

n⃗ a12m310 a09m130 a06m220 a06m135

(1,0,0) 19.24(41) 54.12(3.00) 28.00(74) 51.44(1.72)
(1,1,0) 11.65(25) 36.58(1.92) 18.06(44) 35.21(1.23)
(1,1,1) 8.06(18) 27.81(1.41) 13.13(35) 26.77(95)
(2,0,0) 6.15(17) 22.05(1.00) 10.11(30) 21.18(77)
(2,1,0) 4.84(11) 18.33(76) 8.13(21) 18.11(66)
(2,1,1) 15.78(63) 15.55(58)
(2,2,0) 11.98(41) 12.19(50)
(2,2,1) 10.75(38) 10.77(48)
(3,0,0) 10.67(38) 10.89(58)
(3,1,0) 9.34(32) 9.94(53)
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FIG. 5. The same data and fits for the normalized axial
form factor GAðQ2Þ=gA versus Q2 as shown in Fig. 4 but
plotted to highlight the dependence on a for fixed Mπ . The
top figure is for the Mπ ≈ 310 MeV ensembles, the middle
for the Mπ ≈ 220 MeV ensembles, and the bottom for the
Mπ ≈ 130 MeV ensembles. The color scheme used is green
for the a ≈ 0.12, orange for a ≈ 0.09 and blue for the a ≈
0.06 fm ensembles.

FIG. 4. The data for the normalized axial form factor
GAðQ2Þ=gA versus Q2 plotted to highlight the dependence on
M2

π for fixed a. The top figure is for the a ≈ 0.12 fm ensembles,
the middle for the a ≈ 0.09 fm ensembles, and the bottom for the
a ≈ 0.06 fm ensembles. We also show the z3þ4 fit to the data for
each ensemble; the corresponding value of rA obtained from the
slope at Q2 ¼ 0 is given in Table VII. The color scheme used is
black for the Mπ ≈ 310, red for Mπ ≈ 220, and purple for the
Mπ ≈ 130 MeV ensembles.
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underestimate. The pattern of convergence changes for
higher p2: GAðQ2Þ starts to converge from above for
n2 ≳ 3, and ~GPðQ2Þ and GPðQ2Þ for n2 ≳ 10 as shown
in Fig. 3. Also illustrated in Figs. 33–35 in Appendix B, the
transition p2 depends on the pion mass and the value of Q2

in physical units. Note that these differences in trends in
convergence at low and high momenta act cohesively to
increase the slope of GA and ~GP with respect to Q2, and
thus the values of rA and g�P are larger compared to an
analysis neglecting excited state contamination.
The final values of the two form factors, GAðQ2Þ and

~GPðQ2Þ, are extracted by solving the overdetermined set of
Eqs. (19)–(21) for each momentum Q2. These results for
GAðQ2Þ are given in Table IV, and those for ~GPðQ2Þ in
Table V. The data for the pseudoscalar form factor,
calculated from the matrix element of the operator ūγ5d
using Eq. (22), are given in Table VI for the four ensembles
analyzed, a12m310, a09m130, a06m220, and a06m135.
For completeness, we give the values of the bare PCAC
quark masses determined from the pion two-point
correlation functions: m̂a ¼ aðmu þmdÞZmZP=ð2ZAÞ ¼
0.012119ð18Þ, 0.0015383(39), 0.0027984(23), and
0.0008840(18), respectively. The corresponding values
for the bare HISQ light quarks masses used in the
generation of the ensembles are: m̂ ¼ ðmu þmdÞ=2 ¼
0.0102, 0.0012, 0.0024, and 0.00084 [12] since for any
formulation with chiral symmetry, such as HISQ,
ZmZP=ZA ¼ 1. Note that in our clover-on-HISQ approach,
we match the pion mass calculated using the clover and
HISQ formulations on the same HISQ ensembles, and the
corresponding values of the two sets of bare quark masses
yielding this matching are not expected to be the same.
Only the renormalized quark masses, aðmu þmdÞZm, are
expected to agree up to discretization errors. These have not
been calculated in the present study.
Results for GAðQ2Þ are plotted as a function of Q2 in

Figs. 4 and 5. The data in Fig. 4 are organized to exhibit the
dependence on the light quark mass (equivalently, M2

π) for
fixed lattice spacing, while Fig. 5 highlights the variation
versus the lattice spacing a for fixed pion massMπ . We also
show the z-expansion fit z3þ4, discussed in Sec. VI, which

is used in obtaining the final estimate of rA. The data in
Fig. 4 show weak dependence on the light quark mass for
fixed a on all ensembles but the a09m130 ensemble, for
which they are a little lower, and give a slightly larger rA.
The trend in the data versus the lattice spacing a in Fig. 5 is
a small decrease with a for theMπ ¼ 310 ensembles, but is
reversed in the Mπ ≈ 220 and 130 MeV data, suggesting
that higher precision data are needed to establish a
possible trend.

VI. FITS TO EXTRACT THE
AXIAL CHARGE RADIUS

The data for GAðQ2Þ, given in Table IV, are fit using
seven ansatz to parametrize the Q2 behavior: the dipole
approximation given in Eq. (5); the z2, z3, and z4 truncation
of the z-expansion given in Eq. (8); and these three
truncations of the z-expansion supplemented with the four
sum rule constraints given in Eq. (10) and labeled z2þ4,
z3þ4 and z4þ4. From these fits we extract the axial charge
radius squared, r2A, using Eq. (4).
In the analyses using the z-expansion, we first inves-

tigated the sensitivity of the fits on the choice of t̄0 in
the definition of z and on the three choices for momenta,
fi ¼ api, sinðapiÞ and 2 sinðapi=2Þ, in evaluatingQ2. The
quality of the fits and the results for rA are indistinguishable
between the three choices of fi and between t̄0 ¼ 0 and the
approximate midpoint of Q2 range, which we call t̄mid

0 . We
illustrate this insensitivity using the data from the a06m135

ensemble, that has the largest number of Q2 values, in
Fig. 6. The same pattern is seen in all eight ensembles.
Also, the fits in z with and without using the sum rules, for
example, z2 versus z2þ4, give consistent results for rA,
however, as expected, the large Q2 behavior is much more
reasonable with fits including the sum rules.
For our final results we use fits with fi ¼ api, the mid-

point value, t̄mid
0 as it minimizes zmax, and include the sum

rules in the z-expansion. These fits toGAðQ2Þ versusQ2 for
the eight ensembles are shown in Fig. 7. The labels give the
estimates of rA from the seven fit ansatz along with the
χ2=d:o:f: within square brackets.2 The resulting values of

FIG. 6. Comparison of results for rA obtained using three possible definitions of lattice momenta. For the six z-expansion fits we also
show variation of estimates between the two values of t̄0: t̄0 ¼ 0 shown using open symbols and t̄0 ¼ t̄mid

0 ¼ 0.12 GeV2 with filled
symbols. The label D stands for the dipole ansatz. The data are from the a06m135 ensemble.
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FIG. 7. Fits to the unrenormalized GAðQ2Þ data (circles) versusQ2 ( GeV2) for the eight ensembles. The top two panels show data and
fits for the a12m310 and a12m220L ensembles; the second row for a09m310 and a09m220; the third row for a06m310 and a06m220;
and the final row for the two physical mass ensembles a09m130 and a06m135. The axial radius rA is extracted from these fits using
Eq. (4). Estimates of the mass MA from the dipole fit and the axial radius rA from the various fits are given in the labels. The number
within the square brackets is the χ2=d:o:f: of the fit.
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TABLE VII. The upper half of the table lists the isovector axial radius squared, hr2Ai in units of fm2, obtained from the dipole and six
different z-expansion fits (z2, z2þ4, z3, z3þ4, z4, and z4þ4) to the form factor GAðQ2Þ. The fits z2þ4, z3þ4, and z4þ4 include the four sum
rule constraints given in Eq. (10). For convenience, the bottom half of the table gives the radius, rA, in units of fm.

Ensemble Dipole z2 z2þ4 z3 z3þ4 z4 z4þ4

a12m310 0.225(05) 0.240(09) 0.240(12) 0.228(19) 0.225(24) 0.250(43) 0.252(53)
a12m220L 0.249(17) 0.262(23) 0.261(24) 0.267(26) 0.268(28) 0.264(43) 0.265(51)
a09m310 0.233(25) 0.229(27) 0.219(31) 0.200(38) 0.195(43) 0.220(60) 0.231(75)
a09m220 0.256(31) 0.244(47) 0.232(52) 0.230(56) 0.230(63) 0.288(10) 0.314(129)
a09m130 0.289(24) 0.255(38) 0.236(45) 0.202(47) 0.183(61) 0.188(70) 0.168(93)
a06m310 0.242(29) 0.245(28) 0.235(32) 0.241(35) 0.239(38) 0.222(48) 0.215(58)
a06m220 0.222(11) 0.211(15) 0.190(19) 0.191(26) 0.188(32) 0.187(51) 0.191(65)
a06m135 0.229(24) 0.204(59) 0.281(91) 0.229(90) 0.287(116) 0.373(141) 0.473(190)

a12m310 0.474(06) 0.490(09) 0.490(12) 0.478(20) 0.475(26) 0.500(43) 0.502(53)
a12m220L 0.499(17) 0.512(22) 0.511(24) 0.516(25) 0.518(27) 0.514(42) 0.515(50)
a09m310 0.483(26) 0.478(28) 0.468(33) 0.447(42) 0.441(49) 0.469(64) 0.481(78)
a09m220 0.506(31) 0.494(47) 0.482(53) 0.479(58) 0.479(65) 0.537(97) 0.560(115)
a09m130 0.538(23) 0.505(38) 0.486(46) 0.450(52) 0.427(71) 0.434(81) 0.410(113)
a06m310 0.492(29) 0.495(28) 0.485(33) 0.491(36) 0.489(39) 0.471(51) 0.464(63)
a06m220 0.471(12) 0.459(17) 0.436(22) 0.437(30) 0.434(37) 0.432(59) 0.437(74)
a06m135 0.478(25) 0.451(66) 0.530(86) 0.479(94) 0.535(108) 0.610(116) 0.687(138)

FIG. 8. The 8-point fit using the extrapolation ansatz Eq. (23) to the data for the axial radius squared hr2Ai. Each panel shows the fit
versus a single variable after the data have been extrapolated to the physical point in the other two variables. The top row shows plots
versus a, the middle versusM2

π , and the bottom row versusMπL. Each row shows rA extrapolated using the dipole ansatz (left); the z2þ4

ansatz (middle); and the z3þ4 ansatz (right). The extrapolated values are shown using the symbol red star. The overlaid grey bands in the
upper (middle) row are fits to the single variable a (M2

π), i.e., ignoring possible dependence on the other two variables.

GUPTA, JANG, LIN, YOON, and BHATTACHARYA PHYSICAL REVIEW D 96, 114503 (2017)

114503-14



rA from the seven fits are collected together in Table VII.
Overall, the dipole ansatz does a remarkably good job of
fitting the data as shown in Fig. 7.
We find that these estimates of rA from the seven

ansatz are, in most cases, consistent within the 1σ
combined statistical and fit uncertainty and show little
dependence on the lattice spacing or the pion mass. The
solid and dashed orange lines in Fig. 7 show that the k4

and the k4þ4 fits, which have only one degree of freedom,
and in many cases have a large curvature that becomes
manifest outside the range of the data. For this reason, we
do not include these ansatz in our final estimates.

VII. CONTINUUM, CHIRAL, AND FINITE
VOLUME EXTRAPOLATION OF hr2Ai

To obtain results for the axial charge radius squared,
hr2Ai, in the limits a → 0,Mπ → 135 MeV, andMπL → ∞,
we extrapolate the data for hr2Ai given in Table VII and not
the form factors themselves. Since the Q2 are different for
each ensemble a more comprehensive fit including depend-
ence on Q2 requires higher precision data. Using the eight
data points, including the two physical mass points, we

make a simultaneous fit in the three variables a,M2
π and the

lattice size MπL keeping only the lowest order correction
term in each [24]

r2Aða;Mπ; LÞ ¼ c1 þ c2aþ c3M2
π þ c4M2

πe−MπL: ð23Þ

A comparison of these “8-point” extrapolation fits using the
z-expansion and dipole ansatz data are shown in Fig. 8. We
do not show the two free parameter z1þ4 fits as the χ2=d:o:f:
are not good. The z4þ4 fits, with only one degree of
freedom, are questionable outside the range of Q2 values
simulated, nevertheless, the data in Table VII show that
they give values for hrAi that are consistent with the other
fits. The error estimates, on the other hand, grow steadily
between the z2þ4 and the z4þ4 cases.

TABLE VIII. Results for hr2Ai in units of fm2 after extrapolation
to a → 0, Mπ ¼ 135 MeV, and MπL → ∞ using Eq. (23). We
also give the corresponding rA in units of fm and MA in units of
GeV. The last three columns show results obtained by neglecting
the finite volume correction term, i.e., c4 ¼ 0.

Eq. (23) Eq. (23) with c4 ¼ 0

hr2Ai rA MA hr2Ai rA MA

dipole 0.24(3) 0.49(3) 1.41(08) 0.23(2) 0.48(2) 1.42(06)
z2þ4 0.19(4) 0.44(5) 1.56(18) 0.17(3) 0.42(4) 1.65(16)
z3þ4 0.24(7) 0.49(7) 1.39(19) 0.18(5) 0.43(6) 1.60(23)

FIG. 9. The 8-point fit using Eq. (23) without the finite volume correction (c4 ¼ 0) to the data for the axial radius squared hr2Ai. The
overlaid grey bands in the upper (bottom) row are fits to the single variable a (M2

π), i.e., ignoring possible dependence on the other
variable. The rest is the same as in Fig 8.

2Fits to the ratio GAðQ2Þ=GAðQ2 ¼ 0Þ give essentially iden-
tical results for rA in all cases. Also, as illustrated best by the z4þ4

fit to the a09m220 data, the fit parameters determined from the
data in a limited range ofQ2 do not give a monotonic behavior for
GAðQ2Þ → 0 as Q2 → ∞. In such cases, the validity of the fit
parameters should not be trusted outside the range of the data.
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The variation versus a, Mπ , or MπL for the results from
the dipole, z2þ4 and z3þ4 fits are shown in Fig. 8. The least
well-determined coefficient is the finite volume correction
term, c4 in Eq. (23), which is consistent with zero. We,
therefore, show the extrapolation with c4 ¼ 0 in Fig. 9. The
results of fits, with and without the c4, are summarized in
Table VIII, and show that neglecting the finite volume
correction term c4 does not significantly change the results,
but on comparing Figs. 8 and 9 we find that the uncertainty
versus M2

π is reduced on neglecting c4. Overall, the results
of the simultaneous fits to data obtained using the three
ansatz are consistent. In Figs. 8 and 9, we also show fits
versus a single variable (a orM2

π) as a grey band. Given the
weak dependence on a, Mπ , or MπL, they give estimates
that are consistent with results of the simultaneous fits but
with smaller uncertainty.
Our final estimates, using the data summarized in

Table VIII for the case c4 ≠ 0, are

rAjdipole ¼ 0.49ð3Þ fm;

rAjz-expansion ¼ 0.46ð6Þ fm;

rAjcombined ¼ 0.48ð4Þ fm;

MAjdipole ¼ 1.39ð9Þ GeV;
MAjz-expansion ¼ 1.48ð19Þ GeV;
MAjcombined ¼ 1.42ð12Þ GeV: ð24Þ

The second two estimates are obtained by performing
an average using the prescription given in Ref. [31] and
assuming optimal correlations between the values. For the
z-expansion data, we have averaged the z2þ4 and the z3þ4

estimates with the lattice size correction term, c4, included.
The rAjcombined result is then obtained by averaging this

z-expansion estimate with the dipole result. As remarked
previously, the dipole ansatz fits our data remarkably well
and the final result is close to it.
In Fig. 10, we plot the data for GAðQ2Þ from all eight

ensembles and compare them against a dipole fit using
two different estimates for the axial mass: the phenom-
enological value MA ¼ 1.026ð17Þ GeV obtained from the
combined neutrino scattering and electroproduction data
[13], and the value 1.35(17) used by the miniBooNE
Collaboration to fit their [anti-]neutrino cross section
data [9]. We also reproduce the data in Ref. [13] (provided
by Ulf Meissner) that was used to obtain the estimate
MA ¼ 1.026ð17Þ GeV. It is clear that the lattice data for
GAðQ2Þ show little variation with the lattice spacing or the
pion mass, and prefer the larger values of MA as shown
in Table VII. The MiniBooNE value MA ¼ 1.35ð17Þ
covers the spread in the lattice data, and our result

FIG. 11. The data for ðmμ=2MNÞGPðQ2Þ=gA from the eight
ensembles is plotted versus Q2 in units of GeV2. They show little
dependence on the lattice spacing a or the pion mass Mπ .

FIG. 10. (Left) The data for GAðQ2Þ=gA from the eight ensembles is plotted versus Q2 (GeV2). We also show the dipole fit with the
phenomenological estimates of the axial mass, MA ¼ 1.026ð21Þ GeV [13] (turquoise band), the miniBooNE value MA ¼
1.35ð17Þ GeV (green band), and our combined estimate MA ¼ 1.42ð12Þ GeV (magenta band) corresponding to rAjdipole ¼ 0.49ð3Þ
given in Eq. (24). The experimental data, reproduced from Ref. [13], were provided by Ulf Meissner. (Right) A magnified view of the
data and the three dipole fits in the region Q2 < 0.5 GeV2.

GUPTA, JANG, LIN, YOON, and BHATTACHARYA PHYSICAL REVIEW D 96, 114503 (2017)

114503-16



FIG. 12. The data for the induced pseudoscalar form factor ðmμ=2MNÞ ~GPðQ2Þ=gA versus Q2 in units of GeV2. The left column
highlights the dependence onM2

π for fixed a. The top panel is for the a ≈ 0.12 fm, the middle for the a ≈ 0.09 fm, and the bottom for the
a ≈ 0.06 fm ensembles. The right column highlights the dependence on a for fixed Mπ . The top panel is for the Mπ ≈ 310 MeV, the
middle for theMπ ≈ 220 MeV, and the bottom for theMπ ≈ 130 MeV ensembles. The fits are made using Eq. (26) with lattice estimates
for the axial charge gA and nucleon mass MN . The muon mass is mμ ¼ 0.10566 GeV. The number within the square brackets in the
labels is the χ2=d:o:f: of the fit.
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MA ¼ 1.42ð12Þ GeV is consistent with it. However, the
bands showing our and MiniBooNE results lie above most
of the earlier experimental data for the form factor, and the
corresponding values of MA are larger than the phenom-
enological value, given in Eq. (6), extracted from the
experimental data.
Two recent lattice QCD calculations give

MAjdipole ¼ 1.32ð7Þ GeV ðETMCÞ;
MAjz-expansion ¼ 1.14ð15Þ GeV ðMainzÞ; ð25Þ

where the first number is from the ETMC collaboration [32]
whouseadipole fit andanalyzea singleNf ¼ 2 twistedmass
ensemble with Mπ ≈ 130 MeV and a ¼ 0.093 fm. The
second number is from the Mainz collaboration [33] who
use the z- expansionmethodonNf ¼ 2 ensemblesgenerated
by theCLS collaboration. Ensemble by ensemble, their data,
which in all but one case have been obtained with
Mπ > 260 MeV, are consistent with what we find. The
difference in the final results is a consequence of their final
extrapolation inMπ → 135MeV. Our data atMπ ≈ 220 and
≈135 MeV, and that by the ETMC collaboration at
Mπ ≈ 130 MeV, do not support the large increase in rA
from their data to their value after extrapolation in Mπ .

VIII. ANALYSIS OF THE INDUCED
PSEUDOSCALAR FORM FACTOR ~GPðQ2Þ

The data for the normalized induced pseudoscalar form
factor ðmμ=2MNÞ ~GPðQ2Þ=gA versus Q2 from the eight
ensembles is summarized in Figs. 11 and 12. Overall, the
data show remarkably little dependence on the pion mass or
the lattice spacing.
The traditional starting point of the analysis of the Q2

behavior of ~GPðQ2Þ data given in Table V is the pion pole-
dominance ansatz given in Eq. (11). In Fig. 13, we show the
data for ðQ2 þM2

πÞ ~GPðQ2Þ=ð4M2
pGAðQ2ÞÞ, which should

be unity, versus Q2 from all eight ensembles. We find that it
tends to unity forQ2 ≳ 0.5 GeV2. At lowQ2, however, there
are significant deviations suggesting that corrections to the
pion pole-dominance ansatz are large for Q2 ≲ 0.2 GeV2,
precisely in the region in which it is expected to work best.
Very similar behavior was reported in Ref. [34].
To further evaluate the pion pole-dominance ansatz, we

exhibit the dependence of ðmμ=2MNÞGPðQ2Þ=gA on M2
π

for fixed a in Fig. 12 (left column), and on a for fixed M2
π

(right column). These plots also show a fit using the
simplest small Q2 expansion of Eq. (26) [34],

mμ

2MN

~GPðQ2Þ
gA

¼ c1
M2

π þQ2
þ c2 þ c3Q2; ð26Þ

where the leading term is the pion-pole term and the
polynomial approximates the small Q2 expansion of
the dipole or the z-expansion ansatz for GA. It is also
the behavior predicted for small Q2 and M2

π by the leading

order chiral perturbation theory [13].3 We use lattice
estimates for the axial charge gA given in the Table IV,
the nucleon massMN from Tables XII–XIX, and the muon
mass is mμ ¼ 0.10566 GeV. The values of the fit param-
eters c1, c2 and c3, defined in Eq. (26), are given in
Table IX. Pion pole-dominance implies that the contribu-
tion of terms proportional to c2 and c3 is relatively small.
The data in Table IX show that both c2 and c3 grow asMπ is
decreased, signaling that the pion pole-dominance ansatz
has large and growing corrections. This change in behavior
is exhibited in the Fig. 14; asMπ decreases and contribution
of the quadratic term becomes larger.
For each ensemble, the result for g�P, defined in Eq. (12)

and obtained from the fit, is given in Fig. 12 and in the third
column of Table IX. We find that the estimates from the
physical pion mass ensembles are about half the values
obtained from the muon capture experiment or the χPT
analysis given in Eq. (13). It is, therefore, important to
understand how and where the analysis based on the pion
pole-dominance ansatz, Eq. (11), breaks down.
To do this, we start with the axial Ward identity Eq. (3)

rewritten as

Q2

4M2
N

~GPðQ2Þ
GAðQ2Þ þ

2m̂
2MN

GPðQ2Þ
GAðQ2Þ ¼ 1: ð27Þ

This PCAC relation has to hold for each Q2 and Mπ up to
corrections starting at OðaÞ for the lattice action and
operators used by us. If the OðaÞ improved axial current
AI
μ ¼ ZAð1þ bAmaÞðAμ þ cAa∂μPÞ is used, then Eq. (27)

is modified to

FIG. 13. Plot of the ratio ðQ2 þM2
πÞ ~GPðQ2Þ=ð4M2

pGAðQ2ÞÞ
versus Q2 for the eight ensembles. Validity of the pion pole-
dominance hypothesis, given in Eq. (11), requires that this ratio is
unity for all Q2. Our data show significant deviations, especially
for Q2 ≲ 0.2 GeV2.

3In our calculations, the Q2 values are large, roughly 2–10M2
π

as can be inferred from Table IV.
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Q2

4M2
N

~GI
PðQ2Þ

GAðQ2Þ þ
2m̂
2MN

GPðQ2Þ
GAðQ2Þ ¼ 1: ð28Þ

where ~GI
PðQ2Þ ¼ ~GPðQ2Þ þ 2MNacAGP. Note that the

extraction of GAðQ2Þ is unchanged because the improve-
ment term contributes only to ~GP. Also, there is no OðaÞ
correction to the pseudoscalar density [35]. Typical
estimates of the improvement coefficient are cA≲−0.05
[36], and based on the values given there, we take these
to be cA ¼ −0.05, −0.04 and −0.03 for the a ¼ 0.12,
0.09 and 0.06 fm ensembles, respectively, for the purpose
of the test. In the following discussion of tests of the
PCAC relation, we also ignore the differences in the mass
dependent corrections ð1þ bimaÞ to the renormalization
constants Zi (i ∈ m;A; P) as these are small (ma < 0.01)
compared to the effects under consideration.
The PCAC relation reduces to the pion pole-dominance

ansatz given in Eq. (11) provided the relation

2m̂GPðQ2Þ ¼ ðM2
π=2MNÞ ~G½I�

P ðQ2Þ ð29Þ
also holds up to corrections starting at OðaÞ. Validation of
both the PCAC relation and the pion pole-dominance
ansatz implies that only one of the three form factors is
independent.
We first test that the three form factors satisfy the PCAC

relation, Eq. (27), by confirming that the quark mass m̂
obtained from the pion two-point correlation functions,
hΩjð∂μAμ − 2m̂PÞtP0jΩi ¼ 0, is consistent with that from
the three-point function hΩjχτð∂μAμ − 2m̂PÞtχ̄0jΩi ¼ 0 for
p ¼ 0.4 Using the more accurate value of m̂ determined
from the two-point functions, we plot in Fig. 15 (left) the
following five quantities motivated by the PCAC relation
given in Eq. (27):

R1 ¼
Q2

4M2
N

~GPðQ2Þ
GAðQ2Þ ; ð30Þ

R2 ¼
2m̂
2MN

GPðQ2Þ
GAðQ2Þ ; ð31Þ

R3 ¼
Q2 þM2

π

4M2
N

~GPðQ2Þ
GAðQ2Þ ; ð32Þ

R4 ¼
4m̂MN

M2
π

GPðQ2Þ
~GPðQ2Þ ; ð33Þ

R5 ¼
aQ2

4MN

GPðQ2Þ
GAðQ2Þ ; ð34Þ

for the four ensembles a12m310, a09m130, a06m220, and
a06m135. Including the OðaÞ improvement of the axial
current, the ratios in Eqs (30), (32), and (33) become

RI
1 ¼

Q2

4M2
N

~GI
PðQ2Þ

GAðQ2Þ ; ð35Þ

RI
3 ¼

Q2 þM2
π

4M2
N

~GI
PðQ2Þ

GAðQ2Þ ; ð36Þ

RI
4 ¼

2m̂2MN

M2
π

GPðQ2Þ
~GI
PðQ2Þ : ð37Þ

The three improved ratios RI
1;3;4 are shown in Fig. 15

(right). Note that R½I�
1 þ R2 ¼ 1 checks the PCAC relation

given in Eq. (27) [or Eq. (28)]; R½I�
3 ¼ 1 tests the pion pole-

dominance ansatz Eq. (11); and R½I�
4 ¼ 1 tests the relation

Eq. (29). Comparing the two sets of panels in Fig. 15 shows
that improving the axial current has a very small effect. This
is because the value of the improvement coefficient cA, that

TABLE IX. Results obtained from fits to ðmμ=2MNÞ ~GPðQ2Þ=gA using Eq. (26). The second column gives ðQ2 þM2
πÞ ~GPðQ�2Þ=gA at

Q2 ¼ Q�2 ¼ 0.88m2
μ GeV2. These data are shown by the symbol star in Fig. 12. The third column gives g�P=gA using Eq. (12). The fit

parameters ci are rescaled by 2MN=mμ so that the fourth column gives the residue of the pole at Q2 ¼ −M2
π from which gπNN=gA,

given in column five, is obtained by dividing by 4MNFπ. Corrections to the pion pole-dominance ansatz are proportional to the
parameters c2 and c3.

ensemble
ðQ�2 þM2

πÞ
~GPðQ�2Þ=gA

g�P=gA
ðQ2 ¼ Q�2Þ

c1 � ð2MN=mμÞ
½GeV2�

gπNN=gA
ðQ2 ¼ −M2

πÞ
c2�

ð2MN=mμÞ
c3 � ð2MN=mμÞ

½GeV−2�
a12m310 3.72(12) 1.70(05) 3.94(16) 8.35(38) −2.02ð48Þ 0.24(42)
a12m220L 2.70(17) 2.29(15) 2.47(18) 5.86(43) 3.85(1.1) −9.5ð2.5Þ
a09m310 3.67(26) 1.64(12) 3.83(38) 8.20(83) −1.56ð1.2Þ −0.21ð94Þ
a09m220 2.53(19) 2.16(17) 2.35(26) 5.63(62) 3.01(1.9) −5.7ð3.3Þ
a09m130 1.85(10) 3.60(19) 1.75(10) 4.83(30) 3.37(43) −6.04ð63Þ
a06m310 3.74(19) 1.60(08) 3.94(27) 8.31(59) −1.85ð82Þ −0.10ð62Þ
a06m220 2.70(09) 2.11(07) 2.64(12) 6.28(30) 0.93(61) −2.54ð84Þ
a06m135 1.77(07) 3.47(15) 1.66(09) 4.56(26) 3.84(63) −6.4ð1.1Þ

4The full set of correlation functions needed to analyze the
PCAC relation for the p ≠ 0 cases were, unfortunately, not
calculated.
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FIG. 14. The data for and the fits to the quantity ðQ2 þM2
πÞ ~GPðQ2Þ=gA. The figures in the left column highlight the dependence

on M2
π for fixed a, and those in the right column highlight the dependence on a for fixed Mπ . The fits versus Q2 (GeV2) are

performed using Eq. (26) with lattice estimates for the axial charge gA and the nucleon mass, MN . The muon mass is
mμ ¼ 0.10566 GeV. The point with symbol star (plus) gives the value at Q2 ¼ Q�2 ≡ 0.88m2

μ (Q2 ¼ −M2
π). We show the 1σ error

band of the fits in the panels on the left.
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FIG. 15. (Left) The data for the five ratios Ri, defined in Eqs. (30)–(34). The four rows show data from the four ensembles a12m310,

a09m130, a06m220, and a06m135. Test of the PCAC relation, Eq. (27), is R½I�
1 þ R2 ¼ 1; of the pion pole-dominance ansatz, Eq. (11),

is R½I�
3 ¼ 1; and of the relation given in Eq. (29) is R½I�

4 ¼ 1. (Right) Results for the four ratios defined in Eqs. (35)–(37) using the OðaÞ
improved axial current.
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multiplies the correction term R½I�
5 , is small. Thus, improv-

ing the axial current to OðaÞ does not explain the large

deviation of R½I�
1 þ R2 from unity illustrated in Fig. 15.

For all four ensembles, data in Fig. 15 show that

R½I�
1 þ R2 ≈ R½I�

3 . For small Q2, however, both R½I�
1 þ R2

and R½I�
3 are much smaller than unity. The deviation of R½I�

4

from unity grows with Q2, but decreases as a → 0 and

Mπ → MPhysical
π . The size of the deviations in R½I�

4 are,
in general, consistent with these being discretization
effects. Note that the corrections to 2m̂GPðQ2Þ ¼
ðM2

π=2MNÞ ~GPðQ2Þ, or to R½I�
4 ¼ 1, do not significantly

impact R½I�
1 þ R2 ≈ R½I�

3 because the dominant contribution

to both sides of this approximate equality comes from R½I�
1 .

The data for R3 from all eight ensembles is plotted in
Fig. 13 and show that the deviations from unity increase
with decreasing Q2, a, andM2

π . For the physical pion mass
ensembles, the Oð50%Þ deviation for Q2 < 0.2 GeV2 is
surprisingly large. Such Q2 dependent deviations from the
PCAC relation are, generically, indicators of discretization
artifacts. The increase in the deviations with decreasing a
does not support this expectation, and as shown in Fig. 15,
the OðaÞ improvement of the axial current does not reduce
the deviations. Therefore, the observed large deviation
remains unexplained and requires further investigation.

IX. ANALYSIS OF g�P
To determine g�P=gA and gπNN=gA, we need to evaluate

~GPðQ2Þ at Q2 ≡Q�2 ¼ 0.88m2
μ and at Q2 ¼ −M2

π . This is
done using the ansatz given in Eq. (26). In Fig. 14, we show
the data for ðQ2 þM2

πÞ ~GPðQ2Þ=gA and the result of the fit
using Eq. (26). The extrapolated values are shown using the
symbol star at Q�2 ¼ 0.88m2

μ and by the symbol plus at
Q2 ¼ −M2

π . It is clear from Fig. 14, that there are enough

FIG. 16. The 8-point fit using Eq. (38) to the lattice data for g�P=gA. In the left (right) panel, the data are shown versus the single variable
M2

π (a), whereas the fits include dependence on both variables simultaneously. The same symbols are used for data in both figures and
defined in the left panel.

FIG. 17. Summary of lattice QCD results for the renormalized
g�P. Previous results are labeled as follows: Lin(2008) [37],
Yamazaki(2009) [38], Bali(2015) [34], and Green(2017) [39].
The values shown with open circles were obtained from simu-
lations withMπ > 300 MeV and scaled to the physical pion mass
Mπ ¼ 135 MeV using just the pion-pole term as discussed in the
text. The top red square is the Bali(2015) result corrected by us,
i.e., the result published in Ref. [34] (black triangle) divided by
the factor two missed in their definition of g�P. The bottom red
square is our result given in Eq. (39) and obtained from fits shown
in Fig. 16 as discussed in the text.
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free parameters in Eq. (26) to fit the data and the values
obtained at Q�2 and Q2 ¼ −M2

π by extrapolation are
reasonable. However, the contributions of terms propor-
tional to c2 and c3 (see Table IX) increase as the lattice
spacing a → 0 and Mπ → 135 MeV. The quantitative
change in behavior is already clear in all three Mπ ≈
220 MeV ensembles. Thus, it is unlikely that the change in
behavior between theMπ ≈ 310 MeV ensembles and those
at lighter Mπ is a statistical fluctuation. Because of this
change in behavior, we get low estimates of g�P=gA
and gπNN=gA.
Given the data in Table IX, to estimate g�P in the limit

a → 0 andMπ → 135 MeV, we make a fit using the ansatz

g�Pða;MπÞ=gA ¼ d1 þ d2aþ d3
M2

π þ 0.88m2
μ
þ d4M2

π; ð38Þ

where the leading behavior in M2
π is taken to be the pion-

pole term evaluated at the experimental momentum scale of
muon capture. We neglect possible finite volume correc-
tions in the data in obtaining the estimates since the data do
not show an obvious dependence on MπL. The simulta-
neous fits in a and Mπ are shown in Fig. 16. They give

g�P=gA ¼ 3.48ð14Þ;
g�P ¼ 4.44ð18Þ; ð39Þ

where the final value of g�P is obtained by multiplying
the ratio obtained from the fit by the experimental
value gA ¼ 1.276.
We summarize lattice QCD results for g�P in

Fig. 17. The results g�P ¼ 7.68� 1.03 (Lin(2008) [37]),
g�P ¼ 6.4� 1.2 (Yamazaki(2009) [38]), and g�P ¼
8.47ð21Þð87Þð2Þð7Þ (Green(2017) [39]) have all been
obtained on ensembles with Mπ > 300 MeV and extra-
polated to MPhysical

π using just the pion-pole term,
ðQ�2 þM2

πÞ ~GPðQ�2Þ=ððQ�2 þM2;Physical
π Þ. Thus all esti-

mates from Mπ > 300 MeV ensembles, including our
three Mπ ≈ 310 MeV ensembles, yield g�P ≈ 8 after
scaling in Mπ using the pion-pole ansatz. As we have
discussed above, the Q2 corrections to the pion-pole
ansatz become large for Mπ < 300 MeV and our direct
simulations atMπ ≈ 220 and 135 MeV show that using just
the pion-pole ansatz for scaling in M2

π is not justified.
Our estimate, g�P ¼ 4.44ð18Þ, is consistent with the value

g�P ¼ 4.20ð20Þ extracted from Ref. [34], once their result is
corrected for by the factor 0.5 that was missed in their
definition of g�P. Note that their analysis also shows the
change in the scaling behavior for Mπ < 300, and they
report results analogous to our Fig. 15.
To summarize, our low value, g�P ¼ 4.44ð18Þ, is about

half of the values obtained from the muon capture experi-
ment and χPT as summarized in Eq. (13). Our data are well-
fit by the ansatz given in Eq. (26), however, the corrections
proportional to the parameters c2 and c3 become large as
Mπ → 135 MeV. Thus, one cannot extrapolate to MPhysical

π

using just the pion-pole term. The underlying reason for a
low value of g�P is the large deviation from unity of the

ratios R½I�
1 þ R2 and R½I�

3 , defined in Eqs. (30)–(32), at low
Q2. The size of the deviations are shown in Fig. 13.
Considering that theOðaÞ improvement of the axial current

FIG. 18. The 8-point fit to the lattice data for gπNN=gA using Eq. (23). In this fit, We neglect the possible finite volume term. In the left
(right) panel, the data are shown versus the single variableM2

π (a), whereas the fit is to estimates extrapolated to the physical value in the
other variable. The same symbols are used for data in both figures and defined in the left panel.

TABLE X. Results for gπNN ¼ MNgA=Fπ determined using
values of MN , gA and Fπ obtained on the eight ensembles.

Mπ ≈310MeV Mπ ≈220MeV Mπ ≈135MeV

a ¼ 0.12 fm 12.7(2) 12.4(2)
a ¼ 0.09 fm 12.9(4) 12.6(4) 12.1(3)
a ¼ 0.06 fm 12.4(2) 12.6(2) 13.3(3)
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does not reduce the deviation, the observed violation of the
PCAC relation remains unexplained.

X. ANALYSIS OF THE PION-NUCLEON
COUPLING, gπNN

The pion-nucleon coupling, gπNN, is defined as the
residue at the pion pole of ~GPðQ2Þ, i.e., at
Q2 ¼ −q2 ¼ −M2

π . Since all our data are obtained at
positive values of Q2, we first fit ~GPðQ2Þ using the ansatz
in Eq. (26) and then calculate

gπNN ¼ lim
Q2→−M2

π

M2
π þQ2

4MNFπ

~GPðQ2Þ; ð40Þ

where Fπ is the pion decay constant. These estimates are
given in the fifth column of Table IX. To extrapolate to
a → 0 and Mπ → 135 MeV, we use the leading order
ansatz given in Eq. (23). The fit, shown in Fig. 18, gives

gπNN=gA ¼ 4.53ð45Þ;
gπNN ¼ 5.78ð57Þ; ð41Þ

with gA ¼ 1.276. This lattice value has to be compared with
gπNN ¼ 13.69� 0.12� 0.15 obtained from the πN scatter-
ing length analysis [22]. As discussed above in the analysis
of g�P, our low value is a consequence of the unexplained

deviation of the ratios R½I�
1 þ R2 and R

½I�
3 from unity at small

Q2 on the Mπ ¼ 220 and 135 MeV ensembles.
We can also estimate gπNN using the Goldberger-Treiman

relation,

gπNN ¼ MNgA
Fπ

: ð42Þ

The resulting values of gπNN given in Table X for each
ensemble are obtained using estimates of gA=Fπ from
Ref. [24].5 The extrapolation to a → 0 and Mπ →
135 MeV using the ansatz given in Eq. (23) with just
the leading order corrections is shown in Fig. 19. The
result, gπNN ¼ 12.87ð34Þ, is consistent with the value,
gπNN ¼ 13, one gets by using the experimental values,
gA ¼ 1.276, MN ¼ 939 MeV, and Fπ ¼ 92.2 MeV. Note
that this test of the Goldberger-Treiman relation relies on
our calculation of gA right to within 5%, whereas direct
calculations of g�P and gπNN depend on ~GPðQ2Þ, which we
find shows large deviations from the PCAC relation.

XI. A HEURISTIC ANALYSIS

Testing the PCAC relation, Eq. (3), requires no input
outside of our lattice calculations: the three form factors,
GAðQ2Þ, ~GPðQ2Þ, and GPðQ2Þ, are obtained from our
lattice calculations of three-point functions, and m̂ is
obtained from the pion two-point correlations functions.
Thus, the large deviations from the PCAC relation, as
discussed in Secs. VIII, IX and X, are troubling. They
motivated us to examine alternatives to the single pion pole-
dominance ansatz. The data in Fig. 15 suggest that the
deviation from the PCAC relation can be reduced by
enhancing the contribution of R2, i.e., the relative size of
the M2

π versus the Q2 term in pion pole-dominance ansatz.
We, therefore, fit the data using

mμ

2MN

~GPðQ2Þ
gA

¼ e1
M2

pole þQ2
þ e2 þ e3Q2; ð43Þ

FIG. 19. The data for gπNN ¼ MNgA=Fπ from the eight ensembles and the simultaneous fit in a andM2
π to obtain the result in the limit

a → 0 andMπ ¼ 135 MeV using the ansatz in Eq. (23). The finite volume correction term is neglected in the fit. The rest is the same as
in Fig. 18.

5The values for the a06m135 ensemble are gA=Fπ ¼
12.62ð29Þ and Fπ ¼ 95.4ð1.0Þ.
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where M2
pole and ei are free parameters. The fits for

e3 ¼ 0 are shown in Fig. 20 and the resulting value
of Mpole is given in Table XI. As expected, allowing
Mpole to be a free parameter changes the fits very
significantly and the results mimic the pion pole-
dominance behavior seen for the Mπ > 300 MeV
ensembles. This can be seen by comparing the fits in
Fig. 20 with those in Fig. 14 which were obtained
using the fit ansatz given in Eq. (26). The surprise is
the size of the difference, Mpole −Mπ , that can be
inferred from Table XI. While we expect some shift
in Mπ to correct for all the intermediate states that
couple to the axial current rather than just the ground
state pion, it is difficult to explain the observed large
shift. Nevertheless, continuing with this heuristic analy-
sis, we show in Fig. 21 the extrapolation of the
estimates of g�P, given in Table XI and obtained with
e3 ¼ 0, to the physical pion mass and the continuum

FIG. 20. The data for the quantity ðQ2 þM2
poleÞ ~GPðQ2Þ=gA.

The three panels highlight the dependence onM2
π for fixed a. The

fits versus Q2 in units of GeV2 are performed using Eq. (43) with
e3 ¼ 0. The point with symbol star (plus) gives the value atQ2 ¼
Q�2 ≡ 0.88m2

μ (Q2 ¼ −M2
π). We show the 1σ error band of the

fits. For the two physical mass ensembles, a09m130 and
a06m135, we also show the data (solid green squares) and the
fits (green lines) including the e3 term defined in Eq. (43).

TABLE XI. Results for Mpole, g�P and gπNN using the heuristic
fit ansatz given in Eq. (43) with e3 ¼ 0.

Mπ [MeV] Mpole [MeV] g�P=gA gπNN=gA

a12m310 310(3) 307(23) 1.69(15) 8.1(0.5)
a12m220L 228(2) 294(18) 2.07(13) 9.6(1.4)
a09m310 313(3) 320(51) 1.62(31) 8.5(1.2)
a09m220 226(2) 294(47) 1.88(22) 8.7(2.2)
a09m130 138(1) 219(9) 2.84(18) 8.2(0.4)
a06m310 319(2) 332(36) 1.54(19) 8.7(0.9)
a06m220 235(2) 298(19) 1.79(11) 8.6(0.6)
a06m135 136(2) 247(15) 2.40(14) 8.8(0.7)

FIG. 21. The extrapolation of g�P=gA to the physical pion mass
and the continuum limit using h0=ðQ�2 þM2

poleÞ þ h1 þ h2a,

where M2
pole is a free parameter introduced in the heuristic

analysis to fit the data.
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limit using the ansatz h0=ðQ�2 þM2
poleÞ þ h1 þ h2a. This

analysis gives g�P ¼ 7.0ð7Þ and similarly gπNN ¼ 11.2ð1.3Þ.
The large change is mainly because the extrapolation is
now being done from the larger values of Mpole.
For the physical pion mass ensembles, a09m130 and

a06m135, the fits can be performed with e3 a free
parameter since we have data at ten values of Q2. Adding
e3 to the fit ansatz give a significantly different value for
Mpole and, as a result, the violet open squares move to the
filled green squares in Fig. 20. Even the curvature of the
fit has opposite sign in the two cases. Not surprisingly,
the values of g�P and gπNN for the two physical mass
ensembles change significantly and in opposite direction
on including the e3 term in the fit. In short, this heuristic
analysis becomes unstable as Mπ → 135 MeV.
Note that introducing M2

pole as a free parameter is
analogous to tuning m̂ in the PCAC relation, Eq. (3), by
requiring R1 þ R2, shown in Fig. 15, is unity independent
of Q2, rather than using the value from the PCAC relation
applied to the pion two-point correlation function. The
bottom line of such a heuristic analysis is that the change,
M2

π → M2
pole or in m̂, to accommodate the data is much

larger than what is expected from discretization effects.
Therefore, understanding why the three form factors do not
satisfy the PCAC relation remains our highest priority for
future work.

XII. CONCLUSIONS

We have presented high statistics results of the axial and
the induced pseudoscalar form factors on eight ensembles
described in Table I using a clover-on-HISQ approach. The
pseudoscalar form factor was calculated on four ensembles
to test the PCAC relation.
To fit theQ2 dependence of the axial form factor,GAðQ2Þ,

we use the z-expansion and the dipole ansatz. Estimates from
the z2þ4 versus z3þ4 truncation of the z-expansion are
consistent within 1σ uncertainty. The dipole ansatz does a
remarkable job of fitting the data. The estimates of rA from
these three fit ansatz agree for all eight ensembles. The
results, after extrapolation in a to the continuum limit and
MπL → ∞, and evaluated at Mπ ¼ 135 MeV, are
rAjz-expansion ¼ 0.46ð6Þ and rAjdipole ¼ 0.49ð3Þ. While these
results are consistent, they are smaller than the phenomeno-
logical estimates given in Eq. (6). Our estimate rAjdipole ¼
0.49ð3Þ corresponds to an axial massMA ¼ 1.39ð9Þ that is
in good agreement with the value obtained by the
MiniBooNE collaboration [9]. Our final estimate from the

combined dipole and the z-expansion analyses is
rAjcombined ¼ 0.48ð4Þ.
The data for the induced pseudoscalar form factor

~GPðQ2Þ versus Q2 show little dependence on the lattice
spacing a, the pion mass Mπ or the lattice size MπL. Our
test of the PCAC relation, including the contribution of the
pseudoscalar form factor GPðQ2Þ, show significant devia-
tions for Q2 ≲ 0.2 GeV2, in particular for the physical
mass ensembles. Extrapolation inQ2 using an ansatz based
on the pion pole-dominance hypothesis, Eq. (23), fits the
lattice data well but leads to very low estimates of
the induced pseudoscalar charge, g�P ¼ 4.44ð18Þ, and
of the pion-nucleon coupling gπNN ¼ 5.78ð57Þ estimated
as the residue at the pole in ~GPðQ2Þ at Q2 ¼ −M2

π . These
low estimates are a consequence of the large deviations
from the PCAC relation for Q2 ≲ 0.2 GeV2. All previous
estimates from Mπ > 300 MeV ensembles that gave
g�P ≈ 8 were not sensitive to this problem as discussed
in Sec. VIII.
Work is under progress to improve the statistical and

systematic precision of the three form factors GAðQ2Þ,
~GPðQ2Þ and GPðQ2Þ and to understand the reason for the
failure of these three form factors to satisfy the PCAC
relation for Q2 ≲ 0.2 GeV2.
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APPENDIX A: FITS TO TWO-POINT FUNCTIONS

This Appendix shows the 2- and 4-state fits to the nucleon two-point correlation function on the eight ensembles
Figs. 22–28, and 29. The estimates of the nucleon energies and the amplitudes extracted from these fits are collected
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FIG. 22. Plot of the effective-energy, aE0, versus the Eucledian time t for the a12m310 ensemble data. The left panel shows the 2-state
fits while the right panel shows the 4-state fits. The lines with error bands show the result forMeff obtained from the 2-state (4-state) fit
for the various momenta analyzed. The unshaded region specifies the range of time slices used in the fits. To help distinguish between
the estimates for the various momenta, the data and fits forMeff are shown using alternating red and blue colors. For each momenta, the
point with error bars in black on the right of the t-interval used in the fits is the estimate of the ground-state energy E0.

FIG. 23. Plot of the effective-energy for the a12m220L ensemble data. The rest is the same as in Fig. 22.

FIG. 24. Plot of the effective-energy for the a09m310 ensemble data. The rest is the same as in Fig. 22.
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FIG. 25. Plot of the effective-energy for the a09m220 ensemble data. The rest is the same as in Fig. 22.

FIG. 26. Plot of the effective-energy for the a09m130 ensemble data. The rest is the same as in Fig. 22.

FIG. 27. Plot of the effective-energy for the a06m310 ensemble data. The rest is the same as in Fig. 22.
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FIG. 28. Plot of the effective-energy plots for the a06m220 ensemble data. The rest is the same as in Fig. 22.

FIG. 29. Plot of the effective-energy for the a06m135 ensemble data. The rest is the same as in Fig. 22.

TABLE XII. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a12m310 ensemble. The lattice momenta
are pa ¼ 2πn=L with n2 listed in the first column. The third column gives the fit range tmin − tmax. Priors, given in the first row, were
used for the multistate fit when the number of states N2pt ≥ 3.

Priors 0.15(10) 0.4(2) 0.8(6) 0.6(3) 0.6(4) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 03–15 6.86(11) 0.671(002) 1.011(186) 0.837(098) 0.916
3 02–15 6.78(10) 0.670(002) 0.143(028) 0.450(038) 1.137(063) 0.563(075) 0.747
4 02–15 6.75(10) 0.669(002) 0.137(030) 0.420(037) 0.732(038) 0.500(066) 0.518(066) 0.396(023) 0.738

1 2 03–15 5.20(08) 0.719(002) 1.026(172) 0.807(092) 0.763
3 02–15 5.15(08) 0.718(002) 0.152(029) 0.438(039) 1.204(066) 0.566(076) 0.652
4 02–15 5.12(08) 0.718(002) 0.147(030) 0.409(038) 0.775(039) 0.502(067) 0.551(065) 0.401(023) 0.620

2 2 03–15 3.93(08) 0.763(003) 1.008(151) 0.751(090) 0.802
3 02–15 3.89(07) 0.762(002) 0.174(031) 0.400(042) 1.294(075) 0.604(079) 0.711
4 02–15 3.86(08) 0.762(002) 0.169(033) 0.368(040) 0.826(043) 0.537(071) 0.609(065) 0.409(021) 0.636

(Table continued)
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TABLE XII. (Continued)

Priors 0.15(10) 0.4(2) 0.8(6) 0.6(3) 0.6(4) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

3 2 03–15 3.03(08) 0.806(003) 1.053(170) 0.744(104) 0.536
3 02–15 3.00(06) 0.806(003) 0.176(029) 0.394(039) 1.376(077) 0.608(070) 0.522
4 02–15 2.96(07) 0.805(003) 0.174(030) 0.357(037) 0.888(047) 0.550(064) 0.641(058) 0.407(020) 0.426

4 2 03–15 2.30(09) 0.843(005) 1.085(173) 0.703(118) 1.652
3 02–15 2.30(05) 0.844(003) 0.181(024) 0.384(033) 1.467(076) 0.598(058) 1.416
4 02–15 2.27(06) 0.843(003) 0.181(025) 0.342(029) 0.958(050) 0.545(056) 0.675(051) 0.406(020) 1.294

5 2 03–15 1.76(09) 0.881(006) 1.106(161) 0.667(121) 0.697
3 02–15 1.78(04) 0.883(003) 0.185(022) 0.377(031) 1.541(078) 0.592(056) 0.758
4 02–15 1.75(05) 0.882(004) 0.186(023) 0.334(027) 1.014(053) 0.541(055) 0.703(048) 0.406(019) 0.612

TABLE XIII. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a12m220L ensemble. The rest is the same
as in Table XII.

Priors 0.4(3) 0.3(2) 1.0(8) 0.8(4) 0.8(6) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 04–15 5.97(18) 0.612(003) 0.669(118) 0.529(100) 1.363
3 02–15 5.75(22) 0.609(003) 0.400(067) 0.350(071) 1.461(171) 0.878(102) 0.885
4 02–15 5.74(23) 0.609(003) 0.400(091) 0.349(085) 0.873(099) 0.775(117) 0.725(107) 0.405(010) 0.881

1 2 04–15 5.30(19) 0.630(003) 0.638(086) 0.475(092) 1.497
3 02–15 5.05(26) 0.626(004) 0.417(065) 0.309(075) 1.573(178) 0.909(093) 0.945
4 02–15 5.04(29) 0.626(004) 0.417(077) 0.306(089) 0.944(109) 0.806(104) 0.773(101) 0.402(010) 0.931

2 2 04–15 4.73(20) 0.647(004) 0.631(068) 0.440(088) 1.620
3 02–15 4.50(24) 0.644(004) 0.441(067) 0.292(066) 1.661(188) 0.930(090) 1.047
4 02–15 4.48(28) 0.644(005) 0.444(076) 0.288(079) 1.005(122) 0.831(100) 0.813(101) 0.399(010) 1.024

3 2 04–15 4.19(23) 0.664(005) 0.638(053) 0.404(087) 1.740
3 02–15 3.99(21) 0.661(004) 0.475(072) 0.278(053) 1.761(201) 0.954(089) 1.164
4 02–15 3.95(27) 0.660(005) 0.484(083) 0.272(066) 1.078(138) 0.860(098) 0.861(104) 0.397(010) 1.125

4 2 04–15 3.88(22) 0.684(005) 0.626(064) 0.421(100) 1.438
3 02–15 3.71(20) 0.681(004) 0.445(074) 0.287(059) 1.777(209) 0.946(091) 0.973
4 02–15 3.68(25) 0.681(005) 0.453(085) 0.280(071) 1.090(143) 0.854(101) 0.863(109) 0.396(010) 0.940

5 2 04–15 3.46(22) 0.700(006) 0.637(058) 0.396(095) 1.406
3 02–15 3.35(17) 0.698(004) 0.467(075) 0.288(049) 1.846(220) 0.961(091) 1.003
4 02–15 3.31(21) 0.698(005) 0.479(087) 0.282(060) 1.143(154) 0.874(102) 0.897(112) 0.394(009) 0.960

TABLE XIV. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a09m310 ensemble. The rest is the same
as in Table XII.

Priors 0.8(4) 0.3(2) 1.3(1.0) 0.70(35) 1.1(8) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 05–20 13.3(1.2) 0.493(007) 0.943(097) 0.331(078) 1.268
3 03–20 13.1(1.2) 0.492(006) 0.752(103) 0.284(074) 1.644(378) 0.688(083) 0.980
4 03–20 13.1(1.4) 0.492(007) 0.796(105) 0.287(084) 1.187(261) 0.686(093) 1.018(187) 0.404(012) 0.976

1 2 05–20 11.5(1.0) 0.532(006) 0.948(107) 0.334(077) 1.281
3 03–20 11.4(9) 0.531(005) 0.764(099) 0.294(062) 1.715(375) 0.713(073) 0.994
4 03–20 11.3(9) 0.531(006) 0.803(101) 0.294(066) 1.269(264) 0.719(071) 1.090(171) 0.400(014) 0.976

2 2 05–20 10.3(9) 0.571(007) 0.927(146) 0.361(098) 1.383
3 03–20 10.2(7) 0.571(005) 0.738(101) 0.321(066) 1.665(375) 0.712(069) 1.065
4 03–20 10.1(8) 0.570(006) 0.773(107) 0.316(070) 1.271(264) 0.730(057) 1.100(160) 0.401(014) 1.048

(Table continued)
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TABLE XIV. (Continued)

Priors 0.8(4) 0.3(2) 1.3(1.0) 0.70(35) 1.1(8) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

3 2 05–20 6.75(2.67) 0.586(023) 1.210(662) 0.229(096) 0.738
3 03–20 7.57(71) 0.594(006) 0.820(161) 0.226(036) 1.894(326) 0.691(071) 0.618
4 03–20 7.22(60) 0.591(006) 0.900(152) 0.213(034) 1.413(243) 0.672(085) 1.135(178) 0.393(014) 0.586

4 2 05–20 8.54(1.33) 0.646(014) 0.985(850) 0.484(381) 0.653
3 03–20 8.18(74) 0.642(008) 0.654(105) 0.362(099) 1.621(338) 0.677(065) 0.506
4 03–20 7.93(1.15) 0.640(011) 0.667(131) 0.326(149) 1.305(273) 0.707(045) 1.100(157) 0.399(015) 0.493

5 2 05–20 6.88(1.79) 0.670(020) 0.858(317) 0.374(326) 0.491
3 03–20 6.86(75) 0.670(009) 0.672(112) 0.338(097) 1.646(329) 0.685(061) 0.383
4 03–20 6.54(1.16) 0.667(013) 0.694(148) 0.293(138) 1.341(281) 0.710(046) 1.121(160) 0.397(015) 0.365

TABLE XV. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a09m220 ensemble. The rest is the same as
in Table XII.

Priors 0.8(4) 0.3(2) 1.7(1.2) 0.6(3) 1.5(1.0) 0.4(2)

n2 N2pt A0 × 1011 E0 r1 ΔE1 r2 ΔE2 r3 ΔE3 χ2=DOF

0 2 05–20 11.5(10) 0.452(006) 1.139(133) 0.361(078) 0.753
3 03–20 11.0(10) 0.450(006) 0.805(116) 0.270(054) 2.247(423) 0.668(077) 0.541
4 03–20 10.8(11) 0.448(007) 0.847(123) 0.264(063) 1.518(292) 0.630(085) 1.414(263) 0.405(014) 0.522

1 2 05–20 10.6(11) 0.470(007) 1.124(122) 0.340(083) 0.783
3 03–20 9.85(1.04) 0.466(007) 0.804(139) 0.239(055) 2.383(424) 0.668(073) 0.546
4 03–20 9.47(1.27) 0.464(008) 0.854(153) 0.225(067) 1.623(293) 0.619(088) 1.455(258) 0.400(016) 0.516

2 2 05–20 9.88(1.15) 0.489(008) 1.099(124) 0.333(090) 0.860
3 03–20 9.21(1.02) 0.485(007) 0.787(146) 0.233(055) 2.416(425) 0.670(071) 0.607
4 03–20 8.75(1.19) 0.482(007) 0.848(161) 0.213(063) 1.664(288) 0.620(086) 1.477(253) 0.397(016) 0.573

3 2 05–20 9.18(1.28) 0.506(010) 1.068(130) 0.319(099) 0.935
3 03–20 8.61(97) 0.503(007) 0.770(155) 0.225(052) 2.457(419) 0.673(070) 0.677
4 03–20 8.07(97) 0.500(007) 0.847(161) 0.202(053) 1.714(271) 0.624(084) 1.505(242) 0.394(016) 0.639

4 2 05–20 8.68(1.32) 0.524(011) 1.072(139) 0.327(111) 0.890
3 03–20 8.38(95) 0.522(007) 0.755(145) 0.248(060) 2.375(430) 0.670(072) 0.661
4 03–20 7.89(1.01) 0.519(008) 0.825(162) 0.222(060) 1.675(288) 0.633(081) 1.497(249) 0.397(015) 0.627

5 2 05–20 7.65(1.52) 0.536(013) 1.115(210) 0.292(103) 1.027
3 03–20 7.56(77) 0.537(007) 0.793(160) 0.232(043) 2.445(397) 0.674(068) 0.779
4 03–20 7.11(69) 0.533(006) 0.876(160) 0.211(041) 1.724(267) 0.635(080) 1.529(235) 0.395(015) 0.738

TABLE XVI. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a09m130 ensemble. n2 ¼ 9 has two
combinations (2,2,1) and (3,0,0) labeled 9 and 90, respectively. The rest is the same as in Table XII.

Priors 1.0(5) 0.20(15) 2.0(1.5) 0.6(3) 1.7(1.2) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 06–20 9.66(53) 0.419(004) 1.332(117) 0.353(049) 0.627
3 04–20 8.79(67) 0.414(005) 1.032(090) 0.253(039) 2.736(519) 0.703(059) 0.684
4 04–20 8.81(67) 0.414(005) 1.065(085) 0.259(039) 2.093(379) 0.700(057) 1.878(210) 0.393(020) 0.637

1 2 06–20 8.74(57) 0.427(004) 1.326(078) 0.312(041) 0.364
3 04–20 7.83(67) 0.421(005) 1.120(113) 0.226(032) 3.001(530) 0.710(058) 0.464
4 04–20 7.84(70) 0.421(005) 1.148(111) 0.231(033) 2.263(404) 0.699(063) 1.953(224) 0.385(023) 0.399

2 2 06–20 8.21(57) 0.437(004) 1.349(077) 0.300(038) 0.303
3 04–20 7.38(61) 0.431(005) 1.168(119) 0.223(027) 3.117(528) 0.720(054) 0.451
4 04–20 7.37(64) 0.431(005) 1.196(119) 0.226(029) 2.360(405) 0.709(057) 2.001(219) 0.380(024) 0.377

(Table continued)
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TABLE XVI. (Continued)

Priors 1.0(5) 0.20(15) 2.0(1.5) 0.6(3) 1.7(1.2) 0.4(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

3 2 06–20 7.61(63) 0.445(005) 1.390(090) 0.284(037) 0.472
3 04–20 6.80(56) 0.440(005) 1.241(135) 0.213(023) 3.257(534) 0.724(051) 0.594
4 04–20 6.77(60) 0.440(005) 1.273(138) 0.215(024) 2.465(417) 0.710(056) 2.050(224) 0.374(025) 0.510

4 2 06–20 7.23(64) 0.455(005) 1.409(102) 0.278(037) 0.595
3 04–20 6.47(52) 0.450(004) 1.271(140) 0.211(020) 3.325(529) 0.731(048) 0.718
4 04–20 6.43(55) 0.450(005) 1.305(144) 0.212(021) 2.526(414) 0.717(052) 2.079(220) 0.370(025) 0.628

5 2 06–20 6.68(67) 0.463(006) 1.474(132) 0.265(035) 0.493
3 04–20 6.01(45) 0.459(004) 1.348(146) 0.206(017) 3.444(525) 0.736(045) 0.692
4 04–20 5.96(48) 0.458(004) 1.385(151) 0.207(017) 2.623(416) 0.722(049) 2.127(219) 0.365(026) 0.593

6 2 06–20 6.18(78) 0.471(007) 1.529(188) 0.253(036) 0.529
3 04–20 5.60(40) 0.468(004) 1.401(153) 0.198(014) 3.514(524) 0.730(046) 0.711
4 04–20 5.53(41) 0.467(004) 1.446(158) 0.199(014) 2.675(422) 0.715(051) 2.147(223) 0.362(026) 0.607

8 2 06–20 5.18(90) 0.485(010) 1.754(331) 0.235(034) 1.092
3 04–20 4.99(31) 0.485(004) 1.522(156) 0.197(010) 3.623(508) 0.740(041) 1.280
4 04–20 4.92(31) 0.484(004) 1.573(159) 0.198(011) 2.786(409) 0.728(044) 2.206(214) 0.355(026) 1.165

9 2 06–20 5.10(1.04) 0.497(012) 1.688(378) 0.235(041) 1.098
3 04–20 4.90(30) 0.497(004) 1.445(159) 0.193(011) 3.620(502) 0.735(042) 1.248
4 04–20 4.82(30) 0.496(004) 1.503(160) 0.193(011) 2.783(407) 0.722(046) 2.202(215) 0.356(026) 1.134

90 2 06–20 5.91(87) 0.505(009) 1.456(185) 0.272(053) 0.619
3 04–20 5.38(38) 0.502(004) 1.278(156) 0.209(015) 3.236(498) 0.728(044) 0.787
4 04–20 5.30(39) 0.501(004) 1.330(158) 0.208(016) 2.506(394) 0.718(045) 2.067(207) 0.371(024) 0.703

10 2 06–20 5.39(85) 0.511(010) 1.557(235) 0.258(046) 0.696
3 04–20 5.02(34) 0.509(004) 1.360(158) 0.206(014) 3.333(493) 0.737(041) 0.931
4 04–20 4.95(34) 0.508(004) 1.411(159) 0.206(014) 2.588(391) 0.728(042) 2.112(204) 0.366(024) 0.838

TABLE XVII. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a06m310 ensemble. The rest is the same
as in Table XII.

Priors 1.0(5) 0.16(10) 2.4(1.5) 0.3(2) 2.2(1.5) 0.3(2)

n2 N2pt A0 × 1012 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 10–30 5.56(35) 0.326(003) 1.362(097) 0.199(026) 1.371
3 07–30 5.46(39) 0.325(003) 0.936(109) 0.163(028) 3.368(597) 0.356(035) 1.268
4 07–30 5.40(43) 0.325(003) 0.964(116) 0.161(031) 2.554(366) 0.338(037) 2.323(334) 0.276(042) 1.238

1 2 10–30 5.17(29) 0.352(002) 1.444(118) 0.209(027) 1.091
3 07–30 5.09(29) 0.352(002) 1.022(110) 0.175(024) 3.096(598) 0.348(038) 1.010
4 07–30 5.05(31) 0.352(002) 1.054(116) 0.174(026) 2.401(399) 0.334(040) 2.269(312) 0.292(041) 0.988

2 2 10–30 4.74(31) 0.376(003) 1.507(135) 0.211(030) 0.819
3 07–30 4.62(30) 0.376(003) 1.044(118) 0.172(024) 2.889(609) 0.333(043) 0.765
4 07–30 4.57(32) 0.375(003) 1.076(125) 0.171(027) 2.263(419) 0.319(044) 2.180(316) 0.307(042) 0.753

3 2 10–30 4.36(37) 0.399(004) 1.601(175) 0.218(038) 0.443
3 07–30 4.12(34) 0.397(003) 1.046(131) 0.164(024) 2.730(592) 0.315(046) 0.416
4 07–30 4.04(40) 0.396(004) 1.074(138) 0.159(030) 2.159(423) 0.298(046) 2.099(324) 0.320(040) 0.412

4 2 10–30 4.18(45) 0.423(005) 1.504(234) 0.224(055) 0.884
3 07–30 4.05(32) 0.422(004) 0.968(109) 0.176(025) 2.553(558) 0.303(050) 0.769
4 07–30 3.94(37) 0.420(004) 1.009(111) 0.169(030) 2.107(416) 0.296(045) 2.022(318) 0.324(038) 0.775

5 2 10–30 3.35(56) 0.437(007) 1.623(187) 0.186(044) 0.867
3 07–30 3.27(31) 0.437(004) 1.107(170) 0.149(017) 2.703(520) 0.307(046) 0.756
4 07–30 3.12(33) 0.435(004) 1.149(182) 0.139(020) 2.179(357) 0.287(049) 2.083(316) 0.318(036) 0.754
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TABLE XVIII. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a06m220 ensemble. The rest is the same
as in Table XII.

Priors 2.0(1.0) 0.25(20) 3.0(1.5) 0.3(2) 2.8(1.8) 0.3(2)

n2 N2pt A0 × 1011 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 10–30 10.8(4) 0.305(002) 2.900(348) 0.286(025) 1.774
3 07–30 10.6(4) 0.304(002) 2.035(225) 0.249(019) 3.919(681) 0.342(021) 1.591
4 07–30 10.5(4) 0.304(002) 2.066(240) 0.245(021) 3.185(345) 0.344(022) 3.078(406) 0.267(048) 1.548

1 2 10–30 10.0(4) 0.319(002) 2.842(265) 0.266(022) 1.432
3 07–30 9.74(42) 0.318(002) 1.998(208) 0.228(019) 4.119(680) 0.341(022) 1.342
4 07–30 9.62(46) 0.317(002) 2.041(215) 0.226(021) 3.253(325) 0.340(024) 3.137(426) 0.257(049) 1.289

2 2 10–30 9.38(46) 0.333(002) 2.869(238) 0.256(021) 1.356
3 07–30 9.10(45) 0.332(002) 2.041(194) 0.218(019) 4.217(680) 0.343(021) 1.288
4 07–30 8.95(50) 0.331(002) 2.083(200) 0.214(021) 3.302(321) 0.340(024) 3.203(439) 0.250(049) 1.227

3 2 10–30 8.97(53) 0.347(003) 2.898(242) 0.250(023) 1.162
3 07–30 8.60(52) 0.346(003) 2.019(189) 0.208(020) 4.249(701) 0.336(022) 1.130
4 07–30 8.38(61) 0.344(003) 2.051(202) 0.202(023) 3.313(332) 0.329(026) 3.195(461) 0.250(051) 1.069

4 2 10–30 8.69(66) 0.361(004) 2.843(242) 0.244(026) 0.824
3 07–30 8.39(60) 0.360(003) 1.958(178) 0.203(021) 4.306(702) 0.336(021) 0.896
4 07–30 8.02(77) 0.358(004) 1.979(188) 0.192(026) 3.378(335) 0.327(025) 3.268(495) 0.240(054) 0.828

5 2 10–30 8.18(67) 0.374(004) 2.888(225) 0.237(025) 0.885
3 07–30 7.95(58) 0.373(003) 2.049(182) 0.200(019) 4.250(693) 0.337(021) 0.951
4 07–30 7.59(73) 0.371(004) 2.080(192) 0.190(024) 3.360(342) 0.328(025) 3.258(488) 0.243(053) 0.886

TABLE XIX. Results of the 2-, 3-, and 4-state fits to the two-point nucleon correlator for the a06m135 ensemble. n2 ¼ 9 has two
combinations (2,2,1) and (3,0,0) labeled 9 and 90, respectively. The rest is the same as in Table XII.

Priors 1.3(7) 0.20(15) 1.3(1.0) 0.3(2) 1.1(9) 0.3(2)

n2 N2pt A0 × 1016 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

0 2 08–30 3.03(21) 0.276(004) 1.867(235) 0.283(042) 1.089
3 06–30 2.96(18) 0.275(003) 1.365(113) 0.242(026) 1.375(429) 0.313(047) 0.980
4 06–30 2.92(19) 0.274(003) 1.383(169) 0.237(031) 1.161(338) 0.323(027) 1.098(181) 0.311(027) 0.976

1 2 08–30 2.78(23) 0.282(004) 1.753(160) 0.254(039) 1.302
3 06–30 2.73(23) 0.282(004) 1.275(142) 0.218(036) 1.680(506) 0.327(036) 1.158
4 06–30 2.67(27) 0.280(005) 1.262(182) 0.206(044) 1.392(382) 0.318(029) 1.205(222) 0.291(038) 1.137

2 2 08–30 2.58(24) 0.288(004) 1.737(130) 0.238(036) 1.123
3 06–30 2.52(25) 0.288(005) 1.258(141) 0.200(037) 1.825(519) 0.330(033) 1.011
4 06–30 2.43(32) 0.286(006) 1.243(166) 0.185(048) 1.499(387) 0.314(032) 1.256(238) 0.281(042) 0.982

3 2 08–30 2.39(24) 0.294(005) 1.781(124) 0.227(034) 1.155
3 06–30 2.31(26) 0.293(005) 1.292(141) 0.186(036) 1.905(522) 0.329(033) 1.043
4 06–30 2.20(36) 0.291(006) 1.283(162) 0.169(048) 1.566(394) 0.306(036) 1.288(250) 0.276(045) 1.009

4 2 08–30 2.44(23) 0.305(005) 1.745(144) 0.245(039) 1.186
3 06–30 2.44(19) 0.305(004) 1.323(124) 0.219(028) 1.611(423) 0.333(033) 1.055
4 06–30 2.38(21) 0.304(004) 1.319(151) 0.209(032) 1.355(323) 0.329(025) 1.195(190) 0.292(032) 1.037

5 2 08–30 2.24(26) 0.310(006) 1.749(135) 0.226(039) 0.904
3 06–30 2.22(24) 0.310(005) 1.288(142) 0.194(034) 1.836(474) 0.337(030) 0.847
4 06–30 2.12(29) 0.308(006) 1.285(164) 0.179(040) 1.528(351) 0.322(029) 1.285(224) 0.276(040) 0.815

6 2 08–30 2.07(30) 0.315(007) 1.800(178) 0.215(040) 1.143
3 06–30 2.03(28) 0.315(006) 1.323(180) 0.181(034) 1.953(479) 0.340(029) 1.067
4 06–30 1.91(32) 0.313(007) 1.342(217) 0.164(036) 1.614(337) 0.320(032) 1.339(228) 0.267(041) 1.027

8 2 08–30 1.91(36) 0.329(009) 1.805(222) 0.214(049) 1.041
3 06–30 1.89(28) 0.329(007) 1.313(189) 0.180(036) 1.894(466) 0.334(030) 0.968
4 06–30 1.74(31) 0.326(007) 1.344(248) 0.158(034) 1.613(324) 0.313(034) 1.327(226) 0.268(040) 0.930

9 2 08–30 1.73(44) 0.333(012) 1.869(411) 0.199(049) 1.386
3 06–30 1.77(30) 0.334(008) 1.336(253) 0.172(032) 2.020(456) 0.338(029) 1.268
4 06–30 1.61(28) 0.331(007) 1.394(311) 0.151(024) 1.699(282) 0.316(034) 1.386(217) 0.257(038) 1.222
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together in Tables XII–XVIII, and XIX. Tests of the dispersion relation for the nucleon, ðaEÞ2 −P
if

2
i ¼ ðaMÞ2, for the

three cases fi ¼ api, sinðapiÞ and 2 sinðapi=2Þ are shown in Fig. 30 for four ensembles listed in the labels.

APPENDIX B: FITS TO THREE-POINT FUNCTIONS

This Appendix contains plots of fits to the data for three-point functions from which the form factors are extracted. The
data for the ratio R53, defined in Eq. (18), is plotted in Figs. 31 and 32 for the a ¼ 0.12 and 0.09 fm ensembles. The
horizontal band in these figures gives the τ → ∞ value defined in Eq. (21).

TABLE XIX. (Continued)

Priors 1.3(7) 0.20(15) 1.3(1.0) 0.3(2) 1.1(9) 0.3(2)

n2 N2pt A0 × 1016 aE0 r1 aΔE1 r2 aΔE2 r3 aΔE3 χ2=DOF

90 2 08–30 1.85(37) 0.335(010) 1.754(262) 0.212(051) 0.777
3 06–30 1.94(27) 0.338(007) 1.264(176) 0.197(038) 1.848(406) 0.341(028) 0.760
4 06–30 1.81(31) 0.335(008) 1.264(235) 0.173(038) 1.602(300) 0.328(027) 1.333(211) 0.266(037) 0.724

10 2 08–30 1.76(38) 0.342(010) 1.757(286) 0.207(052) 1.018
3 06–30 1.85(27) 0.345(007) 1.265(181) 0.192(039) 1.865(416) 0.343(028) 0.974
4 06–30 1.72(30) 0.342(008) 1.274(245) 0.168(037) 1.615(301) 0.329(028) 1.344(210) 0.265(037) 0.936

FIG. 30. Tests of the dispersion relation for the nucleon, ðaEÞ2 −P
if

2
i ¼ ðaMÞ2, for the three cases fi ¼ api, sinðapiÞ and

2 sinðapi=2Þ. Data for the a12m310 and a09m310 ensembles are shown in the top panels and for the two physical mass ensembles,
a09m130 and a06m135, in the bottom panels. The ideal behavior is a constant value given by the data at p ¼ 0.
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FIG. 31. The three-point data forR53 defined in Eq. (18) versus the operator insertion time t shifted by τ=2. The label gives the values
of tskip and τ used in the fits. Prediction of the 2-state fit for various values of τ is shown in the same color as the data. The result for the
matrix elements in the τ → ∞ limit is shown by the horizontal band. The figures on top are for the a12m310 ensemble, and those on the
bottom for the a12m220L ensemble. The plots on the left are for the lowest momenta p ¼ ð1; 0; 0Þ2π=La, while those on the right are
for p ¼ ð2; 1; 0Þ2π=La.

FIG. 32. The three-point data for R53 defined in (18) versus the operator insertion time t shifted by τ=2. The label gives the value of
tskip and τ used in the fits. Prediction of the 2-state fit for various values of τ is shown in the same color as the data. The result for the
matrix elements in the τ → ∞ limit is shown by the horizontal band. The plots in the top row are for the a09m310 ensemble, middle are
for the a09m220, and those on the bottom row for the a09m130 ensemble. The plots on the left are for the lowest momenta
p ¼ ð1; 0; 0Þ2π=La, while those on the right are for the highest, p ¼ ð2; 1; 0Þ2π=La.
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FIG. 33. Plots of the ratios that directly give the form factors: GA from R53 with q3 ¼ 0 (left), ~GP from R51 (middle), and the
pseudoscalar GP (right) versus the operator insertion time t − τ=2 for the a12m310 ensemble. The top row shows data for p2 ¼
2ð2π=LaÞ2 and the bottom row for p2 ¼ 5ð2π=LaÞ2.

FIG. 34. Plots of the ratios that directly give the form factors: GA from R53 with q3 ¼ 0 (left) and ~GP from R51 (right) versus the
operator insertion time t shifted by τ=2 for the a06m310 ensemble. Data for GPðQ2Þ has not been analyzed for this ensemble. The top
row shows data for p2 ¼ 2ð2π=LaÞ2 and the bottom row for p2 ¼ 5ð2π=LaÞ2.
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In Figs. 33–35 we show the data for the ratio R53 defined in Eq. (18) versus the operator insertion time t shifted by τ=2.
The data for the ratioR53 with q3 ¼ 0 gives the form factor GA whileR51 gives ~GP. In the right panels of Figs. 33 and 35,
we also show the fits used to extract the pseudoscalar form factor GPðQ2Þ using Eqs. (18) and (22). In each case, the
horizontal band gives the value in the limit t → ∞, τ → ∞ and τ − t → ∞ as defined in Eqs. (21) and (22).
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