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We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time
formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion
dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a
continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3d Ising Gross-
Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η ¼
0.54ð6Þ and ν ¼ 0.88ð2Þ using lattices up to N ¼ 2304 sites. We argue that even sizes up to N ¼ 10; 000
sites should be accessible with supercomputers available today.
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I. INTRODUCTION

Quantum Monte Carlo methods of studying strongly
correlated fermion systems are known to be notoriously
difficult [1]. Even if sign problems can be solved it is
difficult to study large system sizes close to critical points,
especially when the system contains long range fermionic
correlations. Many strongly interacting quantum critical
points were predicted long ago in 2þ 1 dimensions in the
presence of massless Dirac fermions [2,3], but their
properties have not yet been determined accurately using
quantum Monte Carlo methods. Due to developments in
condensed matter physics related to the physics of gra-
phene and the associated developments in topological
insulators the field has become interesting again and there
is new impetus to study the critical points better [4–7].
Studies based on the Lagrangian formulation on space-

time lattices use the hybrid Monte Carlo (HMC) algorithm
[8–11]. Although it is expected to have better scaling
properties with system size compared to other fermion
algorithms, it encounters singularities in the presence of
massless fermions, especially near strongly interacting
quantum critical points. In order to avoid such singularities,
studies include a fermionmass. The presence of two infrared
scales, in the form of a fermion mass and a finite lattice size,
makes accurately extracting the critical exponents difficult.
Ways to circumvent these problems would be very helpful.
Lagrangian formulations have other limitations as well.

Ultralocal actions on space-time lattices can create extra
doubling of fermion degrees of freedom due to time
discretization. Along with chiral symmetry some internal
flavor symmetries may also be lost. For example, the
semimetal insulator phase transition in graphenewas studied
recently using the Lagrangian formulation with staggered
fermions [12–14]. While these formulations capture many
interesting physics qualitatively, theSUð2Þ spin symmetry of
graphene is explicitly broken, which may affect the critical
behavior. Recently, Lagrangian formulations of Dirac

fermions in 2þ 1 dimensions have begun to use overlap
or domain wall fermions [15–17]. While these formulations
preserve many symmetries of continuum Dirac fermions,
they are computationally much more expensive, especially
near strongly coupled quantum critical points.
We can circumvent some of the limitations of Lagrangian

formulations by constructing the partition function starting
from a lattice Hamiltonian. Since we can eliminate time
discretization errors we can avoid an extra fermion doubling
and preserve more symmetries [18–20]. Also, unlike the
HMC approach the auxiliary field Monte Carlo (AFMC)
methods used in the Hamiltonian formulation can also work
with exactly massless fermions without encountering sin-
gularities [21,22]. In principle, the time to perform a single
sweep in AFMC can be reduced to scale as βN3 where N is
the number of spatial sites and β is the inverse temperature.
However, there can be bottlenecks due to numerical insta-
bilities on large lattices. Several recent studies of semimetal-
insulator phase transitions in 2þ 1 Dirac systems have
emerged recently using this approach [23–25], and the
largest lattices explored are roughly of the order of N ¼
2500on honeycomb lattices andN ¼ 1600 on square lattices
[26]. Calculations in the continuous time limit involve much
smaller sizes. Although the HMC algorithm continues to
be improved for Hamiltonian formulations, problems related
to the singularities mentioned above have remained a
bottleneck until now [27–29].
A few years ago one of us proposed a new idea called the

fermion bag approach as an alternative way to construct
fermion algorithms [30,31]. The idea was originally for-
mulated within the Lagrangian formulation and has allowed
us to study large lattices with exactly massless Dirac
fermions and accurately extract critical exponents at some
of the quantum critical points in 2þ 1 dimensions [32,33].
In this work we extend the idea to Hamiltonian formulations
in continuous time. Using it we are able to study lattices
containing up to N ¼ 10; 000 sites without encountering
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numerical instabilities.Although computingquantities close
to quantum critical points on such large lattices still requires
supercomputers, we are able to study square lattices with up
to N ¼ 2304 sites on small computer clusters.

II. IDEA OF FERMION BAGS

The idea of fermion bags is based on the intuition that it
should be possible to write a fermionic partition function as
a sum over weights of configurations where each configu-
ration weight is obtained as a product of weights of smaller
configurations. This is accomplished by dividing the
fermion degrees of freedom of the entire system into many
smaller entangled regions (or fermion bags) that are
essentially independent of each other [30]. The fermion
bag weight is obtained by summing over all quantum
fluctuations within the bag. If this weight is positive an
efficient Monte Carlo algorithm could be designed. The
idea of fermion bags is an extension of the meron cluster
approach [34].
While the idea of fermion bags is widely applicable there

is no unique recipe to identify the bags for a given model.
One guiding principle is that weights of fermion bags must
be positive (which is not always guaranteed). One can
also use efficiency of Monte Carlo sampling as the other
guiding principle. If the fermion bags can identify the
entanglement that arises naturally from the underlying
physics and fermion bag weights remain positive, then
the Monte Carlo sampling usually becomes efficient. For
example, fermion bags can be identified differently at
strong couplings as compared to weak couplings. At weak
couplings Feynman diagrams suggest a natural choice for
the fermion bags and then the approach is identical to
the determinantal diagrammatic Monte Carlo methods
[35–37]. But such an identification leads to inefficient
Monte Carlo sampling at stronger couplings since the
entanglement of the fermion degrees of freedom changes.
Efficiency can be improved by combining weak and strong
coupling fermion bags at intermediate couplings.
Recently we discovered that the idea of fermion bags

can be useful even if a fermion bag becomes entangled
with the rest of the system. We realized that this entangle-
ment can be stored in the form of a large matrix. If this
can be computed and stored we can perform fast updates
of fermion bags. This extension of the fermion bag idea is
similar to the idea of local factorization of the determinant
proposed recently [38]. In our case it has allowed us to
study 603 lattices near a quantum critical point with exactly
massless fermions for the first time [39]. In this work we
argue that a similar idea should be applicable for
Hamiltonian lattice fermions.
In order to illustrate how the idea of fermion bags can be

extended to Hamiltonian formulations in continuous time,
in this work we focus on those that can be written as
H ¼ P

x;dHx;d where

Hx;d ¼ −ωhx;die
2αhx;di

PNf
a¼1

ðcax†caxþd̂
þca

xþd̂
†caxÞ: ð1Þ

Here x is a spatial lattice site; d̂ labels the directions such
that hx; di labels a unique nearest neighbor bond. The
operators cax† and cax are fermionic creation and annihilation
operators at the site x with a flavor a ¼ 1; 2.:; Nf. The
couplings of the model are defined through the real
constants ωhx;di > 0 and αhx;di. In the discussions below
we focus on the Nf ¼ 1 model on a two-dimensional
square lattice with periodic boundary conditions and L sites
in each direction with N ¼ L2. However, they can be
extended to any value of Nf and all bipartite lattice models
where the sites connected to the bond hx; di lie on different
sublattices.
Although the Hamiltonians we consider are unconven-

tional they contain rich physics. We have designed them so
that the idea of fermion bags is applicable [40]. For a fixed
Nf they are invariant under an Oð2NfÞ flavor symmetry in
addition to the usual lattice symmetries, some of which may
be broken spontaneously at quantum critical points [41].
When Nf ¼ 1 our model is equivalent (up to a constant) to
the model (sometimes referred to as the t − V model in the
literature),

Hx;d ¼ −tηx;dðc†xcxþd̂ þ c†
xþd̂

cxÞ − VΦxΦxþd̂; ð2Þ

where V>0. Here we define Φx ¼ ð−1Þx1þx2ðc†xcx − 1=2Þ,
assuming a lattice site with coordinates x ¼ ðx1; x2Þ. The
equivalence requires that we setωhx;di¼t2=ðVð1−ðV=2tÞ2ÞÞ,
and αhx;di ¼ αηx;d where cosh 2α ¼ ð1þ ðV=2tÞ2Þ=
ð1 − ðV=2tÞ2Þ, and sinh 2α ¼ ðV=tÞ=ð1 − ðV=2tÞ2Þ [42].
If we define ηhx;1i ¼ 1 and ηhx;2i ¼ ð−1Þx1 , the model
describes interacting two-dimensional massless Hami-
ltonian staggered fermions [43].
Using the well-known CT-INT expansion of the partition

function [18–20] we can write

Z ¼
X
k

Z
½dτ�

X
½hx;di�

TrðHxk;dk…Hx2;d2Hx1;d1Þ; ð3Þ

where there are k insertions of the bond Hamiltonian Hx;d

inside the trace at times τ1 ≤ τ2 ≤ … ≤ τk. The symbol ½dτ�
represents the k time-ordered integrals and ½hx; di� ¼
fhx1; d1i; hx2; d2i;…hxk; dkig represents the configuration
of bonds at different times. Since a configuration of bonds
also requires the information of the times where the bonds
are inserted we label the configuration as ½x; d; τ�. An
illustration of a bond configuration is shown in Fig. 1. Each
bond represents the operator Hx;d that is present inside the
trace in (3). It can be shown that the traces that appear in (3)
are always positive [44,45].
We can imagine Hx;d as creating a quantum entangle-

ment between the fermions at x and xþ d̂. Thus, all spatial
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sites connected by bonds to each other at various times
become entangled with each other. Such a group of
entangled sites can be defined as a fermion bag. For the
bond configuration in Fig. 1 we identify four fermion bags
as shown in Fig. 2. When two bonds x, d and x0, d0 do not
share a site between them the bond Hamiltonians commute,
i.e., ½Hx;d; Hx0;d0 � ¼ 0. This implies that the weight of the
bond configuration can be written as a product of weights
from fermion bags.
Since the space-time density of bonds is a physical

quantity related to the energy density of the system [42],
for every coupling V we expect a fixed density of bonds.
This implies that we can use the temperature as a parameter
to control the size of fermion bags. At high temperatures we
have fewer bonds and many small fermion bags. Note that
lattice sites that are not connected to any bonds form their
own fermion bags. As the temperature is lowered fermion
bags will begin to merge to form a single large fermion bag.
At very low temperatures there will only be a few isolated
small fermion bags. This suggests that at some optimal
temperature the fermion bags may efficiently break up the
system into smaller regions that do not depend on the system
size. Even at low temperatures, we may be able to divide the
imaginary time axis into many time slices and update a
single time slice efficiently. This is illustrated in Fig. 3,

where the imaginary time extent is divided into four time
slices and in the shaded time slice there are eight fermion
bags, instead of the four shown in Fig. 2. While there seems
to be a connection of the fermion bag size to a notion of a
percolation transition, as far as we know nothing physical
occurs at this transition.
In order to test if the maximum fermion bag size remains

independent of the lattice size even for large lattices we
have studied the t − V model (2) on a square lattice near its
critical point. Taking β ¼ 4.0 we divided the imaginary
time direction into 16 time slices and studied the fermion
bag size as a function of the lattice size. For equilibrated
configurations of L ¼ 48, 64 and 100, the average maxi-
mum fermion bag size within a time slice was about 30,
independent of L. Further tests suggest that the optimal
temperature is roughly 0.25. Since bond insertions in
different fermion bags commute with each other, we can
efficiently update fermion bags in space-time blocks
(shown as a box in the shaded time slice in Fig. 3) involving
30 to 60 spatial sites within each time slice. During this
update the effects of the bonds outside this block are taken
into account through the fixed N × N matrix as we discuss
in the next section.

III. ALGORITHM AND UPDATES

We now discuss our Monte Carlo algorithm to calculate
the correlation observable

hCi ¼ TrðΦð0;0ÞΦðL=2;0Þe−βHÞ=Trðe−βHÞ ð4Þ

to illustrate the advantages of the fermion bag approach.
This observable is used in the next section to study the
quantum critical behavior of the t − V model. In our
algorithm we generate configurations ð½x; d; τ�; τ0Þ in two
sectors: the partition function sector (n ¼ 0) with weight
Ω0ð½x; d; τ�; τ0Þ and the observable sector (n ¼ 1) with
weight fΩ1ð½x; d; τ�; τ0Þ where

Ωnð½x; d; τ�; τ0Þ ¼ Tr½Hxk;dk…Cn…Hx2;d2Hx1;d1 �: ð5ÞFIG. 2. The bonds in this configuration form four fermion bags
between τ ¼ 0 and τ ¼ β.

FIG. 3. Time slices are added and MT and MB regions
defined. Fermion bags are highlighted in the MT region, and
the current update block is shaded.FIG. 1. An example configuration. The horizontal axis labels

the spatial sites; the vertical axis is imaginary time.
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Here 0 ≤ τ0 ≤ β is a time where the operator Cn is
introduced. In the partition function sector C0 ¼ I (the
identity operator) and in the observable sector
C1 ¼ Φð0;0ÞΦðL=2;0Þ. The factor f > 0 is chosen so that
the two sectors can be sampled with roughly equal prob-
abilities. We record the number

N ¼ Ω1ð½x; d; τ�; τ0Þ
Ω0ð½x; d; τ�; τ0Þ þ fΩ1ð½x; d; τ�; τ0Þ

ð6Þ

for each configuration generated. It is easy to prove
that hCi ¼ hN i=ð1 − fhN iÞ.
We use four different types of updates to generate the

configurations ð½x; d; τ�; τ0Þ in the two sectors, which are
detailed in [46]. Each sweep consists of at least one of each
of these four updates. The two most time intensive updates
are the sector update and the bond update: the sector update
flips the sector n → 1 − n while keeping ð½x; d; τ�; τ0Þ
fixed, and the bond update changes the entire bond
configuration ½x; d; τ� ↔ ½x0; d0; τ0� while keeping t0 and
n fixed. For these updates we need to compute the
ratio R ¼ Ωnð½x; b; τ�; τ0Þ=Ω0

nð½x0; b0; τ0�; τ0Þ to calculate
the transition probabilities in the Metropolis accept/reject
step. Since the sector update is a special case of the bond
update we only focus on the details of the bond updates.
Using the Blankenbecler-Scalapino-Sugar (BSS) formula
[47] we can show

Ωnð½x; d; τ�; τ0Þ ¼ det ð1N þ Bxk;dk…On…Bx2;d2Bx1;d1Þ;
ð7Þ

where 1N , Bxi;di and On are all N × N matrices with rows
and columns labeled by spatial lattice sites. The matrix 1N
is the identity matrix, while Bxi;di is the identity matrix
except in a 2 × 2 block labeled by the rows and columns of
the sites that touch the bond hxi; dii. Within this block,
Bxi;di takes the form

Bx;d ¼
�

cosh 2α ηx;d sinh 2α

ηx;d sinh 2α cosh 2α

�
: ð8Þ

Finally, the matrix On depends on the sector n and is given
by O0 ¼ 1N and ðO1Þx;y ¼ δx;y − 2δx;ð0;0Þ − 2δx;ðL=2;0Þ.
Before we begin the bond update we divide the con-

figuration space into time slices of width 0.25 with t0
chosen to be at the beginning of the first time slice. We then
update bonds within each time slice sequentially. During
the update of a time slice we define two N × N matrices:
the background matrixMB (which is a product of all of the
Bx;d matrices outside the selected time slice and On), and
the time-slice matrix MT , which is the product of all the
Bx;d matrices within the time slice being updated. Figure 3
shows what contributes to MB and MT . When the con-
figuration of bonds within the time slice is changed then
only MT changes to M0

T . The ratio R is given by

R ¼ detð1N þMBM0
TÞ

detð1N þMBMTÞ
¼ det ð1N þ GBΔÞ; ð9Þ

where we have defined two new N × N matrices GB ¼
ð1N þMBMTÞ−1MBMT and Δ ¼ ðM−1

T M0
T − 1NÞ. Since

the bond matrices Bx;d in different fermion bags commute,
it is easy to verify that Δ is nonzero only within a block
which contains spatial sites connected to fermion bags that
change. If we randomly choose a spatial block containing
about 30–60 sites and focus on updating the bonds only
within that block, during such a block update the size of the
matrix Δ cannot be greater than the sum of the sites in the
fermion bags that touch the sites within the block. We refer
to this set of sites, which can be larger than the block size,
as a superbag and denote its size as s. Since Δ is nonzero
only in an s × s block, it is easy to show that the
computation of R (the ratio of the weight of the current
configuration with that of the background configuration
that existed at the time when the block update began) using
(9) reduces to the computation of the determinant of an
s × s matrix. Since GB and MT are fixed matrices during
the entire block update, they can be computed and stored.
All proposals to update the current configuration within the
block reduce to taking the determinant of an s × s matrix,
independent of system size. Details for how to updateGB in
a stable way can be found in [46].
The time to complete a single sweep with our algorithm

scales as βN3, which is similar to the traditional auxiliary
field algorithms. However, using the idea of fermion bags
we have reduced the prefactor significantly as explained in
[46]. In Fig. 4 we show equilibration of Nb (the total

FIG. 4. Plot showing β ¼ L equilibration of the total number of
bonds Nb in a bond configuration starting from 0, as a function of
Monte Carlo sweeps. The horizontal lines show the expected
equilibrated values. The time for a single bond update on a single
core is approximately 30 days for L ¼ 100, 30 hours for L ¼ 64,
and 4 hours for L ¼ 48. The inset shows equilibration at
L ¼ 100, β ¼ 4.
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number of bonds in a configuration) as a function of sweeps
for β ¼ L ¼ 48, 64, 100 and V ¼ 1.304t. Although the
L ¼ 100 data have not equilibrated, there is no bottleneck
(see the inset of Fig. 4). We estimate the bond density at
equilibrium to be Nb=βL2 ≈ 2.7, which means at L ¼ β ¼
100 we will have roughly 2.7 million bonds after equili-
bration. A single sweep thus roughly requires a month on a
single 3 GHz CPU core.

IV. RESULTS AT CRITICALITY

Using the algorithm described above, we have studied
the two-dimensional t − V model and computed the critical
exponents at the quantum phase transition between the
massless and the massive fermion phases. These critical
exponents are expected to belong to the Ising Gross-Neveu
universality class with Nf ¼ 1 four-component Dirac
fermions [48–50]. For large values of L we expect the
observable hCi to scale as L−4 in the massless phase and
to saturate to a constant in the massive phase. In the
critical region (V ≈ Vc and large values of L) we expect hCi
to satisfy the leading critical finite size scaling relation
[51,52]

hCi ¼ 1

L1þη fððV − VcÞL1=ν=tÞ: ð10Þ

Our Monte Carlo results are consistent with the
expectations.
Table I shows our results for hCi as a function of V and L

near the critical point where we set β ¼ L. Approximating
fðxÞ ¼ f0 þ f1xþ f2x2 þ f3x3, we perform a seven para-
meter combined fit of the data given in Table I, except the
L ¼ 32 data at V ¼ 1.4, which does not seem to lie within
the scaling window. From the fit we obtain η ¼ 0.54ð6Þ,
ν ¼ 0.88ð2Þ, Vc ¼ 1.279ð3Þt, f0 ¼ 0.77ð11Þ, f1 ¼
0.30ð4Þ, f2 ¼ 0.052ð8Þ, and f4 ¼ 0.0033ð6Þ. The
χ2=DOF for the fit is 0.8. We show the data and the
scaling fit in the left plot of Fig. 5. Theoretical exponent
predictions are compatible with our results [48,49].
The t − V model we study here has been studied earlier

on smaller lattices by two groups. Not surprisingly, the

FIG. 5. Critical scaling plot showing our Monte Carlo data
scaled with η ¼ 0.54, ν ¼ 0.88, Vc ¼ 1.279t. The solid line
shows fðxÞ ¼ 0.77þ 0.30xþ 0.052x2 þ 0.0033x3.

TABLE I. Our Monte Carlo results for the t − V model (2) on a
square lattice with 20 ≤ L ≤ 48 and β ¼ L.

V=t L ¼ 20 L ¼ 24 L ¼ 32 L ¼ 48

1.200 0.00298(3) 0.00184(3) 0.00080(1) � � �
1.250 0.00545(6) 0.00380(5) 0.00204(2) 0.00074(2)
1.270 0.00699(8) 0.00517(7) 0.00315(4) 0.00151(3)
1.296 0.00946(10) 0.00740(9) 0.00512(6) 0.00339(5)
1.304 0.01022(8) 0.00844(9) 0.00611(6) 0.00423(5)
1.350 0.01705(16) 0.01522(16) 0.01426(18) � � �
1.400 0.02707(20) 0.02630(35) 0.02637(38) � � �

FIG. 6. Plot of hCi as a function of L (with β ¼ L) at various
values of V. hCi scales as L−4 at V ¼ 0 as expected. The solid
line shows the best fit for hCi ∼ L−ð1þηÞ.

FIG. 7. Plot of hCi as a function of L (with β ¼ L) at various
values of V. hCi saturates to a constant at V ¼ 1.4t. The solid line
shows the best fit for hCi ∼ L−ð1þηÞ.
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critical point and the critical exponents measured are in
disagreement with each other. The first calculation was
performed on lattices up to N ¼ 400 sites and it was found
that Vc ¼ 1.304ð2Þ, η ¼ 0.318ð8Þ, and ν ¼ 0.80ð6Þ [23].
In a later calculation lattices up to N ¼ 484 sites were
used and it was found that Vc ¼ 1.296ð1Þ, η ¼ 0.43ð2Þ,
and ν ¼ 0.79ð4Þ [24].
Our results are obtained from lattice sizes that are five

times larger than earlier studies and suggest a lower critical
point and so a higher value for the exponent η. The value of
ν also seems slightly higher but not inconsistent with
previous results. If we exclude the larger lattice results we
do find consistency with previous results. For example, if
we assume Vc=t ¼ 1.296 or 1.304 and fit our data to the
form L−ð1þηÞ, after dropping larger values of L we get η ¼
0.41ð4Þ and η ¼ 0.31ð4Þ respectively with a reasonable
χ2=DOF (see Figs. 6 and 7). However, the fits fail
dramatically if L ¼ 32 and L ¼ 48. On the other hand
at V ¼ 1.27t the data fit well for larger values of L and give
us η ¼ 0.74ð2Þ. If we force Vc ¼ 1.27t in the combined fit,
the χ2=DOF increases to 1.3.

V. CONCLUSIONS

In this work we have demonstrated that the idea of
fermion bags can be combined with standard Monte Carlo
techniques to study large system sizes in continuous time.
We studied the quantum critical behavior in the simplest
Ising Gross-Neveu universality class and extracted the
critical exponents using lattice sizes that were five times
larger than previous work. Even larger sizes are feasible
with supercomputers available today. With additional
research, the idea of fermion bags should be applicable
to a wide class of models.
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