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Matrix Product States (MPS) are used for the simulation of the real-time dynamics induced by an electric
quench on the vacuum state of the massive Schwinger model. For small quenches it is found that the
obtained oscillatory behavior of local observables can be explained from the single-particle excitations of
the quenched Hamiltonian. For large quenches damped oscillations are found and comparison of the late
time behavior with the appropriate Gibbs states seems to give some evidence for the onset of
thermalization. Finally, the MPS real-time simulations are compared with results from real-time lattice
gauge theory which are expected to agree in the limit of large quenches.
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I. INTRODUCTION

Gauge theories lie at the heart of high energy physics
and hence play an essential role in our understanding of
nature. Moreover, gauge theories also emerge as low energy
effective theories in several condensed matter systems [1].
Lattice gauge theories provide a nonperturbative regulari-
zation of such theories that can often be simulated very
efficiently by usingQuantumMonte Carlo (QMC)methods.
However, several most pressing questions in that regard,
e.g., the phase diagramof quantumchromodynamics (QCD)
at finite chemical potential or the real-time dynamics of
relativistic heavy ion collisions have largely remained out of
reach [2].
Over the last decade, the Tensor Network States (TNS)

approach has become a powerful alternative method to
study strongly correlated quantum systems since it does not
suffer from the sign problem [3–5]. The most famous
example of TNS are the Matrix Product States (MPS) [6] in
one spatial dimension. Ever since the formulation of
Density Matrix Renormalization Group [7] in terms of
MPS, the number of algorithms for quantum many-body
systems has increased rapidly. Recently, MPS have also
been successfully applied to lattice gauge theories [8–20].
In this publication we consider (1þ 1)-dimensional

quantum electrodynamics (QED), the so-called massive
Schwinger model [21]. Despite being an Abelian gauge
theory, it shares several important features with the theory of
strong interactions (QCD) such as chiral symmetry breaking
or confinement. Due to the reduced dimensionality this
model has become an active playground for testing novel
analytical and numerical methods [8,9,13,14,17,21–36] and
for studying intriguing nonequilibrium questions that have
been beyond the reach of conventional QCD simulations,
e.g., jet energy loss and photon production in relativistic
heavy ion collisions [37,38] or the dynamics of string

breaking [39]. Recently, there have been promising propos-
als that might allow one to quantum simulate the Schwinger
model in analog systems of ultracold ions or atoms in optical
lattices [40–44].
An intriguing effect in the Schwinger model concerns the

nonequilibrium dynamics after a quench that is induced by
the application of a uniform electric field E0 ¼ gα onto the
ground state jΨ0i at time t ¼ 0. Physically, this process
corresponds to the so-called Schwinger pair creationmecha-
nism [45] in which an external electric field separates virtual
electron-positron dipoles to become real electrons and
positrons. Recently, this process has attracted much interest
since high-intensity laser facilities like the Extreme Light
Infrastructure (ELI) will for the first time be powerful
enough to probe this effect experimentally. So far, theoreti-
cal investigations have mainly been restricted to the regime
in which the fermions are treated quantum mechanically
whereas the gauge fields are described classically (quantum
kinetic theory [46,47] or phase-space methods [48]), or
classical-statistically (real-time lattice techniques [29,49]).
In this publication we apply the MPS framework to

investigate the nonequilibrium dynamics at the full quan-
tum level. We perform real-time simulations for small,
intermediate and large quenches. Furthermore, we use MPS
computations of ground states, single-particle excitations
and Gibbs states to analyze and interpret our results.
Finally, we explicitly compare the MPS simulations with
those obtained using real-time lattice techniques.

II. SETUP

A. Kogut-Susskind Hamiltonian

The massive Schwinger model describes (1þ 1)-
dimensional QED with one fermion flavor that is described
by the Lagrangian density
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L ¼ ψ̄ðγμði∂μ þ gAμÞ −mÞψ −
1

4
FμνFμν: ð1Þ

Here, ψ is a two-component fermion field, Aμ denotes
the Uð1Þ gauge field and Fμν ¼ ∂μAν − ∂νAμ is the
corresponding field strength tensor.
In the following, we employ a lattice regularization à la

Kogut-Susskind [50]. Therefore the two-component fer-
mions are decomposed into their particle and antiparticle
components which reside on a staggered lattice. These
staggered fermions are converted to quantum spins 1=2 by
a Jordan-Wigner transformation with the local Hilbert
space basis fjsnin∶sn ∈ f−1; 1gg of σzðnÞ at site n. The
charge −g “electrons” reside on the odd lattice sites, where
spin down (s ¼ −1) denotes an occupied site whereas
spin up (s ¼ þ1) corresponds to an unoccupied site.
Conversely, the even sites are related to charge þg
“positrons” for which spin down/up corresponds to an
unoccupied/occupied sites, respectively.
Moreover, we introduce the compact gauge field

θðnÞ ¼ agA1ðnÞ, which lives on the link that connects
neighboring lattice sites, and its conjugate momentum
EðnÞ, which correspond to the electric field. The commu-
tation relation ½θðnÞ; Eðn0Þ� ¼ igδn;n0 determines the spec-
trum of EðnÞ up to a constant: EðnÞ=g ¼ LðnÞ þ α. Here,
LðnÞ denotes the angular operator with integer spectrum and
α ∈ R corresponds to the background electric field.
Accordingly, the Kogut-Susskind Hamiltonian reads [50,51]

Hα ¼
g

2
ffiffiffi
x

p
�X2N

n¼1

½LðnÞ þ α�2 þ
ffiffiffi
x

p
g

m
X2N
n¼1

ð−1ÞnσzðnÞ

þ x
X2N−1

n¼1

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
; ð2Þ

where σ� ¼ ð1=2Þðσx � iσyÞ are the ladder operators. Here,
we have introduced the parameter x as the inverse lattice
spacing in units of g: x≡ 1=ðg2a2Þ. The continuum limit
then corresponds to x → ∞.Wenote thatHα is only invariant
under T 2 (translations over two sites) due to the staggered
mass term in the Hamiltonian. The Hamiltonian is invariant
under local gauge transformations that are generated by:

GðnÞ ¼ LðnÞ − Lðn − 1Þ − σzðnÞ þ ð−1Þn
2

: ð3Þ

If we restrict ourselves to physical (i.e., gauge invariant)
operators O for which ½O;GðnÞ� ¼ 0, the Hilbert space
decomposes into dynamically disconnected superselection
sectors, which are distinguished by the eigenvalues ofGðnÞ.
The sector with GðnÞ ¼ 0 at every site n constitutes the
physical sector of the Hilbert space. The conditionGðnÞ ¼ 0
is referred to as theGauss law constraint as it is thediscretized
version of ∂zE ¼ j0, where j0 is the charge density of
dynamical fermions.

B. MPS for real-time evolution

Similar as in [31,36] we block site n and link n into one
effective site with local Hilbert space spanned by
fjκni ¼ jsn; pnin∶sn ¼ −1; 1;pn ∈ Zg. In our approach
we approximate the states of the lattice system Eq. (2)
by Matrix Product States (MPS) jΨu½Að1ÞAð2Þ�i that take
the form

X
κ

v†L

�YN
n¼1

Aκ2n−1ð1ÞAκ2nð2Þ
�
vRjκ1;…; κ2Ni: ð4aÞ

Here we have AκðnÞ ∈ CD×D and vL, vR ∈ CD×1. The MPS
ansatz associates a matrix AκnðnÞ ¼ Asn;pn

ðnÞwith each site
n and every local basis state jκnin ¼ jsn; pnin. The indices
α and β are referred to as virtual indices, andD is called the
bond dimension. Note that this ansatz is T 2 invariant. As
such we can consider the ansatz directly in the thermody-
namic limit (N → þ∞), bypassing any possible finite size
artifacts. In this limit the expectation values of all local
observables are independent of the boundary vectors vL
and vR.
The Gauss law constraint GðnÞ ¼ 0 imposes the follow-

ing form on the matrices [31]

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½aq;sðnÞ�αq;βrδqþðsþð−1ÞnÞ=2;rδr;p; ð4bÞ

where αq ¼ 1…Dq, βr ¼ 1…Dr. The variational freedom
of the gauge invariant state jΨu½Að1ÞAð2Þ�i thus lies within
the matrices aq;sðnÞ ∈ CDq×Dr and the total bond dimension
of the MPS equals D ¼ P

q∈ZDq.
In our simulations, we start from the ground state of the

Hamiltonian Hα¼0 without background field, for which we
found a faithful gauge invariant MPS approximation
jΨu½Að1ÞAð2Þ�i by using the time-dependent variational
principle (TDVP) [31,36,52–54] (see Appendix Sec. A 1
for a brief review). At time t ¼ 0, we perform a quench and
apply a uniform electric field, which is simulated by
evolving the ground state with respect to the
Hamiltonian Hα≠0 with nonvanishing background field:
jΨðtÞi ¼ e−iHα≠0tjΨu½Að1ÞAð2Þ�i. The evolution is per-
formed using the infinite time-evolving block decimation
(iTEBD) [55] which adapts the bond dimension of this
MPS dynamically according to the Schmidt spectrum; see
Appendix Sec. A 3. As explained there, the errors intro-
duced by this method are well-controlled and argued to be
only of order 10−3 or smaller. We refer also to [31,36] for a
discussion on the systematics of the iTEBD.

C. Observables and their discretization

We focus on the real-time evolution of the following
observables:

EðtÞ ¼ g
2N

X2N
n¼1

hLðnÞ þ αit; ð5aÞ
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j1ðtÞ ¼−i
ffiffiffi
x

p
g

4N

X2N−1

n¼1

hσþðnÞeiθðnÞσ−ðnþ 1Þ−H:c:it; ð5bÞ

ΣðtÞ ¼
ffiffiffi
x

p
2N

X2N
n¼1

�
σzðnÞ þ ð−1Þn

2

�
t
; ð5cÞ

with h…it ¼ hΨðtÞj…jΨðtÞi. Here, EðtÞ is the expectation
value of the total electric field, j1 ¼ hψ̄γ1ψit the current
which can also be obtained from the electric field via
Ampère’s law ( _E ¼ −gj1) and ΣðtÞ is the discrete version
of the chiral condensate hψ̄ψit. We will use NðtÞ ¼ ΣðtÞ −
Σð0Þ as a measure for the fermion particle number
but notice that only in the nonrelativistic limit m ≫ g
we have a clear notion of electron and positron number.
We will also show the real-time evolution of the half-chain
von Neumann entropy, SðtÞ ¼ −Trρ log ρ, where ρ is the
density matrix of the half-chain subsystem. Finally, as
explained in Appendix Sec. B, notice that EðtÞ, j1ðtÞ, NðtÞ
and ΔSðtÞ ¼ SðtÞ − Sð0Þ are UV finite and already close to
the continuum limit x → ∞ for x ¼ 100.

III. RESULTS

A. Weak-field regime

In [31] we found that the quasiperiod of the oscillations
of the electric field in the linear response regime (α ≤ 0.01)
could be traced back to the first single-particle excitation of
H0. However, for α≳ 0.1 we observed that the quasiperiod
grows with α, and, hence, cannot be explained by the mass
of the same single-particle excitation for each α. It turns out
that for α≲ 0.25 the original vacuum jΨ0i is well described
as a small density coherent state of single-particle excita-
tions of the quenched Hamiltonian Hα. This leads to the
oscillatory behavior of Fig. 1. Specifically, as we discuss
below, this behavior can be explained quantitatively in
terms of the matrix-elements of H0, and the considered
observables E and N in the truncated Hilbert space

consisting of the ground state and the two single-particle
excitations of the quenched Hamiltonian Hα.
As explained in more detail in Appendix Sec. A 4, for a

given α, we approximate all observables O in terms of a
series of the creation a†mðkÞ and annihilation operators
amðkÞ of the single-particle excitations jEmðkÞi of Hα with
energy Em and momentum k,1 and this up to first order in am
and a†m [56,57]:

O ≈ λO1þ
Z

dk
Z

dk0
�X

m;n

o1;m;nðk; k0Þa†mðkÞanðk0Þ
�

þ
Z

dk

�X
m

o2;mðkÞamðkÞ þ ō2;mðkÞa†mðkÞ
�
: ð6Þ

Here m ¼ 1, 2 labels the two single-particle excitations
of Hα and the integral runs over the momenta k ∈ ½−π; π�.
Using the MPS approximations for the ground state and the
two single-particle excitations obtained in [33,34], we can
extract the coefficients o1;m;n and o2;m. For O ¼ H0 this
leads to the approximation of the α ¼ 0 ground state jΨ0i,
as a coherent state of Hα: amðkÞjΨ0i ¼ d0mδðkÞjΨ0i with
d0m ∈ C. This corresponds to a state with particle densities

ρm ¼
ffiffi
x

p
2π jd0mj2 of the two zero-momentum single-particle

excitations on top of the ground state of Hα. In Table I we
display the obtained densities for different α in units of the
correlation length ξ ¼ 1=E1ð0Þ. One would expect our
single-particle approximation to hold as long as ξρ1; ξρ2 ≪
1 which is in the line with our results. The approximation
on the evolution for EðtÞ and NðtÞ is obtained by extracting
the coefficients in Eq. (6) for the appropriate operators
[Eq. (5)], and by considering the proper time-evolution
amðtÞ ¼ ame−iEmt. As can be observed in Fig. 1, the
approximation works very well for α ¼ 0.1, which lies
already well beyond the linear response regime. For α≳ 0.2
our approximation still predicts the right quasiperiods, but
overestimates the amplitudes of the minima of EðtÞ and the
amplitudes of the maxima of NðtÞ by approximately 20%.
These discrepancies become larger when α increases and,
eventually, when α≳ 0.4 this approximation also fails in

(a) (b)

FIG. 1. m=g ¼ 0.25, x ¼ 100. Comparison of iTEBD simu-
lations (full line) with the approximation Eq. (6) (dashed line).
(a): EðtÞ=g (α ¼ 0.1). (b): NðtÞ (α ¼ 0.1).

TABLE I. m=g ¼ 0.25, x ¼ 100. Particle densities in units of
correlation length for the two single-particle excitations of Hα.

α ρ1ξ ρ2ξ

0.01 2.6 × 10−5 9.4 × 10−9

0.1 2.7 × 10−3 8.9 × 10−5

0.2 1.2 × 10−2 1.4 × 10−3

0.3 3.5 × 10−2 8.0 × 10−3

0.4 8.9 × 10−2 2.9 × 10−2

1Notice that in this approximation we drop the multiparticle
scattering states and can therefore consider the creation/annihi-
lation operators a†mðkÞ, amðkÞ as corresponding to the asymptotic
in- or out-states.
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predicting the right quasiperiods (see Appendix Sec. A 4, in
particular Figs. 6 and 7).
Finally, let us mention the holographic approach of [58]

and the studies of other models with confinement [59,60]
that also obtained an oscillatory behavior of local observ-
ables, bearing some resemblance with our results.

B. Strong-field regime

Let us now consider larger quenches: α ≥ 0.75. In Fig. 2
we compare the full quantum simulations (full line) with
results obtained from real-time lattice gauge theory simu-
lations [29] (dashed line). The latter should give reliable
results as long as the classicality conditions are fulfilled;
i.e., anti-commutator expectation values for typical gauge
field modes are much larger than the corresponding
commutators. This regime is characterized by nonpertur-
batively large field amplitudes [49].
Focusing first on the electric field EðtÞ and the current

j1ðtÞ2 one can observe good agreement between the MPS
and real-time lattice simulations. The agreement further
improves for growing α which is a nice cross-check for
these two different techniques. However, for the particle
number NðtÞ we find sizeable deviations. We attribute
this discrepancy to differences in the initial states: the
MPS simulation starts from the full ground state of the
Hamiltonian Hα¼0 and hence incorporates interactions of
the fermions with the fluctuating gauge field. On the other
hand, the real-time lattice simulations are initialized in the
bare Dirac vacuum that does not account for these
interactions.
In a semiclassical picture the behavior of EðtÞ, j1ðtÞ and

NðtÞ can be attributed to the nontrivial interplay between
fermion and gauge field dynamics (backreaction) [29,47]:
the electric field creates electron-positron pairs out of the
vacuum and then accelerates them almost to the speed of
light. This process costs energy, the electric field therefore
decreases due to energy conservation so that particle
creation terminates and the current saturates. After this
initial creation of electron-positron pairs, which essentially
occurs during the first oscillation of the electric field, we
enter a regime of plasma oscillations, for which the onset at
tg≳ 3 can be observed in Figs. 2(a) and 2(b). Also the
behavior of the entanglement entropyΔSðtÞ fits nicely with
the semiclassical picture [61]: after the local production of
entangled electron-positron pairs, the pairs will separate,
entangling the system over even larger distances. From
Figs. 2(c) and 2(d) one can indeed observe that the entropy

starts increasing linearly after the initial period of pair
production.
Even for large quenches we expect that the classicality

conditions that underlie the real-time lattice technique are
briefly violated during the times at which EðtÞ crosses zero.
We can indeed observe in Fig. 2(a) that the full quantum
MPS results start deviating from the real-time lattice results
after the first transit through zero. In particular the MPS
simulations predict a stronger damping. We interpret this
damping as the onset of equilibration. It is accepted that a
state which is brought out of equilibrium relaxes and
equilibrates locally at late times [62]. In fact, it is believed
that, under some generic conditions, the state thermalizes to
a Gibbs state of the quenched Hamiltonian at a certain
temperature [63–73]. There are however some exceptions,
such as when the state as a whole is not thermal even
if some local quantities already indicate thermalization
[74–76], when the system is integrable and it converges
towards a so-called generalized Gibbs ensemble [77–84],
pre-thermalization [85–88] or many-body localization
[80,89–92].
Under the assumption that the state would thermalize, we

can determine its inverse temperature β0 from energy
conservation and by using our results from finite

(a) (b)

(c) (d)

FIG. 2. Results for m=g ¼ 0.25, x ¼ 100. Comparison of full
quantum simulations (full line) with real-time lattice simulations
(dashed line). (a): electric field EðtÞ=g. (b): current j1ðtÞ=g. (c):
particle number NðtÞ. (d): entropy excess ΔSðtÞ.

2Notice that the time evolution of the electric field and the
current are connected through Ampère’s law: j1ðtÞ ¼ − _EðtÞ=g
which holds at the operator level. We computed both quantities
independently for the MPS simulations and found agreement
with Ampère’s law up to 10−3. For the real-time lattice simu-
lations we derived j1ðtÞ from EðtÞ using Ampère’s law.

BOYE BUYENS et al. PHYSICAL REVIEW D 96, 114501 (2017)

114501-4



temperature simulations [35] (see Appendix Sec. A 5). In
Fig. 3 we compare EðtÞ and NðtÞ (full line) with its
predicted thermal values Eβ0 and Nβ0 (dashed line). Note
that our finite temperature simulations only enable us to
determine β0 numerically up to Δβ ¼ 0.05; therefore we
show the intervals Eβ0�0.05 and Nβ0�0.05. Although the
electric field seems to oscillate around Eβ0 , the amplitudes
of the oscillations are still too large for a definite con-
clusion. On the other hand, one might be more tempted to
say that NðtÞ is close to its thermal value for α ¼ 1.25 and
α ¼ 1.5, although one should be cautious here as well.
To reach a definite conclusion, we would have to push

the MPS simulations further in time. Unfortunately, the
linear growth of entanglement, see Fig. 2(d), requires the
variational freedom of the MPS representation to grow
exponentially in time (see Appendix Sec. A 3, in particular
Fig. 4). This precludes computations at large tg and hence
constrains the maximum time up to which we can reliably
track the state.

IV. CONCLUSION

We demonstrated the potential of MPS to solve the real-
time simulation of gauge field theories near the continuum
limit, based on the paradigmatic example of an electric
quench in the massive Schwinger model. For small
quenches the real-time dynamics can be explained by
using the single-particle excitations of the quenched
Hamiltonian. For large quenches α ¼ Oð1Þ, which is
related to the phenomenon of Schwinger pair production,
we compared the MPS simulations with results from real-
time lattice gauge theory simulations and found good
agreement between those methods. In this regime, we
further investigated whether the state thermalizes at late
times by using finite temperature simulations. While we
found evidence that supports the onset of thermalization,
the increase of entanglement prevented us to reach a
decisive conclusion yet.
TheMPSmethod provides a unique means to benchmark

quantum simulators of the massive Schwinger model or
related models using ultracold ions or atoms in optical
lattices [40–44]. On the other hand, it is a major goal to
extend this type of real-time simulation technique to more
than one spatial dimension using projected entangled pair
states (PEPS) [4]. The major progress on PEPS algorithms
in the last decade [93–102] in combination with recent
promising PEPS and TNS results for higher-dimensional
gauge theories [103–107] makes us confident that this will
be realized in the foreseeable future.
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APPENDIX A: MPS FOR THE
SCHWINGER MODEL

In this section we explain the Matrix Product States
(MPS) methods that are used for the Schwinger model.
More specifically we discuss:
(1) How the time-dependent variational principle

(TDVP) is used to find the optimal translational
invariant MPS approximation for the ground state in
the thermodynamic limit (see Sec. A 1).

(2) How we approximate the single-particle excitations
using MPS (see Sec. A 2).

(3) How we perform real-time evolution within the
manifold of MPS using the infinite time-evolving
block decimation algorithm (iTEBD) (see Sec. A 3).

(a) (b)

FIG. 3. Results for m=g ¼ 0.25, x ¼ 100. Comparison real-
time simulations (full line) with predicted asymptotic value in
thermal equilibrium (dashed line). (a) EðtÞ=g. (b) NðtÞ=g.

(a) (b)

FIG. 4. m=g ¼ 0.25. Evolution of the maximum of the
bond dimension over the charge sectors for fixed values
of ϵ: ϵ ¼ 5 × 10−5 (full line) and ϵ ¼ 1 × 10−4 (dashed line).
(a) α ¼ 0.125. (b) α ¼ 1.5.
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(4) How we use the MPS approximations for the ground
state and the single-particle excitations to approxi-
mate the real-time evolution in the weak-field regime
(see Sec. A 4).

(5) Howwedetermine the temperature of the equilibrium
state given that the state brought out of equilibrium
by the quench thermalizes (see Sec. A 5).

More details and results can also be found in our earlier
papers [31–36]

1. Ground-state ansatz

Consider the Kogut-Susskind Hamiltonian Eq. (2) of the
Schwinger model:

Hα ¼
g

2
ffiffiffi
x

p
�X2N

n¼1

½LðnÞ þ α�2 þ
ffiffiffi
x

p
g

m
X2N
n¼1

ð−1ÞnσzðnÞ

þ x
X2N−1

n¼1

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
: ðA1Þ

We block site n and link n into one effective site with local
Hilbert space spanned by fjsn; pnin∶sn ¼ −1; 1;pn ∈ Zg.
Writing κn ¼ ðsn; pnÞ and

κ ¼ ððs1; p1Þ; ðs2; p2Þ;…; ðs2N; p2NÞÞ ¼ ðκ1;…; κ2NÞ;

a general state on this system of 2N sites takes the form

jΨi ¼
X
κ

Cκ1;…;κ2N jκi;

with basis coefficients Cκ1;…;κ2N .
A MPS jΨu½Að1ÞAð2Þ�i assumes now a special form for

these coefficients:

Cκ1;…;κ2N ¼ v†L

�YN
n¼1

Aκ2n−1ð1ÞAκ2nð2Þ
�
vR;

i.e.,

jΨu½Að1ÞAð2Þ�i ¼
X
κ

v†L

�YN
n¼1

Aκ2n−1ð1ÞAκ2nð2Þ
�
vRjκi:

ðA2aÞ

Here we have AκðnÞ ∈ CDðnÞ×Dðnþ1Þ and vL, vR ∈ CDð1Þ×1.
The MPS ansatz associates with each site n and every local
basis state jκnin ¼ jsn; pnin a matrix AκnðnÞ ¼ Asn;pn

ðnÞ.
The indices α and β are referred to as virtual indices, and
DðnÞ are called the bond dimensions. Note that here AκðnÞ
only depends on the parity of n, in accordance with the T 2

symmetry of the Hamiltonian. As such we can consider the
ansatz directly in the thermodynamic limit (N → þ∞),
bypassing any possible finite size artifacts. In this limit the

expectation values of all local observables are independent
of the boundary vectors vL and vR.
As explained in [31], to parametrize gauge invariant

MPS, i.e. states that obey GðnÞjΨðAÞi ¼ 0 for every n,

GðnÞ ¼ LðnÞ − Lðn − 1Þ þ σzðnÞ þ ð−1Þn
2

;

it is convenient to give the virtual indices a multiple index
structure α → ðq; αqÞ; β → ðr; βrÞ, where q resp. r labels
the eigenvalues of Lðn − 1Þ resp. LðnÞ. One can verify that
the condition GðnÞ ¼ 0 then imposes the following form
on the matrices:

½As;pðnÞ�ðq;αqÞ;ðr;βrÞ ¼ ½aq;sðnÞ�αq;βrδqþðsþð−1ÞnÞ=2;rδr;p;

ðA2bÞ

where αq ¼ 1…DqðnÞ, βr ¼ 1…Drðnþ 1Þ. The formal
total bond dimensions of this MPS are DðnÞ ¼ P

qDqðnÞ,
but notice that, as (A2b) takes a very specific form, the true
variational freedom lies within the matrices aq;sðnÞ ∈
CDqðnÞ×Drðnþ1Þ.
To find the optimal ground state ofHα within the class of

gauge invariant MPS Eq. (A2) we apply the time-dependent
variational principle (TDVP) [52–54] to the Schrödinger
equation

∂τjΨu½Að1ÞAð2Þ�i ¼ −HαjΨu½Að1ÞAð2Þ�i

in imaginary time dτ ¼ −idt. When τ → þ∞ we indeed
find the optimal approximation jΨu½Að1ÞAð2Þ�i for the
ground state of Hα. As the Schmidt decomposition of
jΨu½Að1ÞAð2Þ�i with respect to the bipartition of the lattice
consisting of the two regions A1ðnÞ ¼ Z½1;…; n� and
A2ðnÞ ¼ Z½nþ 1;…; 2N� equals

jΨu½Að1ÞAð2Þ�i ¼
X
q

XDq

αq¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λq;αqðnÞ

q
jψA1ðnÞ

q;αq ijψA2ðnÞ
q;αq i;

ðA3Þ

it follows that to obtain a faithful approximation for the
ground state one has to choose Dq such that the discarded
Schmidt values for each charge sector are sufficiently small.
In particular we could take Dq ¼ 0 for jqj > 3 which is
explained by the first term in the Hamiltonian Eq. (A1). A
proper justification of truncating the charge sectors is
provided in [36]. We refer to [33,36] for the details on
the TDVP.

2. MPS approximation for single-particle excitations

Once we have an MPS approximation jΨu½Að1ÞAð2Þ�i
for the ground state ofHα, see Sec. A 1, we use the method
of [53,108] to approximate the single-particle excitations.
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The ansatz for the single-particle excitations with momen-
tum k that we will use is:

jΦk½B;Að1ÞAð2Þ�i ¼
XN
m¼1

e2ikn=
ffiffi
x

p X
fκng

v†L

×

�Ym
n¼1

Aκ2n−1ð1ÞAκ2nð2Þ
�
Bκ2n−1;κ2n

×

� YN
n¼mþ1

Aκ2n−1ð1ÞAκ2nð2Þ
�
vRjκi;

ðA4aÞ

where Að1Þ and Að2Þ correspond to the ground state
jΨu½Að1ÞAð2Þ�i of Hα and gauge invariance is imposed by

½Bs1;p1;s2;p2
�ðq;αqÞ;ðr;βrÞ

¼ ½bq;s1;s2 �αq;βrδp1;qþðs1−1Þ=2δp2;qþðs1þs2Þ=2δr;p2
; ðA4bÞ

where κn ¼ ðsn; pnÞ and bq;s1;s2 ∈ CDq×Dr . The algorithm
to find the optimal approximation jΦk½B; Að1ÞAð2Þ�i for the
excited states is discussed in [31,36,53]: one has to find
bq;s1;s2 such that

hΦk½B̄; Að1ÞAð2Þ�jHαjΦk½B; Að1ÞAð2Þ�i
hΦk½B̄; Að1ÞAð2Þ�jΦk½B; Að1ÞAð2Þ�i

is minimized with respect to b̄q;s1;s2 . This boils down in a
generalized eigenvalue equation for bq;s1;s2 where the
smallest eigenvalues correspond to the energies of the
single-particle excitations. Only the ones who are stable
against variation of the bond dimensions Dq are physical.
We refer to [31,34,36] for the details.
In [33,36] we found for m=g ¼ 0.25 and α≲ 0.47 two

single-particle excitations with masses E1 and E2. The
energies at nonzero momentum are in the continuum
limit determined by the Lorentz dispersion relations:
EmðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ E2

m

p
. The corresponding MPS approxima-

tions at nonzero lattice spacing a ¼ 1=g
ffiffiffi
x

p
are

jΦk½Bðm;kÞ; Að1ÞAð2Þ�i with

½Bðm;kÞ
s1;p1;s2;p2

�ðq;αqÞ;ðr;βrÞ
¼ ½bðm;kÞ

q;s1;s2 �αq;βrδp1;qþðs1−1Þ=2δp2;qþðs1þs2Þ=2δr;p2
ðA5Þ

and are normalized such that [53]

hΦk0 ½Bðn;k0Þ; Að1ÞAð2Þ�jΦk½Bðm;kÞ; Að1ÞAð2Þ�i
¼ 2πδn;mδðk − k0Þ ðA6aÞ

hΨu½Að1ÞAð2Þ�jΦk½Bðm;kÞ; Að1ÞAð2Þ�i ¼ 0: ðA6bÞ

The delta-Dirac function originates from the infinite lattice
length and has to be read as

δðk − k0Þ ¼ lim
N→þ∞

2N
2π

δk;k0 ; ðA7Þ

where 2N (N → þ∞) is the number of sites on the lattice.
For a local observable O ¼ P

2N−1
n¼1 T n−1oT −nþ1, where

o is a Hermitian operator which acts only nontrivial on
sites 1 and 2, we first subtract the ground state contribution
such that

hΨu½Að1ÞAð2Þ�jOjΨu½Að1ÞAð2Þ�i ¼ 0:

With this renormalization we have that

hΦk½B̄; Að1ÞAð2Þ�jOjΦk0 ½B; Að1ÞAð2Þ�i
¼ 2πδðk − k0ÞO1

eff ½B̄; B0� ðA8aÞ

hΨu½Að1ÞAð2Þ�jOjΦk½B;Að1ÞAð2Þ�i
¼ 2πδðkÞO2

eff ½Að1ÞAð2Þ; B�; ðA8bÞ

whereO1
eff ½B̄; B0� andO2

eff ½Að1ÞAð2Þ; B� are finite quantities
that can be computed efficiently, see [53]. The delta-Dirac
distributions have to be regularized according to Eq. (A7).

3. iTEBD for real-time evolution

To evolve a state approximated by a MPS Eq. (A2) at
t ¼ 0, i.e. to find

jΨðtÞi ¼ e−iHαtjΨu½Að1ÞAð2Þ�i;

we used the infinite time-evolving block decimation
(iTEBD) [55]. At the core of this method lies the
Trotter decomposition [109] which decomposes e−idtH

into a product of local operators, the so-called Trotter
gates. Specifically, we did a fourth order Trotter decom-
position of e−iHαdt for small steps dt and projected
afterwards jΨðtþ dtÞi ¼ e−iHαdtjΨu½Að1ÞAð2Þ�i to a MPS
jΨu½ ~Að1Þ ~Að2Þ�i with smaller bond dimensions Dq. Similar
as for the ground state, Dq is chosen by discarding the
Schmidt values smaller than a preset tolerance ϵ2 in
Eq. (A3). In this way the virtual dimensions are adapted
dynamically. We refer to [31] for the details on the
implementation of the iTEBD.
Taking a nonzero value for ϵ yields a truncation in the

entanglement spectrum and hence a truncation in turn
determines the required bond dimensions Dq for every
charge sector. For instance, in Fig. 4 we show how the
maximum of the bond dimension over the charge sectors
Dmax ¼ maxqDq varies with time for a given value of ϵ. It is
this growth of the required bond dimensions, which can be
traced back to the growth of entanglement, that makes the
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computations more costly at later times. Note that to save
computational resources we imposed that Dmax ≤ 2000.
As explained in [31] the simulation should be exact as

ϵ → 0. Therefore the convergence in ϵ can be used to
control the truncation error for a certain observable. In
order to have a rough idea about the error for taking
nonzero ϵ we compare the results for the simulation for the
two smallest values of ϵ. We illustrate this in Fig. 5 for the
electric field expectation value and the particle number
NðtÞ where we compare the simulations for ϵ ¼ 5 × 10−5

(full line) with the simulations for ϵ ¼ 1 × 10−4. As can be
observed from the inset, where we plot the differences in
magnitude of the electric field,

ΔEðtÞ ¼ jEϵ¼5×10−5ðtÞ − Eϵ¼1×10−4ðtÞj;
and the particle number,

ΔNðtÞ ¼ jNϵ¼5×10−5ðtÞ − Nϵ¼1×10−4ðtÞj;
the results are in agreement with each other up to at most
8 × 10−3. For other (smaller) values of α we found that this

error was even smaller. Therefore we can trust that our
results are reliable up to at least 1%.

4. Weak-field regime approximation

If Hα0 is the Hamiltonian in an electric background
field α0

Hα0 ¼
g

2
ffiffiffi
x

p
�X2N

n¼1

½LðnÞ þ α0�2

þ
ffiffiffi
x

p
g

m
X2N
n¼1

ð−1Þn
�
σzðnÞ þ ð−1ÞnÞ

þ x
X2N−1

n¼1

ðσþðnÞeiθðnÞσ−ðnþ 1Þ þ H:c:Þ
�
; ðA9Þ

and Hα is the Hamiltonian in an electric background field
α, then we can write (up to an irrelevant constant)

Hα ¼ Hα0 þ ϵV;

where

V ¼ gffiffiffi
x

p
X2N
n¼1

LðnÞ;

and ϵ ¼ α − α0. Consider now the annihilation and creation
operators am and a†m of the single-particle excitations with
energy EmðkÞ and momentum k of Hα. In principle, they
can obey either the canonical commutation relations for
bosons or fermions, but as we will see later we need to
impose boson statistics:

½anðk0Þ; a†mðkÞ� ¼ δðk0 − kÞδm;n;

½amðk0Þ; anðk0Þ� ¼ 0; ½a†nðk0Þ; a†mðkÞ� ¼ 0: ðA10Þ

Using the TDVP, see Sec. A 1, we have a MPS
approximation jΨu½Að1ÞAð2Þ�i for the ground state of
Hα and by using the method discussed in Sec. A 2, we
have a MPS approximation jΦk½Bðm;kÞ; A�i for the m-th
single-particle excitation with momentum k and energy
EmðkÞ. They are normalized as

hΨu½Að1ÞAð2Þ�jΨu½Að1ÞAð2Þ�i ¼ 1; ðA11aÞ

hΨu½Að1ÞAð2Þ�jΦk½Bðm;kÞ; Að1ÞAð2Þ�i ¼ 0; ðA11bÞ

and

hΦk0 ½Bðn;k0Þ; Að1ÞAð2Þ�jΦk½Bðm;kÞ; Að1ÞAð2Þ�i
¼ 2πδðk − k0Þδn;m: ðA11cÞ

(a) (b)

(c) (d)

FIG. 5. m=g ¼ 0.25. Evolution of the electric field and particle
number for different values of ϵ: ϵ ¼ 5 × 10−5 (full line) and
ϵ ¼ 1 × 10−4 (dashed line). Inset: difference in magnitude of the
considered quantity for the simulation with ϵ ¼ 5 × 10−5 and the
simulation with ϵ ¼ 1 × 10−4. (a) NðtÞ (α ¼ 1.25). (b) NðtÞ
(α ¼ 1.5). (c) EðtÞ (α ¼ 1.25). (d) EðtÞ (α ¼ 1.5).

BOYE BUYENS et al. PHYSICAL REVIEW D 96, 114501 (2017)

114501-8



The delta-Dirac functions originate from the infinite lattice
length and have to be read as, see Eq. (A7),

δðk − k0Þ ¼ lim
N→þ∞

2N
2π

δk;k0 ; ðA12Þ

where 2N (N → þ∞) is the number of sites on the lattice.
Within this approximation we have that

HαjΨu½Að1ÞAð2Þ�i ¼ 0; ðA13aÞ

HαjΦk½Bðm;kÞ; Að1ÞAð2Þ�i ¼ EmðkÞjΦk½Bðm;kÞ; Að1ÞAð2Þ�i;
ðA13bÞ

and

a†mðkÞjΨu½Að1ÞAð2Þ�i ¼
1ffiffiffiffiffiffi
2π

p jΦk½Bðm;kÞ; Að1ÞAð2Þ�i;

ðA14aÞ

amðkÞjΨu½Að1ÞAð2Þ�i ¼ 0: ðA14bÞ

We now want to express the ground state jΨð0Þi of Hα0 in
terms of the ground state jΨu½Að1ÞAð2Þ�i and the single-
particle excitations jΦk½B; Að1ÞAð2Þ�i of Hα. We will
expand Hα0 in a series of powers of ðamðkÞ; a†mðkÞÞ:

Hα0 ≈ λ01þ
Z

dk

�X
m

cmðkÞamðkÞ þ
X
m

c̄mðkÞa†mðkÞ
�

þ
Z

dk
Z

dk0
�X

m;n

μm;nðk; k0ÞamðkÞ†anðk0Þ
�
þ…;

ðA15Þ
where λ0, cmðkÞ; μm;nðkÞ ∈ C. The integrals over k and k0

run over all the momenta k; k0 ∈ ½−π; π½. Note that we only
displayed the operators that are nontrivial within the single-
particle subspace. Indeed, in higher-order terms there
appear products of the form am1

ðk1Þ…amn
ðknÞ or of the

form a†m1
ðk1Þ…a†mnðknÞ for n ≥ 2 and, as such, these

operators become trivial when projected onto the single-
particle subspace. As we have only MPS approximations
for the ground state and the single-particle excitations we
need to restrict ourselves to the terms that are displayed in
Eq. (A15). Physically this means that we ignore the
contributions of multiparticle eigenstates of Hα.
Because Hα0 is Hermitian, μm;n should also be a

Hermitian operator:

μm;nðk; k0Þ ¼ μn;mðk0; kÞ:

Using the ground state jΨu½Að1ÞAð2Þ�i and the single-
particle excitations jΦk½Bðm;kÞ; Að1ÞAð2Þ�i of Hα it follows
from Eq. (A14) that

λ0 ¼ hΨu½Að1ÞAð2Þ�jHα0 jΨu½Að1ÞAð2Þ�i:

As the energy is only determined up to a constant we can
renormalize Hα0 such that

λ0 ¼ hΨu½Að1ÞAð2Þ�jHα0 jΨu½Að1ÞAð2Þ�i ¼ 0:

With this convention, it follows from Eq. (A14) that we can
compute the coefficients μm;n and cm:

μm;nðk; k0Þ

¼ 1

2π
hΦk½Bðm;kÞ; Að1ÞAð2Þ�jHα0 jΦk0 ½Bðn;k0Þ; Að1ÞAð2Þ�i

ðA16aÞ

cmðkÞ ¼
1ffiffiffiffiffiffi
2π

p hΨu½Að1ÞAð2Þ�jHα0 jΦk½Bðm;kÞ; Að1ÞAð2Þ�i;

ðA16bÞ

and as the states are normalized according to Eq. (A6), it
follows from Eq. (A8) that:

cmðkÞ ¼
ffiffiffiffiffiffi
2π

p
δðkÞH2

eff ½Að1ÞAð2Þ; Bðm;kÞ� ðA17aÞ

μm;nðk; k0Þ ¼ δðk − k0ÞH1
eff ½Bðm;kÞ; Bðn;k0Þ�; ðA17bÞ

where H1
eff ½Bðm;k0Þ; Bðn;kÞ� and H2

eff ½Að1ÞAð2Þ; Bðm;kÞ� are
finite quantities that we can compute efficiently (see [53]
for the details).
Using Eqs. (A16) and (A17) we rewrite Hα0 , Eq. (A15),

now as

Hα0 ¼
Z

dk

�X
m

cmðkÞamðkÞ þ
X
m

c̄mðkÞa†mðkÞ

þ
X
m;n

Mm;nðkÞa†mðkÞanðkÞ
�
; ðA18Þ

where

Mm;nðkÞ ¼ H1
eff ½Bðm;kÞ; Bðn;kÞ�; ðA19aÞ

cmðkÞ ¼
ffiffiffiffiffiffi
2π

p
H2

eff ½Að1ÞAð2Þ; Bðm;0Þ�δðkÞ: ðA19bÞ

Hα0 is now diagonalized by the following transformations:

brðkÞ ¼
X
m

�
Ur;mðkÞamðkÞ þ

Ur;mðkÞ
ErðkÞ

c̄mðkÞ
�
;

where UðkÞ is the unitary transformation which diagonal-
izes MðkÞ and EðkÞ is the diagonal matrix containing the
eigenvalues of MðkÞ, i.e. MðkÞ ¼ UðkÞ†EðkÞUðkÞ. In
vector notation we can write this transformation as
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b⃗ðkÞ ¼ UðkÞa⃗ðkÞ þ E−1ðkÞUðkÞ ⃗̄cðkÞ ðA20Þ

or

a⃗ðkÞ ¼ U†ðkÞb⃗ðkÞ −U†ðkÞE−1ðkÞUðkÞ ⃗̄cðkÞ:

One easily verifies now that

Hα0 ¼
Z

dk

�X
r

ErðkÞb†rðkÞbrðkÞ

−
X
m;n

½M−1�m;nðkÞcmðkÞc̄nðkÞ
�
: ðA21Þ

Some remarks are in order here
(i) The last term in Hα0 is a constant (divergent) term

and can be omitted. This term is only necessary if we
are doing computations in the eigenbasis of Hα

because it is this term that assures us that

hΨu½Að1ÞAð2Þ�jHαjΨu½Að1ÞAð2Þ�i ¼ 0:

(ii) In the Hamiltonian Hα0 there appear terms of the
form cmðkÞcnðkÞ which is ill-defined as cmðkÞ ∝
δðkÞ. One can regularize this by replacing the Dirac
functions by δðkÞ → δk;02N=ð2πÞ and the dk by
dk → 2π=2N (2N the number of sites on the
lattice, 2N → þ∞).

(iii) ErðkÞ should be positive, otherwise the quadratic
expansion of Hα0 in the creation and annihilation
operators a†nðkÞ and anðkÞ is certainly not a valid
approximation anymore.

Now we have diagonalized Hα0 , the ground state jΨð0Þi
of Hα0 is found as the state for which

brðkÞjΨð0Þi ¼ 0; ∀ k ∈ ½−π; π½ and ∀r; ðA22aÞ

or

amðkÞjΨð0Þi ¼ dmðkÞjΨð0Þi; ðA22bÞ

where

dmðkÞ ¼ −
X
r

½MðkÞ−1�m;rc̄rðkÞ ðA22cÞ

as follows from Eq. (A20). Note that if k ≠ 0 that
dmðkÞ ¼ 0, so for nonzero momenta (in this approach)
Hα0 andHα have the same vacuum. This can be interpreted
as the fact that a translation invariant quench cannot create
particles with nonzero momentum out of the vacuum.
Again, dmðkÞ involves a Delta-dirac distribution,

dmðkÞ ¼ δðkÞd0m; d0m ∈ C; ðA23Þ

which can be regularized as in Eq. (A12). In order that the
approximation Eq. (A15) remains valid we must have that
jd0mj2 ≪ jd0mj, i.e. that jd0mj ≪ 1.
Note that Eq. (A22) implies that jΨð0Þi is a coherent

state, i.e. an eigenvalue of amðkÞ. This is only possible for
nonzero d0m if the creation and annihilation operators obey
boson statistics. This means that within our approximation
the single-particle excitations must behave as bosons, see
Eq. (A10). In this approximation the vacuum jΨð0Þi ofHα0
is interpreted as the vacuum ofHα with on top of it a small
density of zero-momentum single-particle excitations. This
number of single-particles per site can be computed and
equals

1

N

Z
dkhΨð0Þja†mðkÞamðkÞjΨð0Þi ¼

1

2π

X
m

jd0mj2;

where N → þ∞ is the number of sites and we regularized
dk ¼ 2π=N and the Dirac-delta distribution according
to Eq. (A12).
Assume now we want to compute expectation values

with respect to jΨð0Þi of a translation invariant observable

O ¼
X2N
n¼1

T n−1oT −nþ1

where o has only support on sites 1 and 2. Then we expand
this operator similar asHα0 quadratically in the annihilation
and creation operators of Hα:

O≈
Z

dk

�X
m

o2;mðkÞamðkÞþ ō2;mðkÞa†mðkÞ
�

þ
Z

dk
Z

dk0
�X

m;n

o1;m;nðk;k0Þa†mðkÞanðk0Þ
�
; ðA24Þ

where we renormalizedO such that hΨu½Að1ÞAð2Þ�jOjΨu×
½Að1ÞAð2Þ�i ¼ 0. The coefficients can be extracted similar
to Eq. (A17):

o1;m;nðk; k0Þ ¼
1

2π
hΦk½Bðm;kÞ; Að1ÞAð2Þ�jOj

×Φk0 ½Bðn;k0Þ; Að1ÞAð2Þ�i
¼ δðk − k0ÞO1

eff ½Bðm;kÞ; Bðn;k0Þ� ðA25Þ

o2;mðkÞ ¼
1ffiffiffiffiffiffi
2π

p hΨu½Að1ÞAð2Þ�jOjΦk½Bðm;kÞ; Að1ÞAð2Þ�i

¼
ffiffiffiffiffiffi
2π

p
δðkÞO2

eff ½Að1ÞAð2Þ; Bðm;kÞ�; ðA26Þ

where O1
eff and O2

eff are finite quantities which we can
compute efficiently.
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Hence, we find

O ≈
X
m

ðo2;mamð0Þ þ ō2;ma
†
mð0ÞÞ

þ
Z

dk

�X
m;n

o1;m;nðkÞa†mðkÞanðkÞ
�
; ðA27Þ

with

o1;m;nðkÞ ¼ O1
eff ½Bðm;kÞ; Bðn;kÞ� ðA28aÞ

and

o2;m ¼
ffiffiffiffiffiffi
2π

p
O2

eff ½Að1ÞAð2Þ; Bðm;0Þ�: ðA28bÞ
To perform real-time evolution with Hα we will work in

the Heisenberg picture. The creation and annihilation
operator a†mðkÞ and amðkÞ satisfy the following differential
equation

_amðkÞ ¼ i½Hα; amðkÞ�; ðA29aÞ
_a†mðkÞ ¼ i½Hα; a

†
mðkÞ�: ðA29bÞ

If we restrict the Hilbert space to the vacuum and the single-
particle excitations we find that

½Hα; amðkÞ� ¼ −EmðkÞamðkÞ; ðA30aÞ
½Hα; a

†
mðkÞ� ¼ EmðkÞa†mðkÞ: ðA30bÞ

It follows that within this approximation:

amðk; tÞ ¼ e−iEmðkÞtamðkÞ and a†mðk; tÞ ¼ eiEmðkÞta†mðkÞ:
In the Heisenberg picture Eq. (A27) becomes

OðtÞ ¼
X
m

ðo2;mamð0; tÞ þ ō2;ma
†
mð0; tÞÞ

þ
Z

dk

�X
m;n

o1;m;nðkÞa†mðk; tÞanðk; tÞ
�
; ðA31Þ

and the expectation value with respect to jΨð0Þi, the
vacuum of Hα0 , see Eq. (A22), then reads

hΨð0ÞjOðtÞjΨð0Þi
¼

X
m

o2;mdmð0Þe−iEmð0Þt þ
X
m

ō2;md̄mð0ÞeiEmð0Þt

þ
Z

dk

�X
m;n

o1;m;nðkÞeiðEmðkÞ−EnðkÞÞtd̄mðkÞdnðkÞ
�
;

ðA32Þ
where we used Eqs. (A22) and (A29). As already noted
before, dmðkÞ involves a delta-Dirac contribution: dmðkÞ ¼
δðkÞd0m. The expression h0jOðtÞj0i is regularized by
δðkÞ → δk;02N=ð2πÞ and dk ¼ 2π=2N. This yields the
following results:

hΨð0ÞjOðtÞjΨð0Þi

¼ 2N
2π

�X
m

o2;md0me−iEmð0Þt þ
X
m

ō2;md̄0meiEmð0Þt

þ
�X

m;n

o1;m;nð0ÞeiðEmð0Þ−Enð0ÞÞtd̄0md0n
��

: ðA33Þ

Because O ¼ P
2N−1
n¼1 Tn−1oT−nþ1, h0jOðtÞj0i will scale

with the number of lattice sites (2N). It follows that

1

2N
hΨð0ÞjOðtÞjΨð0Þi

¼ 1

2π

�X
m

o2;md0me−iEmð0Þt þ
X
m

ō2;md̄0meiEmð0Þt

þ
�X

m;n

o1;m;nð0ÞeiðEmð0Þ−Enð0ÞÞtd̄0md0n
��

ðA34Þ

is the expectation value per site and is finite. Within this
approximation all coefficients appearing above can be
computed from the MPS approximations jΨu½Að1ÞAð2Þ�i
and jΦk½Bðm;kÞ; Að1ÞAð2Þ�i for the ground state and

(a) (b)

(c) (d)

FIG. 6. m=g ¼ 0.25, x ¼ 100. Comparison of iTEBD simu-
lations (full line) with the approximation Eq. (A34) (dashed line)
for the electric field EðtÞ. (a): α ¼ 0.01. (b): α ¼ 0.2. (c):
α ¼ 0.3. (d): α ¼ 0.4.
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the single-particle excitations of Hα. In our case for
m=g ¼ 0.25 and x ¼ 100 we have for the values of α
considered here two single-particle excitations. Hence, the
sum over m runs from 1 to 2. We expect the above
approximation to be true as long as the contribution of
the multiparticle excitations of Hα is negligible. Physically
this means that the ground state jΨð0Þi ofHα0 is a coherent
state of the creation and annihilation operators of Hα. This
can be interpreted as the fact that jΨð0Þi is constructed from
the ground state of Hα with a small density of single-
particles of Hα on top of it. We can indeed expect that for
small values of α and at early times that this is the case. In
Figs. 6 and 7 we compare the real-time simulations with
iTEBD (full line) with this approximation Eq. (A34) and
find agreement for α≲ 0.2, while for α ¼ 0.4 the difference
between both results is quite large. A discussion is provided
in Sec. III A.

5. Predicting the asymptotic thermal values
of real-time evolution

In [35] we succeeded to approximate the Gibbs state
ρðβÞ at temperature T ¼ 1=β by using Matrix Product
Operators (MPO) with

ρðβÞ ¼ Pe−βHα

trðPe−βHαÞ ;

where P is the orthogonal projector onto the ðGðnÞ ¼ 0Þ-
subspace. If the state jΨðtÞi ¼ e−iHαtjΨð0Þi would even-
tually equilibrate to a Gibbs state then we can estimate its
inverse temperature β0 from the requirement that

hΨð0ÞjHαjΨð0Þi ¼
trðHαPe−β0HαÞ
trðPe−β0HαÞ ;

as follows from energy conservation during real-time
evolution.
In Figs. 8(a) and 8(b) we show the energy per unit of

length Eβ of the Gibbs state ρðβÞ as a function of β and the
(conserved) energy per unit of length EðtÞ of the state
jΨðtÞi. We subtracted from both quantities the energy per
unit of length of jΨð0Þi. The intersection between the
curves determines the value of β0. Because we simulated
the thermal evolution with steps dβ ¼ 0.05 we can only
determine β0 up to 0.05=g. For α ¼ 0.75 we find β0g ¼
1.35ð�0.05Þ, α ¼ 1.25 we find β0g ¼ 0.85ð�0.05Þ and for
α ¼ 1.5 we find β0g ¼ 0.70ð�0.05Þ.

APPENDIX B: SCALING TO THE CONTINUUM
LIMIT OF THE REAL-TIME RESULTS

In this paper we consider the following quantities:
(a) The electric field:

EðtÞ ¼ hΨðtÞjEjΨðtÞi ¼ 1

2N

X2N
n¼1

hΨðtÞjLðnÞþαjΨðtÞi:

ðB1Þ

(a) (b)

(c) (d)

FIG. 7. m=g ¼ 0.25, x ¼ 100. Comparison of iTEBD simu-
lations (full line) with the approximation Eq. (A34) (dashed line)
for NðtÞ. (a): α ¼ 0.01. (b): α ¼ 0.2. (c): α ¼ 0.3. (d): α ¼ 0.4.

(a) (b)

FIG. 8. Results for m=g ¼ 0.25, x ¼ 100. Determination of the
temperature of the asymptotic state in thermal equilibrium by
finding the intersection of the conserved energy Et (dashed line)
with the energy of the Gibbs state Eβ (full line). (a): α ¼ 1.25.
(b): α ¼ 1.5.
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(b) The current:

j1ðtÞ ¼ hΨðtÞjj1jΨðtÞi

¼ −i
ffiffiffi
x

p
g

2N

X2N
n¼1

hΨðtÞjσþðnÞeiθðnÞσ−ðnþ 1Þ

− H:c:jΨðtÞi: ðB2Þ
(c) The particle number NðtÞ ¼ ðΣðtÞ − Σð0ÞÞ=g with

ΣðtÞ ¼ hΨðtÞjψ̄ð0Þψð0ÞjΨðtÞi

¼
�
ΨðtÞ

				g
ffiffiffi
x

p
2N

X2N
n¼1

σzðnÞ þ ð−1Þn
2

				ΨðtÞ
�
; ðB3Þ

which counts in the weak coupling limit (m=g ≫ 1)
the number of electrons and positrons per unit of
length that are created out of the vacuum or destroyed
in the vacuum due to turning on the electric back-
ground field α at t ¼ 0.

(d) From the Schmidt spectrum fλqαqg associated to a cut
between an even and an odd site, we can compute the
half chain entanglement entropy

S ¼ −
X
q∈Z

XDq

α¼1

λqαq logðλqαqÞ: ðB4Þ

As we will show below, a UV quantity is obtained by
considering the renormalized half chain entanglement
entropy

ΔSðtÞ ¼ SðtÞ − Sð0Þ:

The fact that these quantities are UV finite is corrobo-
rated by Fig. 9 where we show the evolution of the electric
field Eðt; xÞ, the particle number Nðt; xÞ and the renor-
malized entropy ΔSðt; xÞ as a function of time for x ¼ 100,
200, 300, 400. Note that we here explicitly denote the
x-dependence of the quantities. We observe that for all
these quantities the graphs are almost on top of each other,
see Figs. 9(a)–9(c). One can also obtain a continuum

estimate for these quantities by a polynomial extrapolation,
see Fig. 9(d) where we perform a polynomial extrapolation
for ΔSðtÞ for tg ¼ 5. It is also clear from this example that
we can already expect at x ¼ 100 to be close to the
continuum limit. [For the current j1ðtÞ this follows from
Ampère’s law: _E ¼ −gj1.] This justifies that we restrict
ourselves to x ¼ 100 for the discussion on the continuum
results.
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