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We study the phase diagram of two-flavor massless QCD at finite baryon density by applying the
functional renormalization group (FRG) for a quark-meson model with σ, π, and ωmesons. The dynamical
fluctuations of quarks, σ, and π are included in the flow equations, while the amplitudes of ω fields are also
allowed to fluctuate. At high temperature the effects of the ω field on the phase boundary are qualitatively
similar to the mean-field calculations; the phase boundary is shifted to the higher chemical potential region.
As the temperature is lowered, however, the transition line bends back to the lower chemical potential
region, irrespective of the strength of the vector coupling. In our FRG calculations, the driving force of the
low temperature first order line is the fluctuations rather than the quark density, and the effects of ω fields
have little impact. At low temperature, the effective potential at small σ field is very sensitive to the infrared
cutoff scale, and this significantly affects our determination of the phase boundaries. The critical chemical
potential at the tricritical point is affected by the ω-field effects, but its critical temperature stays around the
similar value. Some caveats are given in interpreting our model results.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
has been of great interest to theoretical and experimental
research [1,2]. While it became possible to study the high
temperature region quantitatively due to experimental
studies and the lattice Monte-Carlo simulations, our under-
standing for the phase diagram at high baryon density
remains uncertain, partly because the lattice simulations are
not directly applicable due to the infamous fermion-sign
problem [3], and also because the nuclear interactions at
finite density are very complex. But in recent years a
lot of hints to understand the phase structure have become
available thanks to experimental efforts such as the Beam
Energy Scan (BES) program at RHIC [4], the constraints
from the lattice QCD [5], and astrophysics at very low
temperature [6].
A schematic quark model description at high baryon

density, typically based on the Nambu-Jona-Lasinio or
quark-meson models, has been also developed and
several results beyond the mean field treatments are
available [7–13]. One of the methods to go beyond the
mean field (MF) is the functional renormalization group
(FRG), which efficiently includes various fluctuation
effects in the strongly correlated system. It is known that
the fluctuation effects can change the order of the phase

transitions, and thereby can be very important in under-
standing the QCD phase diagram.
Typically the FRG is applied to quark models of two

flavors with the scalar (σ) and pseudoscalar (π) fluctua-
tions [7–9]. There are also studies for the vector (ρ) and
axial vector (a1) fluctuations in the isovector channels
[14–16]. On the other hand, to the best of our knowledge,
the ω fluctuations were taken into account only in the
context of the Walecka type nucleon-σ-ω models whose
main target is the nuclear matter at low temperature and
density [17–19]. In the quark model context, the mean
field of the ω meson is known to have the significant
impact on the phase boundary and the location of the
critical end point [20–22], so it is natural to examine
the stability of the mean-field picture against the ω
fluctuations. In this paper we will take into account the
ðσ; π;ωÞ fluctuations and study their impacts on the phase
diagram.
In this paper we focus on the phase diagram for the

massless two-flavor QCD. Typically, in the chiral limit
including fluctuations, the phase diagram is of the
second order at high temperature and low chemical
potential, and of the first order at low temperature and
high chemical potential. There exists a tricritical point
where the second order line changes into the first order
one [8,23–25]. We checked our calculations by repro-
ducing this feature.
The structure of this paper is as follows. In Sec. II we

introduce our model and summarize the framework of the
mean-field approximation and the FRG method. In Sec. III
we examine the fluctuation effects and their impacts on the
phase boundaries. Sec. IV is devoted to summary.
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II. THE QUARK-MESON MODEL WITH ω MESON

The Lagrangian of the two-flavor quark-meson model
with ω meson in Minkowski space is

L ¼ ψ̄ ½iγμ∂μ − gsðσ þ iγ5τ · πÞ − gvγμωμ þ μγ0�ψ

þ 1

2
∂μσ∂μσ þ 1

2
∂μπ · ∂μπ −

1

4
FμνFμν

− Uðσ;π;ωÞ; ð1Þ

with the field strength tensor Fμν ¼ ∂μων − ∂νωμ. A field ψ
is the light two flavor quark field ψ ¼ ðu; dÞT . A bold
symbol stands for a vector, and τ ¼ ðτ1; τ2; τ3Þ are the Pauli
matrices in isospin space. The potential for σ, π, and ω is

Uðσ;π;ωÞ ¼ λ

4
ðσ2 þ π2 − f2πÞ2 −

m2
v

2
ωμω

μ; ð2Þ

where fπ is the pion decay constant. We use the value
fπ ¼ 93 MeV, although its value in the chiral limit should
be slightly smaller, ≃87 MeV.
The parameters in our model are gs, gv, mv, and λ. The

values of these parameters can differ for the MF and FRG
calculations when we try to reproduce the same value
for quantities such as the constituent quark mass of
∼300 MeV. As for the value of gv and mv, in our
calculations they always appear in the form of gv=mv, so
we will not discuss their values independently. Typical
values in our problem are mv ∼ 1 GeV and gv is about
∼1–10, so the range of gv=mv ≃ 10−3–10−2 MeV−1 is the
natural choice in our model.

A. Mean-field approximation

The chiral symmetry of the vacuum is explicitly broken
and the expectation values of the meson fields are hσi ¼ fπ
and hπi ¼ 0. Due to the rotational symmetry, only the zero
component of the vector field ωμ can have an expectation
value [26]. Only considering the time component ω0 of the
vector field ωμ, the mean field potential reads as

UMFðσ;ω0Þ ¼
λ

4
ðσ2 − f2πÞ2 −

m2
v

2
ω2
0: ð3Þ

The mean-field effective potential is

ΩMF ¼ Ωψ̄ψ þ UMFðσ;ω0Þ; ð4Þ

with the thermal quark and antiquark contributions (μ:
quark chemical potential; T: temperature; β ¼ 1=T)

Ωψ̄ψ ¼ −νq
Z

d3p
ð2πÞ3 fEqθðΛ2

MF − p2Þg

− νqT
Z

d3p
ð2πÞ3 fln½1þ e−βðEq−μeffÞ�

þ ln½1þ e−βðEqþμeffÞ�g; ð5Þ

where νq is the degeneracy factor νq ¼ 2ðspinÞ ×
2ðflavorÞ × 3ðcolorÞ ¼ 12 and Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

eff

p
. The first

term is the fermion vacuum fluctuation contribution; if we
dropped it off the transition in the chiral limit would be
always the first order [27]. The effective quark (antiquark)
mass and chemical potential are given as

meff ¼ gsσ; μeff ¼ μ − gvω0: ð6Þ
For a given T and μ, the gap equation for ω0 can be derived
by solving the quantum equation of motion for ω0,

ω0 ¼
gv
m2

v
nðT; μ − gvω0Þ; ð7Þ

which is the self-consistent equation. Here the quark
density n is determined by

nðT; μ − gvω0Þ ¼ −
∂
∂μΩψ̄ψðT; μ − gvω0Þ: ð8Þ

At this level, the vector coupling gv and the mass of the ω0

field are not independent; gvωk is proportional to ðgv=mvÞ2.
Only their ratio gv=mv appears in both MF and FRG
calculations.
In our calculationwe follow the choice of Ref. [28] and set

the parameters gs ¼ 3.3 and λ ¼ 20, with which the con-
stituent quark mass in vacuum is Mvac ¼ gsfπ ≃ 307 MeV
and the sigma mass is mσ ¼

ffiffiffiffiffiffiffiffiffiffi
2λf2π

p ≃ 588 MeV.
It should be remembered that in the MF calculations the

strength ofω0 fields is proportional to quark number density
n. Once we include the fluctuations, however, the quark
number density is given by the sum of single particle
contribution plus the contributions from other fluctuations,
so such a proportionality relation no longer holds.

B. FRG flow equation

The functional renormalization group is a powerful
nonperturbative tool in quantum field theories and statis-
tical physics [29] and has been widely applied to QCD
effective models [7–9,30–32]. The effective average action
Γk with a scale k obeys the exact functional flow equation

∂kΓk ¼
1

2
Tr

� ∂kRk

Γð2Þ
k þ Rk

�
; ð9Þ

where Γð2Þ
k is the second functional derivative of the

effective average action with respect to the fields. The
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trace includes a momentum integration as well as traces
over all inner indices. An infrared regulator Rk is intro-
duced to suppress fluctuations at momenta below the
scale k.
In this study the dynamical fields in the flow equation are

quarks, σ, and π, and they affect the effective potential and
the size of ω0 fields. Unlike the spatial components of
vector fields, the ω0 fields are not dynamical because it
does not couple to the time derivative. Therefore, the value
of ω0 is completely fixed by specifying the values of other
fields. At each scale k in the flow equation, we determine
the value of ω0 fields by solving the consistency equation
for given σ and π, so the resultant ω0 may be written as
ω0;kðσ;πÞ. This ω0;k field in turn appears in the effective
chemical potential for quarks, affecting the dynamical
fluctuations in the flow equations. Throughout our study
we neglect the flow of all wave-function renormalization
factors.
The scale-dependent effective potential can be expressed

by replacing the potential U with the scale-dependent
one Uk,

Γk ¼
Z

d4xLjU→Uk
; ð10Þ

with the Euclidean Lagrangian from Eq. (1), for which the
temperature is introduced by a Wick rotation to imaginary
time

R
d4x≡ R 1=T

0 dx0
R
V d

3x. Due to the chiral symmetry,
the potential U depends on σ and π only through the chiral
invariant

ϕ2 ≡ σ2 þ π2: ð11Þ

Starting with some ultraviolet (UV) potentials UΛ as our
initial conditions, we integrate fluctuations and obtain the
scale dependent Uk, which is artificially separated into the
ω-independent and -dependent terms,

Uk ¼ Uϕ
k þUω

k ; ð12Þ

where the function form of Uϕ
k will be determined without

assuming any specific forms, while for the potential of the
ω field we use the same form as in Eq. (2),

Uω
k ¼ −

1

2
m2

vω
2
0;k: ð13Þ

Later we will also perturb our results by allowing ω4 terms,
and check that our results are not significantly affected.
With this setup, we follow the standard methods to

compute the FRG. For the computation of the flow
equation, there is some freedom to choose the regulator
Rk. We use the 3d analogue of the optimized regulator,
which was proposed by Litim [33],

Rk;BðpÞ ¼ ðk2 − p2Þθðk2 − p2Þ; ð14Þ

Rk;FðpÞ ¼ −p · γ
� ffiffiffiffiffi

k2

p2

s
− 1

�
θðk2 − p2Þ; ð15Þ

for bosons and fermions respectively. Inserting Eq. (10)–(15)
into Eq. (9), the flow equation for the potential Uϕ

k can be
obtained as

∂kU
ϕ
k ðT; μÞ ¼

k4

12π2

�
3½1þ 2nBðEπÞ�

Eπ
þ 1þ 2nBðEσÞ

Eσ

−
2νq½1 − nFðEq; μkeffÞ − nFðEq;−μkeffÞ�

Eq

�
;

ð16Þ

where single-particle energies are

Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2U0

k

q
; ð17Þ

Eσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2U0

k þ 4ϕ2U00
k

q
; ð18Þ

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2sϕ2

q
; ð19Þ

for a pion, sigma-meson, and quark, respectively; we also
defined U0

k ≡ ∂Uk=∂ϕ2. Here the mass terms are given as
the usual definition m2

π ¼ δ2Γ=δπ2, etc., while we found it
convenient to use expressions (17), (18), (19) in our
equations. We have assigned the σ quantum number in
the radial direction for the effective potential, and the π
quantum number for the other directions. Note that during
the FRG evolution pions may have a finite mass, as U0

k
can be nonzero for general ϕ, vanishing only at the
stationary point.
The effective chemical potential, μkeff ¼ μ − gvω0;k,

depends on the scale k through ω0;k. The boson and
fermion occupation numbers are

nBðEÞ ¼
1

eβE − 1
; nFðE; μÞ ¼

1

eβðE−μÞ þ 1
: ð20Þ

Apparently, the flow equation should be solved in the ϕ
and ω0 directions. But fields ω0 are not dynamical, so the
flow equation of ω0 fields can be computed for a given
value of ϕ, like the Gauss law constraint in gauge theories.
At each momentum scale k, we determine ω0;k by solving

∂Uk

∂ω0;k
¼ 0: ð21Þ

The dependence on the ω0;k manifestly appears only
through the mass term and the fermion loop; we have a
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relation m2
vω0 ∼ gvhψ̄γ0ψi ∼ ∂Γfermion=∂μ. The RG evolu-

tion of this relation yields the flow equation

∂kω0;k ¼ −
2gvk4

π2m2
vEq

∂
∂μ ðnFðEq; μkeffÞ þ nFðEq;−μkeffÞÞ:

ð22Þ

This equation, together with Eq. (16), constitutes our flow
equations for the effective potential Uk and the ωk field as
functions of ϕ.
Note that the flow equation for ω0 can be solved for a

given ϕ, independently of the potentialUϕ
k (which only tells

us where the minimum of ϕ is). Thus, in our numerical
calculations we first calculate ω0;k as a function of ϕ. Then
the resultant ω0;kðϕÞ will be used in the FRG evolution
equation (16) for Uϕ

k ðϕÞ.
To understand the behavior of ω0, for the moment we

ignore the k dependence in μeff in Eq. (31), and carry out
the integration over k. Then the resulting expression for ω0

is some factor times the MF expression for the number
density. But unlike the MF case, ω0 is not directly
proportional to the physical number density, because the
baryon density gets contributions not only from single
particles but also fluctuations [see Eq. (26)]. Moreover, as
we will see in Sec. III B 2, if we include the k dependence
in μkeff , the ωk

0 field at kIR is not even proportional to the
single particle contribution. Therefore, the extrapolation of
the MF relation ω0 ∼ n does not work at all to understand
the FRG results.
Finally, the initial conditions for the flow equations must

be set up. The UV scale Λ should be sufficiently large in
order to take into account the relevant fluctuation effects
and small enough to render the description in terms of the
model degrees of freedom realistic [17]. In our calculation
we follow the choice of Ref. [8], Λ ¼ 500 MeV. The initial
condition for the potential is

Uϕ
Λ ¼ λ

4
ϕ4; ð23Þ

and set the parameters gs ¼ 3.2, λ ¼ 8 with the vacuum
effective potential from the FRG computation having the
minimum at σvac ≃ 93 MeV, which is regarded as fπ . We
note that the value of λ, which enforces ϕ to stay near fπ, is
considerably smaller than in the MF case (λ ∼ 20). If we
start with another initial condition with an additional ϕ2

term to give the mass, we need to readjust λ but obtain
qualitatively similar results; in fact, starting with the
condition Eq. (23), the scale evolution first generates the
ϕ2 terms, reflecting the universality.
The initial condition for the ω field has not been

examined in detail, and we simply try

ω0;ΛðϕÞ ¼ 0: ð24Þ

Later we will also present the result of another different
initial condition, but it will turn out that such modification
does not change the main story in this paper.
Assembling all these elements, we calculate the effective

potential with the fluctuations integrated to kIR ¼ 0. The
final step is to find ϕ ¼ σ�, which minimizes the effective
potential. At the minimum the effective potential is iden-
tified as the thermodynamic potential,

Ωðμ; TÞ ¼ ΓkIR¼0ðμ; T; σ�Þ: ð25Þ
In practice, it is numerically expensive to reduce the IR
cutoff, and we typically stop the integration around
kIR ≃ 10 MeV. The baryon number density is then
obtained by taking the derivative with respect to μB ¼ Ncμ,

nBðμ; TÞ ¼ −
1

Nc

∂ΓkIR¼0ðμ; T; σ�Þ
∂μ : ð26Þ

The derivative is taken numerically with the interval
Δμ ¼ 0.1 MeV.

III. RESULTS

A. The mean-field results

We briefly summarize the MF results for the chiral limit
in Fig. 1. Following Ref. [27], we include the fermion
vacuum term with ΛMF ¼ 260 MeV. Without this term, the
phase boundary is always the first order. With the vacuum
term, there is a second order phase transition at high
temperature and small chemical potential, and a first order
phase transition at low temperature and large chemical
potential. At tricritical points (TCP) with (Tc, μc) the order
of the phase transition changes. As gv=mv increase, the
TCP moves to the right bottom side of the phase diagram,
and eventually vanishes at gv=mv ¼ 5.9 × 10−3 MeV−1.

B. The results of the FRG

In this section we present the FRG results for the chiral
limit. The phase diagrams for different coupling constants
are summarized in Fig. 2. Here we give a quick summary of
the results before dictating the details of the calculations:
(i) While the critical chemical potential of the TCP is
sensitive to the vector coupling, its critical temperature is
similar for different vector couplings. (ii) At high temper-
ature, the vector couplings shift the phase boundaries to
higher chemical potential as in the MF, but the curves
strongly bend back toward lower temperatures irrespective
of the value of gv; the curves with different vector couplings
approach one another. We note that the back-bending
behavior has already been found in other FRG calculations
without the vector coupling [8–11,31,34,35].
Behavior (ii) is somewhat unexpected to us: what we

initially expected was that the vector coupling tempers not
only the growth of the number density but also fluctuations,
so the results should be similar to the MF results which do
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not have the back-bending behavior. Our FRG calculations,
however, do not follow this expectation; as we will examine
later, the fluctuation effects develop even before the
appearance of the quark Fermi sea, affecting the phase
structure before the vector coupling becomes important.
We have checked that the result at gv ¼ 0, in which case

the phase boundary has another TCP at low temperature
and high chemical potential, is consistent with Refs. [8,25].
Below we shall examine more details—such as the behav-
ior of effective potentials, order parameters, and baryon
density—to understand the structure of our phase diagram
at finite vector couplings.

1. The effective potentials

The full flow Eq. (16) is solved on a grid [7,36]. To check
the stability of our numerical results, we compare two

different methods to solve the flow equation. We got
the same results for the fourth order backward differ-
entiation formula (BDF) and the linearly implicit mid-
point method. The flow equation is integrated from the
UV momentum k ¼ Λ ¼ 500 MeV to the IR momentum
kIR ¼ 10–20 MeV until the location of the minimum of the
effective potential is stabilized (see Fig. 3). The fluctuations
erase the barrier between two local minima in the mean-
field potential, making the effective potential convex, as
they should.
Figure 3 illustrates the evolution of the effective potential

ΓkðϕÞ towards the IR for different vector couplings. We fix
the temperature to T ¼ 10 MeV and choose the chemical
potential near the phase boundaries of the FRG results. The
top panel is the result for gv ¼ 0 at μ ¼ 276.7 MeV, and the
bottom one is for gv=mv ¼ 0.01 MeV−1 at μ ¼ 287.7 MeV.
We first examine the case without the vector coupling.

Before integrating the fluctuations out, the global minimum
stays around ϕ≃ fπ as in the vacuum case. With fluctua-
tions, while they hardly affect the effective potential
near ϕ≃ fπ, they crucially affect the effective potential
at lower ϕ. Below k≃ 70 MeV, the local minimum around
ϕ ¼ 60–70 MeV becomes the global one. Therefore, the

FIG. 1. The mean-field T − μ phase diagram including vacuum
fluctuation (ΛMF ¼ 260 MeV) for the two-flavor massless QCD
with different vector couplings. Solid lines show the first order
phase transitions, and dashed lines show the second order phase
transition. Dots show the tricritical point, and the star shows the
vanishing of the TCP.

FIG. 2. The phase diagram of the FRG with different vector
couplings. Dashed (solid) lines show the second (first) order
phase transition. Stars show the tri-critical end point (TCP).

FIG. 3. The scale evolution of the effective potential ΓkðϕÞ at
low temperature. We compare the results with and without the
vector coupling near the phase boundaries in the FRG results;
(top) gv=mv ¼ 0, T ¼ 10 MeV, and μ ¼ 276.7 MeV; (bottom)
gv=mv ¼ 0.01 MeV−1, T ¼ 10 MeV, and μ ¼ 287.7 MeV.
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fluctuations let the phase transition occur at lower chemical
potential than in the MF case: the local minimum at
ϕ ¼ 60–70 MeV turns into the global minimum at
μ≃ 276.7 MeV, long before the local minimum at ϕ≃
93 MeV merges into the global minimum at ϕ ¼
60–70 MeV. Therefore the phase transition is of the first
order in this case. As we increase μ, the global minimum
smoothly approaches the local minimum at ϕ ¼ 0, leading
to the second order phase transition at μ≃ 282 MeV (see
Fig. 2). This alsomeans that there exists a tricritical endpoint.
All these features are consistent with the calculations
in Ref. [8].
At finite vector coupling, many features remain similar

as the gv ¼ 0 case (except the appearance of global minima
in the gv ¼ 0 case). In short, the fluctuations do not modify
the effective potential around a local minimum at ϕ≃
93 MeV, while the potential around ϕ≃ 0 is reduced
significantly by fluctuations. This feature is common for
all vector couplings in our study. In the next section we will
examine this feature in more detail.
It is important to notice that the minimum around ϕ≃ 0

is very sensitive to the IR cutoff scale kIR, as one can see
from Fig. 3. This means that at ϕ≃ 0 there are strong
fluctuations with small excitation energies. If we had
stopped integrating the fluctuations before the results are
stabilized, the minimum at ϕ≃ fπ would remain the
absolute minimum, resulting in very different phase boun-
daries which are closer to the MF results.
From the second derivative of the FRG effective poten-

tial, we can obtain the σ mass which depends on the scale
and the order parameter. We evaluate the vacuum value of
the σ mass at the global minimum σvac ≃ 93 MeV of the
potential in the IR, and find it is about 303 MeV with the
parameters gs ¼ 3.2, λ ¼ 8.

2. Order parameter and baryon density

To examine the phase structure in more detail, we check
the behavior of the order parameter ϕ and the baryon
density, especially their relationship.
We first examine the results at T ¼ 5 MeV, Fig. 4

for (top) the order parameter and (bottom) the baryon
density normalized by the nuclear saturation density
n0 ¼ 0.16 fm−3. The result of the gv ¼ 0 case has the first
order phase transition at μ≃ 270 MeV and the second
order phase transition at μ≃ 288 MeV. The other cases
gv=mv ¼ ð0.8; 1.0; 1.2Þ × 10−2 MeV−1 all have the first
order phase transitions. After the transition, the vector
coupling tempers the growth of the baryon density, as we
originally expected.
It seems that the change in order parameter is not driven

by the baryon density. This is in contrast to typical MF
calculations in which the baryon density develops first, and
then drives the reduction of the chiral order parameter.
Thus, the mechanism of the chiral restoration found in our
calculations for T ≃ 5 MeV is very different from the

conventional density driven one; in fact the phase transition
occurs before μ reaches the vacuum effective quark
mass (gsfπ ≃ 298 MeV).
One might think that the jumps in baryon density in the

FRG calculations are conceptually similar to what was
suggested in the self-bound quark matter hypothesis; the
quark matter is more stable than the nuclear matter so that
the quark matter can appear before the baryon chemical
potential reaches the nucleon mass [37,38]. However, in
our calculations the baryon density just after the emergence
of matter is at most nB ∼ n0, presumably too low for the
quark matter picture to be justified.
Next we examine the results at T ¼ 30 MeV in Fig. 5.

Compared to the T ¼ 5 MeV case, the result is much closer
to the MF behavior; the baryon density gradually develops
and then the chiral restoration occurs. But still there
remains the back-bending behavior in the phase boundaries
for all the vector couplings.
The μ dependence of the baryon density considerably

deviates from ∼μ3 behavior expected from the single

FIG. 4. The vacuum expectation value of the order parameter ϕ
and the baryon density as a function of chemical potential μ at
T ¼ 5 MeV, calculated by the FRG with different vector cou-
plings. The gv ¼ 0 case has the first order transition around
μ≃ 270 MeV, and then the second order phase transition around
μ≃ 290 MeV. The other cases have only the first order phase
transitions.
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particle contributions. In fact, our derivation of the baryon
density includes not only the fermionic but also the bosonic
fluctuations which also depend on μ, and somewhat
unexpectedly the latter is more important especially when
the vector coupling is large.
For further inspections, the baryon density from single

particle contribution for T ¼ 5 MeV is plotted in Fig. 6.
Without the vector coupling constant, baryon density

from the fermion part nsingleB approaches the ∼μ3 behavior.
Actually the single particle contribution nsingleB ,

nsingleB ≡ νqT

3

Z
d3p
ð2πÞ3

�
1

eðEk
q−μkeffÞ=T þ 1

−
1

eðE
k
qþμkeffÞ=T þ 1

�				
k¼kIR

; ð27Þ

is larger than the total baryon density nB ¼ nsingleB þ nfluctB
for large chemical potential, meaning that nfluctB < 0.
In contrast, with nonvanishing vector coupling constants,

the single particle contribution is significantly suppressed
and the baryon density is almost saturated by fluctuation
contributions after the first order phase transition happens
(see Figs. 6 and 7), so that the single particle contribution

remains small. Note that ω0 is large in spite of small baryon
density; the MF-like relation ω0 ∝ n does not work at all.
This means that the large amplitude of ω0 is induced by
fluctuations rather than the quark density, as in the first
order phase transition (see Fig. 8). While ω0 is large, the
amplitudes of gvω0 do not exceed μ so that μeff does not
reach a negative value.
In Fig. 9, we also plot the scale evolution of the ω field

gv · ω as a function of the chiral condensate ϕ at fixed
μ ¼ 200 MeV, T ¼ 5 MeV with fixed vector coupling
constant gv=mv ¼ 0.01 MeV−1. One can easily find that
for small ϕ the ω field grows faster and faster as the scale
decreases, but for large ϕ it stays zero.

C. Several other checks

To check the stability of our results, in this section we
perturb our setup for calculations and try to identify the
universal features.

FIG. 5. The same as Fig. 4, except the temperature is now
T ¼ 30 MeV.

FIG. 6. The baryon density of fermion part nsingleB as a function
of chemical potential μ for T ¼ 5 MeV from the FRG with
different vector couplings.

FIG. 7. Effective chemical potential μ − gv · ω0;k¼0ðϕ ¼ 0Þ as a
function of chemical potential at fixed T ¼ 5 MeV with different
vector couplings.

FUNCTIONAL RENORMALIZATION GROUP STUDY OF THE … PHYSICAL REVIEW D 96, 114029 (2017)

114029-7



1. Truncated potential for ϕ

Our FRG results in the previous section are very
sensitive to the fluctuations. Here we focus on the effect
of the ϕ fluctuations by using the Taylor expansion of Uk,

UkðϕÞ ¼
λk
4
ðϕ2 − akÞ2; ð28Þ

with the scale-dependent parameters ak and λk. We recall
that our previous calculations did not assume any func-
tional form for UkðϕÞ. Thus, the difference from the Taylor
method clarifies the importance of higher order vertices
for ϕ. We also emphasize that in this method there is, by
construction, only one minimum at given T and μ, whose
location is determined by the scale evolution of ak. As
before, the initial condition at kUV ¼ Λ is chosen to be
ak¼Λ ¼ 0, λk¼Λ ¼ 15.2 to reproduce the vacuum pion
decay constant of fπ ≃ 93 MeV.
Within this simple approximation, we get the Taylor

method T − μ phase diagram. Here we omitted the vector
coupling. We found that the phase transition line is of the
second order everywhere and there is no back-bending
behavior (see Fig. 10).

2. The fourth order vector coupling
constant and initial condition for ω

We check the robustness of our results by varying
treatments of the ω fields. From now on, gv=mv is fixed
to 0.01 MeV−1. We change the initial condition for the
omega meson from ωk¼Λ ¼ 0 to

ωΛ ¼ ϕ: ð29Þ

Starting with this initial condition, the value of ω as k → 0
tends to a take larger value than the case with the initial
condition ωΛ ¼ 0. We found that this change tends to

increase the value of ω at relatively large ϕ, bringing the
energy cost due to the repulsive force. As a result, the phase
transition to ϕ ¼ 0 occurs at lower temperature and
chemical potential. But the overall structure of the phase
diagram does not change, as seen in Fig. 11.
Next we also consider the effect of quartic coupling.

Such repulsive quartic self-coupling is often introduced in
the relativistic MF approach. We choose the form of the ω
potential as

UkðωÞ ¼ −
1

2
m2

vω
2
0;k þ

1

12
g4 · ðg2vm2

vÞ · ω4
0;k: ð30Þ

With this configuration, the flow equations for Uk and
ω0;k are both affected. We give the flow equation for ω0;k,
which reads

FIG. 8. Solutions gv · ω as a function of the chiral condensate ϕ
at fixed μ ¼ 200 MeV, T ¼ 5 MeV with different vector cou-
plings. Solid lines are for FRG results, and dashed lines for MF
results.

FIG. 9. The scale evolution of the omega field gv · ω as a function
of the chiral condensateϕ at fixedμ ¼ 200 MeV,T ¼ 5 MeVwith
fixed vector coupling constant gv=mv ¼ 0.01 MeV−1.

FIG. 10. A comparison of the phase diagrams calculated by the
grid method FRG and the Taylor methods. Dashed lines show the
second order phase transition. The vector coupling is omitted for
simplicity.
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∂kω0;k ¼ −
2gvk4

π2m2
vEq

1

1 − g4 · g2vω2
0;k

×
∂
∂μ ðnFðEq; μkeffÞ þ nFðEq;−μkeffÞÞ: ð31Þ

For the repulsive quartic term, we found it convenient
to factor out ðgvmvÞ2 in writing the flow equation. Then
g4 has the mass dimension −2, and its natural size is
∼ð1000 MeVÞ−2 ≃ 10−6 MeV−2.
We show the result for g4 ¼ 5 × 10−6 MeV−2 in Fig. 11.

With the quartic term, the overall structure, such as the
back-bending behavior, is not significantly affected. The
phase transition line shifts slight to the lower chemical
potential region.
To summarize, the details of howwe treat theωmeson part

do not change the qualitative feature of the phase boundaries,
at least for the natural range of model parameters.

IV. SUMMARY

In this paper we discuss the quark meson model with σ,
π, and ωmesons at finite temperature and density using the
FRG. We focus on the effects of the ω mesons, which are
known to be very important in MF determination of the
phase boundaries.
Without ω fields, it has been known that FRG calcu-

lations typically lead to the back-bending behavior at low
temperature phase boundary. This behavior looks some-
what unnatural to us, and we expected that the introduction
of the repulsive density-density interactions would tame

this problem. Our FRG results do not follow our expect-
ation; what we found is that the low temperature first order
phase transition in the FRG is induced by fluctuations,
rather than number density as in the MF case, so that the
structure of the low temperature boundaries remains similar
for different values of vector couplings.
Another important finding in this study is that the

effective potential at small ϕ is very sensitive to the infrared
cutoff scale k. If we artificially stopped the integration before
stabilizing the result, we would get very different phase
boundaries. On the other hand, the results without going
very small k are closer to the conventionalMF results, which
are easier to interpret on physical grounds. It is not clear to us
whether there exist good rationales to ignore fluctuations in
the very infrared.
We think that our FRG results show very strong

fluctuation effects with which the results are hard to
interpret. We believe that the problem of strong fluctuations
should be solved in general context, without using specific
features of QCD. Our model does not possess confinement,
but the main sources in our fluctuations are color-singlet;
so even after the successful modeling of confinement, the
issues of fluctuations are likely to remain. Further studies
are called for.
A part of the origin of strong fluctuations may be our

use of the chiral limit. It is known that even small current
quark mass significantly increases the pion mass. Since our
results on phase boundaries are very sensitive to the
infrared scale k, the details of low-lying excitations should
be important. Hence, the obvious extension of the present
study is to examine the impact of the explicit breaking. This
should be discussed elsewhere.
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FIG. 11. Functional renormalization group T − μ phase dia-
gram with different vector couplings and initial conditions for
the ω meson.
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