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Exact sum rules for the longitudinal and transverse part of the vector channel spectral functions at
nonzero momentum are derived in the first part of the paper. The sum rules are formulated for the finite
temperature spectral functions, from which the vacuum component has been subtracted, and represent a
generalization of previous work in which sum rules were derived only for the zero-momentum limit. In the
second part of the paper, we demonstrate how the sum rules can be used as constraints in spectral fits
to lattice data at various temperatures, with the latest dynamical lattice quantum chromodynamics data at
zero momentum.
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I. INTRODUCTION

Hadrons, whose dynamics is governed by quantum
chromodynamics (QCD), are deconfined at high temperature
(T), where quarks and gluons are expected to be the
fundamental degrees of freedom. Such matter is called
quark-gluon plasma, and is experimentally investigated by
heavy ion collision experiments. In analyzing the experi-
mental data, electromagnetic (EM) probes such as dilepton
spectra are particularly useful [1] because once generated in
the medium, they are expected to reach the detector without
further QCD interaction with other particles. The electric
conductivity is also an important quantity since it may
increase the lifetime of magnetic fields generated in the
early stage of the heavy ion collision [2–5]. Furthermore,
how the spectrum of the vector meson is modified at finite T
has been discussed for a long time from the point of view of
the chiral symmetry restoration [6]. The spectral function of
the EM current at finite T, which is the focus of this paper,
contains information on all the above three quantities.
There aremany approaches for evaluating theEMspectral

function at finite T, such as perturbative QCD [7], holo-
graphicQCD [8], model calculations [9], sum rules [10–14],
low-energy effective theory [15,16], and lattice QCD
[17–21]. Nevertheless, none of these approaches are perfect.
Especially in the lattice QCD approach, which allows fully
nonperturbative first principle QCD calculations, the spec-
tral function cannot be analyzed directly since it is a quantity
defined in real, not imaginary time. Therefore, one needs to
make some assumption about the functional form of the
spectral function to analyze it, or otherwise has to rely on
somemethod to analytically continue imaginary time data to

real time, such as the maximum entropy method (MEM)
[22–24], the Backus-Gilbert method [25–27] or the
Schlessinger point method [28,29] (see Ref. [30] for a
comparison of these three methods).
In our previous work of Ref. [31], we derived three sum

rules at zero momentum, which constrain the spectral
function, and used them to improve the ansatz employed
in previous lattice QCD analysis. One aim of this paper is to
derive similar sum rules for the small but finite spatial
momentum case. At finite momentum, the EM spectral
function no longer has a single independent component, but
two, corresponding to the transverse and the longitudinal
channels. In the longitudinal channel, a novel and robust
structure, a sharp peak corresponding to the diffusion mode
of the EM charge, appears.
As shown in Ref. [31], the sum rules can be used to

improve the analysis of lattice QCD data by constraining
the shape of the spectral functions and derive transport
coefficients that do not appear directly in the spectral
functions. In Ref. [31], this was demonstrated by using two
sum rules (1 and 3 in this and the previous work), but the
other sum rule (2) was not used. The other aim of this paper
is to update the analysis such that all three sum rules can be
used, and to employ the latest lattice QCD data including
dynamical quarks as input for the spectral function fit.
The paper is organized as follows: In the next section, we

introduce the quantities in quantum field theory that are
necessary in our analysis, and explain how to derive the
sum rules from the operator product expansion (OPE) and
hydrodynamics [32]. Section III is devoted to the derivation of
the sum rules in transverse and longitudinal channels, at small
but finite spatial momentum.We also confirm that the spectral
function evaluated at weak coupling and in the chiral limit
satisfies these sum rules, and check towhich energy region the
sum rules are sensitive.We demonstrate that the sum rules can
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be used to improve the lattice QCD analysis for the zero-
momentum case in Sec. IV.We summarize the paper and give
concluding remarks in Sec. V. In the three appendixes, we
evaluate the contributions to the spectral functions from the
transport peak, the continuum, and the UV tail, at weak
coupling and in the chiral limit.
In this paper, we recapitulate known results such as the

sum rules in the transverse channel at zero momentum,
Eqs. (3.2) and (3.15). Their derivation can be found in our
previous work [31], but we rederive them to make our paper
self-contained. The recapitulation of the evaluation of the
transport peak, the continuum, and the UV tails in the three
appendixes is provided for the same reason.

II. PRELIMINARIES

In this section, we explain the method for deriving the
sum rules developed in Ref. [32]. Only the asymptotic
behaviors of the EM current correlator in the UV and IR
energy regions are necessary for this purpose. We also
discuss these behaviors and give their analytic form
obtained from OPE and hydrodynamics in this section.

A. Formalism

We begin by introducing quantities that will be used in
the derivation of the sum rules. The retarded Green function
of the EM current (jμ ≡ e

P
fqfψ̄fγ

μψf) is defined as
GR

μνðω; pÞ ≡ i
R
dt

R
d3xeiωt−ip·xθðtÞh½jμðt; xÞ; jνð0; 0Þ�i,

where the average is taken over the thermal ensemble, e is
the coupling constant of quantum electrodynamics, qf is
the charge of each quark flavor (in units of e), and ψf the
quark field with flavor f, respectively.
At finite temperature, the medium effect breaks Lorentz

symmetry so that the tensor structure of the Green function
has two independent components,

GR
μνðpÞ ¼ GTðpÞPT

μνðpÞ þ GLðpÞPL
μνðpÞ; ð2:1Þ

wherepμ ≡ ðω;pÞ is a shorthand notation for the energy and
the spatial momentum, and PT

μνðpÞ≡giμg
j
νðδij−pipj=p2Þ

and PL
μνðpÞ≡ P0

μνðpÞ − PT
μνðpÞ are the projection operators

to the transverse and longitudinal parts with P0
μνðpÞ≡

−ðgμν − pμpν=p2Þ. The first (second) term in Eq. (2.1)
corresponds to the transverse (longitudinal) component in
three dimensions. When p is along the z-direction, they
are related to the components of the Green function as GT ¼
GR

11 ¼ GR
22 and GL ¼ p2GR

00=p
2.

Here we recapitulate the method of deriving sum rules at
finite temperature that was developed in Ref. [32]. Using the
residual theorem for the contour1 drawn in Fig. 1, we get

δGR
μνðiω;pÞ − δGR

μνð∞;pÞ

¼ 1

2πi

I
C
dω0 δG

R
μνðω0;pÞ − δGR

μνð∞;pÞ
ω0 − iω

; ð2:2Þ

where δ stands for the subtraction of the T ¼ 0 part:
δGR

μν ≡GR
μν −GR

μνjT¼0. Because of this subtraction of the
zero temperature part and another subtraction of δGR

μνð∞;pÞ
done in the expression above, all the UV divergences are
regularized in all the cases we consider. Thus, the integral on
the contour C can be safely replaced with the integral on the
real axis. Moreover, in deriving Eq. (2.2) we have used
the property that the retarded Green function is analytic in
the upper ω0 plane.
Now, by taking the ω → 0 limit, Eq. (2.2) reduces to

δGR
μνð0;pÞ − δGR

μνð∞;pÞ

¼ P
1

πi

Z
∞

−∞
dω0 δG

R
μνðω0;pÞ − δGR

μνð∞;pÞ
ω0 ; ð2:3Þ

where we have used 1=ðω0 − iωÞ → Pð1=ω0Þ þ iπδðω0Þ.
We consider only the case of μ ¼ ν in this paper. Then, the
real (imaginary) part of δGR

μνðω;pÞ is even (odd) in terms
of ω. This property enables us to simplify the equation
above as

δGR
μνð0;pÞ − δGR

μνð∞;pÞ ¼ 2

π

Z
∞

0

dω
δρμνðω;pÞ

ω
; ð2:4Þ

where we have introduced the spectral function2 of the EM
current, ρμνðpÞ≡ ImGR

μνðpÞ, and changed the label of the
integration variable as ω0 → ω for simplicity. We hence
see that the asymptotic behaviors of the retarded Green
function in the UVand IR regions determine the integral of
the spectral function.
Let us here briefly discuss the differences between the

sum rules derived here and the so-called finite energy sum
rules (FESR), which are widely used in the literature (see
for instance Ref. [33]). In contrast to the procedure of this
paper, one in the FESR does not subtract the zero temper-
ature contribution as we have done in Eq. (2.2) and below.
Instead, to avoid an ultraviolet divergence, one does not

FIG. 1. The contour C, used in the integral of Eq. (2.2).

1This contour actually runs slightly above the real axis, so that
it does not overlap with the singularities such as the continuum or
the diffusion pole at zero momentum, which appear on it.

2We note that our convention for ρμν differs from the popular
ρμν ¼ 2ImGR

μν by a factor of 2.

PHILIPP GUBLER and DAISUKE SATOW PHYSICAL REVIEW D 96, 114028 (2017)

114028-2



take the radius of the contour in Fig. 1 to infinity, but sets it
to some threshold value, which however should be large
enough such that the OPE is still approximately valid.
Doing this, one can derive sum rules that are not exact, but
practically useful, as they can constrain the spectral
function below the threshold value that usually contains
the most interesting physical content.

B. UV behavior

The behavior in the UV region can be described with the
help of the OPE. At leading order in the coupling constant,
the Wilson coefficients of the operators with dimension 4
read [34,35]

δGR
μνðω;pÞ

¼ e2
X

q2f
1

p2

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��
P0
μνðpÞ

− 2δhTαβ
f iAμναβðpÞ

�
þOðω−4Þ; ð2:5Þ

where AμναβðpÞ≡gμαgνβþgμβgνα−2ðgμαpνpβþgναpμpβ−
gμνpαpβÞ=p2, Gμν

a ≡ ∂μAν
a − ∂νAμ

a − gfabcA
μ
bA

ν
c is the field

strength, G2 ≡Ga
μνGaμν, Tαβ

f ≡ iSTψ̄fγ
αDβψf is the quark

component to the traceless part of the energy-momentum
tensor, Dμ ≡ ∂μ þ igAμ

ata is the covariant derivative, Aμ
a is

the gluon field, ta is the generator of the SUðNcÞ group in
the fundamental representation, fabc is the structure con-
stant of the SUðNcÞ group, mf is the current quark mass, g
is the QCD coupling constant, αs ≡ g2=ð4πÞ, and Nc is the
number of the colors. ST makes a tensor symmetric and
traceless, ST Oαβ ≡ ðOαβ þOβαÞ=2 − gαβOμ

μ=4.
We decompose Eq. (2.5) into transverse and longitudinal

components as

δGTðω;pÞ ¼ e2
X

q2f
1

p2

��
2mfδhψ̄fψfiþ

1

12
δ

�
αs
π
G2

��

þ 8

3

ω2þp2

p2
δhT00

f i
�
þOðω−4Þ; ð2:6Þ

δGR
00ðω;pÞ

¼ e2
X

q2f
1

p2

p2

p2

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��

þ 8

3
δhT00

f i
�
þOðω−6Þ; ð2:7Þ

where we have used the isotropy of the system and the
traceless property of Tαβ

f .
Because we consider the ω → ∞ limit, we need to

take into account the rescaling/mixing effect of the operators.
Due to their vanishing anomalous dimensions, the chiral and
gluon condensate terms remain unchanged, but the quark

component of the energy-momentum tensor changes. To
describe its behavior, we rewrite this operator as

T00
f ¼ T 000

f þ 1

4CF þ Nf

�
T00 þ 2

Nf

~T00

	
; ð2:8Þ

where

T 000
f ≡ T00

f −
1

Nf

X
f0
T00
f0 ; ð2:9Þ

T00 ≡X
f0
T00
f0 þ T00

g ; ð2:10Þ

~T00 ≡ 2CF

X
f0
T00
f0 −

Nf

2
T00
g : ð2:11Þ

Here, Tμν
g ≡ −Gμα

a Gν
αa þ gμνG2=4 is the gluon component

of the traceless part of the energy-momentum tensor, Nf is
the flavor number, and CF ≡ ðN2

c − 1Þ=ð2NcÞ. We note that
Tμν is the traceless part of the full energy-momentum tensor,
not the energy-momentum tensor itself. A standard renorm-
alization group (RG) analysis yields the following scaling
properties [36]:

T 000
f ðκÞ ¼

�
ln ðκ20=Λ2

QCDÞ
ln ðκ2=Λ2

QCDÞ
�a0

T 000
f ðκ0Þ;

~T00ðκÞ ¼
�
ln ðκ20=Λ2

QCDÞ
ln ðκ2=Λ2

QCDÞ
� ~a

~T00ðκ0Þ; ð2:12Þ

while T00 is independent of κ. Here κ and κ0 are renorm-
alization scales, ΛQCD is the QCD scale parameter,
a0 ≡ 8CF=ð3b0Þ, and ~a≡ 2ð4CF þ NfÞ=ð3b0Þ, where
b0 ≡ ð11Nc − 2NfÞ=3, which appears in the expression

αsðκÞ ¼
4π

b0 lnðκ2=Λ2
QCDÞ

: ð2:13Þ

In the ω → ∞ limit, it is natural to choose the RG scale3

as κ2 ¼ ω2.
We see that, except for the T00 term, all terms in Eq. (2.8)

are suppressed logarithmically at large ω. Thus, Eqs. (2.6)
and (2.7) become

δGTðω;pÞ ¼ e2
X

q2f
1

p2

��
2mfδhψ̄fψfiþ

1

12
δ

�
αs
π
G2

��

þ 8

3

1

4CF þNf

ω2þp2

p2
δhT00i

�

þOðω−4Þ; ð2:14Þ

3We could also choose κ2 ¼ p2, which however would not
change the results of this paper.
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δGR
00ðω;pÞ ¼ e2

X
q2f

1

p2

p2

p2

×

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��

þ 8

3

1

4CF þ Nf
δhT00i

�
þOðω−6Þ: ð2:15Þ

We note that, in the ω → ∞ limit, which is relevant to the
derivation of the sum rule, the asymptotic freedom of QCD
guarantees that the above expression is exact. In other
words, all higher order αs corrections vanish in this limit.

C. IR behavior

On the other hand, the asymptotic behavior in the IR
region is described by hydrodynamics [37], as long as the
spatial momentum is small enough. In the channel of the
EM current, the basic equations consist of the conservation
law and the constituent equation,

∂0j0 ¼ −∇ · j; ð2:16Þ

j ¼ −D∇j0 þ σE − στJ∂0Eþ κB∇ ×B

þOð∂2E; ∂2B; ∂2j0Þ; ð2:17Þ

where D is the diffusion constant, σ the electrical conduc-
tivity and τJ and κB second order transport coefficients
corresponding to ∂0E and ∇ × B, respectively. E≡
−∇A0 − ∂0A and B≡∇ ×A are the electric and magnetic
fields, where Aμ is the vector potential.
After performing the Fourier transformation that is

defined as fðpÞ≡ R
d4xeip·xfðxÞ, Eqs. (2.16) and (2.17)

become

ωj0 ¼ p · j; ð2:18Þ

j ¼ −Dipj0 þ iσð−pA0 þ ωAÞ − στJωð−pA0 þ ωAÞ
− κBð½p ·A�p − p2AÞ þOðp2A; p2j0Þ: ð2:19Þ

Let us solve these equations for the transverse and the
longitudinal components of the current. By introducing
the transverse component, jiTðpÞ≡ Pij

T ðpÞjjðpÞ, we get the
solutions as follows:

jTðpÞ ¼ ðiσω − στJω
2 þ κBp2ÞAT

þOðω3AT;ωp2AT;p4ATÞ; ð2:20Þ

ωj0ðpÞ ¼ −iDp2j0 − ip2σA0

þOðωp2A0;p4A0;ωp2j0;p4j0Þ
þ ðterms that are proportional top ·AÞ: ð2:21Þ

By using the linear response theory, the induced current
is written as

jμðpÞ ¼ −GR
μνðpÞAνðpÞ; ð2:22Þ

from which we obtain

GTðpÞ ¼ iσω − στJω
2 þ κBp2 þOðω3;ωp2;p4Þ; ð2:23Þ

GR
00ðpÞ ¼ iσp2

1þOðω;p2Þ
ωþ iDp2 þOðωp2;p4Þ : ð2:24Þ

We note that there is a pole at ω ¼ −iDp2 in the
longitudinal channel, which we call the diffusion pole.
This is a novel structure that appears only at finite p.
This pole appears as a peak in the spectral function,

ρ00ðpÞ ¼ σp2
ω

ω2 þ ðDp2Þ2 ; ð2:25Þ

while at jpj ¼ 0, it reduces to the delta function,

ρ00ðω; 0Þ ¼ π
σ

D
ωδðωÞ: ð2:26Þ

For constructing our sum rules, we, in principle, also
need to evaluate the zero temperature part, which should be
subtracted later. At T ¼ 0, Lorentz invariance guarantees
the tensor structure of the correlator,

GR
μνðpÞ ¼ p2P0

μνðpÞ ~GRðp2Þ; ð2:27Þ

where ~GRð0Þ ¼ 0 due to the renormalization condition of
the electric charge [36]. The transverse component is given
as GTðpÞ ¼ p2 ~GRðp2Þ. ~GRðp2Þ is regular at p2 ¼ 0 due to
the renormalization condition, so it is easy to see that
there are no contributions to σ, τJ, and κB at T ¼ 0, from
Eq. (2.23). The T ¼ 0 contribution only enters in the higher
order terms, which are neglected in Eq. (2.23).
On the other hand, the longitudinal component reads

GR
00ðpÞ ¼ p2 ~GRðp2Þ, so GR

00ðpÞ at T ¼ 0 and ω ¼ 0 is of
order p2 ~GRð−p2Þ. The T ¼ 0 contribution does not affect
the sum rules 2 (3.19) and 3 (3.24) because as is explained
in Sec. III B, the relevant quantities to the derivation of
these sum rules are ω2δGR

00ðpÞjω→0 and ω4δGR
00ðpÞjω→0,

and the T ¼ 0 contributions vanish. The only sum rule
which T ¼ 0 terms may affect is sum rule 1 (3.17).
Nevertheless, we only consider terms in GR

00ðpÞjω→0 up
to p2 in this paper, as is shown in Sec. III B. Therefore, sum
rule 1 is also unaffected.
We note that we have so far neglected effects of possible

hydro modes, which adds a ω3=2 term at zero momentum
to GT [38]. It was suggested that this approximation is
justified in the large Nc limit [38]. Among our sum rules,
sum rule 3 (3.15) in the transverse channel may be changed
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at finite Nc due to this effect. In the analysis of lattice QCD
data, this effect practically can be neglected because the IR
cutoff of the current lattice QCD is not small enough for
such IR energy effects to be detectable.

III. SUM RULES AT FINITE MOMENTUM

In this section, we derive the sum rules at finite
momentum in the transverse and the longitudinal channels.
For later convenience, we also give the expressions for the
sum rules at zero momentum in the transverse channel,
which were already obtained in Ref. [31]. We also confirm
that the sum rules are satisfied by the expressions of the
spectral function in the chiral and weak coupling limits.

A. Transverse channel

Before deriving the sum rules, let us discuss what kind of
structure can be expected to appear in the spectral function
in a perturbative analysis. First, in the low-energy region, a
peak with a width of order g4T due to the collision effect is
expected to appear. This peak is called the transport peak.
Its derivation is recapitulated in Appendix A. At larger
energy, ω ∼ T, the pair-creation process yields a continuum
in the spectral function (see Appendix B for its expression).
Also, at ω ≫ T, the OPE analysis predicts a UV tail,
whose derivation is recapitulated in Appendix C. These
structures are summarized in Fig. 2, where the expressions
in the chiral and weak coupling limits for Nc ¼ Nf ¼ 3,
Eqs. (A17), (B8), and (C6) have been used. The following
parameters are chosen for illustrative purposes: τ−1=T ¼
0.5, jpj=T ¼ 0.5, κ0=T ¼ 1, and ΛQCD=T ¼ 0.67. We note
that the corrections due to the p2 terms are almost

negligible for this case, though the jpj value adopted here
is not very small compared to T. We furthermore caution
that the plots for each structure are reliable only at their
energy regions of applicability. Namely, the transport peak
is reliable at low energy, the continuum at intermediate and
high energy and the UV tail at high energy, respectively.
These regions are marked by the vertical lines with attached
arrows in the figure. Note that these boundaries are not
exact and should only be considered as indicative. One
should not take the curves seriously when they are outside
of the adequate energy regions.

1. Sum rule 1

By using the asymptotic expression of δGR
T in the UV

and IR energy regions, Eqs. (2.14) and (2.23), Eq. (2.4) for
μ ¼ ν ¼ 1 becomes

κBp2 þOðp4Þ ¼ 2

π

Z
∞

0

dω
δρTðω;pÞ

ω
; ð3:1Þ

where the contribution from the UV part has vanished. This
is the first sum rule in the transverse channel (sum rule 1).
We note that jpj should be small enough to trust this
relation, because we have assumed that the IR region is well
described by hydrodynamics, which is valid only at small
momentum and energy. κB has been evaluated in lattice
QCD [39] with methods that do not suffer from the problem
of analytic continuation, so this sum rule can be used to
constrain the spectral function. At jpj ¼ 0, it reduces to

0 ¼ 2

π

Z
∞

0

dω
δρTðω; 0Þ

ω
; ð3:2Þ

which was already obtained in Ref. [31], and also in
Ref. [40] by using the conservation of the EM current.
To get a feeling of how this sum rule is satisfied, let us

check the respective contributions from the transport peak,
the continuum, and the UV tail below. This also gives us an
indication about the sensitivity of the sum rule integral to
these three structures. The transport peak in the spectral
function at small momentum is given by Eq. (A17), and its
contribution to sum rule 1 reads

2

π

Z
∞

0

dω
δρTðω;pÞ

ω
≃ CemNcχ

2

3

2

π

Z
∞

0

dω
τ−1

ω2 þ τ−2

×
�
1þ p2

5

ð3ω2 − τ−2Þ
ðω2 þ τ−2Þ2

�

¼ CemNcχ
2

3
; ð3:3Þ

where Cem ≡ e2
P

fq
2
f, τ ∼ ðg4TÞ−1 is the relaxation time

introduced in the Boltzmann equation, and χ ≡ T2=6. For
the leading term we have used

R∞
0 dωτ−1=ðω2þτ−2Þ¼π=2,

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8

δρ
T
(ω

,p
)/

(C
em

ω
T

)

ω/T

transport peak
continuum

UV tail

FIG. 2. The transport peak, the continuum, and the UV tail of
the EM current spectral function in the transverse channel δρT as
a function of ω. The energy unit is T. To draw the figure, the
parameters are set as Nc ¼ Nf ¼ 3, τ−1=T ¼ 0.5, κ0=T ¼ 1, and
ΛQCD=T ¼ 0.67. The solid (dashed) lines correspond to a spatial
momentum of jpj=T ¼ 0.5 (jpj ¼ 0). The vertical lines with the
attached arrows indicate the regions for which the respective
analytic expressions can be trusted.
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while the momentum dependent term vanishes because
of

R
∞
0 dωð3ω2−τ−2Þ=ðω2þτ−2Þ3¼−½ω=ðω2þτ−2Þ2�∞0 ¼0.

The contribution from the continuum (B8) to sum rule 1
is given as

2

π

Z
∞

0

dω
δρTðω;pÞ

ω
≃ −CemNc

1

3π2

Z
∞

0

dωω

�
nF

�
ω

2

	

þ p2

�
1

20
n00F

�
ω

2

	
−

1

ω2
nF

�
ω

2

	��

≃ −CemNc
1

3

�
T2

3
−

p2

2π2
ln
T
μ

�
;

ð3:4Þ

where nFðk0Þ≡ ½ek0=T þ 1�−1 is the Fermi distribution
function. We have used

R∞
0 dωωnFðω=2Þ ¼ π2T2=3, and

introduced the IR cutoff μ for the continuum contribution
because of a logarithmic IR divergence. The nonsingular
parts of the p2 terms have been omitted. The result for the
continuum (B8) is obtained from a one-loop calculation,
and becomes unreliable when ω≲ gT, where the hard-
thermal loop resummation becomes necessary [41,42].
Therefore, we see that μ ∼ gT.
The contribution from the UV tail (C6) is estimated as

2

π

Z
∞

0

dω
δρTðω;pÞ

ω
∼ Cemg2T2; Cemg2p2: ð3:5Þ

Here we have used the fact that the IR cutoff of the UV tail
is of order ∼T, because the derivation of the UV tail is
based on the OPE, which is valid when ω ≫ T.
Now let us check that sum rule 1 (3.1) is satisfied.

Because κB ¼ 0 at weak coupling (see Appendix A), the
integral in Eq. (3.1) needs to vanish in order to satisfy the
sum rule. We first see that for the p-independent part,
the contributions from the transport peak and the continuum,
which are of order CemT2, cancel while the contribution
from the UV tail is of higher order (∼Cemg2T2), by looking
at Eqs. (3.3)–(3.5). Therefore, the p-independent part was
shown to satisfy sum rule 1 at leading order already in
Ref. [31]. For the p2 term, we see that the transport peak
does not contribute, and the continuum contribution is of
order ∼Cemp2 lnð1=gÞ while the UV tail contribution is
suppressed by a factor of g2. Because the continuum
contribution is sensitive to the IR cutoff, we need to improve
the evaluation by performing the hard thermal loop resum-
mation [41,42], in order to confirm that this contribution
becomes negligible so that sum rule 1 is satisfied at order p2.
It is furthermore understood that sum rule 1 is mainly
sensitive to the transport peak as well as the continuum,
while the contribution of the UV tail is small.

2. Sum rule 2

In the derivation of Eq. (2.4), we used only the fact that
the retarded Green function is analytic in the upper ω plane.
Thus, we can derive a similar equation in which δGRðωÞ
(δρðωÞ) is replaced with ω2δGRðωÞ (ω2δρðωÞ),

ω2δGTðω;pÞjω→0 − ω2δGTðω;pÞjω→∞

¼ 2

π

Z
∞

0

dωωδρTðω;pÞ; ð3:6Þ

for the transverse component. By using Eqs. (2.14) and
(2.23), this equation becomes

− e2
X

q2f

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��

þ 8

3

1

4CF þ Nf
δhT00i

�
¼ 2

π

Z
∞

0

dωωδρTðω;pÞ: ð3:7Þ

We call this equation sum rule 2 in what follows. It should
be noted that there is no explicit jpj dependence on the
left-hand side, but again we are implicitly assuming that
jpj is small enough so that the hydrodynamics well
describes the behavior of ω2δGTðω;pÞjω→0. Also, we
emphasize that the expectation values of the local oper-
ators on the left-hand side can be evaluated nonperturba-
tively by lattice QCD without suffering from the problem
of analytic continuation. Therefore, sum rule 2 can be
used to constrain the shape of the spectral function. As it
was already discussed in the previous paper [31], lattice
QCD results show that the left-hand side of Eq. (3.7) is
found to be dominated by the hT00i for almost all
temperatures around and above Tc.
Let us evaluate the contributions to sum rule 2 from

the transport peak, continuum, and UV tail. The con-
tribution from the transport peak is found by using
Eq. (A17) as

2

π

Z
∞

0

dωωδρTðω;pÞ ¼ CemNcχ
2

3

2

π

Z
∞

0

dω
τ−1ω2

ω2 þ τ−2

×

�
1þ p2

5

ð3ω2 − τ−2Þ
ðω2 þ τ−2Þ2

�

¼ CemNcχ
2

3

�
2

π
τ−1Λþ p2

5

�
; ð3:8Þ

where we have introduced the UV cutoff Λ for the
transport peak because of the linear UV divergence, and
used

R∞
0 dωω2ð3ω2 − τ−2Þ=ðω2 þ τ−2Þ3 ¼ πτ=2. As the

Boltzmann equation cannot be used when ω≳ gT since
the instantaneous scattering description becomes invalid
[41], we set Λ ∼ gT.
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The contribution from the continuum (B8) reads

2

π

Z
∞

0

dωωδρTðω;pÞ ¼ −CemNc
1

3π2

Z
∞

0

dωω3

�
nF

�
ω

2

	

þ p2

�
1

20
n00F

�
ω

2

	
−

1

ω2
nF

�
ω

2

	��

¼ −CemNc
1

45
T2½14π2T2 þ p2�;

ð3:9Þ

where we have used
R
∞
0 dωω3nFðω=2Þ ¼ 14π4T4=15

and
R∞
0 dωω3n00Fðω=2Þ ¼ 8π2T2.

The UV tail contribution is, by using Eq. (C6), found
to be

2

π

Z
∞

0

dωωδρTðω;pÞ¼
2

π
CemNcCF

4π2T4

27
αsðκ0Þ

×
Z

∞

X0

dX

�
X0

X

�
~aþ1

þOðCemg2T2p2Þ

¼CemNcCF
4π2T4

9

2

4CFþNf

þOðCemg2T2p2Þ; ð3:10Þ

where we have introduced X ≡ lnðω=ΛQCDÞ and
X0 ≡ lnðκ0=ΛQCDÞ, used Eq. (2.13) and introduced the
IR cutoff of the UV tail as κ0 ∼ T.
Let us check whether sum rule 2 is satisfied. From

Eqs. (3.8)–(3.10), we see that for the p-independent part,
the contributions from the continuum and the UV tail
have the same order of magnitude (∼CemT4) while the
contribution from the transport peak is much smaller,
∼CemT2τ−1Λ ∼ Cemg5T4. These contributions are found
to agree with the left-hand side of Eq. (3.7) by using
δhT00i ¼ Ncπ

2T4ð8CF þ 7NfÞ=60, which is obtained
from Eqs. (C4) and (C5). For the p2 term, the contributions
from the transport peak and the continuum cancel, while
the UV tail contribution is much smaller. Therefore, we
have confirmed that sum rule 2 is satisfied up to order p2, in
the chiral and weak coupling limits.

3. Sum rule 3

The derivation of the third sum rule turns out to be
somewhat more tricky. Equation (2.2) for μ ¼ ν ¼ 1 can be
rewritten as

δGTðiω;pÞ−δGTð∞;pÞ

¼1

π

Z
∞

0

dω0ω
0δρTðω0;pÞþω½ReδGTðω0;pÞ−δGTð∞;pÞ�

ω02þω2

¼2

π

Z
∞

0

dω0ω
0δρTðω0;pÞ
ω02þω2

; ð3:11Þ

where we have used the relation

0¼
Z

∞

−∞
dω0ω

0δρTðω0;pÞ−ω½ReδGTðω0;pÞ−δGTð∞;pÞ�
ω02þω2

;

ð3:12Þ

in the last line, which is obtained by using the residual
theorem for the integral

H
C dω

0½δGTðω0;pÞ − δGTð∞;pÞ�=
ðω0 þ iωÞ. By subtracting Eq. (2.4) and iωδG0

T ¼
iω2δG0

T2
R
∞
0 dω0=½πðω2 þ ω02Þ�, which is necessary to

regularize the IR singularity in the integral, we get

δGTðiω;pÞ − δGTð0;pÞ − iωδG0
Tð0;pÞ

¼ 2

π
ω2

Z
∞

0

dω0 1

ω2 þ ω02

�
δρTðω0;pÞ−1

ω0 þ δρ0Tð0;pÞ
�
;

ð3:13Þ

where 0 stands for the derivative in terms of energy (ω, ω0).
Taking the ω → 0 limit, this reduces to

1

2
δG00

Tð0;pÞ ¼
2

π

Z
∞

0

dω
1

ω3
½δρTðω;pÞ − ωδρ0Tð0;pÞ�:

ð3:14Þ

Here, we have changed the integration variable fromω0 toω
for simplicity. To get an explicit form of this sum rule, one
needs to evaluate δG00

Tð0;pÞ and δρ0Tð0;pÞ. In the expansion
of Eq. (2.23), we get only the jpj ¼ 0 terms as δG00

Tð0;pÞ ¼
−2στJ þOðp2Þ and δρ0Tð0;pÞ¼ σþOðp2Þ. Therefore, we
can obtain a sum rule for the jpj ¼ 0 case, which reads

−στJ ¼
2

π

Z
∞

0

dω
ω3

½δρTðω; 0Þ − σω�: ð3:15Þ

We call this equation sum rule 3 for the transverse channel.
We note that the transport coefficients in the left-hand side
cannot be computed by lattice QCD without suffering from
the problem of analytic continuation. We do not check that
sum rule 3 is satisfied in the chiral and the weak coupling
limits since this was already done in our previous paper
[31]. Instead we just cite the order of magnitude of the three
contributions: the transport peak contribution is of order
CemT2τ2 ∼ Cemg−8 and is equal to the left-hand side of sum
rule 3, while the continuum is much smaller, Cemg−5. The
UV tail contribution is the smallest and of order Cemg−4.
Explicitly taking into account higher order terms in

Eq. (2.23) and expanding δρT in jpj2 order by order, it
should be possible to obtain a corresponding sum rule at
finite momentum. We leave this task for future work.

B. Longitudinal channel

Before discussing the sum rules, let us remember that
the retarded Green function in the longitudinal channel is
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exactly known at zero momentum [17] from the conserva-
tion law of the charge:

ρ00ðω; 0Þ ¼ πχqωδðωÞ; ð3:16Þ

where χq ≡
R
d3xhj0ðxÞj0ð0Þi=T is the charge susceptibil-

ity. By matching this result with the hydro result of
Eq. (2.26), we see that the hydro result is exact for all ω
at zero momentum, and σ=D ¼ χq. For this reason, the sum
rules in the longitudinal channel provide nontrivial infor-
mation only when p is finite. Therefore, we consider only
the finite momentum case in this subsection.
At finite momentum, the diffusion peak appears in the

longitudinal spectral function in addition to the three
structures that were already present in the transverse
channel, as was explained in Sec. II C. To get a feeling
about the possible shape of the spectral function in the
longitudinal channel, we plot the diffusion peak (2.25),
the transport peak (A23), the continuum (B10), and the UV
tail (C7) in Fig. 3. The parameters are the same as in Fig. 2.
Again, the approximate regions for which the above
analytic descriptions are expected to be valid are indicated
by the vertical lines and arrows.
Here we comment on the treatment of the diffusion peak

in the traditional QCD sum rule literature: In the conven-
tional sum rule approach, the delta function structure that is
similar to the hydro result of Eq. (2.26) was suggested
based on the perturbative calculation in Ref. [43], and has
been assumed in the subsequent works. Though the two
approaches give the same form at jpj ¼ 0 as they should
follow the exact results (3.16), the perturbative approach is
not generally reliable at ω ¼ jpj ¼ 0 even when g is small,
so that the hydro approach should be adopted. Actually,
once we consider finite jpj, they yield different results.

1. Sum rule 1

The first sum rule for δρ00 is obtained from Eq. (2.4) for
μ ¼ ν ¼ 0 by using Eqs. (2.15) and (2.24),

σ

D
þOðp2Þ ¼ 2

π

Z
∞

0

dω
δρ00ðω;pÞ

ω
: ð3:17Þ

We call this sum rule 1 for the longitudinal channel. Since
σ=D agrees with the susceptibility χq, the left-hand side can
be evaluated nonperturbatively by lattice QCD without the
problem of analytic continuation.
Let us evaluate the contributions from the diffusion peak,

the transport peak, the continuum, and the UV tail, in the
weak coupling and the chiral limits. By using Eq. (2.25),
the contribution from the diffusion peak is evaluated as

2

π

Z
∞

0

dω
δρ00ðω;pÞ

ω
¼ 2

π
σp2

Z
∞

0

dω
1

ω2 þ ðDp2Þ2 ¼
σ

D
;

ð3:18Þ

which is of order CemT2. This contribution is equal to the
left-hand side of Eq. (3.17). All the other contributions
[the transport peak (A23), continuum (B10), and the UV
tail (C7)] are found to be proportional to p2, so the
contribution from the diffusion peak is dominant when
the momentum is small, and sum rule 1 is satisfied in the
limit considered here.

2. Sum rule 2

The second sum rule is obtained by replacing δGRðωÞ
[δρðωÞ] with ω2δGRðωÞ [ω2δρðωÞ] in the derivation of sum
rule 1, as in Sec. III A 2. The result is

0 ¼ 2

π

Z
∞

0

dωωδρ00ðω;pÞ: ð3:19Þ

This is sum rule 2 for the longitudinal channel, which
constrains the spectral function. We note that this sum rule
can be obtained also by using the current conservation [40].
Therefore, actually this sum rule is exact, and valid at any
value of jpj, not only for small jpj.
We again evaluate the contributions to sum rule 2 in the

weak coupling and the chiral limits. First we check the
diffusion peak contribution. By using Eq. (2.25), we get
the order estimate

2

π

Z
dωωδρ00ðω;pÞ ¼

2

π
σp2

Z
∞

0

dω
ω2

ω2 þ ðDp2Þ2
∼ CemT2τ2p4; ð3:20Þ

where we have introduced a UV cutoff of the diffusion
peak, which is of order Dp2 ∼ τp2.

-0.2

 0
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 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

ω
δρ

00
(ω

,p
)/

(p
2  C

em
T

)

ω/T

diffusion peak
transport peak

continuum
UV tail

FIG. 3. The transport peak, the continuum, and the UV tail of
the EM current spectral function in the longitudinal channel δρ00
as a function of ω. The energy unit is T. The parameters and the
meaning of the vertical line with attached arrows are the same as
in Fig. 2.
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The transport peak (A23) contributes as

2

π

Z
∞

0

dωωδρ00ðω;pÞ

¼ 2

π

2

3
CemNcχp2

Z
∞

0

dω
τ−1

ω2 þ τ−2

×

�
1þ p2

2

5

�
τ−2 þ 11

3
ω2

	
1

ðω2 þ τ−2Þ2
�

¼ 2

3
CemNcχp2

�
1þ p2τ2

3

�
; ð3:21Þ

where we have used
R∞
0 dωτ−1ðτ−2 þ 11ω2=3Þ=

ðω2 þ τ−2Þ3 ¼ τ2ðπ=2Þð5=6Þ.
The continuum contribution is estimated by using

Eq. (B10),

2

π

Z
∞

0

dωωδρ00ðω;pÞ ¼ −CemNc
p2

3π2

Z
∞

0

dωω

×

�
nF

�
ω

2

	
þ p2

40
n00F

�
ω

2

	�

¼ −CemNc
p2

3π2

�
π2T2

3
þ p2

20

�
;

ð3:22Þ

where we have used
R
∞
0 dωωn00Fðω=2Þ ¼ 2.

The UV tail contribution is estimated to be

2

π

Z
∞

0

dωωδρ00ðω;pÞ ¼OðCemg2T2p2;Cemg2p4Þ; ð3:23Þ

by using Eq. (C7).
By looking at all the contributions, we see that the

contributions from the transport peak and the continuum
are larger than the one from the UV tail at order p2.
However, these two contributions are found to cancel each
other, so that sum rule 2 is satisfied at leading order in p2.
For the p4 terms, the contributions from the diffusion peak
and the transport peak are larger than the ones from the
continuum and the UV tail. These contributions are
expected to cancel, but we cannot confirm this here since
the former contribution was not explicitly calculated.

3. Sum rule 3

The third sum rule is obtained by replacing δGRðωÞ
[δρðωÞ] with ω4δGRðωÞ [ω4δρðωÞ] in the derivation of sum
rule 1. It gives

− e2
X

q2fp
2

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��

þ 8

3

1

4CF þ Nf
δhT00i

�
¼ 2

π

Z
∞

0

dωω3δρ00ðω;pÞ;

ð3:24Þ

which we call sum rule 3 in the longitudinal channel. We
note that there is no p4 correction on the left-hand side,
but implicitly the smallness of jpj is assumed so that
hydrodynamics is reliable. As before, the operators on
the left-hand side of this sum rule can be evaluated by
lattice QCD without having the problem of analytic
continuation.
Let us evaluate the contribution to this sum rule in the

weak coupling and the chiral limits. The diffusion peak
contribution is, by using Eq. (2.25), estimated as

2

π

Z
∞

0

dωω3δρ00ðω;pÞ ¼
2

π
σp2

Z
∞

0

dω
ω4

ω2 þ ðDp2Þ2
∼ CemT2τ4p8; ð3:25Þ

where we have used the fact that the UV cutoff of the
diffusion peak is of order τp2.
The transport peak contributes as

2

π

Z
∞

0

dωω3δρ00ðω;pÞ

¼ 2

π

2

3
CemNcχp2

Z
∞

0

dω
ω2τ−1

ω2 þ τ−2

×

�
1þ 2

5

�
τ−2 þ 11

3
ω2

	
p2

ðω2 þ τ−2Þ2
�

¼ OðCemT2p2τ−1ΛÞ þ CemNcχp4
2

5
; ð3:26Þ

where we have used
R∞
0 dωðτ−2 þ 11ω2=3Þω2τ−1=

ðω2 þ τ−2Þ3 ¼ ðπ=2Þð3=2Þ.
The contribution from the continuum (B10) reads

2

π

Z
∞

0

dωω3δρ00ðω;pÞ ¼ −CemNc
p2

6π

2

π

Z
∞

0

dωω3

×

�
nF

�
ω

2

	
þ p2

40
n00F

�
ω

2

	�

¼ −CemNc
p2

3

�
14π2T4

15
þ p2

5
T2

�
:

ð3:27Þ
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Finally, the UV tail contribution (C7) is

2

π

Z
∞

0

dωω3δρ00ðω;pÞ¼
2

π
Cemαsðκ0ÞNcCF

4π2T4

27
p2

×
Z

∞

X0

dX

�
X0

X

�
~aþ1

þOðCemg2T2p4Þ

¼CemNcp2
8π2T4

9

CF

4CFþNf

þOðCemg2T2p4Þ: ð3:28Þ

Let us check the sum rule order by order in p2. For the p2

terms, we see that the contributions from the continuum
and the UV tail are dominating, and their sum is equal
to −CemNcp2π2T42ð8CF þ 7NfÞ=½45ð4CF þ NfÞ�, which
agrees with the left-hand side of sum rule 3 (3.24). The
order p4 terms are dominated by the transport peak and the
continuum, but they cancel each other. Therefore, sum rule
3 is shown to be satisfied up to order p4.

4. Sum rules for δρL
Before ending this section, we note that two sum rules

for δρL can be derived from our three sum rules for δρ00,
(3.17), (3.19), and (3.24). Using ρLðpÞ ¼ p2ρ00ðpÞ=p2,
we get

−
σ

D
þOðp2Þ ¼ 2

π

Z
∞

0

dω
δρLðω;pÞ

ω
; ð3:29Þ

− e2
X

q2f

��
2mfδhψ̄fψfi þ

1

12
δ

�
αs
π
G2

��

þ 8

3

1

4CF þ Nf
δhT00i

�
¼ 2

π

Z
∞

0

dωωδρLðω;pÞ:

ð3:30Þ

Naively, one would expect these to agree at jpj ¼ 0with the
corresponding sum rules for δρT, Eqs. (3.1) and (3.7). This
is indeed the case for the latter sum rule, but the former one
does not agree, because of the −σ=D term on its left-hand
side. This disagreement can be traced back to the singu-
larity of δρL at the diffusion pole ω ¼ −iDp2.

IV. APPLICATION TO LATTICE
QCD DATA ANALYSIS

In this section, we demonstrate that our sum rules can be
used to improve a fit of the spectral function to the latest
Euclidean time lattice QCD data given in Ref. [20]. In
doing this, we make use of the sum rules in three differ-
ent ways.
(1) Providing guidance in the choice of the functional

forms used to parametrize the spectral function.

(2) Reducing the number of fitting parameters (sum
rules 1 and 2).

(3) Determining transport coefficients (sum rule 3).
We note that we use all the sum rules including sum rule 2,
which was missing in the previous work [31].
In the following discussion of lattice QCD data, we

restrict ourselves to the zero-momentum case, as most
currently available lattice QCD data are provided only in
this limit. This simplifies the situation in the sense that for
jpj ¼ 0 the correlator has only one independent component
and some parameters drop out of the sum rules [such as κB
in Eq. (3.1)]. In this section, we use the notation ρðω; TÞ ¼
ρTðω; jpj ¼ 0Þ ¼ ρLðω; jpj ¼ 0Þ for the spectral function.
The application of our sum rules to nonzero momentum
lattice QCD data is left for future work. We hence only use
the sum rules of Eqs. (3.2) and (3.7) at jpj ¼ 0 and (3.15).

A. Parametrization of the spectral function
in vacuum and at finite temperature

Our goal here is to find a functional form of the spectral
function that is consistent with the sum rules 1–3, that is,
that does not lead to divergent results for these sum rules.
Note that some terms of the finite temperature spectra used
in Ref. [20] in fact lead to divergences for sum rules 2 and 3
and therefore violate them.
First, we start with the spectral function in vacuum, for

which we can follow the parametrization of Ref. [20],

1

Cem
ρðω; T ≃ 0Þ ¼ π

3
aVδðω −mVÞ þ ð1þ k1Þ

×
1

4π
Θðω −Ω0Þω2 tanh

�
ωβ0
4

	
: ð4:1Þ

This form is adapted to our notation, which differs from that
of Ref. [20] by a factor of 1=6 and the treatment of Cem.
Here β0 ¼ 1=T0, where T0 corresponds to the low temper-
ature of the “vacuum” lattice ensemble of Ref. [20]
(T0 ≃ 32 MeV). The values of the parameters aV , mV , k
and Ω0 are determined by the fit. Here, the δ-function peak
corresponds to the ρ meson, as an isospin 1 current was
used in Ref. [20]. To check whether the above is a
reasonable parametrization, we have performed a MEM
analysis [22–24] of the vacuum data provided in Ref. [20].
In this simple analysis, we have ignored correlations
between data points at different time slices. The result is
shown as a red line in Fig. 4. Here, we have chosen the
default model, which is an input of the MEM algorithm, to
match the perturbative value of the spectral function at high
energy [ρðωÞ=ω2 ¼ 3=ð2πÞ, blue dashed line in Fig. 4]. It is
seen in the figure that at low energy the spectral function is
dominated by a single peak, while at high energy, there is
an almost flat continuum. We furthermore see hints of
excited states at around aω≃ 0.8, but their effect seems to
be weak. In all, Eq. (4.1) turns out to be a reasonable, if
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somewhat rough, parametrization of the spectral function at
temperatures much below Tc. As is also shown in Fig. 4 and
further discussed later, the fit results for the peak position
mV and the onset of the continuumΩ0 agree well with those
obtained from the MEM analysis.
Next, we consider the spectral function at temperatures

around and above Tc, where large modifications are
expected. As it is already discussed in detail in this work,
we most importantly expect the appearance of a transport
peak at ω≃ 0 and an UV tail at high energy. We again
follow the parametrization used in Ref. [20], but modify
it such that sum rules 1–3 can be satisfied. Specifically,
we use

1

Cem
ρðω; TÞ ¼ ωATΓT

3ðΓ2
T þ ω2Þ ½1 − AðωÞ� þ π

3
aTδðω −mVÞ

þ AðωÞ½1þ ~kðωÞ� 1
4π

ω2 tanh

�
ωβT
4

	

þ c0
4π

Θðω −Ω0Þ
1

ω2

1

½lnðω=ΛQCDÞ�1þ ~a ;

ð4:2Þ

with

AðωÞ ¼ tanh

�
ω2

Δ2

	
ð4:3Þ

and

~kðωÞ ¼ k1 þ k2

�
1 − tanh2

�
ω

Ω0η

	�
: ð4:4Þ

Let us here mention the differences between our above
parametrization and that of Ref. [20]. First, the factors

½1 − AðωÞ� and AðωÞ, which were introduced already in
our previous work [31], are there for cutting off the
divergence in the integral of sum rules 2 and 3.
Furthermore, the factor 1=½lnðω=ΛQCDÞ�1þ ~a, which is
adapted from the perturbative expression, is employed to
make integral of sum rule 2 finite.

B. Lattice data used in the fit

Reference [20] provides correlator data of altogether five
lattice ensembles with respective temperatures 32, 169,
203, 254, and 338 MeV, which in the setting of that work
corresponds to 0.15, 0.8, 1.0, 1.25 and 1.76Tc. The spatial
extent of the lattice is Ns ¼ 64 for all ensembles, while the
temporal size is Nτ ¼ 128, 24, 20, 16 and 12. The lattice
spacing is a ¼ 0.0486 fm and the vacuum pion mass
270 MeV, which shows that this is not yet a physical
point simulation. For more details, we refer the reader to the
original publication of Ref. [20].
The lattice data are related to the spectral function ρðωÞ

through the following integral:

GEðτ; TÞ ¼
Z

∞

0

dω
2π

ρðω; TÞ
Cem

cosh½ωðτ − 1=2TÞ�
sinhðω=2TÞ : ð4:5Þ

Here, τ is defined in the interval 0 ≤ τ < 1=T and is
symmetric with respect to the central point τ ¼ 1=ð2TÞ.
Hence, only half of the temporal data points can be used as
independent information for the fit. Furthermore, for small
τ values, the data could contain lattice artifacts. We follow
Ref. [20] and use data points τ=a ∈ ½4∶48� for the vacuum
ensemble and τ=a ∈ ½4∶Nτ=2� for the others.

C. Treatment of the parameters

We treat the various parameters introduced in
Eqs. (4.1)–(4.4) as follows. We keep mV , k1 and Ω0 fixed
for both vacuum and finite temperature. η, which only
enters in the nonzero temperature parametrization, is also
kept fixed for all ensembles. All other parameters, AT , ΓT ,
Δ, aT , k2 and c0 are allowed to depend on temperature. To
reduce the numbers of unknowns to be fitted, we however
make use of the sum rules 1 and 2 to constrain the
parameters. To be specific, the sum rules are used to fix
AT=ΓT and c0 at each temperature. To be able to use sum
rule 2, one, in principle, needs the quark- and gluon-
condensate values and the energy density as a function of
temperature. For the simple trial analysis of this work, we
employ the values provided in Ref. [44], which we rescale
to two flavors according to the ratio in the perturbative
high-temperature limit. As the quark masses and other
lattice parameters in Ref. [44] are different from those of
Ref. [20], this is not a completely consistent treatment and
will have to be improved in a more quantitative analysis in
the future.
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D. Fit results

Performing our fit, it turns out that even if one uses both
sum rules 1 and 2 as constraints, the lattice data are not
sufficient to determine all parameters of Eqs. (4.2)–(4.4)
with good accuracy. We found for instance that certain
combinations of the ratio AT=ΓT , which is proportional to
the electric conductivity σel, andΔ lead to similar χ2 values.
This means that the systematic uncertainty of these quan-
tities is large and that more data points with smaller errors
will be needed to further constrain the parameters, espe-
cially for the lattice ensembles with temperatures above Tc,
where the number of usable data points is rather small. In
the following we provide one possible fit result, which is
obtained by demanding that σel=T is a monotonically
increasing function of T and take values in reasonable
agreement with previous works [17–20,45–48]. The
numerical result of the fit is given in Table I. These give
a χ2 value of χ2=d:o:f: ¼ 0.87. We emphasize once more
that this is not the only solution and should therefore be
regarded as an illustrative example rather than the final
result. Nevertheless, the purpose of our analysis is to
demonstrate the possibility to use the sum rules to improve
the lattice QCD analysis, and to this end, we believe that
our fit suffices.
Let us now discuss the resulting spectral functions in

some detail. First, we compare in Fig. 4 the vacuum spectral
function of Eq. (4.1) with that obtained by MEM. It is seen
that the two methods indeed give a quantitatively similar
result, while the details naturally disagree due to the
roughness of the parametrization of Eq. (4.1) and the
limited resolution of MEM. Next, we consider the spectral
functions for temperatures around and above Tc. The
spectra are shown in Fig. 5. It is seen in this figure that
the transport peak gradually grows with increasing temper-
ature. One furthermore observes from the behavior of the

discontinuity around aω≃ 0.3 that the UV tail, which is
parametrized to appear above Ω0, grows with larger
temperature. We note that the coefficient of the UV tail
(c0) is negative in this fit, which might indicate that
h ~T00ðω ∼ TÞi is negative, as is suggested from Eq. (C2).
Also note that we here have divided the spectral function by
ω, which means that it approaches a constant at small ω,
while it approaches a form proportional to ω at large
energy.
To examine the behavior of the spectral function more

in detail, we show the same spectral functions with the
vacuum part subtracted in Fig. 6. At low energy, the same
features can be observed as in the previous figure. At high
energy, the dominant part of the continuum gets subtracted
and only the UV tail remains. Also note that because the
residue of the ρ meson mass is reduced at finite temper-
ature, the residue becomes negative for the subtracted
spectral function shown here.TABLE I. Parameter values obtained by our fit using lattice

QCD data. The dimensionfull parameters describing the zero-
temperature spectral function (mV , aV , Ω0) are given in lattice
units (k1 is dimensionless). All other parameters are made
dimensionless by dividing them by appropriate powers of T.

Fitted parameters Fixed 0.8Tc 1.0Tc 1.25Tc 1.67Tc

mV 0.206 � � � � � � � � � � � �
aV 0.000 860 � � � � � � � � � � � �
Ω0 0.319 � � � � � � � � � � � �
k1 0.0909 � � � � � � � � � � � �
η 2.04 � � � � � � � � � � � �
aT=T3 � � � 4.15 2.94 2.15 1.08
ΓT=T � � � 1.36 0.54 ∞ ∞
AT=ðΓTTÞ � � � 0.450 0.728 0.728 0.758
ΔT=T � � � 4.06 2.97 0.79 1.23
c0=T3 � � � −166 −250 −186 −95
k2 � � � −0.0294 −0.0377 −0.0322 −0.0040
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Next, let us examine the quality of our fit by numerically
integrating the spectral function as in Eq. (4.5) and compare
the result with the lattice data of Ref. [20]. This comparison
is shown as red and blue data points in Fig. 7. In these
plots we show the ratio between the lattice data and the
integrated spectral function, which should be 1 for a perfect
fit. Overall, it can be seen that both our and the fit of
Ref. [20] can reproduce the lattice data fairly well,
especially if one considers the very small errors of most

of the lattice data points. For the lowest temperature
(T ¼ 0.15Tc), both fits exhibit almost the same behavior
for small τ=a values, while for τ=a≳ 40, the fit of Ref. [20]
works slightly better than ours. At higher temperatures,
both fits perform equally well, being consistent with the
lattice results within errors for most τ=a values. This shows
that the available lattice data are not sufficient to distinguish
our finite temperature spectral functions from those
obtained in Ref. [20].
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E. Comparison with fit of Ref. [20]

In Ref. [20] a fit similar to ours was performed with the
following functional form. For the vacuum part, the same
parametrization as in Eq. (4.1) was employed, while for
nonzero temperature

1

Cem
ρðω; TÞ ¼ ωATΓT

3ðΓ2
T þ ω2Þ þ

π

3
aTδðω −mVÞ

þ Θðω − ΩTÞ½1þ ~kðωÞ� 1
4π

ω2 tanh
�
ωβT
4

	

þ c0
4π

Θðω −Ω0Þ
1

ω2
ð4:6Þ

was used, which we have again adapted to our notation. It
should be noted that this form is contradicting with the sum
rule 2, as its first and fourth terms lead to divergences in
that sum rule. If one however only uses sum rule 1, a fit is
possible. The authors of Ref. [20] have tested several
models, in which some combinations of parameters are set
to 0 or other fixed values for certain temperatures. For
details, we refer the reader to Ref. [20].
Here, we compare our spectral function with the results

obtained for model 2c in Ref. [20]. The other models of
that work have different features in certain regions of ω, but
the same overall behavior. In Fig. 8 we show the full

(nonsubtracted) spectral functions for four different temper-
atures. It is seen in these figures that while the details of
model 2c differ from our spectral function, the general
structure is the same. The biggest difference between our
spectral function and those of Ref. [20] can be found for the
T ¼ 0.8Tc case in the region around the ρ meson peak,
where all models of Ref. [20] are close to 0, while our
spectral function is smoothly connected to the continuum.
The true spectral function in this region likely lies between
these two extremes, as the ρ meson in reality has quite a
large width and is placed on top of a smooth ππ continuum,
but still is the dominating structure below energies of about
1 GeV (see, for instance, Fig. 1 of Ref. [49]).

F. Evaluation of physical quantities

From the above fit results, we can determine the electric
conductivity from the numerical values of AT=ΓT . In our
parametrization, it is given as

σel
Cem

¼ 1

Cem
lim
ω→0

ρðω; TÞ
ω

¼ 1

3

AT

ΓT
: ð4:7Þ

From the values of Table I, σel is obtained as shown in the
second column of Table II and on the upper panel of Fig. 9.
We however emphasize once again here that other fits with
similar χ2 values but rather different electric conductivities

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6

3a
ρ(

ω
,T

)/
(C

em
πω

)

aω

T = 0.8 Tc

our fit
Mod. 2c

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6

3a
ρ(

ω
,T

)/
(C

em
πω

)

aω

T = 1.0 Tc

our fit
Mod. 2c

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6

3a
ρ(

ω
,T

)/
(C

em
πω

)

aω

T = 1.25 Tc

our fit
Mod. 2c

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6

3a
ρ(

ω
,T

)/
(C

em
πω

)

aω

T = 1.67 Tc

our fit
Mod. 2c
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PHILIPP GUBLER and DAISUKE SATOW PHYSICAL REVIEW D 96, 114028 (2017)

114028-14



are possible and that the numbers shown here just represent
one of many possible solutions. On the upper panel of
Fig. 9, we furthermore show the results obtained in
Ref. [20] for comparison. It is seen that with the exception
of the point at T ¼ 1.67Tc, the results are not consistent,
even though they show the same general tendency. This
once more indicates that the systematic uncertainty in the
evaluation of this quantity is still rather large.

Next, we can now use sum rule 3 to estimate the value
of the second order transport coefficient τJ, as all other
ingredients in that sum rule are known. The results of such a
computation are found in the third column of Table II and
on the lower plot of Fig. 9. It is seen in this figure that τJ
exhibits quite an interesting behavior as a function of T.
Namely, it increases for temperatures below Tc, takes a
maximum at T ¼ Tc and then decreases again for temper-
atures above Tc. It remains to be seen whether this behavior
is an artifact of our fit and/or our parametrization of the
spectral function or if it is a real physical effect.
As a last result, we give the thermal dilepton rate

dNlþl−=dωd3p for vanishing spatial momentum (jpj¼0),
which can be easily obtained from the relation between the
spectral function and the dilepton rate,

dNlþl−

dωd3p
ðjpj ¼ 0Þ ¼ α2em

π3ω2

ρðω; TÞ
eω=T − 1

: ð4:8Þ

The results are shown in Fig. 10, where we have adjusted
the horizontal axis to physical units (MeV) and where we
also show the corresponding model 2c results of Ref. [20].
We see that our result is larger than the one in Ref. [20],
especially at T ¼ 0.8Tc. This difference can be understood
from the absence of the spectrum near the vector meson
peak in Ref. [20], which was discussed in the previous
subsection.

V. SUMMARY AND CONCLUDING REMARKS

In the first part of this paper, we derived and discussed
five exact sum rules (two for the transverse and three for the
longitudinal parts) for the vacuum-subtracted spectral
functions of the vector channel at finite temperature, which
are determined completely by the UV and IR behavior
of the vector correlator. The UV part can be obtained from

TABLE II. The electric conductivity σel and the second order
transport coefficient τJ at various temperatures, as obtained from
the fit to lattice QCD data.

T σel=ðCemTÞ TτJ

0.8Tc 0.150 1.21
1.0Tc 0.243 2.16
1.25Tc 0.243 1.96
1.67Tc 0.253 1.29
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the OPE, while the IR behavior is accurately described
by hydrodynamics. The sum rules are valid for nonzero
momentum p, which should however be small enough such
that the hydrodynamic description of the vector correlator
in the IR regime can be trusted. In the limit jpj → 0,
transverse and longitudinal parts approach each other such
that the sum rules which we have already derived in
Ref. [31] remain.
In perturbation theory, it has been known that three (four)

distinct structures emerge in the transverse (longitudinal)
channel: a transport peak, an exponentially suppressed
continuum, and a power suppressed UV tail in both
channels, and a diffusion peak in the longitudinal channel.
All these structures can, in principle, contribute to the
various sum rules and therefore need to be taken into
account to test their validity. Doing this, we found that the
sum rules are indeed satisfied in the weak coupling regime.
This exercise also gives a rough idea about how the
different parts of the full spectral function can be expected
to contribute in different ways to each sum rule.
In the second part of the paper, we have employed

recent two-flavor dynamical lattice QCD data at almost
zero and finite temperature and at zero momentum to
perform a spectral fit, in which two sum rules (1 and 2)
are used as constraints to reduce the number of param-
eters to be fitted. The third sum rule (3) in turn enables us
to extract the value of the second order transport coef-
ficient τJ. We note that the second sum rule was not used
in our previous work [31]. It, however, needs to be
emphasized here that we found the fit not to be com-
pletely stable in the sense that we confirmed the existence
of several local minima with comparable χ2 values, which
means that more data points with increased precision will
be needed for uniquely determining the true shape of the
spectral function. Nevertheless, we succeeded in demon-
strating that the sum rules can be used to improve the
lattice QCD data analysis.
In our fit, we employed lattice data at zero momentum

and have therefore used the three sum rules already derived
in Ref. [31]. Once lattice data at nonzero momentum are
available, it would be interesting to apply the sum rules
derived in this paper to their analysis. Also, once the lattice
QCD analysis at the physical point and in the continuum
limit becomes available, it will be possible to use the
phenomenological form of the vector spectral function at
T ¼ 0 obtained from experiment. We leave these topics for
future work.
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APPENDIX A: EVALUATION OF THE
TRANSPORT PEAK AT WEAK COUPLING

In this appendix, we evaluate the transport peak appear-
ing in the spectral function by using the Boltzmann
equation in the relaxation time approximation for massless
quarks. This appendix is in essence a recapitulation of
the literature, for example Refs. [50,51]. The Boltzmann
equation reads

v · ∂Xn�fðk; XÞ � eqfðEþ v ×BÞðXÞ ·∇kn�fðk; XÞ
¼ C½n�f�; ðA1Þ

where n�fðk; XÞ is the distribution function for the quark
(antiquark) with momentum k at point X, and vμ ≡ ð1; vÞ
with v≡ k=jkj. C½n�f� represents the collision effect
among the quarks, which is given later.
Now we consider the situation in which the system at

equilibrium is disturbed by weak external EM fields, so that
the distribution function slightly deviates from the equi-
librium, n�fðk; XÞ ¼ nFðjkjÞ þ δn�fðk; XÞ. By lineariz-
ing the Boltzmann equation in terms of δn�fðk; XÞ and EM
fields, we get

v · ∂Xδn�fðk; XÞ � eqfEðXÞ · vn0FðjkjÞ ¼ δC½n�f�; ðA2Þ

where the magnetic field term disappears due to the
isotropy of the system at equilibrium. δC½n�f� is a
linearized form of C½n�f�, whose expression reads

δC½n�f� ¼ −τ−1ðδn�fðk; XÞ ∓ n0FðjkjÞδμfðXÞÞ; ðA3Þ

in the relaxation time approximation. Here we have
introduced the relaxation time τ ∼ ðg4TÞ−1, and the shift
of the chemical potential (δμf) caused by the EM fields.
The second term in the expression above is necessary,
since the deviation of the distribution created by the shift of
the chemical potential does not relax. The shift of the
chemical potential is determined by the conservation law of
particle number,

0 ¼
Z

d3k
ð2πÞ3

X
s¼�1

sδC½nsf�; ðA4Þ

which reduces to

δμfðXÞ ¼ −
1

χ

Z
d3k
ð2πÞ3

X
s¼�1

sδnsfðk; XÞ: ðA5Þ

Here, χ ≡ T2=6. From Eqs. (A2) and (A5), we obtain the
solutions,

δμfðpÞ ¼ ieqf
EðpÞ · p̂

jpj
1 − ðωþ iτ−1ÞAðpÞ

1 − iτ−1AðpÞ ; ðA6Þ
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δnsfðk;pÞ¼−isn0FðjkjÞ
eqfEðpÞ ·v−τ−1δμfðpÞ

v ·pþ iτ−1
; ðA7Þ

where we have performed the Fourier transformation
(X → p) and introduced AðpÞ≡ ln½ðωþ jpj þ iτ−1Þ=
ðω − jpj þ iτ−1Þ�=ð2jpjÞ.
The induced current is given by

jμðpÞ ¼ 2e
X
f

qfNc

Z
d3k
ð2πÞ3 v

μ
X
s¼�1

sδnsfðk; pÞ: ðA8Þ

By using this expression in momentum space and the linear
response theory relation of Eq. (2.22), Eq. (A7) leads to
the retarded Green function GR

μνðpÞ, as is shown below. We
note that j0 ¼ −2e

P
fqfNcχδμf, which indicates that χ is

essentially the susceptibility.

1. Transverse channel

The transverse component of GR is given by

GTðpÞ ¼ 4CemNc
1

ð2πÞ3
Z

2π

0

dϕ
Z

1

−1
d cos θ

Z
∞

0

djkjjkj2

× n0FðjkjÞ
ωsin2θcos2ϕ

ω − jpj cos θ þ iτ−1

¼ −CemNcχ
ω

p2

× ½ωþ iτ−1 − AðpÞðp2 þ 2iτ−1ωþ ðiτ−1Þ2Þ�:
ðA9Þ

In the hydro limit, ω; jpj ≪ τ−1, this reduces to

GTðpÞ≃ CemNcχ
2

3
τω½i − τω�; ðA10Þ

where we have used

AðpÞ≃ 1

iτ−1

�
1−

ω

iτ−1
þ 3ω2 þp2

3ðiτ−1Þ2 −
ωðω2 þp2Þ
ðiτ−1Þ3

�
: ðA11Þ

By comparing this expression with the hydro result of
Eq. (2.23), we derive the following expression for the
transport coefficients:

σ ¼ CemNcχ
2

3
τ ¼ CemNc

T2

9
τ; ðA12Þ

τJ ¼ τ; ðA13Þ

κB ¼ 0: ðA14Þ

Next, we obtain the spectral function for small jpj.
Expanding Eq. (A9) in terms of jpj, we derive

GTðpÞ≃−CemNcχ
2

3

ω

ωþ iτ−1

�
1þ1

5

p2

ðωþ iτ−1Þ2
�
; ðA15Þ

where we have used

AðpÞ≃ 1

ωþ iτ−1

�
1þ 1

3

� jpj
ωþ iτ−1

	
2

þ 1

5

� jpj
ωþ iτ−1

	
4
�
:

ðA16Þ

The imaginary part of Eq. (A15) reads

ρTðpÞ≃CemNcχ
2

3

τ−1ω

ω2þτ−2

�
1þp2

5

ð3ω2−τ−2Þ
ðω2þτ−2Þ2

�
: ðA17Þ

2. Longitudinal channel

The longitudinal component of GR is given by

GR
00ðpÞ ¼ 2CemNcχ

1 − ðωþ iτ−1ÞAðpÞ
1 − iτ−1AðpÞ : ðA18Þ

In the hydro limit, ω; jpj ≪ τ−1, this reduces to

GR
00ðpÞ≃ ip2

2CemNcχτ

3

1

ðωþ iτp2=3Þ ; ðA19Þ

where we have retained only the leading order terms.
Comparing this expression with the result of hydrodynam-
ics (2.24), we get

D ¼ τ

3
; ðA20Þ

and also confirm the Einstein relation,

σ ¼ 2CemNcχD; ðA21Þ

where the factor 2Nc originates from the spin and color
degrees of freedom of the quark.
Now, we can obtain the spectral function for small jpj.

Expanding Eq. (A18) in terms of jpj, we derive

GR
00ðpÞ≃ −

2

3
CemNcχ

jpj2
ωþ iτ−1

1

ω

×

�
1þ

�
3

5
þ iτ−1

3ω

	� jpj
ωþ iτ−1

	
2
�
: ðA22Þ

The imaginary part of the above expression reads

ρ00ðpÞ≃2

3
CemNcχ

p2

ω

τ−1

ω2þτ−2

×

�
1þp2

2

5

�
τ−2þ11

3
ω2

	
1

ðω2þτ−2Þ2
�
: ðA23Þ

FINITE TEMPERATURE SUM RULES IN THE VECTOR … PHYSICAL REVIEW D 96, 114028 (2017)

114028-17



APPENDIX B: EVALUATION OF THE
CONTINUUM AT WEAK COUPLING

In this appendix, we evaluate the continuum in the weak
coupling and massless limit. In the free limit, the Green
function of the EM current can be calculated by using
Wick’s theorem as [52]

GR
μνðxÞ ¼ iθðtÞCemNcTr½γμS>ðxÞγνS<ð−xÞ

− γμS<ðxÞγνS>ð−xÞ�; ðB1Þ
where S>ðxÞ≡ hψðxÞψ̄ð0Þi and S<ðxÞ≡ hψ̄ð0ÞψðxÞi.
Here, we have omitted the flavor indices for simplicity.
By performing the Fourier transformation and taking the
imaginary part, the spectral function reads

ρμνðpÞ ¼
1

2
CemNc

Z
d4k
ð2πÞ4 Tr½γμS

>ðkÞγνS<ðk − pÞ

− γμS<ðkÞγνS>ðk − pÞ�

¼ 2CemNc

Z
d4k
ð2πÞ4 Tr½γμ=kγνð=k − =pÞ�

× ρ0ðkÞρ0ðk − pÞ½nFðk0 − ωÞ − nFðk0Þ�; ðB2Þ
where we have used S>ðkÞ ¼ =k2ρ0ðkÞ½1 − nFðk0Þ� and
S<ðkÞ ¼ =k2ρ0ðkÞnFðk0Þ, and introduced the free quark
spectral function as ρ0ðkÞ≡ πsgnðk0Þδðk2Þ. The two delta
functions can be written as

δðk2Þ ¼
X
s¼�1

δðk0 − sjkjÞ
2jkj ; ðB3Þ

δð½k − p�2Þ ¼ 1

2jkjjpj δ
�
cos θ −

2k0ω − p2

2jkjjpj
�

× θ

�
−p2

�
ðk0Þ2 − k0ωþ p2

4

��
; ðB4Þ

where we adopted the standard polar coordinate, by
assigning p to point into the z-direction. We also note
that θ in the first line is the angle between k and p while
that in the second line is a step function. Therefore, the
expression of Eq. (B2) becomes

ρμνðpÞ ¼ CemNc
1

8π2jpj
Z

2π

0

dϕ
Z

∞

0

djkj
X
s¼�1

× ½kμðk − pÞν þ kνðk − pÞμ þ gμνk · p�

× sgnðsjkj − ωÞsθ
�
−
�
ðk0Þ2 − k0ωþ p2

4

��

× ½nFðsjkj − ωÞ − nFðsjkjÞ�; ðB5Þ

where the values for k0 and cos θ are determined by the
delta functions of Eqs. (B3) and (B4), and we have used
p2 > 0, which is justified because we consider the case that

ω ∼ T ≫ jpj. From now on, we focus on the case for which
ω > 0. Then, only the contribution with s ¼ þ1 remains,
and the step function restricts the range of jkj to
k− < jkj < kþ, where k� ≡ ðω� jpjÞ=2. Thus, Eq. (B5)
becomes

ρμνðpÞ ¼ −CemNc
1

8π2jpj
Z

2π

0

dϕ
Z

kþ

k−

djkj

× ½kμðk − pÞν þ kνðk − pÞμ þ gμνk · p�
× ½1 − nFð−jkj þ ωÞ − nFðjkjÞ�; ðB6Þ

where we have used ω − jkj > ðω − jpjÞ=2 > 0. From
the distribution factor ½1−nFð−jkjþωÞ−nFðjkjÞ�¼
½1−nFð−jkjþωÞ�½1−nFðjkjÞ�−nFð−jkjþωÞnFðjkjÞ, we
see that the physical processes corresponding to this
expression are the quark antiquark pair-creation process
and its inverse.

1. Transverse channel

δρTðpÞ can be evaluated by setting μ ¼ ν ¼ 1 and
subtracting the T ¼ 0 part from Eq. (B6),

δρTðpÞ ¼ CemNc
1

8π2jpj
Z

2π

0

dϕ
Z

kþ

k−

djkj

× ½2k2cos2ϕð1 − cos2θÞ − jkjωþ jkjjpj cos θ�
× ½nFð−jkj þ ωÞ þ nFðjkjÞ�

¼ −CemNc
p2

4πjpj3
Z jpj=2

−jpj=2
djkj

�
p2

4
þ k2

	

×

�
nF

�
ω

2
− jkj

	
þ nF

�
ω

2
þ jkj

	�
; ðB7Þ

where in the last line, we have used cos θ ¼ ð2jkjω −
p2Þð2jkjjpjÞ and have changed the integration variable
as jkj → jkj − ω=2.
We can safely expand this in terms of jkj=ω, because

jkj≃ jpj ≪ ω, which leads to

δρTðpÞ≃ −CemNc
ω2

πjpj3
�
1 −

p2

ω2

	Z jpj=2

0

djkj
�
p2

4
þ k2

	

×

�
nF

�
ω

2

	
þ k2

2
n00F

�
ω

2

	�

≃ −CemNc
ω2

6π

�
1 −

p2

ω2

	�
nF

�
ω

2

	
þ p2

20
n00F

�
ω

2

	�

≃ −CemNc
ω2

6π

�
nF

�
ω

2

	

þ p2

�
1

20
n00F

�
ω

2

	
−

1

ω2
nF

�
ω

2

	��
: ðB8Þ
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2. Longitudinal channel

By setting μ ¼ ν ¼ 0 in Eq. (B6), we get

δρ00ðpÞ ¼ CemNc
1

2πjpj
Z jpj=2

−jpj=2
djkj

�
k2 −

p2

4

�

×

�
nF

�
ω

2
− jkj

	
þ nF

�
ω

2
þ jkj

	�
; ðB9Þ

where we have changed the integration variable as before.
Expanding the integrand in terms of jpj=ω, we derive

δρ00ðpÞ ¼ CemNc
2

πjpj
Z jpj=2

0

djkj
�
k2 −

p2

4

�

×

�
nF

�
ω

2

	
þ k2

2
n00F

�
ω

2

	�

¼ −CemNc
p2

6π

�
nF

�
ω

2

	
þ p2

40
n00F

�
ω

2

	�
: ðB10Þ

APPENDIX C: EVALUATION OF THE UV TAIL
AT WEAK COUPLING

In this appendix, we briefly recapitulate the derivation of
the UV tail in the EM current spectral function from the
OPE [34]. The UV behavior of the EM current retarded
correlator is described by the OPE of Eqs. (2.6) and (2.7).
Among the three terms in these expressions, only hT00

f i is
not RG invariant. This operator yields imaginary parts of
the retarded correlator, as can be understood as follows:
The scaling relation (2.12) can be rewritten as

T 000
f ðκÞ≃ T 000

f ðκ0Þ þ a0 ln
�
κ20
κ2

	
b0
4π

αsT 000
f ;

~T00ðκÞ≃ ~T00ðκ0Þ þ ~a ln

�
κ20
κ2

	
b0
4π

αs ~T
00
f ; ðC1Þ

when κ is close to κ0. It was shown in Ref. [34] that the
factor lnðκ20=κ2Þ generates an imaginary contribution iπ,
due to the analytic continuation to the real time. Following

this prescription, the imaginary parts of the retarded
correlators (2.6) and (2.7) read

δρTðpÞ ¼ e2
X

q2f
8

9

ω2 þ p2

ðp2Þ2 αsðωÞ

×

�
2CFδhT 000

f ðωÞi þ 1

Nf
δh ~T00ðωÞi

	
; ðC2Þ

δρ00ðpÞ ¼ e2
X

q2f
8

9

p2

ðp2Þ2 αsðωÞ

×

�
2CFδhT 000

f ðωÞi þ 1

Nf
δh ~T00ðωÞi

	
: ðC3Þ

We note that this expression is valid when the OPE is
reliable (ω ≫ T;ΛQCD).
In the chiral and weak coupling limits, the operator

expectation values at the renormalization scale κ0 ∼ T read

hT00
f i ¼ Nc

7π2T4

60
; ðC4Þ

hT00
g i ¼ 2CFNc

π2T4

15
; ðC5Þ

which, by using the scaling relation of Eq. (2.12), leads to

δρTðpÞ ¼ Cem
1

ω2

�
1þ 3

p2

ω2

	
αsðκ0ÞNcCF

4π2T4

27

×

�
ln ðκ0=ΛQCDÞ
ln ðω=ΛQCDÞ

�
~aþ1

; ðC6Þ

δρ00ðpÞ ¼ Cem
p2

ω4

�
1þ 2

p2

ω2

	
αsðκ0ÞNcCF

4π2T4

27

×

�
ln ðκ0=ΛQCDÞ
ln ðω=ΛQCDÞ

�
~aþ1

: ðC7Þ

Here, we have retained terms up to next-to-leading order in
the small jpj expansion.
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