PHYSICAL REVIEW D 96, 114027 (2017)

Transport coefficients from the QCD Kondo effect
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We study the transport coefficients from the QCD Kondo effect in quark matter which contains heavy
quarks as impurity particles. We estimate the coupling constant of the interaction between a light quark and
a heavy quark at finite density and temperature by using the renormalization group equation up to two-loop
order. We also estimate the coupling constant at zero temperature by using the mean-field approximation
as nonperturbative treatment. To calculate the transport coefficients, we use the relativistic Boltzmann
equation and apply the relaxation time approximation. We calculate the electric resistivity from
the relativistic kinetic theory, and the viscosities from the relativistic hydrodynamics. We find that
the electric resistivity is enhanced and the shear viscosity is suppressed due to the QCD Kondo effect

at low temperature.
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I. INTRODUCTION

The Kondo effect is one of the important subjects in the
quantum impurity physics. In 1964, Kondo explained the
mechanism for the logarithmic increase of the resistivity in
metal with spin impurity atoms [1]. He analyzed the
interaction between a conducting electron and a spin
impurity atom in perturbative treatment, and found that
the logarithmic enhancement of the resistivity, which is
now called the Kondo effect, is a quantum phenomenon
caused by three conditions: (i) Fermi surface (degenerate
state), (ii) loop-effect (particle-hole creation near the Fermi
surface) and (iii) non-Abelian interaction (SU(N) sym-
metry; N = 2 for spin) [2—4]. It turned out that the Kondo
effect is a phenomenon that the weak interaction at high
energy scale becomes the strong interaction at low energy
scale by medium effect due to the infrared instability near the
Fermi surface. The three conditions (i), (ii) and (iii) for the
Kondo effect are realized in a variety of quantum many-body
systems. The research of the Kondo effect has been extended
in artificial materials such as quantum dots and atomic gases,
where several parameters are changeable under control [5—
11]. Recently, the Kondo effect has been investigated also in
quark matter with heavy quarks and in nuclear matter with
heavy hadrons, though the relevant energy scale is much
larger than the electron systems [12—22].l However, the
experimental quantities for observing the Kondo effect in
quark matter as well as in nuclear matter have not been yet
studied in detail thus far. In the present article, we study the
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transport coefficients of the quark matter with the heavy
quark when the Kondo effect occurs.

Let us briefly summarize the current status of the
researches of the QCD Kondo effect in quark matter.
When the nucleus is compressed with high pressure so
that the two nucleons overlap spatially, the quarks confined
inside the nucleons become deconfined and they are
released to be a fundamental degrees of freedom. Such a
state of matter is called the quark matter (see e.g. [25,26]
and the references therein). When there is a heavy quark in
quark matter, the conditions (i), (ii) and (iii) of the Kondo
effect are satisfied. As for (i) and (ii), it is clear that there is
a Fermi surface by the light quarks, and there are also pairs
of a light quark and a hole near the Fermi surface. As for
(iii), there is a non-Abelian interaction with the SU(3) color
symmetry between a light quark and a heavy quark,
because the gluons can be exchanged between the two.
This Kondo effect induced by the color degrees of freedom
may be called the QCD Kondo effect.

In the early study, the interaction was assumed to be a zero-
range (contact) type with color exchange. The amplitude of
the scattering between the light quark and the heavy quark
was analyzed up to one-loop order including virtual excita-
tions of pairs of a light quark and a hole [12]. It was
demonstrated that even in weak coupling regions, the
scattering amplitude at one-loop level is logarithmically
enhanced as the energy scale decreases, and eventually it
approaches the tree level amplitude. This indicates that the
system becomes a strongly interacting one in low energy
scales. In QCD, of course, the gluon exchange between two
quarks is a finite-range force. However, because the gluon
exchange is screened by the Debye screening in the electric
component and the magnetic screening in the magnetic
component [27], the scattering amplitude in the gluon
exchange which is projected in S-wave channel has
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essentially the same behavior as the one with the contact
interaction [13]. In Ref. [13], the coupling constant in the
QCD Kondo effect was analyzed by the renormalization
group equation. As a result, it was shown that the coupling
constant becomes enhanced logarithmically in the low energy
scale and becomes divergent at the Kondo scale (the Landau
pole). Therefore, the perturbative treatment turns to be
inapplicable at lower energy scale below the Kondo scale.

One of the conditions of the Kondo effect, i.e. existence
of degenerate state, is not limited to the Fermi surface. As
an alternative situation, it was found that the environment
with a strong magnetic field is also suitable for the Kondo
effect. There, the degenerate state is realized as the Landau
degeneracy in the lowest Landau level, which can induce
the Kondo effect [14].

For the strongly interacting system in the lower energy
scale below the Kondo scale, we need to perform the
nonperturbative analysis for the ground state of the system
because the perturbative treatment is no longer applicable.
For electron systems with the Kondo effect, there are several
nonperturbative treatments, such as the numerical renorm-
alization group, the Bethe ansatz, the conformal field theory
and so on [2—4]. Among them, the conformal field theory has
been applied to the general k-channel SU(N) Kondo effect
[15]. In the case of the QCD Kondo effect, the channel
number k corresponds to the number of flavor, while N
corresponds to the number of color. Those nonperturbative
methods give exactly correct answers about the properties of
the ground state. On the other hand, there is the mean-field
approximation as more intuitive method [28-31]. The mean-
field approximation was applied to the QCD Kondo effect,
where the condensate is formed by the pairs of a light quark
and a heavy quark (Kondo condensate) in the ground state as
a nontrivial ground state (Kondo phase) [17]. The recent
study along this line has shown that the Kondo phase has also
nontrivial topological properties and exhibits the hedgehog
spin structure with winding numbers £1 as topological
charges in momentum space [18]. In [17,18], as an ideal
situation, it was assumed that the heavy quarks are distrib-
uted in the whole three-dimensional space with uniform
density like the heavy quark matter. This ideal setting in fact
made the analysis simple very much. On the other hand, it
was considered that a heavy quark exists as an impurity
particle in quark matter, and that the Kondo condensate is
formed on the impurity site as in the heavy quark matter case
[16]. In this case, it was presented that the spectral function
of the heavy quark is given by the Lorentzian type function
due to the Kondo condensate, and that the resonant state
(Kondo resonance) is formed near the Fermi surface.

So far we have considered the interaction between the
light quark and the heavy quark only. In more realistic case,
however, we need to consider the interaction between two
light quarks also. In the literature, two kinds of interaction
was considered as a competition to the Kondo condensate:
the diquark condensate formed by light quarks on the Fermi
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surface (color superconductivity) [19] and the chiral con-
densate formed by a light antiquark and a light quark [20].
Those studies are important, because there would exist
many types of interaction in quark matter. Such a high
density state with heavy quarks may be realized in the
relativistic heavy ion collisions such as in RHIC, LHC,
GSI-FAIR, NICA, J-PARC and so on, and inside the
neutron stars with quark flavor change induced by high
energy neutrinos from universe [17]. In any case, the
competition among the diquark condensate, the chiral
condensate and the Kondo condensate will be important
to determine the thermodynamic and transport properties of
the quark matter.

The purpose in the present article is to investigate the
transport properties from the QCD Kondo effect in the
quark matter when a heavy quark exists as an impurity
particle. Concretely, we investigate the electric resistance
and the shear viscosity in the presence of the QCD Kondo
effect. We use the relativistic Boltzmann equation for
calculating the transport coefficients (cf. [32]), and adopt
the relaxation time approximation for the collision term. In
this approximation, the relaxation time is related to the
coupling constant of the interaction between the light quark
and the heavy quark in medium. Importantly, the coupling
constant is not a constant number but is a temperature-
dependent quantity. We estimate the coupling constant at
finite temperature by using the renormalization group
equation up to two-loop order. Because the perturbative
treatment breaks down at low temperature, we perform also
the mean-field approximation for the nonperturbative treat-
ment at zero temperature. With those setups, we investigate
the transport coefficients from the QCD Kondo effect.

The article is organized as the followings. In Sec. II, we
formulate the interaction Lagrangian with the color
exchange between a light quark and a heavy quark. By
this Lagrangian, we analyze the renormalization group
equation up to two-loop order perturbatively. We also adopt
the mean-field approximation as nonperturbative treatment
at zero temperature. In Sec. I1I, we introduce the relativistic
Boltzmann equation and formulate the electric resistivity
based on the relativistic kinetic theory, and the viscosities
based on the relativistic hydrodynamics. In Sec. IV, we
present the numerical result for the relaxation time, and
show the electric resistivity and the shear viscosities by
using the effective coupling constants estimated in Sec. II.
The final section is devoted to a summary. In the Appendix,
we give a derivation of the equation of motion for massless
fermions to be used in the relativistic Boltzmann equation.

II. ANALYSIS OF QCD KONDO EFFECT
A. Lagrangian

We consider the color-current interaction between a light
quark and a heavy quark, mimicking the one-gluon
exchange interaction in QCD [12,13]. The color exchange
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in the interaction is essential for the QCD Kondo effect.
We consider the N flavors for the light (massless) quarks.
The Lagrangian is given by

L=y +pw )y + ¥,iv- 0¥,
N2—1 )
=G Y (' T)(P,r, T,), (1)
a=1

with y=(y,,....py,) and T¢=1"/2 (A* with a=1,...,
N2—1 are the Gell-Mann matrices) [12,16-18]. u is the
chemical potential for the light quarks, and G, > 0 is the
coupling constant. Concerning the heavy quark, we intro-
duce the effective field of the heavy quark ¥, which is
defined by ¥,(x) = ™" L2 (x), where ¥(x) is the
original heavy quark field and »* is the four—velocity.2
The reason for introducing the effective field is explained
in the followings. Because the mass of heavy quark M can
be regarded as a sufficiently heavy quantity, it can be
regarded as being much larger than the typical scale in the
quark matter, such as the light quark chemical potential p.
Hence, it is convenient to separate the original heavy quark
momentum P into the on-mass-shell part and the off-mass-
shell (residual) part: P¥ = Mv* + k* with the conditions
vy, =1 (1° > 0) and k* being a small quantity (k* < M).
The factor ¢™”* means to pick up the on-mass-shell
component, and to leave only the off-mass-shell component
in the effective field. Hence the derivative for ¥, in Eq. (1)
acts for the residual momentum in momentum space.
The factor %’ is the projection operator to the positive-
energy component in ¥. Notice the relation ¥, = ¥,.
In the following discussions, we choose the rest frame:
v = (1,0).

The Lagrangian (1) has two model-dependent parame-
ters: the coupling constant G, and the ultraviolet momen-
tum cutoff parameter Ayy for regularization scheme of
loop integrals. We use the three-momentum cutoff for
regularization scheme because the finite density violates
the Lorentz invariance. The values of G, and Ayy are
determined to reproduce the D meson properties in vacuum
[16-18].

Based on the Lagrangian (1), we consider the scattering
process of a light quark and a heavy quark in quark matter:
q1(p) + Q;(P) = qi(p') + Qi(P'), where p (p') is the
initial (final) momentum of the light quark, and P (P’)
is the initial (final) momentum of the heavy quark. The
indices [, k, i, j = 1, ..., N, are the color indices. Because
the light quarks lie in quark matter, the light quark
propagator is different from that in vacuum. The light
quark propagator for four-momentum g¢* = (qq,q) is
given by

“See e.g. [33,34] for more details about the heavy quark limit.
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i(f+pr°)
(qO - (eq _M) + isgn(eq —ﬂ)g)(% - (_eq _/“’) - ié‘) '
(2)

where €, = |g| is an energy for three-momentum g, ¢ is an
infinitesimal and positive number for choosing the pole in
the propagator on the complex energy plane, and sgn(x) is
a sign function: sgn(x) =1 for x > 0 and sgn(x) = —1
for x < 0.

When the QCD Kondo effect occurs, the coupling
constant of the interaction vertex between a light quark
and a heavy quark is not a constant value (G,.), but it is
modified by the medium effect (G;). In the following two
subsections, we will investigate how the coupling constants
are modified due to the QCD Kondo effect in quark matter.
First, we will investigate this problem by the perturbative
analysis where the medium effect is taken into account by
the renormalization group equation. However, this treat-
ment is valid only in the perturbative regime at finite
temperature. To obtain the ground state at zero temperature,
second, we will introduce the mean-field approximation
and will analyze the ground state property.

B. Renormalization group equation up to
two-loop approximation

We investigate the modifications of the coupling con-
stants by the QCD Kondo effect in quark matter by using
the renormalization group equation. The study up to one-
loop order was given in Refs. [13,16]. In the present
discussion, we calculate the renormalization group equa-
tion up to two-loop order by following the description in
Ref. [19]. Based on the Lagrangian (1), we introduce the
bare Lagrangian which is expressed by the bare field ¥,
and the bare coupling constant G .5:

L=+ )y + ¥pv - i0¥,p
N2-1 B
- GCB Z (l/_/yﬂTal//) (lPUBYy TavaB)’ (3)
a=1

where ¥,5 and G_p are related to the dressed (physical)
field ¥, and coupling constant G, by

lIIUB =V Z‘I’lpv (4)
Gep = Z4'ZsG... (5)

where Zy and Z; are introduced for the renormalization
constants for the field and the coupling constant, respec-
tively. Notice that Zy and Z; are scale-dependent quan-
tities. In the following discussions, instead of Zy and Z;,
we define
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5\1} - Z‘I’ - 1, (6)
66 =Zg— 1. (7)

for convenience of calculations. By using the physical
field ¥, and coupling constant G., we rewrite the
Lagrangian (3) as

= J/(l@ + .uyo)l// + qjvv 0¥,

N2 1
-G, Z wyrT ) UyﬂT ¥,) + 6P, - i0P,
N2-1 ~
- 5GGC Z (l/_/yﬂTal//> (IIJD],MTHLPU)_ (8)
a=1

Notice that the last two terms proportional to dy or d; are
added for the renormalization to Eq. (1). We define the
p-function for the renormalization group equation of the
coupling constant,

for the energy scale A relevant to the interaction. Noting
that the scale-dependence is included in Zy and Z; in
Egs. (4) and (5), or 6y and 65 in Egs. (6) and (7), we can
express Eq. (9) as

B(G,) = (-A%+A%‘\P> G.  (10)

by using G.= (1 -5 + 6y)G.z and neglecting higher
order terms. In the following discussions, we investigate the
A-dependence of oy and o5 to obtain the f function up to
two-loop order.

As for dg, we consider the four-point vertex of the light
quark and the heavy quark up to two-loop order:

ity =i\ i) 4 ir? +irs, (11)

where lF (=0, 1, 2) is the four-point vertex with
[-loop, and iI'{ is the counterterm. The concrete forms of
the equations are given in the followings.

The four-point vertex with the one-loop diagrams consist
of the particle part (p) and the hole part (%),

it = ir{? " (12)

as shown in Fig. 1. Their concrete forms are given by
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N

FIG. 1. Diagrams for one loop (zF Y (left) and 1F " (right)).
The thin lines represent the light-quark propagators, the thick
lines represent the heavy-quark propagators.

0" =(=iG )2/ L TP S — T
(2z)* po—(qo-+p)+ie”

d’q 1 O(u—e,)
=G? j ogr 13
L/(Zn’)3( )26,164 p0+l€€ a¥ % kij (13)

. . d‘q .
lré(tl)h = (_ch)z/ (271_)4 yolSF(Q)yO
i
X Th
—po+ (qo + ) + ie~
¢ 1 O _€q)
= G%/(zﬂ_)al_ : €qyOTZl,ij’ (14)

2e,€4 — po t+ i€

where we define

NZ2-1 N, N,
kl g Z Z kk/(T k'l Z
cd=1k= i'=1
1 1 1
=§<1 N2>5k15 FCTkl,ijv (15)
and
N2-1 N,
kllj Z Z kk’(T Kl Z(T i’ Tc
cd=1k= i'=1
1 1 1 N
= 1 —— |646;; — ———C>T (16
2( N%) k1Vij (Nc D) kl.ij )
with
N2-1
Ty, = Z(Ta)kl(Ta)ij’ (17)
a=1

obtain
; 3
X (1)_—1 0,2 d*q 1 NC
) = =02 P ERALY
iy 2 4 L[<ﬂ (2”)3|: €q_p0< 2 klij
+ ind(e, — po)
1 2 N,
X{(l—ﬁ>5k15”+( N — + 2>Tkllj}:|

for short notations. As a sum of Eqgs. (13) and (14), we
q
—i 1 N.
~ 502 <_7Tkl.ij> PG In A, (18)
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FIG. 2. Diagram for the four-point vertex with two-loop. The
thin lines represent the light-quark propagator, the thick line
represents the heavy-quark propagator. The dashed lines are the
interaction.

where we introduce the infrared momentum cutoff in the
momentum integrals, A, and restrict the integration range to
[0, — A] and [u + A, Ayy], and we leave only the diver-
gent term for the infrared limit A — O in the last equation
after the arrow.

Next, we consider the two-loop diagram presented in
Fig. 2. This diagram gives the strongest (infrared) diver-
gence around the Fermi surface, relevant to the renormal-
ization group equation, among other possible diagrams.
The four-point vertex at this order is given by

N2-1 N.
(2 .
Ty =(-)(=iG. N, > N 1418, 15,15, T, T,
a,b,c=1 i’ﬁj’,m,n:l
d*q, d*q,
x [ AL T2 (s 0j§ 0
| sy e iSs a2

i
X .
—(q) +u) + (43 + )+ ie

l
xX—s - —y0
—(gy +1) + (g3 +u) +ie
1 1
.3 4 0
_)_lGCNf4N622_nZWH (InA)y Thijs (19)

where we introduce the four-momenta ¢} = (q?,ql) and
g5 = (¢9,¢q,) for the internal loops, and we restrict the
momentum range in the integration to [0,u — A] and
[+ A, Ayy], and we leave only the divergent term for
the infrared limit A — 0 in the last equation after the arrow.
In the above calculation, we use the relation

NZ-1

N.
; 1
Z Z TZIT?’j’T?i’T?nanzmT;rj - —WT](M]'. (20)
a,b.c=17j mn=1 c

Finally, we calculate the counterterm which is given by
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il“j‘ = i<_5GGc)70Tkl,ij‘ (21)

Substituting Egs. (18), (19) and (21) into Eq. (11), we
find that A-dependence can be canceled when d; satisfies

i1 (N
~ (22 )62
22n’2< 2> o
GIN, 2 L A b i(—es6) =0, (22)
—1 ——— 4L —F=—F~ I\— =
TN, “ 222 a2t 6He) =

hence

N
N 2G. InA ——1

5 =
G = g2t 167°N.,

G2 InA.  (23)

This is the A-dependence of d; up to two-loop order.
As for oy, we consider the two-point vertex function, i.e.
the propagator of the heavy quark,

in -

dx(p) .
v- p(l - d(v(_’;)’v_pzo) + ie

. dX(p)
l<1 + d(v-p) 17~p=0>

~ 24
v-p+ie ’ (24)

where X(p) is the self-energy of the heavy quark (p is the
residual momentum).3 From the last equation in Eq. (24),
the renormalization condition is given by

dx(p)
d(’l) ’ p) v-p=0

= 0. (25)

The self-energy is given as a sum of the terms from the loop
diagrams and the counterterm:

—iZ(p) = —iZ(p)"°P — iZ(p). (26)

The loop contribution, which is shown in Fig. 3, is
calculated by

‘We suppose that 2(0) is sufficiently small as compared to the
heavy quark mass, and it will be irrelevant to the leading order in
the renormalization group equation.
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(T ),

FIG. 3. Diagram for the heavy quark propagator with two-loop.
The thin lines represent the light-quark propagator, the thick line
represents the heavy-quark propagator.

~i(p) = (~1)(~iC,

N2—-1 N,
X Z Z (Tb)ik(Tb)mn(Tc)nm(Tc)kj
b,c=1k.m,n=1

d*q, d* 612
X/(2zz)4 (271) (}’ ZSF(QI)}’ lSF(‘Iz))

i

v-(p—qi+qp) +ie’ 2
by using the relation
N2-1 N,
30 Ty = e 29
The counterterm is given by
—iZ(p)* = ibyd;v - p. (29)

Substituting Egs. (27) and (29) to Eq. (26), we obtain

d
—ix(p))
dl)p( v-p=0
N2 -1 1
=iG? 5 — )
‘74N, ”< g7t Aoy — >+’ i)
iG> N?
=-2—<¢° ¢ Sl [OwO; :, 30
g 4 AN t/ﬂ AUV ,M+l YYij ( )
hence
G> N2-1 A
Sy =2—S—¢ 41 . 31
¥ 87'[4 4NC H nAUV—ﬂ ( )

This is the A-dependence of dy up to two-loop.
Substituting Eqgs. (23) and (31) into Eq. (10), we obtain

Ny + N? -

NC 272 1 2
—_ 1— (32
p(G,) el Gc< N M G, (32)

Instead of A, we define the alternative variable £ =
—InA/Ag (A < Ay and Ay = Ayy). The high energy scale
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Ay gives the starting point for the renormalization. It will be
natural to assign Ayy for A and to consider that the G, at
the energy scale A is almost identical to the value of G, in
the Lagrangian (1). Then, we obtain

M2G3<1 -

where A can be regarded as the temperature of the system
(A = T).* Solving this equation, we know how the coupling
constant is changed as a function of the low-energy scale A
or the temperature 7.

As a simple case, let us consider the one-loop level by
leaving only the term proportional to G2 in the right-hand
side of Eq. (33). Then, the renormalization group equa-
tion (33) is simplified to

dG. N,
d¢  8x»?

Ny+N2—-1
S w0 69

dG, _ N.
d¢ 82

W G2, (34)

whose solution is given in an analytic form as

Gc (AO)

é\:rrz /’tzGc (AO) In /\A

G, (A) =

1+ (35)

Interestingly, the above solution gives a divergence for
G.(A) at the low-energy scale (the Landau pole),

872
Nc/‘ZGc(AO)> , (36)

Ax = Agexp (—
because the denominator in Eq. (35) becomes zero.
At finite temperature, the Landau pole would appear at
Tx ~ Ag. The appearance of the divergence at A = Ag
indicates that the perturbative renormalization group equa-
tion cannot be applied for lower energy scale A < Ag
(T < TK).5 The energy scale Ag (Tk) is called the Kondo
scale (temperature), which gives a typical low-energy scale
for separating the higher energy scale A > Ag (T > Ty)
and the lower energy scale A < Ag (T < Tg) [12,13]. The
enhancement of the coupling constant at low energy scale
indicates that the perturbative treatment cannot be directly
applied and hence nonperturbative technique is required to
obtain the ground state in the low energy limit. We notice
that, when the two-loop order is included in Eq. (33), the
divergence becomes smeared and the coupling constant is
still finite in lower energy scales (or temperatures).

In [19], the large N. was adopted in Eq. (33).

*Notice that the effectlve coupling constant becomes smaller
for negative G.(Ay) < 0. This indicates that the interaction
between a light quark and a heavy quark in quark matter is
much suppressed in low energy, and the heavy quark behaves as
an almost free particle. However, it will be natural to consider
the positive case (G.(Ag) > 0) for mimicking the one-gluon
exchange interaction.
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However, the finite coupling constant in two-loop should
not be literally taken, because the perturbative treatment
may be broken already in one-loop.

C. Nonperturbative approach by mean-field
approximation

Beyond the perturbative calculation, we adopt the mean-
field approximation for a heavy quark as nonperturbative
treatment [16]. We suppose that the heavy quark exists at
the position x = 0. In the rest frame, the heavy quark does
not propagate in three-dimensional space, and hence the
constraint condition for the heavy quark number density
needs to be introduced:

W, ()W, (x) = 6% (x). (37)

where 60)(x) is the three-dimensional S-function. This
relation means that the heavy quark number density
concentrates only at x = 0. Notice ¥, ¥, = ¥} ¥,. To keep
the constraint condition (37), we modify the Lagrangian (1)
into

L, =i + u )y + ¥, iv - 0¥,
N2-1 B
- Gc Z (l/_/}/ﬂTal//) (va7y Ta\Pv)
a=1

- /I(qlvqjv - 6(3>(x))’ (38)

where the last term is added with the Lagrange multiplier A.
The value of 1 will be given in the following analysis. For
the interaction term in Eq. (38), we apply the Fierz identity

el 1 1
Z (Ta)ij<Ta>kl = §5i15kj - W‘Sijéklv (39)

a=1

and consider the term 2(wy*¥,) (¥, y,ws) (€=1.....Ny),
which stems from the first term in the right-hand side of
Eq. (39). We then perform the mean-field approximation:

l/_/f’aqjvéli’vyl//fﬂ - <l/_/faq1v5>li}vyl//zf’ﬂ + <lilvyl//fﬂ>l/_/fa\ljv5

— (e ¥s) (VYo ep), (40)

with the Dirac indices a, f, y, 6, where the mean-field
(Wq¥5) is introduced. We define the gap function

G

Aga = 76 <l/_/falP5>v (41)

whichA can be parametrized as A5, = A? (12—”" (1—k-7))s,
with k = k/|k| for three-momentum of the light quark k
and three-dimensional component of the Dirac matrix y.

This approximation was considered for the extended matter
state of heavy quarks in Ref. [17], and it was applied also to
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the single heavy quark case in [16]. The current description
follows Ref. [16]. We set A” = A for all Z by assuming the
light flavor symmetry. In the mean-field approximation, the
Hamiltonian form in the momentum space is given by

N,
‘ 14 8N

HMF = L WHH +—LIAP-1 (42
D A

where y = (yi, ..., l//,i\ff ) for the three-dimensional

momenta k, ...,k’ in momentum space, where we denote

w;, as the light fermion field with momentum k for light

flavor Z. In one component of color space, H is defined by

H,? .0 A,Tc

H: . . . A: , (43)
0 - HY A
Ay - Ay 2

with HY and A, defined by

- k-
k-6 —pu
and
A, = (—\/LVA —ﬁAfc-G), (45)

with the system volume V, respectively. It is important
to notice that k,...,k’ run over all the three-momenta
for all light flavors. To get Eq. (42), we used the Fourier
expansion for

1

v’ (x) :\/—V;ek Vi (46)

¥, (x) = Ao ey (47)
VV /14

A(x) : 1 Zeim'xAmv (48)

VS5

for the three-dimensional momenta k, [, m. We set A,, = A
for all m. We also consider ¥, in momentum space as it has
no dependence on the three-dimensional momenta. Notice

that the factor 1/4/> /1 in ¥, (x) and A(x) is introduced
for a normalization factor.

®The convention for the normalization of the field is different
from that used in Ref. [16].
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The gap function A affects the spectral function of the
heavy quark. The spectral function is defined by

() = —%ImTrg(a)), (49)
where G(w) satisfies

(0.1 —H)G(w) =1, (50)

with the unit matrix 1 for the Hamiltonian H in Eq. (43).
Notice that in the right-hand side of Eq. (49) the sum over
the heavy quark spin and color is included in the trace. Here
the energy o is measured from the Fermi surface, and it
enters by o, = w + in with a small and positive quantity #.
By calculating Eq. (49) with the Hamiltonian (43), we
obtain

2Nf|A|2

2N 0 1
B(w) = — 2~ Im -1 SR e il N
pl@) z " ow <a)+ V;aa +u— |k|)

(51)

as a function of w. As for the sum over k, we perform the
approximation in Eq. (51),

1Z 2N |AP _/ &’k 2N4|AP
Vito, +u—lkl ) @r) o, +p— k]
iN
= —Tfﬂzm 2, (52)

where we neglect the real part and leave the imaginary part
only.7 As a result, we rewrite Eq. (51) as

2N, &

7 @I (53)

plw) =

where we define 5 = (N ;/x)u?|A[*. The form of the right-
hand side of Eq. (53) exhibits the resonance state by the
Lorentz type function with the energy position 4 and the
width 26. The resonance, which may be called the Kondo
resonance, is formed by mixing of the light quark and the
heavy quark according to the formation of the mean-field
(Wsq¥5) as it was introduced in Eq. (40) [16].

By using the Hamiltonian (42) with the spectral function
(53), the thermodynamic potential of the heavy quark is
given by

8
WG,

TR S (54)

"Notice that the definition for A is different from that used in
Ref. [16].
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with the inverse temperature § = 1/T. The thermodynamic
potentials from free light quarks which have no coupling to
the heavy quark is not displayed, because they are irrelevant
to the following discussion. The values of ¢ and 4 can be
obtained by the stationary condition

0 0

It is important to keep in mind that the stationary condition
for 6 should satisfy the stability for the fluctuation around
the minimum point.

At zero temperature (7 = 0), we simplify the thermo-
dynamic potential (54) to

~ 2N, 5§ 6 8+
Qy(u; 4,6) = ﬂ_‘(—é—f—/larctanz—kilog * )

2
AUV

8
2N A0(=1) + ——
FNAO(A) + o

o— 2, (56)
where we restrict the integration range for @ as
[-Auv, Ayy| and leave the nonvanishing terms for large
Ayy. Supposing 1 > 0, from the condition (55), we obtain
two equations:

2, 52 2 8>
AT+ =AUVexp —m > (57)
b3
6=t .
A anZNC (58)

Then, we finally obtain 6 and A as

P4 472
5= Ayy sin [ — — , 59
oV (2Nc> exp( Ncu2G¢-> 59)

and

b4 47
1=A ) (60
weos(sn-)ew(-3me ) (60)

Therefore, there is a resonance state whose form is given by
the spectral function (53) with 6 and 4 in Egs. (59) and (60).
By substituting 6 and 1 to Eq. (56), we obtain the
thermodynamic potential in the ground state:

~ 2N. b3 4n?
Qy = —Aygy ——si - . 61
0 uy s (2 Nc> exp< N2 Gc> (61)

Notice that negative sign, flo < 0, indicates that the heavy
quark is bound in quark matter due to nonzero value of
the gap, i.e. the formation of the Kondo resonance.

%It is shown that there is no consistent solution for 1 < 0.
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Qo(A,6) [GeV]
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FIG. 4. The contour plot of the thermodynamic potential
Qo (u; 4, 8) as a function of A and &, Eq. (56). The used parameter
set is N.=3, G.=2(9/2)/A%y, Ayy =0.65GeV and
u = 0.5 GeV. The dashed half circle and straight line indicate
the plots of Egs. (57) and (58), respectively.

The absolute value |Q,| gives the energy gain of the heavy
quark by forming the Kondo resonance.

We investigate the thermodynamic potential numerically.
We plot the thermodynamic potential as a function of A and
o0 in Fig. 4 with use of the parameter set mentioned in the
caption. It is clearly seen that the intersection of the dashed
half circle by Eq. (57) and the dashed straight line by
Eq. (58) gives the stationary point where the thermody-

namic potential f)o (4 4, 8) satisfies the stationary condition
[cf. Eq. (55)].

We comment on the large N, limit ('t Hooft limit)
for 6 and A in Egs. (57) and (58). Keeping N_.G,
as a constant value, the large N, induces the limit of
5 — 0 and A — Ayy exp(—47n*/(N u*G.)). Thus, it gives
a sharp spectral function with zero width at 1=
Ayy exp(—=4n*/(N pu*G.)) in Eq. (53). Because there
seems no mixing between the light quark and the heavy
quark for § — 0, it might seem likely that the heavy quark
becomes completely decoupled from the medium.
However, the QCD Kondo effect never vanishes in the
large N, limit. In fact, the thermodynamic potential (61)
approaches Qy — —Ayy exp(—472/(N u2G,)) as a con-
stant value in this limit, and the formation of the Kondo
resonance is still favored.

Finally, we estimate the interaction coupling between a
light quark and a heavy quark when the Kondo resonance is
formed. The phase shift of the scattering is given by

Aagp)::ﬂj(” p(a)do, (62)

Auv

where we define the spectral function per a heavy quark
spin and color, p(w) = p(w)/(2N,). The scattering ampli-
tude is given by

1 .
= e29) sin Ad(w), (63)

PHYSICAL REVIEW D 96, 114027 (2017)

with momentum k = y 4 w, and the cross section is given
by o™MF(w) = 4z|f(w)|* At zero temperature, the quark
with @ == 0 on the Fermi surface dominantly contributes to
the scattering process. Assuming that the effective inter-
action Lagrangian in the ground state is written by

N2-1

Lo ==GE Y (pr'Tw)(P,7,T°%,),  (64)

a=1

we estimate the effective coupling constant G¢* from the
cross section eMF (@) at w = 0. For the scattering kinemat-
ics, we set the magnitude of the initial and final momenta of
the light quark as p; = p; = pu. Therefore, from Eq. (64),
we calculate the differential cross section

dots 1 |
o L ON(GERMEA(1 0
dQ ~ 6422 (u + M) (GE) M (1 + cos 0)

1 ‘
2@2]\,6((;%5)2/12(1 +COS€), (65)
where @ is the angle between the initial and final momenta,
and M is the heavy quark mass which is much larger than p.
The total cross section is given by

doss
£ — aQ
¢ / aQ

1
— — N.(GZ)22, 66
& (GE)u (66)

and the value of G%° is estimated by setting oM =
o = LN (GEP.

D. Numerical results for effective coupling constant

Based on the results in Secs. II B and 11 C, we plot the
effective coupling constant G (T) as functions of temper-
ature for several chemical potentials. We use the solution of
Eq. (33) at one-loop or two-loop level in perturbative
calculation. We also use the effective coupling constant in
Eq. (64) in nonperturbative calculation. For comparison,
we consider the bare coupling constant G, in the original
Lagrangian (1). We consider the following four cases:

(i) Bare coupling constant: G’;(T? =G,

(ii) One-loop order: GX(T) = G\V(T),

(iii) Two-loop order: G:(T) = G(T),

(iv) Mean-field approximation: G%(T = 0) = G,
where GU"(T) is given by Eq. (35) and G2(T) is the
solution of Eq. (33). Figure 5 shows the coupling constants
as functions of the temperature with above four cases. We
use the combinations of the coupling constant G, = G or
G.o/2, and the chemical potential u = 0.3 GeV or 0.4 GeV.
The original parameter set is G, = 2(9/2)/Afy and
Ayy = 0.65 GeV. The parameter set with G. = G is
estimated from the Nambu-Jona-Lasinio model or the
properties of D meson in vacuum [18]. We consider the
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FIG. 5.
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G4=0.5G, y=0.4 GeV
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The temperature dependence of the effective coupling constants. The black lines for Gi(T) = G, the red lines for

G:(T) = GU(T), the blue lines for G*(T) = G?(T) and the black blobs for G*(T = 0) = G¥.

case of G, = G,y/2 for investigating the reduction of
the coupling constant in quark matter, which would be
different from that in vacuum. Since the perturbation with
respect to the dimensionless coupling x>G, is good for
small values of G, and u, we obtain a better convergence
for loop corrections in the case of the smaller coupling
(G, =G,/2) and the smaller chemical potential
(u = 0.3 GeV). The worse convergence for a large value
of the chemical potential y would stem from the fact that
the value of y approaches to the cutoff parameter Ayy. The
mean-field approximation in Sec. II C would be valid only
for the weak coupling constant. Therefore, the result for the
small coupling case would be more acceptable than that in
the strong coupling case. The large deviation of the mean-
field result at G, = Gy and ¢ = 0.4 GeV indicates that the
treatment of the weak coupling is not applicable both in the
renormalization group equation and in the mean-field
approximation.

III. RELATIVISTIC KINETIC THEORY

We formulate the kinetic theory for the relativistic
fermions to calculate the transport coefficients of the quark

matter. Based on the relativistic Boltzmann equation and
the relativistic hydrodynamics which are often used in the
literature, we show the formula for calculating the resis-
tivity and the shear and bulk viscosities of the quark matter
interacting with the heavy quark impurity.

A. Relativistic Boltzmann equation

We consider the classical particle motion in the
phase space (x,p) for light (massless) quark gas [35-39].°

The distribution function of the light quark f 51/1) (t,x,p) with
electric charge ¢ and helicity 4 follows the Boltzmann
equation

o . 9 . 0
<a+x-g+pa>fﬁ><r,x,p>=C[f5f><t,x,p>1, (67)

The present chiral kinetic theory is reduced to the usual
kinetic theory unless there is an imbalance of chirality or a finite
magnetic field. Although we consider zero magnetic field in the
end, we show the general form for a possible extension to the
magnetically-induced QCD Kondo effect [14].
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where the right-hand side is the collision term. The helicity
can be regarded as the chirality in massless fermions. In the
massless fermion case, the Hamiltonian for helicity 1 = 41
is given by HW =Jlc-(p +qA)+ q® with external
electromagnetic fields (®,A) and the electric charge q.
By analyzing the classical path for the Hamiltonian H®,
we find that x and p follow the equations of motion,

p=—— (qE + gp x B+ ¢*(B-E)bW), 68
p 1+qB_bu)(q ap q°(B-E)}b?), (68

(p+ gE x bW + q(b'Y -p)B), (69)

X=—"

1+¢B-b¥

with the unit vector in momentum space p = p/|p|, the

electric and magnetic fields £ = -V, ® —%d) and B =
V, x A [35-39]."° The vector b is defined by

b =V, xal, (70)
where the Berry connection @, is define by
b, = —iVyV,V,. (71)

The matrix V, = ( ”1(1+) ”1(1_) (+) I(]‘)) is defined with u;,’{)

P
and 1)1(,'1) being the positive-energy and negative-energy

solutions of the Hamiltonian H (’1), and Vp is the derivative
(2)

in momentum space. In the spherical basis, a,’ =
(ai,’w, ag), af,f )) can be given by
W _ 0 () _ ,coto
ay, =a;’ =0, a, =A——0m}, (72)
P 0 ® 2

with p = |p| and the angle from the z axis in momentum
space 6. It is important to mention that there is a singular
point at p = 0, and it gives the monopole configuration.
Notice that there is a freedom to choose the vector potential
by gauge transformation, and that, in any gauge, the
monopole cannot be removed in the momentum space.
Substituting Egs. (68) and (69) into the left-hand side of
Eq. (67), we obtain

0

) *) @ . p i
5+ gE x b + g6 - p)B) -+

(-
ot 1+gB-b%

(gE + gp x B+ ¢*(B - E)bW) -%)

(73)

1 gB b0
x £ (t,x,p) = Clf3 (1,x.p)).

In the following discussion, we consider the relaxation time
approximation for the collision term:

10See Appendix for the derivation of Egs. (68) and (69).
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Cl )] = = () - p)). (4

where f %(p) is the distribution function in thermodynam-
ical equilibrium

(2) 1

fo0P) = (75)

and 7 is the relaxation time. The relaxation time is an
average time in which the particles can propagate in
medium without collision. The value of 7 will be estimated
in Sec. IVA.

B. Resistivity

We consider the electric resistivity of the QCD
Kondo effect under the constant electric field. By consid-
ering the uniformity of the quark matter and neglecting
the position dependence, we consider the simplified
Boltzmann equation

1
1+ gB-b¥

=0 0) - £,

By solving Eq. (76) iteratively for f(ql)(p) and leaving the
linear term of z, we obtain the approximate solution:

0
(gE + gp x B+ ¢*(B - E)bY) .afgz) ®)

(76)

() ! T
Jap)=140P) 1+ qB-b?
h 0
x (qE +gp x B+ ¢*(B - E)b) '@f(qi.%@),

(77)

assuming that 7 is a small quantity. .,
For general distribution function f 51 )(p) we define the
electric current density

d*xd’p
(27)?

Jo= NS [5700)1+ g 50)
A=+

3
=Neg) / @)1+ qB - p0) IP_ (78)
A==+

(27)

with the space volume V = [ d*x. The factor (1 + ¢B - b))
is necessary so that the measure of the integral is invariant
under the gauge transformation. By setting B =0 and
substituting Eqs. (68) and (77) into Eq. (78), we obtain

N o0
o =35 PeE [ Folp)(1 = Folp)pdp. (79)

with fo(p) = f %(p) Defining the electric conductivity o,
by the relationship j, = o,E, we obtain
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oy =25 [* 10 = 1P, (50

When there are N, flavors with electric charge g¢;
(i =1,...,Ny), we define the electric conductivity as

-2 zﬂqu, |7 rowa = sulontap. (sn)

We define the resistivity by p = ¢~

C. Shear viscosity

We consider the fluid dynamical properties in quark
matter in the presence of heavy quark impurities. When
the local thermalization is assumed, the temperature
and the chemical potential are the position-dependent
functions, 7'(x) and u(x). We set E=B =0 in the
relativistic Boltzmann equation (73). To emphasize the
relativity of the fluid system, we introduce the four-velocity
w (uu, =1). We express the relativistic Boltzmann
equation by

p) = -“L(f(x. p)

T

pro,f(x,

—fo(x.p)).  (82)

with using the abbreviated forms f(x, p) = fq/1 (t,x,p) and

folx. p) = Uy (t.x,p) [32,40-42]. Since E = B = 0, the
acceleration of the particle (68) becomes zero. Thus the
term p - (JOp) fy)(t,x, p) in the Boltzmann equation
drops out.

We consider the Landau frame for the fluid [41,42].11
The energy-momentum tensor is defined by

o = / app# pf (5, p). (83)

with the measure in the momentum integral dp =
*p/((27)*p®) and the degrees of degeneracy g=2N N,

We express 7# by the energy density e, the pressure P, the

bulk viscous pressure IT and the shear stress tensor 7+,

T = ewru” — (P + T)A™ + o, (84)

with the projection operator A¥ = ¢/ — utu. Notice that u#
is defined in the Landau frame: 7"*u, = eu”. This induces
u,m* =0 and hence that #* is perpendicular to A*:
A, 7" = 0. The last property is the same as that 7" is
traceless: 7, = 0. The energy-momentum conservation is
given by

"Notice that most of equations in [32] are given in the Eckart
frame.
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9,7 = 0. (85)

By multiplying u, or A,,, we obtain the evolution equation
for ITand ##. From u, 0, 7" = 0 and 0, 7" = 0, we obtain

é+(e+P+1)0 -0, =0, (86)
(e +P+1)it, — Vo (P + 1) + A, 0,7 =0, (87)
with A = u'd,A and 0 = 0,u".

We suppose that the energy density e and the pressure P
are given by the distribution function at local equilibrium

fo(x, p) as

e =, [ dbp'pfulx.p) (88)
1 fod v
P=-3A, / dpp*p*fo(x, p), (89)
with
= ! 90
fo(x» P) = m- ( )

Here f and p are x-dependent functions.
We express the general distribution function f(x, p) as

f(x,p)

assuming that the deviation from the equilibrium §f(x, p)
is sufficiently small: |5f(x, p)| < fo(x, p). IT and z#* are
expressed by

= fo(x.p) +6f(x. p). o1

1 -
n—-3 [ dpsprpofir). 92

and

o= / dp AL p pP5f (x. p). (93)

with A% = L(A4AY + AGAY) —

cosity is the deviations from the equilibrium state. The
above expressions are confirmed by multiplying A, or Aﬁf

for Eq. (83) and Eq. (84), when A, u* =0, A, A”” =3,

A AR = () are used.
We estimate IT and ##* by using the relaxation time
approximation. We rewrite the Boltzmann equation (82) as

1AM A 5, because the vis-

POuf (5. p) = =L of(x.p). (94)

To obtain the approximate solutions, we make an expansion
series for 7,
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f(x,p) = folx, p) + f1(x, p) + folx, p) + ..., (95)

and

5f(x,p) = 8V (x, p) + 6P (x, p) + ... (96)

at each order of 7”. By iterations, we obtain

fi1x, p) = folx, p) = p*oufolx,p),  (97)

u-p

fa2(x,p) = folx, p)

POfi(x.p).  (98)

-
(99)

which is called the Chapmann-Enskog expansion. As the
lowest order solution, we consider

5fV(x, p) = oy P Oufolx.p)- (100)
In this approximation, we obtain
1 -
= —g/dPAaﬂp“pﬂch“)(x,p), (101)
and
= [apatpptafinp). (102

In Eq. (100), to obtain &f “)(x, p), we need to calculate
p'0,fo(x, p) which is given by

PO, fo(x.p)=—((u-p)*B+(u-p)p, V"B
, 1
+p(u-p)p, it +pp,p,o” +§ﬂpﬂpyA””0

— (u- p)(Bu) = P, V¥ (Bu)))

x fo(x.p)(1=fo(x.p)). (103)

Hence we need to know the functions 3, V48, (ﬂ,u) and
V,(Bu). Regarding u* as a constant four-vector indepen-
dent of time and position, we approximate ¢ in Eq. (88) and
P in Eq. (89) as

é:/ﬁﬂquﬁ&w)
= 1) + (pu)1®. (104)

and
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1 ~
vaPz_g/dpAm/pﬂpyvafO(x7p)

= —(V )W + V, (Bu)J O, (105)

where we define

Imz/aﬂwpwunmu—m@m» (106)

1 -
J = —5/dpA””pﬂpy(u-p)’fo(x,p)(l = folx, p)).
(107)
Notice 10+2 =3J() for a massless fermion (p? = 0).

Eliminating ¢ and V,P in Egs. (86) and (87) by using
Egs. (104) and (105), we obtain

IO + (Bu)I? + (e + P+ 10 — 6,7 =0,  (108)
(€ +P+ H)it(l + (vaﬂ)J(l) - va(ﬂﬂ)'](()) - vaH
+ Ay @1 = 0. (109)

We consider the particle number density current
defined by

v = [ dppsie). (110)

We decompose N* as
NF = nut + VH, (111)
where n is the particle number density and V* is the current

for dissipation which satisfies u,V* = 0. The particle
number conservation J,N* = 0 gives
n+nd+ 9,V = 0. (112)

Considering the local thermal equilibrium, we have

n= [ @bt p)folp). (13)
Regarding u* as a constant vector, we obtain
= /di?(u - p)u'd,fo(x. p)
= B0+ ulV) 4 (BID.(114)
hence
B(=I 4 uIM) + (Bu) 1D +n6 + 9,V* = 0. (115)
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Multiplying u, for both sides of Eq. (111), we obtain
uﬂN" — n, hence

/ ap(u- p)f(x.p) = (116)

From this relation, we obtain

Vi = NH — put = A””/di)p,,f(x,p). (117)

Notice that there is no dissipation current at equilibrium.
Hence we obtain

A / dpp, folx. p) = 0. (118)

in which f(x, p) was replaced by f(x, p). Making the
subtraction, we obtain

Vi — A / dpp,f(x. p) — A / a5 p.folx. p)

- / dpA p,6f (x. p). (119)

Furthermore, regarding 8f(x, p) = 6f"(x, p), we finally
obtain the dissipative part of the particle number current

v = [ dparp o e.p) (120)

From Egs. (108) and (115), B and (ﬁﬂ) are given by

B = a(I®(no +9,v*)
—I1D((e+P+11)0 —0,,7"))

= a(I®nd -1V (e + P)H), (121)
(B) = a(I®(n0 + 9,V
= (I —pIM)((e + P+ 1)0 - 6,,7"))
=a(I®nd - (I? = uIM)(e + P)H), (122)
where we define
a= ! (123)

(1(2>)2 — ](1)(1(3) + ﬂ1(2>) ’

and neglect the dissipative terms as the lowest-order
approximation. Similarly, from Eq. (109) we obtain
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1
vaﬂ = W (_(6 +P+ H)’;ta + va(ﬂﬂ)'](m

+ V, I1-A,,0,7")

J©

1 .
_W(€+P)ua+ﬁva<ﬂﬂ)7 (124)

where the dissipative terms were again neglected as the

lowest-order approximation. By using f3, (ﬁ,u) and V5
in Eqgs. (121), (122) and (124), we calculate p,0" fo(x, p)
and obtain

Pufo(x, p) = [P,0" fo(x, P)]g0 + [Pu0" fo(x, P)|4 6,

+ [pyaﬂf()(x’ p)]ﬁuﬂ

+ [pya”f() ()C, p)]é([}ﬂ)vﬂ (ﬂﬂ)’ (125)
where we define
[Pu2* folx, p)lg = = (al(u- pP(IPn = I (e + P))
— (u-p)(I%n - (1(2) —ulV) (e + P)))
;ﬂp,,pyA"”)fo(x, p)(1 = fo(x, p)),
(126)
[P0 fo(x, Pl = =Bp* p*folx, p)(1 = fo(x, p)), (127)
2 ool == (9= Y i
x fo(x, p)(1 = fo(x,p)),  (128)
0)
0ol Py == (- )= 1)
x fo(x, p)(1 = folx, p)). (129)

By using Eq. (100), we calculate II, ##¥ and V¥ in
Egs. (101), (102) and (120) with the relation to the transport
coefficients, shear viscosity #, bulk viscosity ¢ and mobility
k defined as 7 =2not”, 1= —{0 and V¥ = «V*(pu),
respectively.

Considering that IT is given by Il = —{6, we obtain

1 -

Im= —g/dPAaﬂPaPﬂ[fsf(l)(x’ P)](ﬂ
! ( +P)9—11ﬁ 180 =0 (130)
—37¢ 33P0V

hence

=0. (131)

We notice that { = 0 is the case only for massless particles
[40-42].
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Considering that z#* is given by 7 = 2ns**, we obtain

o = [ bl o . )

o 3 P'P70 s
=t [ apalypt o PO 5 p) (1 = folr ).
(132)

hence

pr [ - YR
=15 dp(A,,p*p )znfo(x,p)(l = fo(x,p))

pr

Lty (€)) 1

T (133)

where A}, =5 is used.
Considering that V# is given by V¥ = «V#(fu), we
obtain

Vi = /df’A’”Pu[fo(l)(xyP)]%(ﬁ,,)vp(ﬂﬂ)

JO
N T<N/dPA””pyp”fo(x,p)(1 —folx.p))

- [ 25 st —fo<x,p>>)vp<ﬁu>,

(134)

hence

(135)

So far we have considered only a single component case.
Including the heavy quark spin and color degrees of freedom
(g = 2N,N.),"” from Egs. (131), (133) and (135), we obtain
the final results:

=0, (136)
= /f_;i@, (137)
e (TS0 (138)
with
19 =20, [ Sl o)1 ulp). (139

’Notice the definition of the measure in momentum space,
dp = g&p/((2z)*(u - p)).
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where we consider the rest frame with w* = (1,0)
and the particle number distribution function fy(p) =
(1+ eﬁ(L”“”))‘l. The energy density and the pressure are
also given as

e =W, [ SElrap).  (140)
P [ SRl (4

respectively.

IV. NUMERICAL RESULTS FOR THE
TRANSPORT COEFFICIENTS FROM
QCD KONDO EFFECT

A. Relaxation time

We estimate the relaxation time 7. We consider the
scattering of a light quark and a heavy quark ¢(p) + O(P) —
q(p’)+Q(P') with four-momenta p) = (pg) ,p") and
PO = (P(()'),P(’)) for the light quark (¢) and the heavy
quark (Q), respectively. We use the simple setting for
the kinematics near the Fermi surface: p° = p/® =y,
|p|=|p|=u, and p-p =p*cosd, with & an angle
between p and p'.

We suppose that the effective interaction Lagrangian in
quark matter is given by

N2 -1
L= —GE >~ (i Toy) (P, TV,

a=1

(142)

where G; is the effective coupling constant which is
modified from the value in vacuum owing to the QCD
Kondo effect analyzed in Sec. II D. The cross section is
given by

do 1
— = N (G:)*M*1*(1 0
dQ ~ 6472 (u + M)? (GE)*MPp*(1 + cos 0)
1 *
:WZNC(GC)%MZ(I +COSH), (143)

with the heavy quark approximation M > p. Then, we
estimate the relaxation time 7 = 7, defined by

d
T = vnimp/£ (1 = cos 0)dQ

1
2N (Go)*p,

= Mimp Yan (144)

by setting v = 1 for massless quarks and n;y, being the
number density of the heavy quarks. In the following
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FIG. 6. The temperature dependence of the relaxation time. The notations are the same as used in Fig. 5.

discussions, we consider the effective coupling constant G
in the four cases from (i) to (iv) in Sec. II D.

We plot the relaxation time 7 as a function of temperature
T for fixed G, and p in Fig. 6. We set Ny = 2 and suppose
Nimp = an, (a = 0.1) for n, being the light quark number
density for given u at zero temperature. We find that the
relaxation time calculated by the effective coupling con-
stant in the one-loop level (red lines) or the two-loop level
(blue lines) is much reduced from that in the bare coupling
(black lines). The difference becomes large at lower
temperature. We plot the relaxation time calculated in
the mean-field approximation at zero temperature (blobs).
It is interesting to see that the value of 7 in the mean-field
approximation is very close to the value of 7 which may be
extrapolated from the one-loop order or the two-loop order,
when the coupling constant is small (G, = G,y/2). Hence
it may be tempting for us to consider that the perturbative
result at finite temperature could be smoothly connected to
the nonperturbative (mean-field) result at zero temper-
ature’ However, we have to keep it in mind that this
seemingly smooth connection is not guaranteed unless
exact solution beyond the mean-field approximation is
obtained.

“Notice that the result in the renormalization group equation
cannot be smoothly connected to 7' = 0, because of the Landau
pole (the Kondo scale) in Eq. (36).

B. Resistivity

We plot the resistivity p = ¢~! with Eq. (80) as a
function of temperature in Fig. 7. We choose N = 2 with
u, d quarks, and set the electric charges are ¢, = +3/2 and
qq = —1/3. As expected from the result in the relaxation
time in Fig. 6, the resistivity calculated by the effective
coupling constant in the one-loop (red lines) or the two-
loop (blue lines) becomes much more enhanced than
the one calculated in the bare coupling constant (black
lines). The resistivity becomes more enhanced at lower
temperature. This can be explained directly from the
small relaxation time at low temperature as it was shown
in Fig. 6. The enhancement of the resistivity is exactly
same as the Kondo effect which was obtained originally
by J. Kondo for metals including impurity atoms with
finite spin [1].

In the high energy asymmetric heavy ion collisions, the
strong electric fields can be produced owing to the different
number of the electric charges between two nuclei [43].
There, the possibility of observing the electrical resistivity
of the quark gluon plasma is discussed. When the quark
matter in the presence of the electric field contains heavy
quarks, the QCD Kondo effect would largely affect the
electrical resistivity of the quark matter. We expect that the
resistivity calculated above will provide a possible exper-
imental signal for the QCD Kondo effect. We may
furthermore think of the effect of the interaction among
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light quarks on the resistivity as a realistic situation.
However, the resistivity induced by the light quark
interaction decreases monotonically as the temperature
decreases, and hence it can become much smaller than
the resistivity by the QCD Kondo effect due to the increasing
behavior in the lower temperature. In such situations, the
resistivity by the QCD Kondo effect would be dominant in
the whole system.

C. Shear viscosity

We plot the shear viscosity # in Eq. (137) as a function of
temperature 7 in Fig. 8. As expected from the result in the
relaxation time in Fig. 6, the shear viscosity calculated by
the effective coupling constant in the one-loop (red lines) or
the two-loop (blue lines) becomes much reduced than the
one calculated in the bare coupling constant (black lines).
The shear becomes much more suppressed at lower
temperature. This behavior can be explained directly from
the small relaxation time at low temperature as it was
shown in Fig. 6.

V. CONCLUSION

We study the transport coefficients from the QCD Kondo
effect in the quark matter which contains heavy quarks as
impurity particles. The in-medium coupling constant of the
interaction between a light quark and a heavy quark is
estimated perturbatively by the renormalization group
equation up to two-loop order. It is found that the coupling
constant becomes enhanced due to the QCD Kondo effect
at low temperature. The coupling constant at zero temper-
ature is estimated by the mean-field approximation as
nonperturbative treatment, because the perturbation is
not applicable at lower temperature below the Kondo scale.
The transport coefficients are calculated by the relativistic
Boltzmann equation with the relaxation time approxima-
tion. The electric resistivity is obtained from the relativistic
kinetic theory, while the viscosities are obtained from the
relativistic hydrodynamics. It is shown that the electric
resistivity is enhanced, and the shear viscosity is sup-
pressed, remarkably at low temperature, due to the
enhancement of the coupling constants. The current result
will be useful to study the QCD Kondo effect in possible
experiments of quark matter in high energy accelerator
facilities. As future studies for more realistic situations, it
may be interesting to extend the present discussion to
include the effect of finite magnetic field [14] and also to
include the quark-quark interaction [19] and the quark-
antiquark interaction [20].
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APPENDIX: DERIVATION OF EQUATION OF
MOTION FOR A MASSLESS QUARK

We show the derivation of the equation of motion for a
light (massless) quark, Eqs. (68) and (69). We follow the
derivation given in Ref. [38]. For generality of the dis-
cussion, we introduce a finite mass m for the quark for a
while. The free Hamiltonian is given by

H:a-p+/}m:(6'p " ) (Al)
m —6-p

with @ = Y%y and 8 = y°, where a and S are expressed by

(3 0) 0 (1Y)
() T w

in the Weyl representation. We define the Lagrangian

(A2)

by using

L(x,x)=p-x—H(x,p), (A4)
which will be used in the following discussion.

We consider the path integral representation. In the
Heisenberg picture, the probability amplitude for the
transition from the position x; at time #; to the position
Xy at time f; is given by

(xp|e =i ;). (AS)

By dividing the time into n parts from ¢; to ¢z, we define

Ip—1

ot =—, ti=t;+jAr (j=0,1,....n). (A6)
n
Inserting the completeness relation at time ¢;,
/dxj|xj,tj><xj,tj| — 1, (A7)

we express the probability amplitude as
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< |€ ~iH(tr=t1) |x /Hd3 nvt |xn 1’
:/Hd3x]'<x
j=1

|€—iHAz|x

In the above equations, the probability amplitude

(xj1]e" 8 x;) from time #; to 7;;; can be approxi-
mated as
(ejir e A y) = (e |[(1 = iHAD) ;)

< j+1|x> < j+1|HAt|x>
=80 (x; 1 —x)) —ix; 1 [H|x;)Ar. (A9)

In the last equation, the first term can be written as

&dp; .
83 (x40 —x;) :/(2 )j3 ePrixa=)  (A10)
n
|
» &p;
k) = [ G0
/dpj o —x;)~iH
(27)°

As a result, the probability amplitude is given as

[

(x |e—zH tp—t7) ;) = lim ePn-1-(x

n—oo

oy
d’p, 5= dx;d%p;
(2n)* 11 (22)

(tF)=xp

= lim

n—oo

)

t1)=x;

exp( S0

by setting n — .

For the Hamiltonian H = « - p 4 fm, the intermediate
state |x;) or |p;) is the eigenstate |x;, 1) or |p;,4) with
helicity A = +. The Hamiltonian can be diagonalized at
each time in the path-ordered product as it is denoted by P.
We remember that the spin is not the conserved quantity
for relativistic fermion, but the helicity (chirality) is the
conserved quantity. Hence, we consider the eigenstate of
the helicity 4 at each time. The diagonalization can be
performed by introducing the unitary matrix V, as

ViH,V, = E,%,. (A14)

114027-

d3
e (xj—x;) _ i/_
(27)°

W= Xn1)—

DxDpPexp(i/tlet(p-J'c—H(x,p))>,
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net1) (X j1s tipn ), /> Ax1 tx, to)

_1)ee (g [eT A X ) ey | e xg). (AB)
[
and the second term can be written as
puilt @B = [ byl G
= [ @pytxs o)) i)
:/%eipf'<xf+l-xf>H(xj,p_,-), (A11)

by noting the momentum representation of the Hamil-
tonian H(%,p), where ¥ and p are the operators for
position x and momentum p. Therefore, we obtain

D;j ezpj-(xjn—xj)H(xj,Pj)At

(xjpj) A1 (A12)

iHXo Pu)AL (X —X))—iH(x;pj) AL Lipo-(¥1—X0)—iH (xq.po) At

1 —x)) — iH(x ,,p,>m>)

(A13)
[
with
1 0 0 0
S R B (AL5)
*“ 1o 0 1 o0
0 0 0 —1

We comment that the top-left 2 x 2 submatrix is for the
right-handed component and bottom-right 2 x 2 submatrix
is for the left-handed component in the massless limit
(m = 0) in the Weyl representations. It is important to
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notice that V,, and V,, |
and 7, 1, respectively, are different each other. Denoting the
Hamiltonian H; = H(x(¢;),p(¢;)), the unitary matrix V; =
V,, and the eigenvalue E; = E, (i = j, j + 1), we calculate

for momentap; andp;, at time ¢;

e—iHj 1Al p—iH ;AL
_ T —iH; At T ,—iH At T
—...VJ-HVJ-He MRV VJHVJVJe VV
_ il iH . At f ,—iH;At
= ...Vj+1(Vj+le jtl Vj+1)VJ+1V(V e V)V
_ —iE;  Z4Aty/T —iE;3, Aty
= ...Vj+le j+144 V<+1Vj€ =4 V]
_ iE;  Z4At ,—0y - AP; _iE. 3, Aty T
= . Vjem Bl S em R AY L (A16)
where we use
__ _—ia, -Ap;
V,+1V =e P, (A17)

for Ap; =p;,, — p; being sufficiently small, and define the
Berry connection

(A18)

with 'V,
replaced by

lZ(P] ]+1
_)lZ(P] j+l

. Then, the discretize path-integral can be

H(xj,pj)At)

) —iEpy ZyAt—a, - (pj1—P))),

(A19)

It is important that the Hamiltonian H(x;,p;) is diagon-
alized to E, ¥,. The price to pay for this diagonalization is
p; Pjr1—pj

to add the new term —a /). Therefore, we

perform the replacement

tr tr
i/ di(p - — H(x.p)) — ,-/ difp -5 - E,%, - a, ),
I

I

(A20)

in the path integral. As a result, the probability amplitude is
given by

(xpleH=1]x)
. /x(tF)xF
x(t)=x;

t
xexp<i/th(p-x—Epz4—a,,-p))vpl. (A21)
1

DxDpV,, P

For the particle and antiparticle with helicity 4 = =+, the
actions Il(f) and 1§é) are given by
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g
19 = / wpi—E—a? p).  (A22)

I

123—/ di(p-%+E, —af" - p),  (A23)

1

p(4)

P and a,

respectively, where a,
ponents in a,,.

For later convenience, we define the helicity operator.
For this purpose, we first define

are the diagonal com-

=1, (A24)
which is expressed as
0
2= < ) (A25)
0 o
with
1 0
S = , A26
r=(o ) (426)

in the Weyl representation. Then, we define the helicity

operator by
X-p % 0
E, 0 % '

where the matrix form in the right-hand side is give in the
Weyl representation.

Let us calculate the unitary matrix V,, concretely. For this
purpose, we calculate the eigenstate of the Hamiltonian H.
In the Weyl representation, the particle state is

G-p
1+ );(
( E,+m

4

(A27)

U, = — , A28

=75 e (A28)
E,+m d

and the antiparticle state is

E +m>’1 (A29)

v 9

re f _er),
E,+m

where y and 5 are the two-spinors for particle and
antiparticle, respectively. y and 5 are the eigenstates of
the operator & - p/|p| for helicity A = +:
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6-

TP =y, (A30)
p|

G-p

W’/lﬂ: =+ 4. (A31)

Noting the difference in sign in y, and 7., we obtain

cos?
X+ =1N-= . o,
smge"/’

—singe™
X-=Ny = 0 ’
cos?

with p/|p| = (cos € cos @, cos 0 sin ¢, sin §). Therefore, the
particle and antiparticle states are given by

)h

(A32)

(A33)

73\ / . (A34)
>)(:I:
+m
and
[p >77¢
p T M
73 / |P| . (A35)
) N+
+m
for helicity 4 = £
We now find that the Berry connection &, = —iV;Vp Vy
is expressed by
(Ap)ll (&p)u (Ap)13 (Ap)14
a a Q a
dp _ (}1)21 (Ap)22 (Ap)% (:1)24 (A36)
@p)s1 (@p)3 ()33 (@p)a
@p)ar @) (@p)ss  (@p)ay
with the unitary matrix
Vo= (g a0 ) )
for u,(,i and U,, . In the spherical coordinate with

v_(2 19 1 0
P \op ' pdl psin0oyp)’

each component of a, = (ap, agp,

(A38)

a,) is given by

PHYSICAL REVIEW D 96, 114027 (2017)
0 0 0 —im

2E2
im
0 0 & 0
a,=-— , . (A39)
0o -4 0 0
2E§
_im_
g 00 0
—_im_ i
0 2pE, 2E, 0
in i
2pE, 0 0 2E,
ag = — ; 0 0 im s (A40)
3E, 2E,
i inm
2E, 2pE, 0
cotd m 1 0
2p 2pE, 2E,
__m cotd 0 1
0 —— 2pE, 2p 2E, (A41)
? _ 1 0 _cotd _ _m ’
2E, 2p 2pE,
0 1 __m cotf
2E, 2pE, 2p

as 4 x 4 matrices. In the massless limit (m — 0), they are

00 0 O
00 0 O
a, = , (A42)
00 0 O
0 0 0 O
0 O —ﬁ 0
0 0 O —ﬁ
ag = — . s (A43)
ﬁ 0 O 0
0 ﬁ 0 0
wo 0 -l 0
0 -2 o L
o P 2p
a==|_, o (A44)
2p 2p
0 L 0 e

Because the particle and the antiparticle are decoupled at
high density, we consider the top-left 2 x 2 submatrix. The
component which has nonzero components in the top-left
2 x 2 submatrix is a,, only. The components are given by

cotd

2p
ah = —( com)' (A45)
0 _W
We define the Berry connection for the particle
by a)= a1<,’1> = (a¥, ag), a?y  with o) = aé’w =0
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and a((,f ) = Acot@/(2p). The Berry curvature for al(,ﬂ) is

defined by
b =V, xa. (A46)

In the spherical coordinate bl(,l) = (bg) ,b;”,bﬁj >), we

obtain

5z 0 00
2
b\ = <2” 1 ) bﬁ,”_b;”_( ) (A47)
o 00

The actions for the massless fermion are

g
1= Mk -pl-a 5. (ad)

I
with E, = |p|. Considering the gauge field (®,A) in a

covariant way, we obtain

 _ Ir P o _ )
Iy7= [ di(p-x+qgA-x—q®—|p|-a;’ -p), (A49)

i

PHYSICAL REVIEW D 96, 114027 (2017)

with the electric charge g of the particle. We define the
Lagrangian

LW =p.-5+qgA x—q®—|p|—a - p.  (A50)
from which we obtain the equation of motion,

P =qE +x x ¢B, (A51)

Xx=p+pxb¥, (A52)

with E = -V, ® —2® and B =V, xA for electric and

magnetic fields, and p =p/|p| and bW =V, x a,(,/l) in

momentum space. Those two equations become in turn

1
p=———(gE+gp x B+ ¢*(B-E)bY), (A53
p 1+qB'bw(q ap q°(B-E)b”),  (AS3)
x=——(p+qgExbW + 4" -p)B). (AS4
1+qB'bu>(p q g -p)B).  (A54)

Thus, Egs. (68) and (69) are derived.
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