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We study the transport coefficients from the QCD Kondo effect in quark matter which contains heavy
quarks as impurity particles. We estimate the coupling constant of the interaction between a light quark and
a heavy quark at finite density and temperature by using the renormalization group equation up to two-loop
order. We also estimate the coupling constant at zero temperature by using the mean-field approximation
as nonperturbative treatment. To calculate the transport coefficients, we use the relativistic Boltzmann
equation and apply the relaxation time approximation. We calculate the electric resistivity from
the relativistic kinetic theory, and the viscosities from the relativistic hydrodynamics. We find that
the electric resistivity is enhanced and the shear viscosity is suppressed due to the QCD Kondo effect
at low temperature.
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I. INTRODUCTION

The Kondo effect is one of the important subjects in the
quantum impurity physics. In 1964, Kondo explained the
mechanism for the logarithmic increase of the resistivity in
metal with spin impurity atoms [1]. He analyzed the
interaction between a conducting electron and a spin
impurity atom in perturbative treatment, and found that
the logarithmic enhancement of the resistivity, which is
now called the Kondo effect, is a quantum phenomenon
caused by three conditions: (i) Fermi surface (degenerate
state), (ii) loop-effect (particle-hole creation near the Fermi
surface) and (iii) non-Abelian interaction (SUðNÞ sym-
metry; N ¼ 2 for spin) [2–4]. It turned out that the Kondo
effect is a phenomenon that the weak interaction at high
energy scale becomes the strong interaction at low energy
scale bymediumeffect due to the infrared instability near the
Fermi surface. The three conditions (i), (ii) and (iii) for the
Kondo effect are realized in a variety of quantummany-body
systems. The research of theKondo effect has been extended
in artificialmaterials such as quantumdots and atomic gases,
where several parameters are changeable under control [5–
11]. Recently, the Kondo effect has been investigated also in
quark matter with heavy quarks and in nuclear matter with
heavy hadrons, though the relevant energy scale is much
larger than the electron systems [12–22].1 However, the
experimental quantities for observing the Kondo effect in
quark matter as well as in nuclear matter have not been yet
studied in detail thus far. In the present article, we study the

transport coefficients of the quark matter with the heavy
quark when the Kondo effect occurs.
Let us briefly summarize the current status of the

researches of the QCD Kondo effect in quark matter.
When the nucleus is compressed with high pressure so
that the two nucleons overlap spatially, the quarks confined
inside the nucleons become deconfined and they are
released to be a fundamental degrees of freedom. Such a
state of matter is called the quark matter (see e.g. [25,26]
and the references therein). When there is a heavy quark in
quark matter, the conditions (i), (ii) and (iii) of the Kondo
effect are satisfied. As for (i) and (ii), it is clear that there is
a Fermi surface by the light quarks, and there are also pairs
of a light quark and a hole near the Fermi surface. As for
(iii), there is a non-Abelian interaction with the SU(3) color
symmetry between a light quark and a heavy quark,
because the gluons can be exchanged between the two.
This Kondo effect induced by the color degrees of freedom
may be called the QCD Kondo effect.
In the early study, the interactionwas assumed to be a zero-

range (contact) type with color exchange. The amplitude of
the scattering between the light quark and the heavy quark
was analyzed up to one-loop order including virtual excita-
tions of pairs of a light quark and a hole [12]. It was
demonstrated that even in weak coupling regions, the
scattering amplitude at one-loop level is logarithmically
enhanced as the energy scale decreases, and eventually it
approaches the tree level amplitude. This indicates that the
system becomes a strongly interacting one in low energy
scales. In QCD, of course, the gluon exchange between two
quarks is a finite-range force. However, because the gluon
exchange is screened by the Debye screening in the electric
component and the magnetic screening in the magnetic
component [27], the scattering amplitude in the gluon
exchange which is projected in S-wave channel has
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essentially the same behavior as the one with the contact
interaction [13]. In Ref. [13], the coupling constant in the
QCD Kondo effect was analyzed by the renormalization
group equation. As a result, it was shown that the coupling
constant becomes enhanced logarithmically in the low energy
scale and becomes divergent at the Kondo scale (the Landau
pole). Therefore, the perturbative treatment turns to be
inapplicable at lower energy scale below the Kondo scale.
One of the conditions of the Kondo effect, i.e. existence

of degenerate state, is not limited to the Fermi surface. As
an alternative situation, it was found that the environment
with a strong magnetic field is also suitable for the Kondo
effect. There, the degenerate state is realized as the Landau
degeneracy in the lowest Landau level, which can induce
the Kondo effect [14].
For the strongly interacting system in the lower energy

scale below the Kondo scale, we need to perform the
nonperturbative analysis for the ground state of the system
because the perturbative treatment is no longer applicable.
For electron systemswith the Kondo effect, there are several
nonperturbative treatments, such as the numerical renorm-
alization group, the Bethe ansatz, the conformal field theory
and so on [2–4].Among them, the conformal field theory has
been applied to the general k-channel SUðNÞ Kondo effect
[15]. In the case of the QCD Kondo effect, the channel
number k corresponds to the number of flavor, while N
corresponds to the number of color. Those nonperturbative
methods give exactly correct answers about the properties of
the ground state. On the other hand, there is the mean-field
approximation asmore intuitivemethod [28–31]. Themean-
field approximation was applied to the QCD Kondo effect,
where the condensate is formed by the pairs of a light quark
and a heavy quark (Kondo condensate) in the ground state as
a nontrivial ground state (Kondo phase) [17]. The recent
study along this line has shown that theKondophase has also
nontrivial topological properties and exhibits the hedgehog
spin structure with winding numbers �1 as topological
charges in momentum space [18]. In [17,18], as an ideal
situation, it was assumed that the heavy quarks are distrib-
uted in the whole three-dimensional space with uniform
density like the heavy quark matter. This ideal setting in fact
made the analysis simple very much. On the other hand, it
was considered that a heavy quark exists as an impurity
particle in quark matter, and that the Kondo condensate is
formed on the impurity site as in the heavy quarkmatter case
[16]. In this case, it was presented that the spectral function
of the heavy quark is given by the Lorentzian type function
due to the Kondo condensate, and that the resonant state
(Kondo resonance) is formed near the Fermi surface.
So far we have considered the interaction between the

light quark and the heavy quark only. In more realistic case,
however, we need to consider the interaction between two
light quarks also. In the literature, two kinds of interaction
was considered as a competition to the Kondo condensate:
the diquark condensate formed by light quarks on the Fermi

surface (color superconductivity) [19] and the chiral con-
densate formed by a light antiquark and a light quark [20].
Those studies are important, because there would exist
many types of interaction in quark matter. Such a high
density state with heavy quarks may be realized in the
relativistic heavy ion collisions such as in RHIC, LHC,
GSI-FAIR, NICA, J-PARC and so on, and inside the
neutron stars with quark flavor change induced by high
energy neutrinos from universe [17]. In any case, the
competition among the diquark condensate, the chiral
condensate and the Kondo condensate will be important
to determine the thermodynamic and transport properties of
the quark matter.
The purpose in the present article is to investigate the

transport properties from the QCD Kondo effect in the
quark matter when a heavy quark exists as an impurity
particle. Concretely, we investigate the electric resistance
and the shear viscosity in the presence of the QCD Kondo
effect. We use the relativistic Boltzmann equation for
calculating the transport coefficients (cf. [32]), and adopt
the relaxation time approximation for the collision term. In
this approximation, the relaxation time is related to the
coupling constant of the interaction between the light quark
and the heavy quark in medium. Importantly, the coupling
constant is not a constant number but is a temperature-
dependent quantity. We estimate the coupling constant at
finite temperature by using the renormalization group
equation up to two-loop order. Because the perturbative
treatment breaks down at low temperature, we perform also
the mean-field approximation for the nonperturbative treat-
ment at zero temperature. With those setups, we investigate
the transport coefficients from the QCD Kondo effect.
The article is organized as the followings. In Sec. II, we

formulate the interaction Lagrangian with the color
exchange between a light quark and a heavy quark. By
this Lagrangian, we analyze the renormalization group
equation up to two-loop order perturbatively. We also adopt
the mean-field approximation as nonperturbative treatment
at zero temperature. In Sec. III, we introduce the relativistic
Boltzmann equation and formulate the electric resistivity
based on the relativistic kinetic theory, and the viscosities
based on the relativistic hydrodynamics. In Sec. IV, we
present the numerical result for the relaxation time, and
show the electric resistivity and the shear viscosities by
using the effective coupling constants estimated in Sec. II.
The final section is devoted to a summary. In the Appendix,
we give a derivation of the equation of motion for massless
fermions to be used in the relativistic Boltzmann equation.

II. ANALYSIS OF QCD KONDO EFFECT

A. Lagrangian

We consider the color-current interaction between a light
quark and a heavy quark, mimicking the one-gluon
exchange interaction in QCD [12,13]. The color exchange
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in the interaction is essential for the QCD Kondo effect.
We consider the Nf flavors for the light (massless) quarks.
The Lagrangian is given by

L ¼ ψ̄ði=∂ þ μγ0Þψ þ Ψ̄viv · ∂Ψv

−Gc

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ; ð1Þ

with ψ¼ðψ1;…;ψNf
Þ and Ta¼λa=2 (λa with a¼ 1;…;

N2
c−1 are the Gell-Mann matrices) [12,16–18]. μ is the

chemical potential for the light quarks, and Gc > 0 is the
coupling constant. Concerning the heavy quark, we intro-
duce the effective field of the heavy quark Ψv which is
defined by ΨvðxÞ ¼ eiMv·x 1þv

2
ΨðxÞ, where ΨðxÞ is the

original heavy quark field and vμ is the four-velocity.2

The reason for introducing the effective field is explained
in the followings. Because the mass of heavy quark M can
be regarded as a sufficiently heavy quantity, it can be
regarded as being much larger than the typical scale in the
quark matter, such as the light quark chemical potential μ.
Hence, it is convenient to separate the original heavy quark
momentum P into the on-mass-shell part and the off-mass-
shell (residual) part: Pμ ¼ Mvμ þ kμ with the conditions
vμvμ ¼ 1 (v0 > 0) and kμ being a small quantity (kμ ≪ M).
The factor eiMv·x means to pick up the on-mass-shell
component, and to leave only the off-mass-shell component
in the effective field. Hence the derivative for Ψv in Eq. (1)
acts for the residual momentum in momentum space.
The factor 1þv

2
is the projection operator to the positive-

energy component in Ψ. Notice the relation =vΨv ¼ Ψv.
In the following discussions, we choose the rest frame:
vμ ¼ ð1; 0Þ.
The Lagrangian (1) has two model-dependent parame-

ters: the coupling constant Gc and the ultraviolet momen-
tum cutoff parameter ΛUV for regularization scheme of
loop integrals. We use the three-momentum cutoff for
regularization scheme because the finite density violates
the Lorentz invariance. The values of Gc and ΛUV are
determined to reproduce the D meson properties in vacuum
[16–18].
Based on the Lagrangian (1), we consider the scattering

process of a light quark and a heavy quark in quark matter:
qlðpÞ þQjðPÞ → qkðp0Þ þQiðP0Þ, where p (p0) is the
initial (final) momentum of the light quark, and P (P0)
is the initial (final) momentum of the heavy quark. The
indices l, k, i, j ¼ 1;…; Nc are the color indices. Because
the light quarks lie in quark matter, the light quark
propagator is different from that in vacuum. The light
quark propagator for four-momentum qμ ¼ ðq0; qÞ is
given by

iSFðqÞ¼
i

=qþμγ0þiε0

¼ ið=qþμγ0Þ
ðq0−ðϵq−μÞþisgnðϵq−μÞεÞðq0−ð−ϵq−μÞ−iεÞ;

ð2Þ

where ϵq ¼ jqj is an energy for three-momentum q, ε is an
infinitesimal and positive number for choosing the pole in
the propagator on the complex energy plane, and sgnðxÞ is
a sign function: sgnðxÞ ¼ 1 for x ≥ 0 and sgnðxÞ ¼ −1
for x < 0.
When the QCD Kondo effect occurs, the coupling

constant of the interaction vertex between a light quark
and a heavy quark is not a constant value (Gc), but it is
modified by the medium effect (G�

c). In the following two
subsections, we will investigate how the coupling constants
are modified due to the QCD Kondo effect in quark matter.
First, we will investigate this problem by the perturbative
analysis where the medium effect is taken into account by
the renormalization group equation. However, this treat-
ment is valid only in the perturbative regime at finite
temperature. To obtain the ground state at zero temperature,
second, we will introduce the mean-field approximation
and will analyze the ground state property.

B. Renormalization group equation up to
two-loop approximation

We investigate the modifications of the coupling con-
stants by the QCD Kondo effect in quark matter by using
the renormalization group equation. The study up to one-
loop order was given in Refs. [13,16]. In the present
discussion, we calculate the renormalization group equa-
tion up to two-loop order by following the description in
Ref. [19]. Based on the Lagrangian (1), we introduce the
bare Lagrangian which is expressed by the bare field ΨvB
and the bare coupling constant GcB:

L ¼ ψ̄ði=∂ þ μγ0Þψ þ Ψ̄vBv · i∂ΨvB

− GcB

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vBγμTaΨvBÞ; ð3Þ

where ΨvB and GcB are related to the dressed (physical)
field Ψv and coupling constant Gc by

ΨvB ¼
ffiffiffiffiffiffi
ZΨ

p
Ψ; ð4Þ

GcB ¼ Z−1
Ψ ZGGc; ð5Þ

where ZΨ and ZG are introduced for the renormalization
constants for the field and the coupling constant, respec-
tively. Notice that ZΨ and ZG are scale-dependent quan-
tities. In the following discussions, instead of ZΨ and ZG,
we define2See e.g. [33,34] for more details about the heavy quark limit.
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δΨ ¼ ZΨ − 1; ð6Þ

δG ¼ ZG − 1; ð7Þ

for convenience of calculations. By using the physical
field Ψv and coupling constant Gc, we rewrite the
Lagrangian (3) as

L ¼ ψ̄ði=∂ þ μγ0Þψ þ Ψ̄vv · i∂Ψv

− Gc

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ þ δΨΨ̄vv · i∂Ψv

− δGGc

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ: ð8Þ

Notice that the last two terms proportional to δΨ or δG are
added for the renormalization to Eq. (1). We define the
β-function for the renormalization group equation of the
coupling constant,

βðGcÞ ¼ Λ
dGc

dΛ
; ð9Þ

for the energy scale Λ relevant to the interaction. Noting
that the scale-dependence is included in ZΨ and ZG in
Eqs. (4) and (5), or δΨ and δG in Eqs. (6) and (7), we can
express Eq. (9) as

βðGcÞ≃
�
−Λ

dδG
dΛ

þ Λ
dδΨ
dΛ

�
Gc; ð10Þ

by using Gc ≃ ð1 − δG þ δΨÞGcB and neglecting higher
order terms. In the following discussions, we investigate the
Λ-dependence of δΨ and δG to obtain the β function up to
two-loop order.
As for δG, we consider the four-point vertex of the light

quark and the heavy quark up to two-loop order:

iΓ4 ¼ iΓð0Þ
4 þ iΓð1Þ

4 þ iΓð2Þ
4 þ iΓct

4 ; ð11Þ

where iΓðlÞ
4 (l ¼ 0, 1, 2) is the four-point vertex with

l-loop, and iΓct
4 is the counterterm. The concrete forms of

the equations are given in the followings.
The four-point vertex with the one-loop diagrams consist

of the particle part (p) and the hole part (h),

iΓð1Þ
4 ¼ iΓð1Þp

4 þ iΓð1Þh
4 ; ð12Þ

as shown in Fig. 1. Their concrete forms are given by

iΓð1Þp
4 ¼ð−iGcÞ2

Z
d4q
ð2πÞ4γ

0iSFðqÞγ0
i

p0−ðq0þμÞþiε
T p

kl;ij

¼G2
c

Z
d3q
ð2πÞ3ð−iÞ

1

2ϵq

θðμ−ϵqÞ
ϵq−p0þiε

ϵqγ
0T p

kl;ij; ð13Þ

and

iΓð1Þh
4 ¼ ð−iGcÞ2

Z
d4q
ð2πÞ4 γ

0iSFðqÞγ0

×
i

−p0 þ ðq0 þ μÞ þ iε
T h

kl;ij

¼ G2
c

Z
d3q
ð2πÞ3 i

1

2ϵq

θðμ − ϵqÞ
ϵq − p0 þ iε

ϵqγ
0T h

kl;ij; ð14Þ

where we define

T p
kl;ij ≡

XN2
c−1

c;d¼1

XNc

k0¼1

ðTcÞkk0 ðTdÞk0l
XNc

i0¼1

ðTcÞii0 ðTdÞi0j

¼ 1

2

�
1 −

1

N2
c

�
δklδij −

1

Nc
Tkl;ij; ð15Þ

and

T h
kl;ij ≡

XN2
c−1

c;d¼1

XNc

k0¼1

ðTcÞkk0 ðTdÞk0l
XNc

i0¼1

ðTdÞii0 ðTcÞi0j

¼ 1

2

�
1 −

1

N2
c

�
δklδij −

�
1

Nc
−
Nc

2

�
Tkl;ij; ð16Þ

with

Tkl;ij ≡
XN2
c−1

a¼1

ðTaÞklðTaÞij; ð17Þ

for short notations. As a sum of Eqs. (13) and (14), we
obtain

iΓð1Þ
4 ¼ −i

2
γ0G2

c

Z
ϵq<μ

d3q
ð2πÞ3

�
P

1

ϵq − p0

�
−
Nc

2
Tkl;ij

�

þ iπδðϵq − p0Þ

×

��
1 −

1

N2
c

�
δklδij þ

�
−

2

Nc
þ Nc

2

�
Tkl;ij

��

→
−i
2

1

2π2

�
−
Nc

2
Tkl;ij

�
γ0G2

cμ
2 lnΛ; ð18Þ

+

FIG. 1. Diagrams for one loop (iΓð1Þp
4 (left) and iΓð1Þh

4 (right)).
The thin lines represent the light-quark propagators, the thick
lines represent the heavy-quark propagators.
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where we introduce the infrared momentum cutoff in the
momentum integrals, Λ, and restrict the integration range to
½0; μ − Λ� and ½μþ Λ;ΛUV�, and we leave only the diver-
gent term for the infrared limit Λ → 0 in the last equation
after the arrow.
Next, we consider the two-loop diagram presented in

Fig. 2. This diagram gives the strongest (infrared) diver-
gence around the Fermi surface, relevant to the renormal-
ization group equation, among other possible diagrams.
The four-point vertex at this order is given by

iΓð2Þ
4 ¼ð−1Þð−iGcÞ3Nf

XN2
c−1

a;b;c¼1

XNc

i0;j0;m;n¼1

Ta
klT

a
i0j0T

b
ii0T

b
mnTc

nmTc
j0j

×
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4 trðiSFðq1Þγ

0iSFðq2Þγ0Þ

×
i

−ðq01þμÞþðq02þμÞþ iε

×
i

−ðq01þμÞþðq02þμÞþ iε
γ0

→−iG3
cNf

1

4Nc
2

1

2π2
1

4π2
μ4ðlnΛÞγ0Tkl;ij; ð19Þ

where we introduce the four-momenta qμ1 ¼ ðq01; q1Þ and
qμ2 ¼ ðq02; q2Þ for the internal loops, and we restrict the
momentum range in the integration to ½0; μ − Λ� and
½μþ Λ;ΛUV�, and we leave only the divergent term for
the infrared limit Λ → 0 in the last equation after the arrow.
In the above calculation, we use the relation

XN2
c−1

a;b;c¼1

XNc

i0;j0;m;n¼1

Ta
klT

a
i0j0T

b
ii0T

b
mnTc

nmTc
j0j ¼ −

1

4Nc
Tkl;ij: ð20Þ

Finally, we calculate the counterterm which is given by

iΓct
4 ¼ ið−δGGcÞγ0Tkl;ij: ð21Þ

Substituting Eqs. (18), (19) and (21) into Eq. (11), we
find that Λ-dependence can be canceled when δG satisfies

−i
2

1

2π2

�
−
Nc

2

�
G2

cμ
2 lnΛ

− iG3
cNf

1

4Nc
2

1

2π2
1

4π2
μ4 lnΛþ ið−δGGcÞ ¼ 0; ð22Þ

hence

δG ¼ Nc

8π2
μ2Gc lnΛ −

Nf

16π4Nc
μ4G2

c lnΛ: ð23Þ

This is the Λ-dependence of δG up to two-loop order.
As for δΨ, we consider the two-point vertex function, i.e.

the propagator of the heavy quark,

iΓ2 ¼
i

v · p − ΣðpÞ þ iε

≃ i

v · p −
	
Σð0Þ þ dΣðpÞ

dv·p





v·p¼0

v · p
�
þ iε

¼ i

v · p
	
1 − dΣðpÞ

dðv·pÞ




v·p¼0

�
þ iε

≃
i
	
1þ dΣðpÞ

dðv·pÞ




v·p¼0

�
v · pþ iε

; ð24Þ

where ΣðpÞ is the self-energy of the heavy quark (p is the
residual momentum).3 From the last equation in Eq. (24),
the renormalization condition is given by

dΣðpÞ
dðv · pÞ






v·p¼0

¼ 0: ð25Þ

The self-energy is given as a sum of the terms from the loop
diagrams and the counterterm:

−iΣðpÞ ¼ −iΣðpÞloop − iΣðpÞct: ð26Þ

The loop contribution, which is shown in Fig. 3, is
calculated by

ij

kl (Ta)kl

(Ta)(Tc) (Tb)

(Tb)mn
(Tc)nm

q2

-q1+q2

q1-q2

q1

-q1+q2

q1-q2

FIG. 2. Diagram for the four-point vertex with two-loop. The
thin lines represent the light-quark propagator, the thick line
represents the heavy-quark propagator. The dashed lines are the
interaction.

3We suppose that Σð0Þ is sufficiently small as compared to the
heavy quark mass, and it will be irrelevant to the leading order in
the renormalization group equation.
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−iΣðpÞloop ¼ ð−1Þð−iGcÞ2

×
XN2
c−1

b;c¼1

XNc

k;m;n¼1

ðTbÞikðTbÞmnðTcÞnmðTcÞkj

×
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4 trðγ

0iSFðq1Þγ0iSFðq2ÞÞ

×
i

v · ðp − q1 þ q2Þ þ iε
; ð27Þ

by using the relation

XN2
c−1

b;c¼1

XNc

k;m;n¼1

ðTbÞikðTbÞmnðTcÞnmðTcÞkj ¼
N2

c − 1

4Nc
δij: ð28Þ

The counterterm is given by

−iΣðpÞct ¼ iδΨδijv · p: ð29Þ

Substituting Eqs. (27) and (29) to Eq. (26), we obtain

d
dv · p

ð−iΣðpÞÞ





v·p¼0

¼ iG2
c
N2

c − 1

4Nc
δij

�
−2

1

8π4
μ4 ln

Λ
ΛUV − μ

�
þ iδΨδij

¼ −2
iG2

c

8π4
N2

c − 1

4Nc
δijμ

4 ln
Λ

ΛUV − μ
þ iδΨδij; ð30Þ

hence

δΨ ¼ 2
G2

c

8π4
N2

c − 1

4Nc
μ4 ln

Λ
ΛUV − μ

: ð31Þ

This is the Λ-dependence of δΨ up to two-loop.
Substituting Eqs. (23) and (31) into Eq. (10), we obtain

βðGcÞ ¼ −
Nc

8π2
μ2G2

c

�
1 −

Nf þ N2
c − 1

2π2N2
c

μ2Gc

�
: ð32Þ

Instead of Λ, we define the alternative variable l ¼
− lnΛ=Λ0 (Λ < Λ0 and Λ0 ≃ ΛUV). The high energy scale

Λ0 gives the starting point for the renormalization. It will be
natural to assign ΛUV for Λ0 and to consider that the Gc at
the energy scale Λ0 is almost identical to the value of Gc in
the Lagrangian (1). Then, we obtain

dGc

dl
¼ Nc

8π2
μ2G2

c

�
1 −

Nf þ N2
c − 1

2π2N2
c

μ2Gc

�
; ð33Þ

where Λ can be regarded as the temperature of the system
(Λ≃ T).4 Solving this equation, we know how the coupling
constant is changed as a function of the low-energy scale Λ
or the temperature T.
As a simple case, let us consider the one-loop level by

leaving only the term proportional to G2
c in the right-hand

side of Eq. (33). Then, the renormalization group equa-
tion (33) is simplified to

dGc

dl
¼ Nc

8π2
μ2G2

c; ð34Þ

whose solution is given in an analytic form as

GcðΛÞ ¼
GcðΛ0Þ

1þ Nc
8π2

μ2GcðΛ0Þ ln Λ
Λ0

: ð35Þ

Interestingly, the above solution gives a divergence for
GcðΛÞ at the low-energy scale (the Landau pole),

ΛK ¼ Λ0 exp

�
−

8π2

Ncμ
2GcðΛ0Þ

�
; ð36Þ

because the denominator in Eq. (35) becomes zero.
At finite temperature, the Landau pole would appear at
TK ∼ ΛK. The appearance of the divergence at Λ ¼ ΛK
indicates that the perturbative renormalization group equa-
tion cannot be applied for lower energy scale Λ < ΛK
(T < TK).

5 The energy scale ΛK (TK) is called the Kondo
scale (temperature), which gives a typical low-energy scale
for separating the higher energy scale Λ > ΛK (T > TK)
and the lower energy scale Λ < ΛK (T < TK) [12,13]. The
enhancement of the coupling constant at low energy scale
indicates that the perturbative treatment cannot be directly
applied and hence nonperturbative technique is required to
obtain the ground state in the low energy limit. We notice
that, when the two-loop order is included in Eq. (33), the
divergence becomes smeared and the coupling constant is
still finite in lower energy scales (or temperatures).

ij (Tc)kj (Tb)ik

(Tb)mn
(Tc)nm

p-q1+q2

q1-q2 q1-q2

q1

q2

FIG. 3. Diagram for the heavy quark propagator with two-loop.
The thin lines represent the light-quark propagator, the thick line
represents the heavy-quark propagator.

4In [19], the large Nc was adopted in Eq. (33).
5Notice that the effective coupling constant becomes smaller

for negative GcðΛ0Þ < 0. This indicates that the interaction
between a light quark and a heavy quark in quark matter is
much suppressed in low energy, and the heavy quark behaves as
an almost free particle. However, it will be natural to consider
the positive case (GcðΛ0Þ > 0) for mimicking the one-gluon
exchange interaction.
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However, the finite coupling constant in two-loop should
not be literally taken, because the perturbative treatment
may be broken already in one-loop.

C. Nonperturbative approach by mean-field
approximation

Beyond the perturbative calculation, we adopt the mean-
field approximation for a heavy quark as nonperturbative
treatment [16]. We suppose that the heavy quark exists at
the position x ¼ 0. In the rest frame, the heavy quark does
not propagate in three-dimensional space, and hence the
constraint condition for the heavy quark number density
needs to be introduced:

Ψ̄vðxÞΨvðxÞ ¼ δð3ÞðxÞ; ð37Þ

where δð3ÞðxÞ is the three-dimensional δ-function. This
relation means that the heavy quark number density
concentrates only at x ¼ 0. Notice Ψ̄vΨv ¼ Ψ†

vΨv. To keep
the constraint condition (37), we modify the Lagrangian (1)
into

Lλ ¼ ψ̄ði=∂ þ μγ0Þψ þ Ψ̄viv · ∂Ψv

−Gc

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ

− λðΨ̄vΨv − δð3ÞðxÞÞ; ð38Þ

where the last term is added with the Lagrange multiplier λ.
The value of λ will be given in the following analysis. For
the interaction term in Eq. (38), we apply the Fierz identity

XN2
c−1

a¼1

ðTaÞijðTaÞkl ¼
1

2
δilδkj −

1

2Nc
δijδkl; ð39Þ

and consider the term 2ðψ̄lγ
μΨvÞðΨ̄vγμψlÞ (l¼1;…;Nf),

which stems from the first term in the right-hand side of
Eq. (39). We then perform the mean-field approximation:

ψ̄lαΨvδΨ̄vγψlβ → hψ̄lαΨvδiΨ̄vγψlβ þ hΨ̄vγψlβiψ̄lαΨvδ

− hψ̄lαΨδihΨ̄vγψlβi; ð40Þ

with the Dirac indices α, β, γ, δ, where the mean-field
hψ̄lαΨδi is introduced. We define the gap function

Δ̂l
δα ¼

Gc

2
hψ̄lαΨδi; ð41Þ

which can be parametrized as Δ̂l
δα ¼ Δlð1þγ0

2
ð1 − k̂ · γÞÞδα

with k̂ ¼ k=jkj for three-momentum of the light quark k
and three-dimensional component of the Dirac matrix γ.
This approximation was considered for the extended matter
state of heavy quarks in Ref. [17], and it was applied also to

the single heavy quark case in [16]. The current description
follows Ref. [16]. We set Δl ¼ Δ for all l by assuming the
light flavor symmetry. In the mean-field approximation, the
Hamiltonian form in the momentum space is given by

HMF ¼
XNc

a¼1

ðψ†;Ψ†
vÞH

�
ψ

Ψv

�
þ 8Nf

Gc
jΔj2 − λ; ð42Þ

where ψ ¼ ðψ1
k;…;ψ

Nf

k0 Þt for the three-dimensional
momenta k;…; k0 in momentum space, where we denote
ψl
k as the light fermion field with momentum k for light

flavor l. In one component of color space, H is defined by

H ¼

0
BBBBB@

H0
k � � � 0 Δ̂†

k

..

. . .
. ..

. ..
.

0 � � � H0
k0 Δ̂†

k0

Δ̂k � � � Δ̂k0 λ

1
CCCCCA; ð43Þ

with H0
k and Δ̂k defined by

H0
k ¼

� −μ k · σ

k · σ −μ

�
; ð44Þ

and

Δ̂k ¼
�
− 1ffiffiffi

V
p Δ − 1ffiffiffi

V
p Δk̂ · σ

�
; ð45Þ

with the system volume V, respectively. It is important
to notice that k;…; k0 run over all the three-momenta
for all light flavors. To get Eq. (42), we used the Fourier
expansion for

ψlðxÞ ¼ 1ffiffiffiffi
V

p
X
k

eik·xψl
k ; ð46Þ

ΨvðxÞ ¼
1ffiffiffiffi
V

p 1ffiffiffiffiffiffiffiffiffiffiffiP
k01

p X
l

eil·xΨv; ð47Þ

ΔðxÞ ¼ 1ffiffiffiffi
V

p 1ffiffiffiffiffiffiffiffiffiffiffiP
k01

p X
m

eim·xΔm; ð48Þ

for the three-dimensional momenta k, l, m. We set Δm ¼ Δ
for allm. We also considerΨv in momentum space as it has
no dependence on the three-dimensional momenta. Notice
that the factor 1=

ffiffiffiffiffiffiffiffiffiffiffiP
k01

p
in ΨvðxÞ and ΔðxÞ is introduced

for a normalization factor.6

6The convention for the normalization of the field is different
from that used in Ref. [16].
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The gap function Δ affects the spectral function of the
heavy quark. The spectral function is defined by

ρ̄ðωÞ ¼ −
1

π
ImTrGðωÞ; ð49Þ

where GðωÞ satisfies

ðωþ1 −HÞGðωÞ ¼ 1; ð50Þ

with the unit matrix 1 for the Hamiltonian H in Eq. (43).
Notice that in the right-hand side of Eq. (49) the sum over
the heavy quark spin and color is included in the trace. Here
the energy ω is measured from the Fermi surface, and it
enters by ωþ ¼ ωþ iη with a small and positive quantity η.
By calculating Eq. (49) with the Hamiltonian (43), we
obtain

ρ̄ðωÞ ¼ −
2Nc

π
Im

∂
∂ω ln

�
ωþ − λ −

1

V

X
k

2NfjΔj2
ωþ þ μ − jkj

�
;

ð51Þ
as a function of ω. As for the sum over k, we perform the
approximation in Eq. (51),

1

V

X
k

2NfjΔj2
ωþ þ μ − jkj ¼

Z
d3k
ð2πÞ3

2NfjΔj2
ωþ þ μ − jkj

≃ −
iNf

π
μ2jΔj2; ð52Þ

where we neglect the real part and leave the imaginary part
only.7 As a result, we rewrite Eq. (51) as

ρ̄ðωÞ ¼ 2Nc

π

δ2

ðω − λÞ2 þ δ2
; ð53Þ

where we define δ ¼ ðNf=πÞμ2jΔj2. The form of the right-
hand side of Eq. (53) exhibits the resonance state by the
Lorentz type function with the energy position λ and the
width 2δ. The resonance, which may be called the Kondo
resonance, is formed by mixing of the light quark and the
heavy quark according to the formation of the mean-field
hψ̄lαΨδi as it was introduced in Eq. (40) [16].
By using the Hamiltonian (42) with the spectral function

(53), the thermodynamic potential of the heavy quark is
given by

ΩðT; μ; λ; δÞ ¼ −
1

β

Z þ∞

−∞
ln ð1þ e−βωÞρ̄ðωÞdω

þ 8π

μ2Gc
δ2 − λ; ð54Þ

with the inverse temperature β ¼ 1=T. The thermodynamic
potentials from free light quarks which have no coupling to
the heavy quark is not displayed, because they are irrelevant
to the following discussion. The values of δ and λ can be
obtained by the stationary condition

∂
∂δΩðT; μ; λ; δÞ ¼

∂
∂λΩðT; μ; λ; δÞ ¼ 0: ð55Þ

It is important to keep in mind that the stationary condition
for δ should satisfy the stability for the fluctuation around
the minimum point.
At zero temperature (T ¼ 0), we simplify the thermo-

dynamic potential (54) to

~Ω0ðμ; λ; δÞ ¼
2Nc

π

�
−δþ λ arctan

δ

λ
þ δ

2
log

δ2 þ λ2

Λ2
UV

�

þ 2Ncλθð−λÞ þ
8π

μ2Gc
δ − λ; ð56Þ

where we restrict the integration range for ω as
½−ΛUV;ΛUV� and leave the nonvanishing terms for large
ΛUV. Supposing λ > 0, from the condition (55), we obtain
two equations8:

λ2 þ δ2 ¼ Λ2
UV exp

�
−

8π2

Ncμ
2Gc

�
; ð57Þ

δ ¼ λ tan
π

2Nc
: ð58Þ

Then, we finally obtain δ and λ as

δ ¼ ΛUV sin

�
π

2Nc

�
exp

�
−

4π2

Ncμ
2Gc

�
; ð59Þ

and

λ ¼ ΛUV cos

�
π

2Nc

�
exp

�
−

4π2

Ncμ
2Gc

�
: ð60Þ

Therefore, there is a resonance state whose form is given by
the spectral function (53) with δ and λ in Eqs. (59) and (60).
By substituting δ and λ to Eq. (56), we obtain the
thermodynamic potential in the ground state:

~Ω0 ¼ −ΛUV
2Nc

π
sin

�
π

2Nc

�
exp

�
−

4π2

Ncμ
2Gc

�
: ð61Þ

Notice that negative sign, ~Ω0 < 0, indicates that the heavy
quark is bound in quark matter due to nonzero value of
the gap, i.e. the formation of the Kondo resonance.

7Notice that the definition for Δ is different from that used in
Ref. [16]. 8It is shown that there is no consistent solution for λ < 0.
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The absolute value j ~Ω0j gives the energy gain of the heavy
quark by forming the Kondo resonance.
We investigate the thermodynamic potential numerically.

We plot the thermodynamic potential as a function of λ and
δ in Fig. 4 with use of the parameter set mentioned in the
caption. It is clearly seen that the intersection of the dashed
half circle by Eq. (57) and the dashed straight line by
Eq. (58) gives the stationary point where the thermody-
namic potential ~Ω0ðμ; λ; δÞ satisfies the stationary condition
[cf. Eq. (55)].
We comment on the large Nc limit (’t Hooft limit)

for δ and λ in Eqs. (57) and (58). Keeping NcGc
as a constant value, the large Nc induces the limit of
δ → 0 and λ → ΛUV expð−4π2=ðNcμ

2GcÞÞ. Thus, it gives
a sharp spectral function with zero width at λ ¼
ΛUV expð−4π2=ðNcμ

2GcÞÞ in Eq. (53). Because there
seems no mixing between the light quark and the heavy
quark for δ → 0, it might seem likely that the heavy quark
becomes completely decoupled from the medium.
However, the QCD Kondo effect never vanishes in the
large Nc limit. In fact, the thermodynamic potential (61)
approaches ~Ω0 → −ΛUV expð−4π2=ðNcμ

2GcÞÞ as a con-
stant value in this limit, and the formation of the Kondo
resonance is still favored.
Finally, we estimate the interaction coupling between a

light quark and a heavy quark when the Kondo resonance is
formed. The phase shift of the scattering is given by

ΔδðωÞ ¼ π

Z
ω

−ΛUV

ρðω0Þdω0; ð62Þ

where we define the spectral function per a heavy quark
spin and color, ρðωÞ ¼ ρ̄ðωÞ=ð2NcÞ. The scattering ampli-
tude is given by

fðωÞ ¼ 1

k
eiΔδðωÞ sinΔδðωÞ; ð63Þ

with momentum k ¼ μþ ω, and the cross section is given
by σMFðωÞ ¼ 4πjfðωÞj2. At zero temperature, the quark
with ω≃ 0 on the Fermi surface dominantly contributes to
the scattering process. Assuming that the effective inter-
action Lagrangian in the ground state is written by

Lgs
int ¼ −Ggs

c

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ; ð64Þ

we estimate the effective coupling constant Ggs
c from the

cross section σMFðωÞ at ω≃ 0. For the scattering kinemat-
ics, we set the magnitude of the initial and final momenta of
the light quark as pi ≃ pf ≃ μ. Therefore, from Eq. (64),
we calculate the differential cross section

dσgs

dΩ
¼ 1

64π2ðμþMÞ2 2NcðGgs
c Þ2M2μ2ð1þ cos θÞ

≃ 1

64π2
2NcðGgs

c Þ2μ2ð1þ cos θÞ; ð65Þ

where θ is the angle between the initial and final momenta,
andM is the heavy quark mass which is much larger than μ.
The total cross section is given by

σgs ¼
Z

dσgs

dΩ
dΩ

¼ 1

8π
NcðGgs

c Þ2μ2; ð66Þ

and the value of Ggs
c is estimated by setting σMF ¼

σgs ¼ 1
8πNcðGgs

c Þ2μ2.

D. Numerical results for effective coupling constant

Based on the results in Secs. II B and II C, we plot the
effective coupling constant G�

cðTÞ as functions of temper-
ature for several chemical potentials. We use the solution of
Eq. (33) at one-loop or two-loop level in perturbative
calculation. We also use the effective coupling constant in
Eq. (64) in nonperturbative calculation. For comparison,
we consider the bare coupling constant Gc in the original
Lagrangian (1). We consider the following four cases:

(i) Bare coupling constant: G�
cðTÞ ¼ Gc,

(ii) One-loop order: G�
cðTÞ ¼ Gð1Þ

c ðTÞ,
(iii) Two-loop order: G�

cðTÞ ¼ Gð2Þ
c ðTÞ,

(iv) Mean-field approximation: G�
cðT ¼ 0Þ ¼ Ggs

c ,

where Gð1Þ
c ðTÞ is given by Eq. (35) and Gð2Þ

c ðTÞ is the
solution of Eq. (33). Figure 5 shows the coupling constants
as functions of the temperature with above four cases. We
use the combinations of the coupling constant Gc ¼ Gc0 or
Gc0=2, and the chemical potential μ ¼ 0.3 GeV or 0.4 GeV.
The original parameter set is Gc0 ¼ 2ð9=2Þ=Λ2

UV and
ΛUV ¼ 0.65 GeV. The parameter set with Gc ¼ Gc0 is
estimated from the Nambu–Jona-Lasinio model or the
properties of D meson in vacuum [18]. We consider the

FIG. 4. The contour plot of the thermodynamic potential
~Ω0ðμ; λ; δÞ as a function of λ and δ, Eq. (56). The used parameter
set is Nc ¼ 3, Gc ¼ 2ð9=2Þ=Λ2

UV, ΛUV ¼ 0.65 GeV and
μ ¼ 0.5 GeV. The dashed half circle and straight line indicate
the plots of Eqs. (57) and (58), respectively.
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case of Gc ¼ Gc0=2 for investigating the reduction of
the coupling constant in quark matter, which would be
different from that in vacuum. Since the perturbation with
respect to the dimensionless coupling μ2Gc is good for
small values of Gc and μ, we obtain a better convergence
for loop corrections in the case of the smaller coupling
(Gc ¼ Gc0=2) and the smaller chemical potential
(μ ¼ 0.3 GeV). The worse convergence for a large value
of the chemical potential μ would stem from the fact that
the value of μ approaches to the cutoff parameter ΛUV. The
mean-field approximation in Sec. II C would be valid only
for the weak coupling constant. Therefore, the result for the
small coupling case would be more acceptable than that in
the strong coupling case. The large deviation of the mean-
field result at Gc ¼ Gc0 and μ ¼ 0.4 GeV indicates that the
treatment of the weak coupling is not applicable both in the
renormalization group equation and in the mean-field
approximation.

III. RELATIVISTIC KINETIC THEORY

We formulate the kinetic theory for the relativistic
fermions to calculate the transport coefficients of the quark

matter. Based on the relativistic Boltzmann equation and
the relativistic hydrodynamics which are often used in the
literature, we show the formula for calculating the resis-
tivity and the shear and bulk viscosities of the quark matter
interacting with the heavy quark impurity.

A. Relativistic Boltzmann equation

We consider the classical particle motion in the
phase space ðx; pÞ for light (massless) quark gas [35–39].9

The distribution function of the light quark fðλÞq ðt; x; pÞwith
electric charge q and helicity λ follows the Boltzmann
equation

� ∂
∂tþ _x ·

∂
∂xþ _p ·

∂
∂p
�
fðλÞq ðt;x;pÞ ¼ C½fðλÞq ðt;x;pÞ�; ð67Þ

FIG. 5. The temperature dependence of the effective coupling constants. The black lines for G�
cðTÞ ¼ Gc, the red lines for

G�
cðTÞ ¼ Gð1Þ

c ðTÞ, the blue lines for G�
cðTÞ ¼ Gð2Þ

c ðTÞ and the black blobs for G�
cðT ¼ 0Þ ¼ Ggs

c .

9The present chiral kinetic theory is reduced to the usual
kinetic theory unless there is an imbalance of chirality or a finite
magnetic field. Although we consider zero magnetic field in the
end, we show the general form for a possible extension to the
magnetically-induced QCD Kondo effect [14].
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where the right-hand side is the collision term. The helicity
can be regarded as the chirality in massless fermions. In the
massless fermion case, the Hamiltonian for helicity λ ¼ �1

is given by HðλÞ ¼ λσ · ðpþ qAÞ þ qΦ with external
electromagnetic fields ðΦ;AÞ and the electric charge q.
By analyzing the classical path for the Hamiltonian HðλÞ,
we find that x and p follow the equations of motion,

_p ¼ 1

1þ qB · bðλÞ
ðqEþ qp̂ × Bþ q2ðB · EÞbðλÞÞ; ð68Þ

_x ¼ 1

1þ qB · bðλÞ
ðp̂þ qE × bðλÞ þ qðbðλÞ · p̂ÞBÞ; ð69Þ

with the unit vector in momentum space p̂ ¼ p=jpj, the
electric and magnetic fields E ¼ −∇xΦ − ∂

∂tΦ and B ¼
∇x × A [35–39].10 The vector bðλÞ is defined by

bðλÞ ¼ ∇p × aðλÞp ; ð70Þ

where the Berry connection âp is define by

âp ¼ −iV†
p∇pVp: ð71Þ

The matrix Vp ¼ ð uðþÞ
p uð−Þp vðþÞ

p vð−Þp Þ is defined with uðλÞp

and vðλÞp being the positive-energy and negative-energy
solutions of the Hamiltonian HðλÞ, and ∇p is the derivative

in momentum space. In the spherical basis, aðλÞp ¼
ðaðλÞp ; aðλÞθ ; aðλÞφ Þ can be given by

aðλÞp ¼ aðλÞθ ¼ 0; aðλÞφ ¼ λ
cot θ
2p

; ð72Þ

with p ¼ jpj and the angle from the z axis in momentum
space θ. It is important to mention that there is a singular
point at p ¼ 0, and it gives the monopole configuration.
Notice that there is a freedom to choose the vector potential
by gauge transformation, and that, in any gauge, the
monopole cannot be removed in the momentum space.
Substituting Eqs. (68) and (69) into the left-hand side of
Eq. (67), we obtain� ∂
∂tþ

1

1þ qB · bðλÞ
ðp̂þ qE × bðλÞ þ qðbðλÞ · p̂ÞBÞ · ∂∂x

þ 1

1þ qB · bðλÞ
ðqEþ qp̂ × Bþ q2ðB · EÞbðλÞÞ · ∂∂p

�

× fðλÞq ðt; x; pÞ ¼ C½fðλÞq ðt; x; pÞ�: ð73Þ

In the following discussion, we consider the relaxation time
approximation for the collision term:

C½fðλÞq ðt; x; pÞ� ¼ −
1

τ
ðfðλÞq ðpÞ − fðλÞq;0ðpÞÞ; ð74Þ

where fðλÞq;0ðpÞ is the distribution function in thermodynam-
ical equilibrium

fðλÞq;0ðpÞ ¼
1

eβðjpj−μÞ þ 1
; ð75Þ

and τ is the relaxation time. The relaxation time is an
average time in which the particles can propagate in
medium without collision. The value of τ will be estimated
in Sec. IVA.

B. Resistivity

We consider the electric resistivity of the QCD
Kondo effect under the constant electric field. By consid-
ering the uniformity of the quark matter and neglecting
the position dependence, we consider the simplified
Boltzmann equation

1

1þ qB · bðλÞ
ðqEþ qp̂ × Bþ q2ðB · EÞbðλÞÞ · ∂∂p f

ðλÞ
q ðpÞ

¼ −
1

τ
ðfðλÞq ðpÞ − fðλÞq;0ðpÞÞ: ð76Þ

By solving Eq. (76) iteratively for fðλÞq ðpÞ and leaving the
linear term of τ, we obtain the approximate solution:

fðλÞq ðpÞ≃ fðλÞq;0ðpÞ −
τ

1þ qB · bðλÞ

× ðqEþ qp̂ × Bþ q2ðB · EÞbðλÞÞ · ∂∂p f
ðλÞ
q;0ðpÞ;

ð77Þ

assuming that τ is a small quantity.
For general distribution function fðλÞq ðpÞ, we define the

electric current density

jq ¼ Nc
q
V

X
λ¼�

Z
_xfðλÞq ðpÞð1þ qB · bðλÞÞ d

3xd3p
ð2πÞ3

¼ Ncq
X
λ¼�

Z
_xfðλÞq ðpÞð1þ qB · bðλÞÞ d3p

ð2πÞ3 ; ð78Þ

with the space volume V¼ R d3x. The factor ð1þ qB · bðλÞÞ
is necessary so that the measure of the integral is invariant
under the gauge transformation. By setting B ¼ 0 and
substituting Eqs. (68) and (77) into Eq. (78), we obtain

jq ¼
Nc

3π2
βτq2E

Z
∞

0

f0ðpÞð1 − f0ðpÞÞp2dp; ð79Þ

with f0ðpÞ ¼ fðλÞq;0ðpÞ. Defining the electric conductivity σq
by the relationship jq ¼ σqE, we obtain10See Appendix for the derivation of Eqs. (68) and (69).
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σq ¼
Nc

3π2
βτq2

Z
∞

0

f0ðpÞð1 − f0ðpÞÞp2dp: ð80Þ

When there are Nf flavors with electric charge qi
(i ¼ 1;…; Nf), we define the electric conductivity as

σ ¼ Nc

3π2
βτ
XNf

i¼1

q2i

Z
∞

0

f0ðpÞð1 − f0ðpÞÞp2dp: ð81Þ

We define the resistivity by ρ ¼ σ−1.

C. Shear viscosity

We consider the fluid dynamical properties in quark
matter in the presence of heavy quark impurities. When
the local thermalization is assumed, the temperature
and the chemical potential are the position-dependent
functions, TðxÞ and μðxÞ. We set E ¼ B ¼ 0 in the
relativistic Boltzmann equation (73). To emphasize the
relativity of the fluid system, we introduce the four-velocity
uμ (uμuμ ¼ 1). We express the relativistic Boltzmann
equation by

pμ∂μfðx; pÞ ¼ −
u · p
τ

ðfðx; pÞ − f0ðx; pÞÞ; ð82Þ

with using the abbreviated forms fðx; pÞ ¼ fðλÞq ðt; x; pÞ and
f0ðx; pÞ ¼ fðλÞq;0ðt; x; pÞ [32,40–42]. Since E ¼ B ¼ 0, the
acceleration of the particle (68) becomes zero. Thus the

term _p · ð=∂∂pÞfðλÞq ðt; x; pÞ in the Boltzmann equation
drops out.
We consider the Landau frame for the fluid [41,42].11

The energy-momentum tensor is defined by

Tμν ¼
Z

d ~ppμpνfðx; pÞ; ð83Þ

with the measure in the momentum integral d ~p ¼
gd3p=ðð2πÞ3p0Þ and the degrees of degeneracy g¼2NfNc.
We express Tμν by the energy density ϵ, the pressure P, the
bulk viscous pressure Π and the shear stress tensor πμν,

Tμν ¼ ϵuμuν − ðPþ ΠÞΔμν þ πμν; ð84Þ

with the projection operatorΔμν ¼ gμν − uμuν. Notice thatuμ

is defined in the Landau frame: Tμνuν ¼ ϵuμ. This induces
uμπμν ¼ 0 and hence that πμν is perpendicular to Δμν:
Δμνπ

μν ¼ 0. The last property is the same as that πμν is
traceless: πμμ ¼ 0. The energy-momentum conservation is
given by

∂μTμν ¼ 0: ð85Þ

By multiplying uν or Δνρ, we obtain the evolution equation
forΠ and πμν. From uν∂μTμν ¼ 0 and ∂μTμν ¼ 0, we obtain

_ϵþ ðϵþ Pþ ΠÞθ − σμνπ
μν ¼ 0; ð86Þ

ðϵþ Pþ ΠÞ _uα −∇αðPþ ΠÞ þ Δαν∂μπ
μν ¼ 0; ð87Þ

with _A≡ uμ∂μA and θ≡ ∂μuμ.
We suppose that the energy density ϵ and the pressure P

are given by the distribution function at local equilibrium
f0ðx; pÞ as

ϵ ¼ uμuν

Z
d ~ppμpνf0ðx; pÞ; ð88Þ

P ¼ −
1

3
Δμν

Z
d ~ppμpνf0ðx; pÞ; ð89Þ

with

f0ðx; pÞ ¼
1

eβðu·p−μÞ þ 1
: ð90Þ

Here β and μ are x-dependent functions.
We express the general distribution function fðx; pÞ as

fðx; pÞ ¼ f0ðx; pÞ þ δfðx; pÞ; ð91Þ

assuming that the deviation from the equilibrium δfðx; pÞ
is sufficiently small: jδfðx; pÞj ≪ f0ðx; pÞ. Π and πμν are
expressed by

Π ¼ −
1

3

Z
d ~pΔαβpαpβδfðx; pÞ; ð92Þ

and

πμν ¼
Z

d ~pΔμν
αβp

αpβδfðx; pÞ; ð93Þ

with Δμν
αβ ≡ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ, because the vis-

cosity is the deviations from the equilibrium state. The
above expressions are confirmed by multiplying Δμν orΔ

αβ
μν

for Eq. (83) and Eq. (84), when Δμνuμ ¼ 0, ΔμνΔμν ¼ 3,

Δαβ
μνΔμν ¼ 0 are used.
We estimate Π and πμν by using the relaxation time

approximation. We rewrite the Boltzmann equation (82) as

pμ∂μfðx; pÞ ¼ −
u · p
τ

δfðx; pÞ: ð94Þ

To obtain the approximate solutions, we make an expansion
series for τ,

11Notice that most of equations in [32] are given in the Eckart
frame.
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fðx; pÞ ¼ f0ðx; pÞ þ f1ðx; pÞ þ f2ðx; pÞ þ…; ð95Þ

and

δfðx; pÞ ¼ δfð1Þðx; pÞ þ δfð2Þðx; pÞ þ…; ð96Þ

at each order of τn. By iterations, we obtain

f1ðx; pÞ ¼ f0ðx; pÞ −
τ

u · p
pμ∂μf0ðx; pÞ; ð97Þ

f2ðx; pÞ ¼ f0ðx; pÞ −
τ

u · p
pμ∂μf1ðx; pÞ; ð98Þ

…; ð99Þ

which is called the Chapmann-Enskog expansion. As the
lowest order solution, we consider

δfð1Þðx; pÞ ¼ −
τ

u · p
pμ∂μf0ðx; pÞ: ð100Þ

In this approximation, we obtain

Π ¼ −
1

3

Z
d ~pΔαβpαpβδfð1Þðx; pÞ; ð101Þ

and

πμν ¼
Z

d ~pΔμν
αβp

αpβδfð1Þðx; pÞ: ð102Þ

In Eq. (100), to obtain δfð1Þðx; pÞ, we need to calculate
pμ∂μf0ðx; pÞ which is given by

pμ∂μf0ðx;pÞ¼−ððu ·pÞ2 _βþðu ·pÞpμ∇μβ

þβðu ·pÞpμ _uμþβpμpνσ
μνþ1

3
βpμpνΔμνθ

− ðu ·pÞ _ðβμÞ−pμ∇μðβμÞÞÞ
×f0ðx;pÞð1−f0ðx;pÞÞ: ð103Þ

Hence we need to know the functions _β, ∇μβ, _ðβμÞ and
∇μðβμÞ. Regarding uμ as a constant four-vector indepen-
dent of time and position, we approximate ϵ in Eq. (88) and
P in Eq. (89) as

_ϵ≃
Z

d ~pðu · pÞ2 _f0ðx; pÞ

¼ − _βIð3Þ þ _ðβμÞIð2Þ; ð104Þ

and

∇αP≃ −
1

3

Z
d ~pΔμνpμpν∇αf0ðx; pÞ

¼ −ð∇αβÞJð1Þ þ∇αðβμÞJð0Þ; ð105Þ

where we define

IðrÞ ≡
Z

d ~pðu · pÞrf0ðx; pÞð1 − f0ðx; pÞÞ; ð106Þ

JðrÞ ≡ −
1

3

Z
d ~pΔμνpμpνðu · pÞrf0ðx; pÞð1 − f0ðx; pÞÞ:

ð107Þ

Notice Iðrþ2Þ ¼ 3JðrÞ for a massless fermion (p2 ¼ 0).
Eliminating _ϵ and ∇αP in Eqs. (86) and (87) by using
Eqs. (104) and (105), we obtain

−_βIð3Þ þ _ðβμÞIð2Þ þ ðϵþ Pþ ΠÞθ − σμνπ
μν ≃ 0; ð108Þ

ðϵþ Pþ ΠÞ _uα þ ð∇αβÞJð1Þ −∇αðβμÞJð0Þ −∇αΠ

þ Δαν∂μπ
μν ≃ 0: ð109Þ

We consider the particle number density current
defined by

Nμ ¼
Z

d ~ppμfðx; pÞ: ð110Þ

We decompose Nμ as

Nμ ¼ nuμ þ Vμ; ð111Þ

where n is the particle number density and Vμ is the current
for dissipation which satisfies uμVμ ¼ 0. The particle
number conservation ∂μNμ ¼ 0 gives

_nþ nθ þ ∂μVμ ¼ 0: ð112Þ

Considering the local thermal equilibrium, we have

n ¼
Z

d ~pðu · pÞf0ðx; pÞ: ð113Þ

Regarding uμ as a constant vector, we obtain

_n≃
Z

d ~pðu · pÞuμ∂μf0ðx; pÞ

¼ _βð−Ið2Þ þ μIð1ÞÞ þ _ðβμÞIð1Þ; ð114Þ

hence

_βð−Ið2Þ þ μIð1ÞÞ þ _ðβμÞIð1Þ þ nθ þ ∂μVμ ¼ 0: ð115Þ
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Multiplying uμ for both sides of Eq. (111), we obtain
uμNμ ¼ n, hence

Z
d ~pðu · pÞfðx; pÞ ¼ n: ð116Þ

From this relation, we obtain

Vμ ¼ Nμ − nuμ ¼ Δμν

Z
d ~ppνfðx; pÞ: ð117Þ

Notice that there is no dissipation current at equilibrium.
Hence we obtain

Δμν

Z
d ~ppνf0ðx; pÞ ¼ 0; ð118Þ

in which fðx; pÞ was replaced by f0ðx; pÞ. Making the
subtraction, we obtain

Vμ ¼ Δμν

Z
d ~ppνfðx; pÞ − Δμν

Z
d ~ppνf0ðx; pÞ

¼
Z

d ~pΔμνpνδfðx; pÞ: ð119Þ

Furthermore, regarding δfðx; pÞ≃ δfð1Þðx; pÞ, we finally
obtain the dissipative part of the particle number current

Vμ ¼
Z

d ~pΔμνpνδfð1Þðx; pÞ: ð120Þ

From Eqs. (108) and (115), _β and _ðβμÞ are given by

_β ¼ αðIð2Þðnθ þ ∂μVμÞ
− Ið1Þððϵþ Pþ ΠÞθ − σμνπ

μνÞÞ
≃ αðIð2Þnθ − Ið1Þðϵþ PÞθÞ; ð121Þ

_ðβμÞ ¼ αðIð3Þðnθ þ ∂μVμÞ
− ðIð2Þ − μIð1ÞÞððϵþ Pþ ΠÞθ − σμνπ

μνÞÞ
≃ αðIð3Þnθ − ðIð2Þ − μIð1ÞÞðϵþ PÞθÞ; ð122Þ

where we define

α ¼ 1

ðIð2ÞÞ2 − Ið1ÞðIð3Þ þ μIð2ÞÞ ; ð123Þ

and neglect the dissipative terms as the lowest-order
approximation. Similarly, from Eq. (109) we obtain

∇αβ ¼ 1

Jð1Þ
ð−ðϵþ Pþ ΠÞ _uα þ∇αðβμÞJð0Þ

þ∇αΠ − Δαν∂μπ
μνÞ

≃ −
1

Jð1Þ
ðϵþ PÞ _uα þ

Jð0Þ

Jð1Þ
∇αðβμÞ; ð124Þ

where the dissipative terms were again neglected as the
lowest-order approximation. By using _β, _ðβμÞ and ∇μβ
in Eqs. (121), (122) and (124), we calculate pμ∂μf0ðx; pÞ
and obtain

pμ∂μf0ðx; pÞ ¼ ½pμ∂μf0ðx; pÞ�θθ þ ½pμ∂μf0ðx; pÞ�μνσ σμν

þ ½pμ∂μf0ðx; pÞ�μ_u _uμ
þ ½pμ∂μf0ðx; pÞ�μ∇ðβμÞ∇μðβμÞ; ð125Þ

where we define

½pμ∂μf0ðx; pÞ�θ ¼ −
	
αððu · pÞ2ðIð2Þn − Ið1Þðϵþ PÞÞ

− ðu · pÞðIð3Þn − ðIð2Þ − μIð1ÞÞðϵþ PÞÞÞ

þ 1

3
βpμpνΔμν

�
f0ðx; pÞð1 − f0ðx; pÞÞ;

ð126Þ

½pμ∂μf0ðx; pÞ�μνσ ¼ −βpμpνf0ðx; pÞð1 − f0ðx; pÞÞ; ð127Þ

½pμ∂μf0ðx; pÞ�μ_u ¼ −
�
β −

ϵþ P

Jð1Þ

�
ðu · pÞpμ

× f0ðx; pÞð1 − f0ðx; pÞÞ; ð128Þ

½pμ∂μf0ðx; pÞ�μ∇ðβμÞ ¼ −
�
Jð0Þ

Jð1Þ
ðu · pÞ − 1

�
pμ

× f0ðx; pÞð1 − f0ðx; pÞÞ: ð129Þ

By using Eq. (100), we calculate Π, πμν and Vμ in
Eqs. (101), (102) and (120) with the relation to the transport
coefficients, shear viscosity η, bulk viscosity ζ and mobility
κ defined as πμν ≡ 2ησμν, Π≡ −ζθ and Vμ ≡ κ∇μðβμÞ,
respectively.
Considering that Π is given by Π ¼ −ζθ, we obtain

Π ¼ −
1

3

Z
d ~pΔαβpαpβ½δfð1Þðx; pÞ�θθ

¼ 1

3
τðϵþ PÞθ − 1

3

1

3
βτIð3Þθ ¼ 0; ð130Þ

hence

ζ ¼ 0: ð131Þ

We notice that ζ ¼ 0 is the case only for massless particles
[40–42].
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Considering that πμν is given by πμν ¼ 2ησμν, we obtain

πμν ¼
Z

d ~pΔμν
αβp

αpβ½δfð1Þðx; pÞ�ρσσ σρσ

¼ βτ

Z
d ~pΔμν

αβp
αpβ

pρpσσρσ
u · p

f0ðx; pÞð1 − f0ðx; pÞÞ;

ð132Þ

hence

η ¼ βτ

15

Z
d ~pðΔμνpμpνÞ2 1

u · p
f0ðx; pÞð1 − f0ðx; pÞÞ

¼ βτ

15
Ið3Þ; ð133Þ

where Δμν
μν ¼ 5 is used.

Considering that Vμ is given by Vμ ¼ κ∇μðβμÞ, we
obtain

Vμ ¼
Z

d ~pΔμνpν½δfð1Þðx; pÞ�ρ∇ðβμÞ∇ρðβμÞ

¼ τ

�
Jð0Þ

Jð1Þ

Z
d ~pΔμνpνpρf0ðx; pÞð1 − f0ðx; pÞÞ

−
Z

d ~p
Δμν

u · p
pνpρf0ðx; pÞð1 − f0ðx; pÞÞ

�
∇ρðβμÞ;

ð134Þ

hence

κ ¼ τ

3

Ið1ÞIð3Þ − ðIð2ÞÞ2
Ið3Þ

: ð135Þ

So far we have considered only a single component case.
Including the heavy quark spin and color degrees of freedom
(g ¼ 2NfNc),

12 from Eqs. (131), (133) and (135), we obtain
the final results:

ζ ¼ 0; ð136Þ

η ¼ βτ

15
~Ið3Þ; ð137Þ

κ ¼ τ

3

~Ið1Þ ~Ið3Þ − ð~Ið2ÞÞ2
~Ið3Þ

; ð138Þ

with

~IðrÞ ≡ 2NfNc

Z
d3p
ð2πÞ3 jpj

r−1f0ðpÞð1 − f0ðpÞÞ; ð139Þ

where we consider the rest frame with uμ ¼ ð1; 0Þ
and the particle number distribution function f0ðpÞ ¼
ð1þ eβðjpj−μÞÞ−1. The energy density and the pressure are
also given as

ϵ ¼ 2NfNc

Z
d3p
ð2πÞ3 jpjf0ðpÞ; ð140Þ

P ¼ 2NfNc

3

Z
d3p
ð2πÞ3 jpjf0ðpÞ; ð141Þ

respectively.

IV. NUMERICAL RESULTS FOR THE
TRANSPORT COEFFICIENTS FROM

QCD KONDO EFFECT

A. Relaxation time

We estimate the relaxation time τ. We consider the
scattering of a light quark and a heavy quarkqðpÞþQðPÞ→
qðp0ÞþQðP0Þ with four-momenta pð0Þ ¼ ðpð0Þ

0 ; pð0ÞÞ and

Pð0Þ ¼ ðPð0Þ
0 ;Pð0ÞÞ for the light quark (q) and the heavy

quark (Q), respectively. We use the simple setting for
the kinematics near the Fermi surface: p0 ≃ p00 ≃ μ,
jp⃗j≃ jp⃗0j≃ μ, and p⃗ · p⃗0 ≃ μ2 cos θ, with θ an angle
between p⃗ and p⃗0.
We suppose that the effective interaction Lagrangian in

quark matter is given by

Leff
int ¼ −G�

c

XN2
c−1

a¼1

ðψ̄γμTaψÞðΨ̄vγμTaΨvÞ; ð142Þ

where G�
c is the effective coupling constant which is

modified from the value in vacuum owing to the QCD
Kondo effect analyzed in Sec. II D. The cross section is
given by

dσ
dΩ

¼ 1

64π2ðμþMÞ2 2NcðG�
cÞ2M2μ2ð1þ cos θÞ

≃ 1

64π2
2NcðG�

cÞ2μ2ð1þ cos θÞ; ð143Þ

with the heavy quark approximation M ≫ μ. Then, we
estimate the relaxation time τ ¼ τimp defined by

τ−1imp ¼ vnimp

Z
dσ
dΩ

ð1 − cos θÞdΩ

¼ nimp
1

24π
2NcðG�

cÞ2μ2; ð144Þ

by setting v ¼ 1 for massless quarks and nimp being the
number density of the heavy quarks. In the following

12Notice the definition of the measure in momentum space,
d ~p ¼ gd3p=ðð2πÞ3ðu · pÞÞ.
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discussions, we consider the effective coupling constantG�
c

in the four cases from (i) to (iv) in Sec. II D.
We plot the relaxation time τ as a function of temperature

T for fixed Gc and μ in Fig. 6. We set Nf ¼ 2 and suppose
nimp ¼ αnq (α ¼ 0.1) for nq being the light quark number
density for given μ at zero temperature. We find that the
relaxation time calculated by the effective coupling con-
stant in the one-loop level (red lines) or the two-loop level
(blue lines) is much reduced from that in the bare coupling
(black lines). The difference becomes large at lower
temperature. We plot the relaxation time calculated in
the mean-field approximation at zero temperature (blobs).
It is interesting to see that the value of τ in the mean-field
approximation is very close to the value of τ which may be
extrapolated from the one-loop order or the two-loop order,
when the coupling constant is small (Gc ¼ Gc0=2). Hence
it may be tempting for us to consider that the perturbative
result at finite temperature could be smoothly connected to
the nonperturbative (mean-field) result at zero temper-
ature13 However, we have to keep it in mind that this
seemingly smooth connection is not guaranteed unless
exact solution beyond the mean-field approximation is
obtained.

B. Resistivity

We plot the resistivity ρ ¼ σ−1 with Eq. (80) as a
function of temperature in Fig. 7. We choose Nf ¼ 2 with
u, d quarks, and set the electric charges are qu ¼ þ3=2 and
qd ¼ −1=3. As expected from the result in the relaxation
time in Fig. 6, the resistivity calculated by the effective
coupling constant in the one-loop (red lines) or the two-
loop (blue lines) becomes much more enhanced than
the one calculated in the bare coupling constant (black
lines). The resistivity becomes more enhanced at lower
temperature. This can be explained directly from the
small relaxation time at low temperature as it was shown
in Fig. 6. The enhancement of the resistivity is exactly
same as the Kondo effect which was obtained originally
by J. Kondo for metals including impurity atoms with
finite spin [1].
In the high energy asymmetric heavy ion collisions, the

strong electric fields can be produced owing to the different
number of the electric charges between two nuclei [43].
There, the possibility of observing the electrical resistivity
of the quark gluon plasma is discussed. When the quark
matter in the presence of the electric field contains heavy
quarks, the QCD Kondo effect would largely affect the
electrical resistivity of the quark matter. We expect that the
resistivity calculated above will provide a possible exper-
imental signal for the QCD Kondo effect. We may
furthermore think of the effect of the interaction among

FIG. 6. The temperature dependence of the relaxation time. The notations are the same as used in Fig. 5.

13Notice that the result in the renormalization group equation
cannot be smoothly connected to T ¼ 0, because of the Landau
pole (the Kondo scale) in Eq. (36).
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FIG. 7. The temperature dependence of the resistivity. The notations are the same as used in Fig. 5.

FIG. 8. The temperature dependence of the shear viscosity. The notations are the same as used in Fig. 5.
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light quarks on the resistivity as a realistic situation.
However, the resistivity induced by the light quark
interaction decreases monotonically as the temperature
decreases, and hence it can become much smaller than
the resistivity by theQCDKondo effect due to the increasing
behavior in the lower temperature. In such situations, the
resistivity by the QCD Kondo effect would be dominant in
the whole system.

C. Shear viscosity

We plot the shear viscosity η in Eq. (137) as a function of
temperature T in Fig. 8. As expected from the result in the
relaxation time in Fig. 6, the shear viscosity calculated by
the effective coupling constant in the one-loop (red lines) or
the two-loop (blue lines) becomes much reduced than the
one calculated in the bare coupling constant (black lines).
The shear becomes much more suppressed at lower
temperature. This behavior can be explained directly from
the small relaxation time at low temperature as it was
shown in Fig. 6.

V. CONCLUSION

We study the transport coefficients from the QCD Kondo
effect in the quark matter which contains heavy quarks as
impurity particles. The in-medium coupling constant of the
interaction between a light quark and a heavy quark is
estimated perturbatively by the renormalization group
equation up to two-loop order. It is found that the coupling
constant becomes enhanced due to the QCD Kondo effect
at low temperature. The coupling constant at zero temper-
ature is estimated by the mean-field approximation as
nonperturbative treatment, because the perturbation is
not applicable at lower temperature below the Kondo scale.
The transport coefficients are calculated by the relativistic
Boltzmann equation with the relaxation time approxima-
tion. The electric resistivity is obtained from the relativistic
kinetic theory, while the viscosities are obtained from the
relativistic hydrodynamics. It is shown that the electric
resistivity is enhanced, and the shear viscosity is sup-
pressed, remarkably at low temperature, due to the
enhancement of the coupling constants. The current result
will be useful to study the QCD Kondo effect in possible
experiments of quark matter in high energy accelerator
facilities. As future studies for more realistic situations, it
may be interesting to extend the present discussion to
include the effect of finite magnetic field [14] and also to
include the quark-quark interaction [19] and the quark-
antiquark interaction [20].
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APPENDIX: DERIVATION OF EQUATION OF
MOTION FOR A MASSLESS QUARK

We show the derivation of the equation of motion for a
light (massless) quark, Eqs. (68) and (69). We follow the
derivation given in Ref. [38]. For generality of the dis-
cussion, we introduce a finite mass m for the quark for a
while. The free Hamiltonian is given by

H ¼ α · pþ βm ¼
�
σ · p m

m −σ · p

�
; ðA1Þ

with α ¼ γ0γ and β ¼ γ0, where α and β are expressed by

α ¼
�
σ 0

0 −σ

�
; β ¼

�
0 1

1 0

�
; ðA2Þ

by using

γ0 ¼
�
0 1

1 0

�
; γ ¼

�
0 −σ
σ 0

�
; ðA3Þ

in the Weyl representation. We define the Lagrangian

Lðx; _xÞ ¼ p · _x −Hðx; pÞ; ðA4Þ

which will be used in the following discussion.
We consider the path integral representation. In the

Heisenberg picture, the probability amplitude for the
transition from the position xI at time tI to the position
xF at time tF is given by

hxFje−iHðtF−tIÞjxIi: ðA5Þ

By dividing the time into n parts from tI to tF, we define

δt≡ tF − tI
n

; tj ≡ tI þ jΔt ðj ¼ 0; 1;…; nÞ: ðA6Þ

Inserting the completeness relation at time tj,

Z
dxjjxj; tjihxj; tjj ¼ 1; ðA7Þ

we express the probability amplitude as
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hxFje−iHðtF−tIÞjxIi ¼
Z Yn−1

j¼1

d3xjhxn; tnjxn−1; tn−1i…hxjþ1; tjþ1jxj; tji…hx1; t1jx0; t0i

¼
Z Yn−1

j¼1

d3xjhxnje−iHΔtjxn−1i…hxjþ1je−iHΔtjxji…hx1je−iHΔtjx0i: ðA8Þ

In the above equations, the probability amplitude
hxjþ1je−iHΔtjxji from time tj to tjþ1 can be approxi-
mated as

hxjþ1je−iHΔtjxji≃ hxjþ1jð1− iHΔtÞjxji
¼ hxjþ1jxji− ihxjþ1jHΔtjxji
¼ δð3Þðxjþ1−xjÞ− ihxjþ1jHjxjiΔt: ðA9Þ

In the last equation, the first term can be written as

δð3Þðxjþ1 − xjÞ ¼
Z

d3pj
ð2πÞ3 e

ipj·ðxjþ1−xjÞ; ðA10Þ

and the second term can be written as

hxjþ1jHðx̂; p̂Þjxji¼
Z

d3pjhxjþ1jpjihpjjHðx̂; p̂Þjxji

¼
Z

d3pjhxjþ1jpjihpjjxjiHðxj;pjÞ

¼
Z

d3pj
ð2πÞ3 e

ipj·ðxjþ1−xjÞHðxj;pjÞ; ðA11Þ

by noting the momentum representation of the Hamil-
tonian Hðx̂; p̂Þ, where x̂ and p̂ are the operators for
position x and momentum p. Therefore, we obtain

hxjþ1je−iHΔtjxji≃
Z

d3pj
ð2πÞ3 e

ipj·ðxjþ1−xjÞ − i
Z

d3pj
ð2πÞ3 e

ipj·ðxjþ1−xjÞHðxj; pjÞΔt

¼
Z

d3pj
ð2πÞ3 e

ipj·ðxjþ1−xjÞ−iHðxj;pjÞΔt: ðA12Þ

As a result, the probability amplitude is given as

hxFje−iHðtF−tIÞjxIi ¼ lim
n→∞

Z
d3p0
ð2πÞ3

Yn−1
j¼1

d3xj
d3pj
ð2πÞ3 e

ipn−1·ðxn−xn−1Þ−iHðxn−1;pn−1ÞΔt…eipj·ðxjþ1−xjÞ−iHðxj;pjÞΔt…eip0·ðx1−x0Þ−iHðx0;p0ÞΔt

¼ lim
n→∞

Z
d3p0
ð2πÞ3

Yn−1
j¼1

d3xjd3pj
ð2πÞ3 exp

�
i
Xn−1
j¼1

ðpj · ðxjþ1 − xjÞ − iHðxj; pjÞΔtÞ
�

≡
Z

xðtFÞ¼xF

xðtIÞ¼xI

DxDpP exp

�
i
Z

tF

tI

dtðp · _x −Hðx; pÞÞ
�
; ðA13Þ

by setting n → ∞.
For the Hamiltonian H ¼ α · pþ βm, the intermediate

state jxji or jpji is the eigenstate jxj; λi or jpj; λi with
helicity λ ¼ �. The Hamiltonian can be diagonalized at
each time in the path-ordered product as it is denoted by P.
We remember that the spin is not the conserved quantity
for relativistic fermion, but the helicity (chirality) is the
conserved quantity. Hence, we consider the eigenstate of
the helicity λ at each time. The diagonalization can be
performed by introducing the unitary matrix Vp as

V†
pHpVp ¼ EpΣ4; ðA14Þ

with

Σ4 ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA: ðA15Þ

We comment that the top-left 2 × 2 submatrix is for the
right-handed component and bottom-right 2 × 2 submatrix
is for the left-handed component in the massless limit
(m ¼ 0) in the Weyl representations. It is important to
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notice that Vpj and Vpjþ1
for momenta pj and pjþ1 at time tj

and tjþ1, respectively, are different each other. Denoting the
Hamiltonian Hi ¼ HðxðtiÞ; pðtiÞÞ, the unitary matrix Vi ¼
Vpi and the eigenvalue Ei ¼ Epi (i ¼ j, jþ 1), we calculate

…e−iHjþ1Δte−iHjΔt…

¼ …Vjþ1V
†
jþ1e

−iHjþ1ΔtVjþ1V
†
jþ1VjV

†
je

−iHjΔtVjV
†
j…

¼ …Vjþ1ðV†
jþ1e

−iHjþ1ΔtVjþ1ÞV†
jþ1VjðV†

je
−iHjΔtVjÞV†

j…

¼ …Vjþ1e−iEjþ1Σ4ΔtV†
jþ1Vje−iEjΣ4ΔtV†

j…

¼ …Vjþ1e−iEjþ1Σ4Δte−iapj ·Δpje−iEjΣ4ΔtV†
j…; ðA16Þ

where we use

V†
jþ1Vj ≃ e−iapj ·Δpj ; ðA17Þ

for Δpj ≡ pjþ1 − pj being sufficiently small, and define the
Berry connection

âp ≡ −iV†
p∇pVp; ðA18Þ

with ∇p ¼ ∂
∂p. Then, the discretize path-integral can be

replaced by

i
Xn−1
j¼1

ðpj · ðxjþ1−xjÞ− iHðxj;pjÞΔtÞ

→ i
Xn−1
j¼1

ðpj · ðxjþ1−xjÞ− iEpjΣ4Δt−apj · ðpjþ1−pjÞÞ;

ðA19Þ
It is important that the Hamiltonian Hðxj; pjÞ is diagon-
alized to EpjΣ4. The price to pay for this diagonalization is
to add the new term −apj · ðpjþ1 − pjÞ. Therefore, we
perform the replacement

i
Z

tF

tI

dtðp · _x −Hðx; pÞÞ → i
Z

tF

tI

dtðp · _x − EpΣ4 − ap · _pÞ;

ðA20Þ
in the path integral. As a result, the probability amplitude is
given by

hxFje−iHðtF−tIÞjxIi

¼
Z

xðtFÞ¼xF

xðtIÞ¼xI

DxDpV†
pFP

× exp

�
i
Z

tF

tI

dtðp · _x − EpΣ4 − ap · _pÞ
�
VpI : ðA21Þ

For the particle and antiparticle with helicity λ ¼ �, the
actions IðλÞp and IðλÞap are given by

IðλÞp ¼
Z

tF

tI

dtðp · _x − Ep − apðλÞp · _pÞ; ðA22Þ

IðλÞap ¼
Z

tF

tI

dtðp · _xþ Ep − aapðλÞp · _pÞ; ðA23Þ

respectively, where apðλÞp and aapðλÞp are the diagonal com-
ponents in ap.
For later convenience, we define the helicity operator.

For this purpose, we first define

Σ ¼ −γ0γ5γ; ðA24Þ

which is expressed as

Σ ¼
�
σ 0

0 σ

�
; ðA25Þ

with

γ5 ¼
�
1 0

0 −1

�
; ðA26Þ

in the Weyl representation. Then, we define the helicity
operator by

Σ · p
Ep

¼
 σ·p

Ep
0

0 σ·p
Ep

!
; ðA27Þ

where the matrix form in the right-hand side is give in the
Weyl representation.
Let us calculate the unitary matrix Vp concretely. For this

purpose, we calculate the eigenstate of the Hamiltonian H.
In the Weyl representation, the particle state is

up ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s 0
BBB@
�
1þ σ · p

Ep þm

�
χ

�
1 −

σ · p
Ep þm

�
χ

1
CCCA; ðA28Þ

and the antiparticle state is

vp ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s 0
BBB@
�
1 −

σ · p
Ep þm

�
η

�
−1 −

σ · p
Ep þm

�
η

1
CCCA; ðA29Þ

where χ and η are the two-spinors for particle and
antiparticle, respectively. χ and η are the eigenstates of
the operator σ · p=jpj for helicity λ ¼ �:
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σ · p
jpj χ� ¼ �χ�; ðA30Þ

σ · p
jpj η� ¼∓ η�: ðA31Þ

Noting the difference in sign in χ� and η�, we obtain

χþ ¼ η− ¼
�

cos θ
2

sin θ
2
eiφ

�
; ðA32Þ

χ− ¼ ηþ ¼
�− sin θ

2
e−iφ

cos θ
2

�
; ðA33Þ

with p=jpj ¼ ðcos θ cosφ; cos θ sinφ; sin θÞ. Therefore, the
particle and antiparticle states are given by

uð�Þ
p ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s 0
BBB@
�
1� jpj

Ep þm

�
χ��

1 ∓ jpj
Ep þm

�
χ�

1
CCCA; ðA34Þ

and

vð�Þ
p ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s 0
BBB@
�
1� jpj

Ep þm

�
η��

−1� jpj
Ep þm

�
η�

1
CCCA; ðA35Þ

for helicity λ ¼ �.
We now find that the Berry connection âp ¼ −iV†

p∇pVp
is expressed by

âp ¼

0
BBBBB@

ðâpÞ11 ðâpÞ12 ðâpÞ13 ðâpÞ14
ðâpÞ21 ðâpÞ22 ðâpÞ23 ðâpÞ24
ðâpÞ31 ðâpÞ32 ðâpÞ33 ðâpÞ34
ðâpÞ41 ðâpÞ42 ðâpÞ43 ðâpÞ44

1
CCCCCA: ðA36Þ

with the unitary matrix

Vp ¼ ð uðþÞ
p uð−Þp vðþÞ

p vð−Þp Þ ðA37Þ

for uð�Þ
p and vð�Þ

p . In the spherical coordinate with

∇p ¼
� ∂
∂p ;

1

p
∂
∂θ ;

1

p sin θ
∂
∂φ
�
; ðA38Þ

each component of ap ¼ ðap; aθ; aφÞ is given by

ap ¼ −

0
BBBBBB@

0 0 0 − im
2E2

p

0 0 im
2E2

p
0

0 − im
2E2

p
0 0

im
2E2

p
0 0 0

1
CCCCCCA
; ðA39Þ

aθ ¼ −

0
BBBBBB@

0 − im
2pEp

− i
2Ep

0

im
2pEp

0 0 − i
2Ep

i
2Ep

0 0 im
2pEp

0 i
2Ep

− im
2pEp

0

1
CCCCCCA
; ðA40Þ

aφ ¼ −

0
BBBBBB@

cot θ
2p − m

2pEp
− 1

2Ep
0

− m
2pEp

− cot θ
2p 0 1

2Ep

− 1
2Ep

0 − cot θ
2p − m

2pEp

0 1
2Ep

− m
2pEp

cot θ
2p

1
CCCCCCA
; ðA41Þ

as 4 × 4 matrices. In the massless limit (m → 0), they are

ap ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ðA42Þ

aθ ¼ −

0
BBBBB@

0 0 − i
2p 0

0 0 0 − i
2p

i
2p 0 0 0

0 i
2p 0 0

1
CCCCCA; ðA43Þ

aφ ¼ −

0
BBBBB@

cot θ
2p 0 − 1

2p 0

0 − cot θ
2p 0 1

2p

− 1
2p 0 − cot θ

2p 0

0 1
2p 0 cot θ

2p

1
CCCCCA: ðA44Þ

Because the particle and the antiparticle are decoupled at
high density, we consider the top-left 2 × 2 submatrix. The
component which has nonzero components in the top-left
2 × 2 submatrix is aφ only. The components are given by

apφ ¼ −
� cot θ

2p

0 − cot θ
2p

�
: ðA45Þ

We define the Berry connection for the particle

by app ¼ aðλÞp ¼ ðaðλÞp ; aðλÞθ ; aðλÞφ Þ with aðλÞp ¼ aðλÞθ ¼ 0
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and aðλÞφ ¼ λ cot θ=ð2pÞ. The Berry curvature for aðλÞp is
defined by

bðλÞp ≡ ∇p × aðλÞp : ðA46Þ

In the spherical coordinate bðλÞp ¼ ðbðλÞp ; bðλÞθ ; bðλÞφ Þ, we
obtain

bðλÞp ¼
� 1

2p2 0

0 − 1
2p2

�
; bðλÞθ ¼ bðλÞφ ¼

�
0 0

0 0

�
: ðA47Þ

The actions for the massless fermion are

IðλÞp ¼
Z

tF

tI

dtðp · _x − jpj − aðλÞp · _pÞ; ðA48Þ

with Ep ¼ jpj. Considering the gauge field ðΦ;AÞ in a
covariant way, we obtain

IðλÞp ¼
Z

tF

tI

dtðp · _xþqA · _x−qΦ− jpj−aðλÞp · _pÞ; ðA49Þ

with the electric charge q of the particle. We define the
Lagrangian

LðλÞ ¼ p · _xþ qA · _x − qΦ − jpj − aðλÞp · _p; ðA50Þ

from which we obtain the equation of motion,

_p ¼ qEþ _x × qB; ðA51Þ

_x ¼ p̂þ _p × bðλÞ; ðA52Þ

with E ¼ −∇xΦ − ∂
∂tΦ and B ¼ ∇x × A for electric and

magnetic fields, and p̂ ¼ p=jpj and bðλÞ ¼ ∇p × aðλÞp in
momentum space. Those two equations become in turn

_p ¼ 1

1þ qB · bðλÞ
ðqEþ qp̂ × Bþ q2ðB · EÞbðλÞÞ; ðA53Þ

_x ¼ 1

1þ qB · bðλÞ
ðp̂þ qE × bðλÞ þ qðbðλÞ · p̂ÞBÞ: ðA54Þ

Thus, Eqs. (68) and (69) are derived.
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