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We present a theoretical study of the γγ → πη process from the threshold up to 1.4 GeV in the πη
invariant mass. For the s-wave a0ð980Þ resonance state we adopt a dispersive formalism using a coupled-
channel Omnès representation, while the d-wave a2ð1320Þ state is described as a Breit-Wigner resonance.
An analytic continuation to the a0ð980Þ pole position allows us to extract its two-photon decay width as
Γa0→γγ ¼ 0.27ð4Þ keV.

DOI: 10.1103/PhysRevD.96.114018

I. INTRODUCTION

Recently, the Belle Collaboration measured the exclusive
hadronic π0η production in two-photon collisions [1]. The
statistics of these new data is more than two orders of
magnitude higher than any previous measurements in this
channel [2,3] and therefore provides valuable information
on the nature of scalar a0ð980Þ and tensor a2ð1320Þ
resonances. In particular it sheds light on the two-photon
strength of the 0þþ isovector channel which serves as an
important constraint in the light-by-light scattering [4] and
consequently to the hadronic contribution to the anomalous
magnetic moment of the muon aμ ¼ ðg − 2Þμ=2 [5–8].
Themethodwe use is based on the fundamental principles

of the S-matrix, i.e. analyticity and unitarity. In thisway, final
state interactions are fully accounted for. Secondly, there are
no unknown parameters. All the couplings which enter the
dispersion integral are fixed from the radiative decays of the
vector mesons into pseudoscalar mesons. In this sense, our
analysis is different from an earlier work which has a
significant amount of unknown parameters and therefore a
limited predictive power [9]. In addition to that, the analy-
ticity constraint, which is hard to implement, is frequently
discarded in the literature [10–12].
In the dispersion formalism, there are always contribu-

tions from the right- and left-hand cuts [13]. While the
right-hand cuts of the scattering amplitude are fixed from
unitarity, the left-hand cuts lie in the unphysical region and
can be approximated by vector-meson exchanges [9,14,15].
In order to benchmark the proposed treatment for the left-
hand cuts, we study the double radiative decay, η → π0γγ,
which is related to the scattering process by the crossing
transformation.
In the description of the scattering process, it is well

known that the a0ð980Þ resonance has a strong coupling to
the KK̄ channel. Therefore, the coupled-channel dispersion

integral was used to implement such rescattering effects
through two intermediate kaons [14]. In order to determine
the pole position and the two-photon coupling of the
a0ð980Þ resonance, the amplitude is analytically continued
to the unphysical Riemann sheets. This is particularly
important since there is an interplay between elastic and
inelastic channels and the structure of that resonance is
significantly different from a typical Breit-Wigner form. In
contrast, the tensor a2ð1320Þ resonance is described as a
Breit-Wigner resonance, using its experimentally measured
two-photon decay width [16].
The paper is organized as follows. In the next section,

we summarize the kinematics and discuss the main features
of the dispersive framework for the γγ → πη process.
The hadronic input and the role of the left-hand cuts are
discussed in Secs. II C and II D. In Sec. II E we present the
details of the tensor a2ð1320Þ resonance. The numerical
analysis of the η → π0γγ decay is presented in Sec. II F.
Subsequently, we show our numerical results in Sec. III.
A summary and outlook are presented in Sec. IV.

II. FORMALISM

A. Kinematics and partial wave expansion

The photon fusion reaction γγ → πη is described by the
T-matrix element, which is related to the S-matrix element
as S ¼ 1þ iT, and which can be written as

hπðp1Þηðp2ÞjTjγðq1; λ1Þγðq2; λ2Þi
¼ ð2πÞ4δð4Þðp1 þ p2 − q1 − q2ÞHλ1λ2 ; ð1Þ

where λ1;2 ¼ �1 are the photon helicities. The particle
momenta q1;2 and p1;2 are related to the Mandelstam
variables by s ¼ ðq1 þ q2Þ2, t ¼ ðp1 − q1Þ2 and u ¼
ðp1 − q2Þ2 which satisfy the relation sþ tþ u ¼ m2

π þm2
η.

The helicity amplitudes can be expressed in terms of the
complete set of invariant amplitudes F1;2ðs; tÞ,*danilkin@uni-mainz.de
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Hλ1λ2 ¼ ϵμðq1; λ1Þϵνðq2; λ2Þ½F1ðs; tÞLμν
1 þ F2ðs; tÞLμν

2 �;

where ϵνðq1;2; λ1;2Þ are the polarization vectors of the
initial photons. The main constraint on the Lorentz tensors
in Eq. (2) is that the invariant amplitudes should be free
from kinematic singularities [17] and therefore should
satisfy Mandelstam analyticity [18,19]. We note, however,
that the choice of a particular set of tensors Lμν

1;2 is not
unambiguous.1 We use the decomposition from [9]:

Lμν
1 ¼ qν1q

μ
2 − ðq1 · q2Þgμν;

Lμν
2 ¼ ðΔ2ðq1 · q2Þ − 2ðq1 · ΔÞðq2 · ΔÞÞgμν

− Δ2qν1q
μ
2 − 2ðq1 · q2ÞΔμΔν

þ 2ðq2 · ΔÞqν1Δμ þ 2ðq1 · ΔÞqμ2Δν; ð2Þ

with Δ ¼ p1 − p2. These relations satisfy the Ward iden-
tities q1μL

μν
1;2 ¼ 0, q2νL

μν
1;2 ¼ 0, and also have the ortho-

gonality property Lμν
1 L2;μν ¼ 0 which proves to be

convenient for further calculations.
From the helicity amplitudes, it is straightforward to

obtain the differential cross section

dσ
d cos θ

¼ βπηðsÞ
64πs

ðjHþþj2 þ jHþ−j2Þ; ð3Þ

where

βijðsÞ ¼
1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðmi þmjÞ2�½s − ðmi −mjÞ2�

q
: ð4Þ

When studying low-lying resonances it is useful to
perform a partial wave (p.w.) expansion of the helicity
amplitudes with fixed isospin (I) [20]:

HI;λ1λ2ðs; tÞ ¼
X

even J≥0
ð2J þ 1ÞhJI;λ1;λ2ðsÞdJλ1−λ2;0ðθÞ;

where dJ
λ;λ̄
ðθÞ are Wigner rotation functions and θ is the

center-of-mass scattering angle in the xz reaction plane,
where we choose the z-axis along the photon directions.
Note that the same p.w. decomposition holds for γγ → KK̄
helicity amplitude KI;λ1;λ2 , denoting the γγ → KK̄ p.w.
amplitudes as kJI;λ1;λ2 in the following. The isospin trans-
formations for the γγ → KK̄ are

K0;λ1;λ2 ¼ −
1ffiffiffi
2

p ðKc
λ1;λ2

þ Kn
λ1;λ2

Þ;

K1;λ1;λ2 ¼ −
1ffiffiffi
2

p ðKc
λ1;λ2

− Kn
λ1;λ2

Þ; ð5Þ

where Kc and Kn correspond to the charged and neutral
amplitudes, respectively. The γγ → π0η process, in turn, is a
pure I ¼ 1 process.

B. Coupled-channel Omnès representation

It is well known that the coupled-channel final state
interaction in the s-wave isovector sector is very strong
and necessary in order to properly describe the a0ð980Þ
resonance. Assuming Mandelstam analyticity, the p.w.
amplitudes hJλ1;λ2ðsÞ should satisfy p.w. dispersion relations.
We follow the formalism outlined in Ref. [14] for the
case of γγ → ππ, KK̄ scattering where the KK̄ channel is
needed for a proper description of the f0ð980Þ resonance.
In [14] the dispersion relation is written for the function
Ω−1ðsÞðhðsÞ − hBornðsÞÞ, which contains both left- and
right-hand cuts. The particular form splits the well-known
Born left-hand cut (s < 0) from other heavier intermediate
t- and u- channel state contributions (s < sL). For the
I ¼ 1, s-wave scattering we write a once-subtracted
dispersion relation

�h01;þþ
k01;þþ

�
¼
�

0

k0;Born1;þþ ðsÞ
�
þΩ0

1ðsÞ
��

a

b

�

þs−sth
π

Z
sL

−∞

ds0

s0−sth

Ω0
1ðs0Þ−1
s0−s

�Disch01;þþðs0Þ
Disck̄01;þþðs0Þ

�

−
s−sth
π

Z
∞

sth

ds0

s0−sth

DiscΩ0
1ðs0Þ−1

s0−s

�
0

k0;Born1;þþ ðs0Þ
��

ð6Þ

where sth ¼ ðmπ þmηÞ2 and k̄ðsÞ is a non-Born part of
kðsÞ. The hadronic Omnès matrix

Ω0
1ðsÞ ¼

 
Ω0

1ðsÞπη→πη Ω0
1ðsÞπη→KK̄

Ω0
1ðsÞKK̄→πη Ω0

1ðsÞKK̄→KK̄

!
ð7Þ

is normalized as ΩðsthÞ ¼ 1 and satisfies the following
unitarity condition:

DiscΩ0
1ðsÞ ¼

1

2i
ðΩ0

1ðsþ iϵÞ − Ω0
1ðs − iϵÞÞ

¼ t01ðsÞρðsÞΩ0�
1 ðsÞ; s > sth: ð8Þ

Here t01ðsÞ is the hadronic p.w. scattering matrix and

ρðsÞ ¼ 1

16π

�
βπηðsÞθðs − sthÞ 0

0 βKK̄ðsÞθðs − 4m2
KÞ

�
ð9Þ

is the phase space matrix.

1One can always introduce a new set of Lorentz tensors ~Lμν
1;2 as

a linear combination of the given basis tensors Lμν
1;2 without

spoiling kinematic and gauge invariance constraints.
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C. Hadronic input

The photon-fusion reactions are sensitive to the had-
ronic final state interactions. Therefore, the important
input is a proper description of the πη rescattering
processes. In contrast to the ππ scattering, there are no
πη scattering data available, and it is impossible to build
a data-driven dispersive solution for the Omnès function.
However, as it was shown in [21,22] one can apply the
recently proposed dispersive summation scheme [23–25]
which implements constraints from analyticity and uni-
tarity and is consistent with Lagrangian chiral perturba-
tion theory (χPT) at low energies. The method is based
on the N=D ansatz [26], where the set of coupled-
channel integral equations for the N-function was solved
numerically,

NðsÞ ¼ UðsÞ þ s − sth
π

Z
∞

sth

ds0
Nðs0Þρðs0ÞðUðs0Þ − UðsÞÞ

ðs0 − sthÞðs0 − sÞ ;

with the input from the suitably constructed conformal
mapping expansion

UðsÞ ¼
X
k

CkξðsÞk; ð10Þ

which parametrizes all contributions coming from the
left-hand cuts. The coefficients Ck of this expansion were
matched at threshold to the tree level χPT supplemented
with the light-vector-meson fields. After solving the
linear integral equation for NðsÞ, the D-function was
computed, which is the inverse of the Omnès function,

Ω−1ðsÞ ¼ 1 −
s − sth

π

Z
∞

sth

ds0

s0 − ssth

Nðs0Þρðs0Þ
s0 − s

:

The final hadronic scattering amplitude was reconstructed
by tðsÞ ¼ ΩðsÞNðsÞ. In Refs. [21,27] it has been shown
that one can achieve a reasonable agreement with the
existing experimental data of ππ and πK scattering and at
the same time predict the (yet to be measured) πη and
KK̄ scattering. The latter result was not included in [21]
and since it is essential for the γγ → πη reaction we show
the δπη and δKK̄ phase shifts and inelasticity, used in this
work, in Fig. 1.
We recall that in the approach presented in [21] there

are only a few relevant and known parameters. These are
the pion decay constant in the chiral limit, the coupling
constant of the vector meson into two pseudoscalar
mesons (e.g.ρ → ππ) and the parameter ΛS from the
conformal map ξðsÞ which sets the scale from where on
the s-channel physics is integrated out. Explicitly, it is
given by

ξðsÞ ¼ aðΛ2
S − sÞ2 − 1

ða − 2bÞðΛ2
S − sÞ2 þ 1

;

a ¼ 1

ðΛ2
S − μ2EÞ2

; b ¼ 1

ðΛ2
S − Λ2

0Þ2
; ð11Þ

where the parameter Λ0 is defined unambiguously such
that the mapping domain of the conformal map touches
the closest left-hand branch point. The expansion point
μE is identified with the s-channel thresholds. The
parameter ΛS brings the main uncertainty in the pre-
diction of [21,27]. The finite value of ΛS indicates the
energy above which other channels become important.
We allow for a conservative variation of ΛS from
1.4 GeV to 1.8 GeV with the central value ΛS ≃mρ þ
mω ¼ 1.6 GeV determined by the point where the chan-
nel πη → ρω opens up.
To identify correctly the mass and the width of the

a0ð980Þ resonance we search for poles in the complex s-
plane. In the two-channel case there are four Riemann
sheets, which correspond to different signs of the imaginary
parts of the center of mass momenta [28]. In the neighbor-
hood of the pole, the t-matrix elements can be written as

t0;sheet1;ij ðsÞ≃ cicj
ssheeta0 − s

ð12Þ
where sa0 ¼ ðMa0 � i

2
Γa0Þ2. In Eq. (12) i and j are the

coupled-channel indices and the couplings ci, cj indicate
the strength of coupling of the resonance to the each
channel and may be related to partial-decay widths.
Performing the analytical continuation to the complex

plane [29], we find a pole on the fourth (IV) Riemann sheet
ðSignðImβπηÞ; SignðImβKK̄ÞÞ ¼ ðþ;−Þ)

FIG. 1. s-wave phases shifts and inelasticity used in this work,
for fπη; KK̄g coupled-channel scattering with I ¼ 1. The shaded
bands indicate the theoretical uncertainty as discussed in the text.
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ffiffiffiffiffiffi
sIVa0

q
¼ ð1.12−0.07þ0.02Þ −

i
2
ð0.28þ0.08

−0.13Þ GeV ð13Þ
where the upper and lower error bars correspond to ΛS ¼
1.4 GeV and ΛS ¼ 1.8 GeV, respectively. The residue of
this pole leads to the ratio jcKK̄=cπηj ¼ 0.98−0.07þ0.20 which
indicates a strong coupling of the a0ð980Þ resonance to
both the πη and KK̄ channels, as expected. We note that
although the location of the pole is not too far away from
the KK̄ threshold, its precise determination may require
taking into account higher order effects in the left-hand cuts
of the dispersive approach [21] or fitting the corresponding
conformal expansion coefficients Ck directly to future
experimental data.
A number of theoretical efforts were devoted to under-

standing the properties of the a0ð980Þ resonance [30–35].
Recently, the first analysis of the πη scattering was
performed by lattice QCD in Refs. [36,37]. The finite
volume spectra were fitted with a range of different
K-matrix parametrizations and then analytically continued
to complex energies. As a result, the pole on the IV sheet
was found very close to theKK̄ threshold. The analysis was
conducted with the light quark masses corresponding to
mπ ¼ 391 MeV. The extrapolation to the physical pion
mass was performed recently within unitarized χPT [38],
which confirmed a pole on the fourth Riemann sheet. In all
these cases, a0ð980Þ shows up as a sharp (cusplike) peak
exactly at the two kaon threshold. This behavior of the
hadronic cross section is somewhat different from the
recent K-matrix analysis [34] which takes as an input
the pole on the second Riemann sheet from [39,40]. In
Fig. 2 we compare the absolute value of the off-diagonal
(πη → KK̄) scattering amplitude resulting from different
approaches. This quantity has a particular importance for
the γγ → πη process since the rescattering through the

intermediate KþK− pair has a significant contribution to
the cross section. One notices that our input from [21,22] is
consistent with χPT [35,41,42] and with the K-matrix
approach [34] at low energies, while in the resonance
region it shows up as a prominent cusp similar to the result
from the inverse amplitude method [35].

D. Left-hand cuts

With the known Omnès function, the input we need in
Eq. (6) is the left-hand cuts. These are the so-called Born
terms, which are nonzero only for the γγ → KþK− and
Discfh01;þþðs0Þ; k̄01;þþðs0Þg along the left-hand cut. While
the former can be calculated from the scalar QED,

F1ðs; tÞ ¼ −
4e2ðtu −m4

K þ ðt −m2
KÞðu −m2

KÞÞ
sðt −m2

KÞðu −m2
KÞ

;

F2ðs; tÞ ¼ −
e2

ðt −m2
KÞðu −m2

KÞ
; ð14Þ

the latter we approximate by vector-meson exchange
diagrams, which we expect to be the second-most impor-
tant left-hand cuts contributions. We use the simplest
Lagrangian which couples photon, vector (V) and pseu-
doscalar (P) meson fields,

LVPγ ¼ eCVϵ
μναβFμν∂αVβ; ð15Þ

whereCV are the radiative couplings, which we fix from the
2016 PDG values [16] for the partial widths of light vector
mesons using

ΓV→Pγ ¼ α
C2
V→Pγ

2

ðM2
V −m2Þ3
3M2

V
: ð16Þ

Here α≡ e2=ð4πÞ≃ 1=137 is the fine structure constant.
We present the absolute values of CV→Pγ in Fig. 3, which
we scaled by the corresponding SU(3) coefficients for
easier comparison. For the universal coupling we estimate
gVPγ ¼ 0.4ð1Þ GeV−1, where the choice gVPγ ¼ 0.3GeV−1

reproduces the K� → K0γ width and the value gVPγ ¼
0.5 GeV−1 reproduces the ηγ width of the ρ meson.
The relatively large spread in values indicates significant
SU(3) breaking effects.
The invariant amplitudes for the t- and u-channel vector-

meson exchanges read

F1ðs; tÞ ¼ −
X
V

2e2C12

�
t

t −M2
V
þ u
u −M2

V

�
;

F2ðs; tÞ ¼
X
V

e2C12

2

�
1

t −M2
V
þ 1

u −M2
V

�
; ð17Þ

where C12 ≡ CV→P1γCV→P2γ . Note that Eqs. (14) and (17)
preserve t ↔ u symmetry due to the Bose statistic of the

FIG. 2. The modulus of t01ðsÞπη→KK̄ from the dispersive ap-
proach (N/D) [21] compared to the K-matrix [43], inverse
amplitude method (IAM) [35] and χPT [35,41] analyses. For
the latter we show the spread between the LO and NLO results
(with the NLO low-energy constants taken from [35]).
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photons. Using a simple relation for the helicity-0
amplitude Hþþ ¼ −sF1=2 we get the following s-wave
amplitudes:

k0;Bornþþ ðsÞ ¼ e2
4m2

K

sβKðsÞ
log

1þ βKðsÞ
1 − βKðsÞ

;

h0;Vexchþþ ðsÞ ¼
X
V

2e2C12

�
−

MV

βπηðsÞ
LVðsÞ þ s

�
; ð18Þ

where

βKðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K

s

r
; LVðsÞ ¼ log

XVðsÞ þ 1

XVðsÞ − 1
;

XVðsÞ ¼
2M2

V − ðm2
π þm2

ηÞ þ s

sβπηðsÞ
:

The result for k0;Vexchþþ ðsÞ can be obtained from h0;Vexchþþ ðsÞ
by replacing mπ;η → mK . From the logarithmic function
one can see that the closest left-hand cut from the vector-
meson exchange terms starts at

sL ¼ −
ðM2

ρ −m2
πÞðM2

ρ −m2
ηÞ

M2
ρ

: ð19Þ

We also note that the p.w. vector-meson exchange ampli-
tudes are not asymptotically bounded (they grow as ∼s).
This is a consequence of the Lagrangian-based approach
for the treatment of the left-hand cuts. There are several
ways to overcome this problem. The usual way would be to
introduce subtraction parameters that would suppress the
high-energy behavior [15]. A formal drawback, however, is
that all these subtractions need to be fixed from the data or
matched to χPT results. In addition, a subtraction poly-
nomial of sufficient order will lead to an unphysical high-
energy behavior and therefore severely limit the energy
range of validity. To overcome these issues one can impose
Regge constraints, which however require high-energy data
in order to fix the parametrization. Another way, proposed
in [23], is to use the conformal mapping technique. In the
considered dispersive approach [14], we emphasize that
only the imaginary parts along the left-hand cut of the p.w.
amplitudes are needed, which are asymptotically bounded,
Imh0;Vexchþþ ð−∞Þ → const. Therefore, we will not introduce
any modifications of the left-hand cuts in the present work.
We also note that since our Omnès functions are asymp-
totically bounded at high energies [21], one subtraction in
Eq. (6) is sufficient for the convergence.

E. a2ð1320Þ resonance
We approximate the a2ð1320Þ resonance by a Breit-

Wigner form, similar to how it was done for the f2ð1270Þ
resonance in [44,45]. It implies

h21;þ−ðsÞ ¼ −
e2Ca2→πηCa2→γγs2β2πηðsÞ

10
ffiffiffi
6

p ðs −M2
a2 þ iMa2Γa2ðsÞÞ

; ð20Þ

where Ca2→πη and Ca2→γγ couplings can be fixed from the
experimental decay widths

Γa2→πη ¼
β5πηðM2

a2Þ
1920π

C2
a2→πηM3

a2 ;

Γa2→γγ ¼
πα2

5
C2
a2→γγM3

a2 ; ð21Þ

assuming that the a2ð1320Þ resonance is predominantly
produced in a state with helicity-2. Using the PDG [16]
values for the partial decaywidths ΓPDG

a2→πη ¼ 15.5ð1.5Þ MeV
and ΓPDG

a2→γγ ¼ 1.0ð1Þ keV, the resulting couplings are

jCa2→πηj ¼ 10.8ð5Þ GeV−1;

jCa2→γγj ¼ 0.115ð5Þ GeV−1: ð22Þ

For the parametrization of the total width Γa2ðsÞ we follow
the Belle Collaboration where the a2ð1320Þ decays into πρ,
πη, ωππ, and the KK̄ final states were explicitly accounted
for [1].

F. η → π0γγ decay

Crossing symmetry implies that the invariant amplitudes
F1;2ðs; tÞ describe not only the scattering process γγ → π0η
but also the decay process η → π0γγ. The differential decay
rate is given by [16]

d2Γ
dsdt

¼ 1

ð2πÞ3
1

32m3
η

X
λ1;λ2

jHλ1λ2 j2; ð23Þ

where crossing implies the following relations to the decay
invariants s → M2

γγ and t → M2
γπ .

On the experimental side, the two-photon invariant mass
distribution of this decay has been recently obtained by the
A2 Collaboration at MAMI [46]. This measurement has an
improved statistical accuracy compared to previous mea-
surements [47,48]. Therefore, here we will only use the
latest MAMI measurement and show the earlier data in
Fig. 4 only for the reader’s convenience.
Theoretically, this decay is traditionally used to test the

higher order terms of χPT [41]. The tree level amplitudes
vanish both at leading (LO) and next-to-leading (NLO)
orders. The first nonzero contributions come from either the
pion or kaon loops [49]. While the kaon loops are sup-
pressed due to the large kaon mass, the contribution from
the pion loops violates G-parity, and the decay amplitude is
proportional to the small quantity mu −md. The major
contribution comes from the next-to-next-to-leading-order
(NNLO) counterterms, which requires the knowledge of a
set of low-energy constants. We saturate them using our
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vector t- and u-meson exchange terms. This would check
the dynamical role of the vector mesons similar to [9,50].
While the vector-meson exchange contributions can be

read off from Eq. (17), the χPT NLO loop contribution is
taken from [49] and has the following form,

F1ðs; tÞ ¼ aπ þ aK; F2ðs; tÞ ¼ 0; ð24Þ

where

aπ ¼ 4
ffiffiffi
2

p
α

3
ffiffiffi
3

p
f2

Δm2
K

�
1þ 3ðs −m2

πÞ −m2
η

m2
η −m2

π

�
Iðs;m2

πÞ;

aK ¼ −
2
ffiffiffi
2

p
α

3
ffiffiffi
3

p
πf2

�
3s −m2

η −
1

3
m2

π −
8

3
m2

K

�
Iðs;m2

KÞ;

with the loop function I defined as

Iðs;m2Þ≡
Z

1

0

dx
Z

1−x

0

dy
xy

m2 − sxy
: ð25Þ

For the numerical estimates we use f ¼ 92.3 MeV and for
the kaon mass difference in QCD we take Δm2

K ¼
6.27ð38Þ × 10−3 GeV2 from [51]. We find the kaon and
pion loop contributions to the η → π0γγ decay width as
ΓKloop ¼ 0.010ð0Þ eV and Γπloop ¼ 0.003ð0Þ eV, respec-
tively. The latter was not included in the analysis of [50],
which in principle should be enlarged by the rescattering
effects which are known to be strong for the η → 3π decay
[43,51–54]. We leave this study for the future and take this
contribution into account at the NLO level.

The individual contributions from the pion and kaon loops
are relatively small compared to the PDG value [16]:
Γðη → π0γγÞ ¼ 0.334ð28Þ. They can however interfere with
vector-meson exchange terms. We find that the data favor a
coherent interference. As can be seen in Fig. 4, the latest
MAMI data [46] are described well, within the error bars,
using physical radiative couplings, giving χ2=d:o:f ¼
1.92=7 and Γðη → π0γγÞ ¼ 0.291ð22Þ eV. In Fig. 4 we also
show the results when the universal coupling of
V → Pγ is used. Since its error bar is pretty big, we fit its
value to the two-photon invariant mass distribution. The
fitted value of gVPγ will also account effectively for the
contributions from the higher intermediate states. The fit
slightly improves the description of the data with χ2=d:o:f ¼
1.60=ð7–1Þ and Γðη → π0γγÞ ¼ 0.303ð29Þ eV. The fitted
value of the universal (effective) coupling is gVPγ ¼
0.425ð13Þ GeV−1 as shown in Fig. 3.

III. RESULTS

A. γγ → πη, KK̄ cross sections

To completely determine the helicity amplitudes for the
γγ → πη and γγ → KK̄ processes, we need to fix the
subtraction constants in Eq. (6). In this work, we match
them to the field theory amplitudes, i.e.

a ¼ h01;þþðsthÞ≃ h0;Vexch1;þþ ðsthÞ;
b ¼ k̄01;þþðsthÞ≃ k0;Vexch1;þþ ðsthÞ: ð26Þ

In Fig. 5, our parameter-free postdiction is confronted
with the experimental data on the γγ → π0η cross section.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 3. Modulus of the radiative couplings scaled by
SU(3) coefficients: fCρ→π0γ;Cρ→π�γ;

1
3
Cω→π0γ;

ffiffiffi
3

p
Cω→ηγ; 1ffiffi

3
p Cρ→ηγ;

1
2
CK�→K0γ ;CK�→K�γg. The vertical dashed lines indicate the spread
of SU(3) breaking effects. The red band indicates the value for
the universal (effective) coupling that we obtain from the
description of the η → π0γγ decay.

FIG. 4. The dΓ=dM2
γγ distribution of the η → π0γγ decay. The

gray band represents the result using physical radiative couplings
CV→Pγ , while the red band is a result of the fit with one universal
(effective) coupling gVPγ . The dashed curve indicates the χPT
result at NLO. The data are taken from Refs. [46–48].
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The shaded areas in the figures indicate the uncertainties
of the decay couplings Cρ→π0γ;ηγ;… and Ca2→πη;γγ together
with the error bar on ΛS. We note that the proposed
dispersive approach for the a0ð980Þ resonance and a
simple Breit-Wigner parametrization for the a2ð1320Þ
resonance yields already a reasonable agreement with
the recent data from the Belle Collaboration [1]. While the
low-energy region is dominated by the s-wave partial
wave, the region above 1.1 GeV is well described by the
sum of the a2ð1320Þ d-wave resonance and a tail
from a0ð980Þ.
We further scrutinize the uncertainties of our approxi-

mation scheme. For this purpose, we firstly use the
universal (effective) coupling gVPγ , which we constrained
from the crossed process η → π0γγ. Secondly, one can use
the existing cross section data to narrow down the uncer-
tainty from the hadronic final state interaction, namely ΛS.
The fit to the Belle Collaboration data in the region

ffiffiffi
s

p
<

1.1 GeV leads to ΛS ¼ 1.46ð6Þ GeV and χ2=d:o:f ¼ 0.34.
As a result, we obtain the description of the angular
distributions and cross sections as shown in Fig. 6. We
see that our results are in very good agreement with the
data, except for a slight disagreement in the differential
cross section below and above the a2ð1320Þ position. It can
be improved most easily by takingMa2 ¼ 1.307 GeV from
the recent JPAC/COMPASS analysis [55] rather than using
the PDG average Ma2 ¼ 1.318 GeV [16].
In the coupled-channel treatment of Eq. (6), we have

simultaneously calculated the isovector s-wave γγ → KK̄
amplitude. This allows us to make a prediction for
the corresponding γγ → KK̄ cross section near the KK̄
threshold. In Fig. 7 we show

σðsÞ ¼ βKK̄ðsÞ
32πs

jk01;þþðsÞj2;

compared to the pure Born result [i.e., when k01;þþðsÞ is

replaced by k0;Born1;þþ ðsÞ]. In both cases, we integrated the
differential cross section over the whole angular range and
neglected higher partial wave contributions. For the total
result, we observe the cross section peaks close to the
threshold indicating the presence of the a0ð980Þ resonance.
Note that the isospin decomposition (5) implies that the

Born I ¼ 0 and I ¼ 1 γγ → KK̄ amplitudes are the same.
Therefore, the Born γγ → KþK− cross section will be twice
as large as the dashed curve shown in Fig. 7. On the other
hand, the lower bound of the γγ → KþK− cross section is
half of (27) when neglecting the isoscalar contribution. The
analysis of the latter is the subject of a separate paper.
Based on a previous result [27], we expect that the isoscalar
contribution will be suppressed. This is similar to the
behavior in [30,56,57] where the drastic suppression of the
Born term contribution was observed in the γγ → KþK−

channel due to final state interactions.

B. Two-photon coupling of a0ð980Þ
In order to extract the two-photon coupling of the

a0ð980Þ in our formalism, we can write in the neighbor-
hood of the pole

h0;IV1;þþðsÞ≃
cγγcπη
sIVa0 − s

; ð27Þ

where sIVa0 was obtained in Sec. II C. The analytical
continuation in the complex s-plane can be performed

FIG. 5. A parameter-free postdiction for the γγ → π0η total cross section (j cos θj < 0.8). Left panel: Result of the dispersive
representation, where we separately display the rescattering contribution through the KK̄ Born terms (dashed curve). Right panel: The
sum of the d-wave Breit-Wigner parametrization (dashed-dotted curve) combined with the s-wave contribution (solid black line). A
variation of the decay couplings Cρ→π0γ;ηγ;… and Ca2→πη;γγ within their error bars and 1.4 < ΛS < 1.8 GeV is reflected by the shaded
band. The data are taken from Refs. [1,3].
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using the unitarity relation [similar to how it was done for
the case of the second (II) Riemann sheet in [58]],

hIVðsÞ ¼ hIðsÞ þ 2iρKK̄ðsÞkIðsÞtIVKK̄→πη
ðsÞ; ð28Þ

where we suppressed isospin, spin and helicity indices for
simplicity. In Eq. (28) the phase space factor proportional
to the c.m. momenta ρKK̄ðsÞ ¼ βKK̄ðsÞ=16π must be
analytically continued as well. Using Eq. (12) for the
KK̄ → πη scattering amplitude on the IV Riemann sheet,
one can express the two-photon coupling cγγ through the
hadronic cKK̄ coupling and the γγ → KK̄ fusion amplitude,
calculated at the resonance position on the first Riemann
sheet:

�
cγγ
cKK̄

�
2

¼ −ð2ρKK̄ðsIVa0 ÞÞ2ðkIðsIVa0 ÞÞ2: ð29Þ

In the narrow-width approximation, the radiative width is
determined as2 [16,61]

Γa0→γγ ¼
jcγγj2

16πMa0

¼ 0.27ð4Þ keV: ð30Þ

The obtained two-photon decay width in principle can
be compared with the PDG value Γa0→γγBðπ0ηÞ ¼
0.21þ0.08

−0.04 keV [16]. However, we like to emphasize that
in all two-photon experimental analyses so far, the
a0ð980Þ peak has been approximated using a simple
Breit-Wigner parametrization without any coupling to
the KK̄ channel [1–3].

IV. CONCLUSIONS

In this work, we have presented a theoretical study of
the γγ → π0η reaction from the threshold up to 1.4 GeV in
the πη invariant mass. On the one hand, we used a coupled-
channel dispersive approach in order to properly describe
the scalar a0ð980Þ resonance, which has a dynamical
fπη; KK̄g origin. On the other hand, the a2ð1320Þ tensor
resonance has been introduced explicitly using a Breit-
Wigner parametrization.
The dispersive approach requires the knowledge of the

amplitude on the left-hand cut. Beyond the well-known
Born contribution we used t- and u-channel vector-meson
exchanges with couplings fixed from experimental radia-
tive decays of the vector mesons. This allowed us to show a

FIG. 6. Total (for j cos θj < 0.8) and differential cross sections for γγ → π0η using the universal (effective) coupling gVPγ , and the fitted
value of ΛS, as explained in the text. The data are taken from Refs. [1,3].

FIG. 7. Our prediction for the γγ → KK̄ isovector total cross
section. The dashed curve is the s-wave Born contribution.

2As pointed out in [59,60], this definition works well only for
the narrow states which are well separated from the threshold
cuts. In other cases Eq. (30) serves as an intuitive way of
reexpressing jcγγj2.
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parameter-free postdiction for the γγ → π0η total cross
section, which turned out to be in reasonable agreement
with the recent empirical data from the Belle Collaboration.
We have also tested the proposed treatment of the left-hand
cuts using the crossed process, the η → π0γγ decay.
We have shown that NLO chiral perturbation theory
supplemented with vector-meson exchange terms reprodu-
ces the experimental two-photon invariant mass distribu-
tion very well. Moreover, in order to account for the
contributions from the higher intermediate states, we have
fitted the universal (effective) gVPγ coupling directly to the
data. Consequently, we were left with the uncertainty
coming from the hadronic final state interactions. Using
the accurate Belle Collaboration data on the cross section,
we narrowed down that error bar as well.
In order to extract the two-photon coupling of the

a0ð980Þ resonance, we analytically continued the ampli-
tude into the unphysical regions. We found the pole on the
fourth Riemann sheet, which produces a strong cusplike
behavior of the cross section exactly at the KK̄ threshold.
At the pole position, we calculated the two-photon

coupling, and extracted the corresponding two-photon
radiative width as Γa0→γγ ¼ 0.27ð4Þ keV.
The obtained results can be used as a necessary starting

point for a further study where one of the initial photons has
a finite virtuality. The latter serves as one of the inputs to
constrain the hadronic piece of the light-by-light scattering
contribution to the muon’s ðg − 2Þμ [62–64]. Its measure-
ment is part of an ongoing dedicated experimental program
at BESIII.
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