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This work deals with form factors of the energy-momentum tensor (EMT) of spin-0 particles and the
unknown particle property D term related to the EMT, and it is divided into three parts. The first part
explores free, weakly and strongly interacting theories to study EMT form factors with the following
findings. (i) The free Klein-Gordon theory predicts for the D term D ¼ −1. (ii) Even infinitesimally small
interactions can drastically impact D. (iii) In strongly interacting theories one can encounter large negative
D though notable exceptions exist, which include Goldstone bosons of chiral symmetry breaking.
(iv) Contrary to common belief one cannot arbitrarily add “total derivatives” to the EMT. Rather the EMT
must be defined in an unambiguous way. The second part deals with the interpretation of the information
content of EMT form factors in terms of 3D densities with the following results. (i) The 3D-density
formalism is internally consistent. (ii) The description is subject to relativistic corrections but those are
acceptably small in phenomenologically relevant situations including nucleons and nuclei. (iii) The free-
field result D ¼ −1 persists when a spin-0 boson is not pointlike but “heuristically given some internal
structure.” The third part investigates the question of whether such “giving of an extended structure” can be
implemented dynamically, and it has the following insights. (i) We construct a consistent microscopic
theory which, in a certain parametric limit, interpolates between extended and pointlike solutions. (ii) This
theory is exactly solvable which is rare in 3þ 1 dimensions, admits nontopological solitons ofQ-ball type,
and has a Gaussian field amplitude. (iii) The interaction of this theory belongs to a class of logarithmic
potentials which were discussed in the literature, albeit in different contexts including beyond-standard-
model phenomenology, cosmology, and Higgs physics.
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I. INTRODUCTION

The energy-momentum tensor operator (EMT) is at the
heart of the field theoretical description of particles.
Through it matter and gauge fields couple to gravity,
and its matrix elements define fundamental properties like
mass, spin and the experimentally unknown D term. The
latter, despite being among the most fundamental particle
properties and having its presence established in the 1960s
when Pagels introduced EMT form factors [1], has received
little attention for a long time as no practical process to
measure EMT form factors was known.
The situation changed in the 1990s with the advent of

generalized parton distribution functions (GPDs) accessible
in hard-exclusive reactions [2–5]. The second Mellin
moments of unpolarized GPDs are related to EMT form
factors, allowing us to access information about the spin
decomposition of the nucleon [3], the D term [6], and
mechanical properties [7]. The relation of the D term to
GPDs was further clarified in [8]. The potential of GPD
studies as a rich source of new information about nucleon
structure goes much further [9–13].
Similarly to electric form factors providing information

on the electric charge distribution [14], the EMT form
factors offer insights on the spatial energy density, orbital
angular momentum density, and the stress tensor [7]. The
EMT densities not only provide a unique way to gain

insights on the particle stability and mechanical properties,
but also have important practical applications [15]. For a
recent review on the D term we refer to [16].
The purpose of this work is to provide a comprehensive

discussion of the EMT and the D term in spin-0 systems.
The goal, besides establishing a benchmark for further
studies, is to focus on clarifying what the D term is and
means, undistracted by technical details associated with
nonzero spin which will be addressed elsewhere.
The first part of our work is devoted to EMT form factors

and the D term. We explore free, weakly and strongly
interacting theories. We first study the free-field theory case
which yieldsD ¼ −1 and provides a point of reference. We
then discuss how interactions can affect the D term. We
explore theΦ4 theory as an example of a weakly interacting
case and show that interactions, even if infinitesimally
small, have a drastic impact on theD term. Hereby we show
that in general it is not permissible to add total derivatives to
the EMT, contrary to common belief. Rather such
“improvement terms” for the EMT operator, if they are
needed, must be chosen with care and require a unique,
unambiguous definition. In strongly interacting theories,
where we consider Goldstone bosons of chiral symmetry
breaking and nuclei in QCD and Q-balls as examples,
we show that the D terms can have large magnitudes
but are always negative. The Goldstone bosons are a
notable exception in this context: chiral symmetry dictates
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D ¼ −1 modulo chiral corrections which are modest for
pions, and somewhat larger for kaons and η-mesons. This
part contains original results and has partly also review
character. This is intentional not only to make this work
self-contained but also to place our insights in a wider
context. It is also necessary as relevant results from earlier
literature were rarely (or not at all) discussed in the context
of the D term in more recent works.
The second part of our work is focused on the inter-

pretation of EMT form factors as 3D densities and presents
original results throughout. We first introduce the 3D-
density formalism for the spin-0 case following the work on
spin-1

2
systems [7], demonstrate the consistency, and dis-

cuss the limitations of the approach. Starting from the
notion of a pointlike particle, we investigate how the EMT
properties are affected when the pointlike particle “is given
some internal structure” and “acquires a finite size.” These
concepts put us in the position to quantify the “relativistic
corrections” associated with 3D densities. The presence of
these corrections is well known, but the way we quantify
them is novel and we find them acceptably small for
phenomenologically relevant cases including nucleons and
nuclei (though derived in the spin-0 case, these findings are
valid for any spin). When “giving” a particle “some internal
structure” we initially proceed heuristically with the
remarkable result that the free-field theory result D ¼
−1 is preserved when the particle “acquires” a finite size.
We demonstrate that this heuristic picture is fully consistent
with EMT conservation and other general principles.
In the third part, we address the question of whether it is

possible to construct a microscopic theory where such an
internal structure arises from dynamics with D ¼ −1 and
EMT densities corresponding to what one would heuris-
tically expect for a “smeared-out” pointlike particle. We
show that a Lagrangian can be constructed with an
interaction known from different contexts in the literature.
We demonstrate that this theory describes stable nontopo-
logical solitons of Q-ball type, and we show that it can be
solved analytically. This by itself is a remarkable result, as
it is rare to find analytically solvable theories in 3þ 1
dimensions.
The outline of this work is as follows. The first part in

Sec. II is focused on EMT form factors, which we define in
Sec. II A and evaluate in Klein-Gordon theory in Sec. II B.
We discuss the weakly interacting case in Sec. II C,
consider strongly interacting theories in Secs. II D and
II E, and briefly review also higher spin systems in Sec. II F.
The second part in Sec. III deals with the EMT densities.
We introduce the formalism in Sec. III A, compute the
EMT densities of a pointlike particle in Sec. III B, and
discuss limitations of the approach in Sec. III C. We show
that the property D ¼ −1 persists when a pointlike particle
is heuristically given an internal structure in Sec. III D. The
third part in Sec. IV is devoted to the study of a dynamical
theory which describes a particle whose internal structure

corresponds naturally to the notion of a smeared-out
point-particle with D ¼ −1. After a brief review of the
EMTofQ-balls in Sec. IVAwhich provides the setting, we
construct and solve the theory in Sec. IV B, before
addressing important technical aspects of this theory in
Sec. IV C, and indicating potential applications in Sec. IVD.
In Sec. V we present our conclusions. The Appendixes
contain remarks on notation and technical details.

II. EMT FORM FACTORS OF
SPIN-0 PARTICLES

In this section we define the EMT form factors of a
spin-0 particle, and we calculate the EMT form factors and
the D term of an elementary free spin-0 boson as described
by the free Klein-Gordon theory. We then discuss what
happens to the D term when interactions are present and
consider both the weak- as well as the strong-coupling
regime.

A. Formalism and definitions

For a spin-0 particle with mass m the EMT matrix
elements are described in terms of two form factors [1],

hp⃗0jT̂μνð0Þjp⃗i ¼ PμPν

2
AðtÞ þ ΔμΔν − gμνΔ2

2
DðtÞ; ð1Þ

where T̂μνð0Þ denotes the EMT operator at space-time
position zero. The kinematic variables are defined as

Pμ ¼ pμ0 þ pμ; Δμ ¼ pμ0 − pμ; t ¼ Δ2: ð2Þ
The convention for the covariant normalization of one-
particle states is

hp⃗0jp⃗i ¼ 2Eð2πÞ3δð3Þðp⃗ − p⃗0Þ; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

q
: ð3Þ

Performing the analytic continuation of the form factors to
zero-momentum transfer yields

lim
t→0

AðtÞ ¼ Að0Þ ¼ 1; ð4aÞ

lim
t→0

DðtÞ ¼ Dð0Þ≡D: ð4bÞ

The constraint (4a) is explained by recalling that for p⃗ → 0
and p⃗0 → 0 only the 00-component remains in Eq. (1), and
H ¼ R

d3xT̂00ðxÞ is the Hamiltonian of the system with
Hjp⃗i ¼ mjp⃗i for p⃗ → 0. With the conventions (1) and (3)
(see Appendix A for other notations) one obtains the
constraint Að0Þ ¼ 1 in (4a). It is important to stress that
no such constraint exists for the form factor DðtÞ such
that the D term D≡Dð0Þ must be determined from
experiment.
For later convenience, let us disentangle the con-

tributions of the two form factors in Eq. (1). For that we
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contract the EMT with the symmetric tensors gμν and aμν

defined as

aμν ¼ PμPν

P2
; P2 ¼ 4m2 − t: ð5Þ

Notice that the only other symmetric tensors available
in this case are proportional to ðPμΔν þ PνΔμÞ or
ΔμΔν, and both are of no use for our purposes since
Δμhp⃗0jT̂μνð0Þjp⃗i ¼ 0 due to EMT conservation.
With n ¼ gμνgμν ¼ 4 denoting the number of space-time

dimensions we obtain

½ðn − 1Þaμν − gμν�hp⃗0jT̂μνð0Þjp⃗i ¼
n − 2

2
P2AðtÞ; ð6aÞ

½aμν − gμν�hp⃗0jT̂μνð0Þjp⃗i ¼
n − 2

2
Δ2DðtÞ: ð6bÞ

Specifically for n ¼ 3þ 1 space-time dimensions we have

AðtÞ ¼ 1

P2
ð3aμν − gμνÞhp⃗0jT̂μνð0Þjp⃗i; ð7aÞ

DðtÞ ¼ 1

Δ2
ðaμν − gμνÞhp⃗0jT̂μνð0Þjp⃗i: ð7bÞ

B. Free-field theory case

It is instructive to start with the free-field case. We
consider the Lagrangian of a noninteracting real spin-0
field

L ¼ 1

2
ð∂μΦÞð∂μΦÞ − V0ðΦÞ; V0ðΦÞ ¼ 1

2
m2Φ2 ð8Þ

which describes a free spin-0 boson of mass m obeying the
Klein-Gordon equation

ð□þm2ÞΦðxÞ ¼ 0: ð9Þ

If under parity transformations the field transforms as
ΠΦðxÞΠ−1 ¼ �ΦðxÞ then the theory describes scalars
(for þ) or pseudoscalars (for −). In theories like (8)
the conserved canonical EMT operator is symmetric and
given by

T̂μνðxÞ ¼ ð∂μΦÞð∂νΦÞ − gμνL; ð10Þ

where normal ordering is implied. To evaluate the matrix
elements of the EMT we recall that the free-field solutions
to the equation of motion (9) are given by

ΦðxÞ ¼
Z

d3k
2ωkð2πÞ3

ðâðk⃗Þe−ikx þ â†ðk⃗ÞeikxÞ;

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
ð11Þ

with creation and annihilation operators satisfying ½âðkÞ;
â†ðk0Þ� ¼ 2ωkð2πÞ3δð3Þðk⃗ − k⃗0Þ in canonical equal-time
quantization. The free one-particle states are defined as
jp⃗freei ¼ â†ðp⃗Þj0i, and they are normalized covariantly
according to Eq. (3) with the trivial vacuum state
normalized as h0j0i ¼ 1. The EMT matrix elements can
be readily evaluated:

hp⃗0
freejT̂μνðxÞjp⃗freei
¼ eiðp0−pÞx × fp0μpν þ pμp0ν − gμνðp0 · p −m2Þg: ð12Þ

In the notation of Eq. (2) one has p0 · p −m2 ¼ − 1
2
Δ2 and

p0μpν þ pμp0ν ¼ 1
2
ðPμPν − ΔμΔνÞ such that

hp⃗0
freejT̂μνðxÞjp⃗freei ¼ eiðp0−pÞx 1

2
fPμPν − ΔμΔν þ gμνΔ2g:

ð13Þ

The trivial dependence on the coordinate x is due to trans-
lational invariance T̂μνðxÞ ¼ expðiP̂xÞT̂μνð0Þ expð−iP̂xÞ
where P̂μ ¼ R

d3xT̂0μ denotes the momentum operator. In
most definitions one therefore quotes T̂μνð0Þ as in Eq. (1).
Comparing the result (13) with Eq. (1) we see that

AðtÞ ¼ 1; DðtÞ ¼ −1: ð14Þ

Several remarks are in order. First, the form factors are
constant functions of t as expected for a free pointlike
particle. Second, the constraint Að0Þ ¼ 1 in (4a) is of
course satisfied. Third, the free Klein-Gordon theory
makes the unambiguous prediction D ¼ −1 and the neg-
ative sign is in line with studies in other theoretical
frameworks. Fourth, repeating the calculation with a
complex Klein-Gordon field reveals that a spin-0 particle
and its antiparticle have the same D term.
It seems to have been largely overlooked in more recent

literature that in Ref. [1] not only the notion of EMT form
factors was introduced for spin-0 and spin-1

2
hadrons and

applications were discussed. In addition to that in Ref. [1]
also the form factors of a free Klein-Gordon particle were
quoted. Our result in Eq. (14) agrees with Ref. [1].
The free Klein-Gordon prediction for the D term of a

spin-0 particle sets a reference point for further studies. It is
instructive to examine what happens if one switches on
interactions or the particle is not pointlike but extended. We
will investigate these topics in the following.

C. Weakly interacting case

Let us introduce in (8) a generic interaction, VðΦÞ ¼
1
2
m2Φ2 þOðλÞ, characterized by a small coupling constant

λ ≪ 1 such that it is justified to use perturbative methods to
solve the theory. In such a situation, one could naively think
the D term would be Dinteracting naive ¼ −1þOðλÞ and
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reduce to the free theory value (14) for λ → 0. However,
this is not the case for two reasons. (i) As a conserved
current, the EMT is a renormalization scale invariant
operator so its matrix elements cannot depend on the
renormalization scale μ. But λ acquires in an interacting
quantum field theory a dependence on μ governed
by the β-function of the theory. Therefore the D term
must not receive an OðλÞ contribution in a perturbative
treatment of an interacting theory. (ii) As no OðλÞ con-
tribution is allowed, one could then naively think that
Dinteracting naive ¼ −1. However, in general also this is not
the case. We illustrate this point considering a specific
interacting scalar theory, the Φ4 theory.
The EMT of the Φ4 theory was studied in detail in

Ref. [17]. In our context it is instructive to review here
the findings from Ref. [17]; see also the works [18–23].
The theory is defined by

L ¼ 1

2
ð∂μΦÞð∂μΦÞ − VðΦÞ; VðΦÞ ¼ 1

2
m2Φ2 þ λ

4!
Φ4:

ð15Þ

According to the general understanding one can add to the
EMT operator (10) “any quantity whose divergence is zero
and which does not contribute to the Ward identities” [23].
(Below we shall see that this general statement has to be
formulated more carefully.) Among possible choices the
following “improvement term” plays a special role [17],

Tμν
improve ¼ Tμν

Eq :ð10Þ þ θμνimprove;

θμνimprove ¼ −hð∂μ∂ν − gμν□ÞϕðxÞ2; h ¼ 1

4

�
n − 2

n − 1

�
;

ð16Þ

where n denotes the number of space-time dimensions. To
motivate the improvement term (16) we recall that the
coupling of spin-0 fields like (8) and (15) to gravity is given
by an effective action

Sgrav ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμνð∂μΦÞð∂νΦÞ − VðΦÞ − 1

2
hRΦ2

�

ð17Þ

where − 1
2
hRΦ2 is a nonminimal coupling term, R is the

Riemann scalar, g denotes the determinant of the metric,
and it is understood that gravity is treated to lowest order.
From (17) one obtains the EMT operator via

Tμν ¼
2ffiffiffiffiffiffi−gp δSgrav

δgμν
: ð18Þ

Omitting the nonminimal term in (17) yields a correct
description of a scalar field theory (minimally) coupled to

a gravitational background field, and one recovers from
(18) the canonical EMT operator (10). Keeping the
nonminimal term yields the improved EMT (16). (In
flat space the Riemann scalar R vanishes, but its variation
with respect to the metric is nevertheless nonzero.)
In classical theory, the improvement term with the

particular value for h in (16) is fixed by requiring the
kinetic energy in (17) to be conformally invariant: with
this improvement term the trace Tμ

μ ¼ m2ΦðxÞ2 which
preserves conformal symmetry of the classical theory in
the limit where m vanishes. On a quantum level, the
conformal symmetry is broken, but the improvement
term is required to make Green’s functions of the
renormalized fields with an insertion of the improved
EMT (16) finite. More precisely, the value for h in (16)
removes UV divergences up to three loops in dimen-
sional regularization [23].
To compute the D term in Φ4 theory it is therefore

sufficient to investigate the effect of the improvement term
at tree level: loop corrections produce UV divergences
which the improvement term (16) removes [17–23], and
due to the renormalization scale invariance of the EMT
operator the final result must not be altered by OðλÞ
corrections. Evaluating the improvement operator at tree
level yields

hp⃗0
freejθ̂μνimproveðxÞjp⃗freei ¼ 2heiðp0−pÞxfΔμΔν − gμνΔ2g:

ð19Þ

There is no effect on AðtÞ. This is expected because
Að0Þ ¼ 1 is fixed from general principles and one obtains
this result already without including any improvement
term; see Sec. II B. The inclusion of the improvement
term therefore must not, and does not, spoil the general
constraint (4a).
The situation is different for the D term which interest-

ingly is affected. From Eq. (19) we obtain

Dinteracting improved ¼ −1þ 4h: ð20Þ

With h ¼ 1
6
in n ¼ 3þ 1 space-time dimensions we obtain

Dinteracting improved ¼ − 1
3
. This is a remarkable result. Even

infinitesimally weak interactions can have a drastic effect
on the value of the D term. This insightful observation
deserves several comments.
First, adding total derivatives to the EMT leaves Pμ ≡R
d3xT0μ and other Poincaré group generators unaffected;

i.e. it does not impact the particle mass or spin. But we see
that D in general is sensitive to adding total derivatives: the
improvement term is one such total derivative. The D term
is a measurable quantity, even though challenging to infer
from experiment. This means in general one cannot add
total derivatives to the EMT at will, contrary to common
belief. When this happens to be necessary (Belifante
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procedure in Dirac case, Φ4 theory) it is crucial to establish
a unique definition for improvement term(s) as dictated by
the general properties of the theory, in order to ensure a
uniquely defined D term.
Second, when dealing with a free massive field theory

case, there is no criterion to motivate and uniquely define a
specific improvement term. In the absence of such a
criterion we conclude that in free scalar theory D ¼ −1
[Eq. (14)]. This is an unambiguous prediction of the free
Klein-Gordon theory (minimally coupled to gravity), ana-
log to the anomalous magnetic moment g ¼ 2 predicted
from free Dirac theory (minimally coupled to an electro-
magnetic background field).
Third, in Φ4 theory we deal with an interacting

quantum field theory which has to be renormalized. In
this case the unique improvement term (16) ensures that
Green’s functions with an insertion of the improved EMT
are finite. This guarantees the “renormalizability of the
combined theory of gravity and matter, with gravity
treated to lowest order and the self-interactions of matter
[in Φ4 theory] to all orders” [23]. The inclusion of the
improvement term has a drastic effect on the D term.
Assuming even an infinitesimally small coupling constant
λ ⋘ 1 we have Dinteracting improved ¼ − 1

3
instead of the

value −1 in the free theory.1 This clearly demonstrates
that the D term is highly sensitive to interactions and the
dynamics.
Fourth, the renormalizability of the Φ4 theory has been

studied in weak curved gravitational background fields,
and the same improvement term (16) is required [24],
which means D ¼ − 1

3
in weakly interacting Φ4 theory in

the presence of gravity. As no quantum theory of gravity
is known, it is of course also not known whether (16)
would ensure renormalizability if quantum gravity effects
were included. At this point one might be tempted to
think that gravity is far too weak to be of relevance in
particle physics. However, the lesson we learned is that
even infinitesimally small interactions in Φ4 theory can
impact the D term. So why not infinitesimally small
gravitational interactions?

Fifth, the D term emerges to be strongly sensitive to
interactions. One must consistently include all forces,
perhaps even gravity, to determine the true improvement
term and the “true” value of the D term. These issues are
beyond the scope of our work as is the very question of
whether a nontrivial Φ4 theory actually exists [25].
The above arguments certainly do not apply to theories

which have to be solved in a nonperturbative regime. At
this point one may therefore wonder how the D terms of
spin-0 particles are affected in strongly interacting theories.
We shall discuss two examples in the next sections, QCD
and Q-balls.

D. Strongly interacting theory, QCD

It is not possible to tell what the D term would be in
a strongly interacting Φ4 theory, where the perturbative
expansion indicated in Eq. (20) would be inappropriate.
Fortunately, the D terms can be computed for a special
class of spin-0 particles in a much more relevant and
realistic strongly interacting theory, QCD. This is
possible for pions, kaons and η-meson, the Goldstone
bosons of chiral symmetry breaking by exploring low
energy theorems. The results were already obtained in
1980, but have not been discussed in the context of the
physics of the D term. It is therefore of interest to
review them here.
In Refs. [26,27] the charmonium decays ψ 0 → J=ψππ

were studied. The description of these decays requires the
matrix elements hπ0πjT̂μνð0Þj0i, or hπ0jT̂μνð0Þjπi after
applying crossing symmetry. Similar matrix elements enter
also the description of a hypothetical light Higgs boson
decay [28] into two pions which was discussed at some
point in the past in the literature [29].
Chiral symmetry uniquely determines the interactions

of soft pions. In Refs. [26,27] the following low energy
theorem was derived which, in our notation, is given by

hπðp⃗0ÞjT̂μνð0Þjπðp⃗Þi ¼ 1

2
ðPμPν − ΔμΔν þ gμνΔ2Þ

þOðE4Þ: ð21Þ

Here E is the soft scale associated with the soft momenta
of the Goldstone bosons or their masses, i.e. generically
E ∼Oðp; p0; mπÞ. From (21) we read off [notice that the
first term on the right-hand side of (21) is already E2]

Dh ¼ −1þOðE2Þ; h ¼ π; K; η; ð22Þ

where we added that the same result is obtained also for
kaons and the η-meson. This is a remarkable result. In the
soft-pion limit chiral symmetry dictates that the form
factors of the EMT and the D term of the light octet
mesons coincide (at small values of −t ∼m2

π ∼ E2) with the
free-field case in Eq. (14), despite the fact that we deal with

1For completeness we remark that in the conformally invariant
massless free scalar theory, one also has to introduce the
improvement term (16) to restore Tμ

μ ¼ m2ΦðxÞ2 → 0 and
recover a divergenceless (conserved) conformal current. Thus,
in the massless free case we also have D ¼ − 1

3
. At this point one

may wonder whether the improvement term (16) should also be
added in the massive free Klein-Gordon theory. Then the D term
would exhibit a smooth behavior when m goes to zero. This
would certainly be a legitimate step, though there is in general no
reason to expect necessarily a smooth behavior of particle
properties in a limit such as m → 0. However, one may also
invoke arguments which support that D ¼ −1 is a consistent
result in the massive free case; see Appendix B. At the end we
shall briefly review which definition of the EMT is appropriate in
Appendix C.
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strongly interacting particles. Notice, however, that the
Goldstone bosons have no internal structure to the con-
sidered order in the soft scale in Eqs. (21) and (22), which
makes it plausible that the free-field value (14) is naturally
recovered. In particular, this implies that

lim
E→0

Dh ¼ −1; h ¼ π; K; η: ð23Þ

This result was derived independently from a soft-pion
theorem for pion GPDs in Ref. [6]. At this point one may
wonder why no improvement term analog to (16) was
added, which would be relevant in the massless case;
see footnote 1. However, the answer is that such an
improvement term is forbidden as it violates chiral
symmetry [30,31].
The chiral properties of the EMT form factors AiðtÞ and

DiðtÞ for i ¼ π, K, η were studied beyond the chiral limit
and evaluated in chiral perturbation theory to order OðE4Þ
in Ref. [32]. We quote here only the results for the D terms
[32] which are given by

Dπ ¼ −1þ 16a
m2

π

F2
þm2

π

F2
Iπ −

m2
π

3F2
Iη þOðE4Þ ð24aÞ

DK ¼ −1þ 16a
m2

K

F2
þ 2m2

K

3F2
Iη þOðE4Þ ð24bÞ

Dη ¼ −1þ 16a
m2

η

F2
−
m2

π

F2
Iπ þ

8m2
K

3F2
IK þ 4m2

η −m2
π

3F2
Iη

þOðE4Þ ð24cÞ

where

a ¼ L11ðμÞ − L13ðμÞ; Ii ¼
1

48π2

�
log

μ2

m2
i
− 1

�
;

i ¼ π; K; η; ð24dÞ

and F denotes the pion decay constant F≃ 93 MeV. The
expansion parameter in chiral perturbation theory is often
associated with the dimensionless ratio E2=ð4πFÞ2 where
ð4πFÞ2 ∼ 1 GeV2. In Eq. (24d) the renormalization scale μ
appears, which is arbitrary because changes in μ are
absorbed by appropriate redefinitions of the low energy
constants L11 and L13. This reflects the fact that the EMT is
a renormalization scale invariant operator. Notice also that
to the order considered in (24a)–(24d) which corresponds
to OðE6Þ in Eq. (21) the form factors exhibit a t depend-
ence, which signals that the Goldstone bosons acquire an
internal structure.
This allows one to make more realistic predictions

for the D terms than the chiral limit prediction (23). The
values of the low energy constants were estimated [32]
as L11ð1 GeVÞ ¼ ð1.4–1.6Þ × 10−3 and L13ð1 GeVÞ ¼
ð0.9–1.1Þ × 10−3 using the meson dominance model (lower

values) and dispersion relation techniques (higher values).
This yields

Dπ ¼ −0.97� 0.01; ð25aÞ

DK ¼ −0.77� 0.15; ð25bÞ

Dη ¼ −0.69� 0.19; ð25cÞ

where the uncertainties are due to δL11¼δL13¼0.2×10−3,
use of the physical value of the pion decay constant F ¼
93 MeV [32] vs chiral limit value F ¼ 88 MeV [33], and a
heuristic estimate of higher order chiral corrections is
proportional to E4=ð4πFÞ4 with E the respective meson
mass. All these uncertainties are added in quadrature.
Chiral interactions alter the soft theorem result D ¼ −1,
and they are not unexpectedly more sizable for heavier
mesons. However, the D terms remain negative.
For completeness we remark that the effects of the

electromagnetic interaction on the EMT form factors of
charged and neutral pions were investigated in [33]. More
recently pion EMT form factors were studied in chiral
quark models, where definite predictions for the low energy
constants can be made [34].
The quark contribution to pion EMT form factors was

also studied in lattice QCD for pion masses in the range
550 MeV ≤ mπ ≤ 1090 MeV for lattice spacings 0.07–
0.12 fm and spatial lattice sizes 1.6–2.2 fm [35,36]. The
quark contribution to the D term was found to be (see
Table 7.3 in [36])

DQ
π ¼ −ð0.264� 0.032Þ ð26Þ

at a renormalization scale of 2 GeV in MS scheme. The
error includes the statistical accuracy of the lattice simu-
lations combined with an estimate of uncertainties due to
the extrapolation procedure (to physical pion masses and
t ¼ 0). Finite volume effects were noticed but could not be
quantified as systematic uncertainties [35,36]. It is not
possible to confront this result with the prediction (25a)
from chiral perturbation theory because DQ

π ¼ −ð0.264�
0.032Þ is only a partial result (currently no information
from lattice QCD is available on the gluonic contribution to
theD term of the pion or any other hadron). In addition it is
difficult to reliably quantify the uncertainty due to extrapo-
lation from the pion mass region above 550 MeV to the
physical point. It will be interesting to see new lattice
calculations on present-day state-of-the-art lattices where
physical pion masses can be handled.
The light pseudoscalar octet mesons are an exception,

since they are Goldstone bosons of chiral symmetry
breaking. For other hadrons no low energy theorems exist
which would allow us to predict theirD terms, and one may
in general obtain much different numerical values for D.
This is nicely illustrated by studies of nuclei. In general the
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description of nuclei in QCD is rather complex, and
certainly no easier than that of Goldstone bosons or any
other hadron. However, the saturation property and short
range of the “residual” nuclear forces make it possible to
predict gross features of nuclear D terms.
Both properties are well captured in the liquid drop

model which was explored to study nuclearD terms [7]. Of
course only ground states of even-even nuclei (even
number of protons Z and even number of neutrons N)
are “guaranteed” to have spin 0. But spin effects play no
role in the liquid drop model. Interestingly, nuclear radii
grow as A1=3 and nuclear masses as Awith the mass number
A ¼ N þ Z. But nuclearD terms, due to the surface tension
in the liquid drop model, are negative and show a far
stronger dependence D ∝ A7=3 [7]. Numerical calculations
in the Walecka model for selected Jπ ¼ 0þ isotopes (12C,
16O, 40Ca, 90Zr, 208Pb) were presented in [37]. The D terms
were found negative. For nuclei heavier then 12C it was
found that D ∝ A2.26 in good agreement with [7]. For
completeness we remark that in Ref. [38] a different A
behavior was found.
Let us summarize what we know about the D terms of

spin-0 hadrons. For the Goldstone bosons of chiral sym-
metry breaking in strong interactions one can explore low
energy theorems and chiral perturbation theory to predict
that D ¼ −1 modulo chiral corrections which make the D
term less negative, but do not change its sign. D terms of
nuclei are also negative, are much more sizable than those
of the light pseudoscalar mesons and strongly grow with
the mass number as D ∝ A7=3 which can be tested in
experiments on hard exclusive reactions off nuclei [7].

E. Strongly interacting theory, Q-balls

Another example of a strongly interacting theory of
scalar particles is the Q-ball system [39]; see also [40,41].
In this section we briefly review the Q-ball theory and
quote some results regarding the D term from [42–44].
More details about Q-balls will be provided in Sec. IV B
where we will explore the Q-ball framework for further
applications.
Q-balls are solitons in scalar theories with a global

symmetry where a “suitable potential” satisfies certain
conditions. The theory can be formulated in terms of
one complex scalar field or equivalently in terms of two
real scalar fields which we shall choose to do here. The
Lagrangian and the equations of motion are given by

L ¼ 1

2
ð∂μΦ1Þð∂μΦ1Þ þ

1

2
ð∂μΦ2Þð∂μΦ2Þ − V;

□ΦiðxÞ þ
∂V
∂Φi

¼ 0; i ¼ 1; 2; ð27Þ

with a potential V such that the theory is invariant under
global continuous SO(2) symmetry transformations (β∈R)

�Φ1

Φ2

�
→

�
cos β − sin β

sin β cos β

��Φ1

Φ2

�
: ð28Þ

The global symmetry implies a conserved Noether current
Jμ ¼ Φ1∂μΦ2 −Φ2∂μΦ1. The associated conserved charge
Q ¼ R

d3xJ0ðxÞ is instrumental for the existence of the
soliton solutions which are, in their rest frames, of the type

�Φ1ðx⃗; tÞ
Φ2ðx⃗; tÞ

�
¼

�
cosðωtÞ
sinðωtÞ

�
ϕðrÞ; ð29Þ

where r ¼ jx⃗j and ω is bound by ω2
min < ω2 < ω2

max. The
limiting frequencies are defined in terms of the properties
of the potential V, with V understood as a function of the
radial field ϕðrÞ, as follows:

0 < ω2
min ≡min

ϕ

�
2VðϕÞ
ϕ2

�
< ω2

max ¼ V 00ðϕÞjϕ¼0: ð30Þ

Notice that m ¼ ωmax defines the mass of the elementary
quanta of the fields Φ1 and Φ2. The solutions satisfying
(not satisfying) the equivalent conditions

d
dω

�
M
Q

�
≥ 0 ⇔

dQ
dω

≤ 0 ⇔
d2M
dQ2

≤ 0; ð31Þ

are stable (unstable) with respect to small fluctuations
[40,41]. The point where the inequalities in (31) become
equalities defines the critical frequency ωc; e.g., for
instanceQ0ðωÞ ¼ 0 at ω ¼ ωc. The solutions are absolutely
stable if M < mQ where m denotes the mass of the
elementary fields [41].
In the Q-ball system a general analytical proof was

formulated thatD < 0 for any suitable potential [42]. It was
also shown that the numerical values of the D terms can
span orders of magnitude. For that the suitable, often
studied (nonrenormalizable, effective) theory was used
with the sextic potential V6 ¼ Aϕ2 − Bϕ4 þ Cϕ6 with
ϕ2 ¼ Φ2

1 þΦ2
2 and positive A, B, C satisfying 0 < ζ ≡

B2=ð4ACÞ < 1 [39]. For this potential ω2
min ¼ 2Að1 − ζÞ

and ω2
max ¼ 2A. For the parameters A ¼ 1.1; B ¼ 2.0;

C ¼ 1.0 it was found that jDj ≥ jDcj with Dc ¼ −113.4
numerically close to the critical frequency ωc ¼ 1.38 [42].
For ω not in the vicinity of ωc the D terms are becoming
quickly more and more negative.
In the “Q-ball limit” εmin ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

min

p
→ 0 one deals

with absolutely stable well-localized solitons [39] charac-
terized by constant charge density in their interior, whose
sizes grow as ε−4min, and the masses and charges grow as ε−6min.
The most spectacular growth, however, is exhibited by the
D term which behaves as D ∝ ε−14min in this limit [42].

In the opposite “Q-cloud limit” εmax≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
max−ω2

p
→ 0

[45] the solutions become infinitely dilute, diffuse and
disintegrate into a cloud of free Q-quanta. In this limit
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mass, charge, and mean radii of the solutions diverge as
ε−1max. Again, the D term is the property exhibiting the
strongest pattern of divergence with D ∝ ε−2max [44].
Interestingly, in the Q-cloud limit the sextic term in V6

becomes irrelevant (in the sense of critical phenomena),
and after a suitable rescaling one deals with a (complex)
Φ4 theory continued analytically to a negative coupling
constant λ [44].
Q-balls can have also excited states (all with spin 0

and positive parity as the ground state) which are unstable
and have also negative D terms. The solution ϕðrÞ of the
Nth excitation exhibits N nodes (the ground state has no
node). For a fixed frequency ω the mass and charge of the
Nth excitation scale as N3, while the D term scales as
N8 [43].
The Q-ball system confirms that the D terms of spin-0

particles can deviate significantly from the free-field
theory result D ¼ −1 though the negative sign of the
D term is preserved. The Q-ball results also strongly
support the observation that the D term is the particle
property which is most sensitive to the details of the
dynamics of a theory.

F. Particles with higher spins

We remark that also the D terms of particles with
nonzero spin were investigated in a variety of theoretical
frameworks and models. In all cases the D terms were
found negative, including the nucleon (spin 1

2
) [46–54], the

photon (spin 1) [55], and Δ resonance (spin 3
2
) [56]. Notice

that no analog of the low energy theorem (21) exists for
hadrons other than Goldstone bosons. Therefore, chiral
perturbation theory cannot predict the D term of e.g. the
nucleon, though it can make predictions on the small-t
dependence of the EMT form factors [57].

III. 3D EMT DENSITIES

In this section we introduce the notion of 3D densities
of the EMT, apply it to the case of a free pointlike
particle, and demonstrate its consistency. We show that
the description is physically well formulated and justified
in the heavy mass limit. We then “give” the particle a
finite size. Hereby we initially proceed in a heuristic way.
The finite size naturally introduces an additional scale in
the theory, which is required to formulate adequately the
heavy mass limit. We show that the property D ¼ −1 is
then still preserved. Finally we demonstrate that it is
possible to construct dynamical microscopic theories
which describe extended particles where the free-field
property D ¼ −1 is preserved.

A. Static EMT and definitions

The information content associated with EMT form
factors can be interpreted in analogy to the electromagnetic

form factors [14] in the Breit frame which is characterized
by Δ0 ¼ E0 − E ¼ 0. In this frame, one defines the static
energy-momentum tensor as [7]

Tμνðr⃗Þ ¼
Z

d3Δ
2Eð2πÞ3 expðiΔ⃗ r⃗Þhp⃗0jT̂μνð0Þjp⃗i; ð32Þ

where E ¼ E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Δ⃗2=4

q
. This provides informa-

tion on the energy density T00ðr⃗Þ and the stress tensor
Tikðr⃗Þ. The T0kðr⃗Þ components vanish in the spin-0
case.
The energy density yields the particle mass according to

m ¼ R
d3rT00ðr⃗Þ, which implies the constraint (4a). The

stress tensor is described in terms of two functions, the
distribution of shear forces sðrÞ and pressure pðrÞ,

Tijðr⃗Þ ¼ sðrÞ
�
eire

j
r −

1

3
δij

�
þ pðrÞδij; ð33Þ

where e⃗r ¼ r⃗=r denotes the radial unit vector and
r ¼ jr⃗j. The EMT conservation, ∂μT̂μν ¼ 0, implies
for the static stress tensor ∇iTijðr⃗Þ ¼ 0 from which
one can derive two helpful relations. First, pðrÞ and sðrÞ
are connected by

2

3

∂sðrÞ
∂r þ 2sðrÞ

r
þ ∂pðrÞ

∂r ¼ 0: ð34Þ

Second, the pressure pðrÞ must satisfy the von Laue
condition [58,59], which is a necessary (but not suffi-
cient) condition for stability,

Z
∞

0

drr2pðrÞ ¼ 0: ð35Þ

Owing to Eq. (34) the D term can be expressed in two
different ways in terms of shear and pressure distribu-
tions as

D ¼ −
4m
15

Z
d3rr2sðrÞ ð36aÞ

¼ m
Z

d3rr2pðrÞ: ð36bÞ

The concepts of “mechanical stability” [7] impose
stability criteria on the densities in the classical theory
which can be introduced also in quantum field theory
and imply for the EMT densities [56]

T00ðrÞ ≥ 0; ð37aÞ

2

3
sðrÞ þ pðrÞ ≥ 0: ð37bÞ
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For practical applications it is helpful to derive the
explicit expressions for the densities in terms of the
form factors and demonstrate their consistency. For that
we recall that in the Breit frame Pμ ¼ ðP0; 0; 0; 0Þ and
Δμ ¼ ð0; Δ⃗Þ. With this we obtain from (32) for the
energy density and the stress tensor the results

T00ðrÞ ¼ m2

Z
d3Δ

Eð2πÞ3 e
iΔ⃗ r⃗

�
AðtÞ − t

4m2
ðAðtÞ þDðtÞÞ

�

ð38aÞ

Tijðr⃗Þ ¼
1

2

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗½ΔiΔj − δijΔ⃗

2�DðtÞ: ð38bÞ

From Eq. (38b) we can project out the expressions for
the pressure and shear forces, namely

pðrÞ ¼ 1

3

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗DðtÞð−Δ⃗2Þ; ð39aÞ

sðrÞ ¼ 1

4

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗DðtÞð−Δ⃗2 þ 3ðe⃗rΔ⃗Þ2Þ: ð39bÞ

If we choose the coordinates in the Δ integration such
that r⃗ points along the direction of the Δz-axis and
define e⃗rΔ⃗ ¼ cos θΔjΔ⃗j then, recalling that t ¼ −Δ⃗2 in
the Breit frame,

pðrÞ ¼ 1

3

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗P0ðcos θΔÞðtDðtÞÞ; ð40aÞ

sðrÞ ¼ 3

4

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗P2ðcos θΔÞðtDðtÞÞ: ð40bÞ

The expressions (40a) and (40b) can be further
simplified. Using the expansion of a plane wave in
spherical Bessel functions and the orthogonality relation
of Legendre polynomials,

eiΔ⃗ r⃗ ¼
X∞
l¼0

ilð2lþ 1ÞjlðjΔ⃗jrÞPlðcos θΔÞ;
Z

1

−1
dxPlðxÞPkðxÞ ¼

2

2lþ 1
δlk; ð41Þ

yields

pðrÞ ¼ 1

3

Z
d3Δ

2Eð2πÞ3 j0ðjΔ⃗jrÞðtDðtÞÞ; ð42aÞ

sðrÞ ¼ −
1

2

Z
d3Δ

2Eð2πÞ3 j2ðjΔ⃗jrÞðtDðtÞÞ: ð42bÞ

It is instructive to verify the consistency of these
definitions. As a first consistency check we integrate
the expression for the energy density in Eq. (38a) over
the volume

Z
d3rT00ðrÞ ¼ m2

Z
d3r

Z
d3Δ

Eð2πÞ3 e
iΔ⃗ r⃗

�
AðtÞ − t

4m2
ðAðtÞ þDðtÞÞ

�

¼ m2

Z
d3Δ

Eð2πÞ3
�
AðtÞ − t

4m2
ðAðtÞ þDðtÞÞ

�
ð2πÞ3δð3ÞðΔ⃗Þ

¼ lim
t→0

m2

E

�
AðtÞ − t

4m2
ðAðtÞ þDðtÞÞ

�
¼ m ð43Þ

where in the last step we used that E ¼ m for t ¼ −Δ⃗2 → 0, which yields the desired result. As a second consistency check
we integrate the pressure, as defined in Eq. (39a), over the volume. We obtainZ

d3rpðrÞ ¼ 1

3

Z
d3r

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗½tDðtÞ�

¼ 1

3

Z
d3Δ

2Eð2πÞ3 ½tDðtÞ�ð2πÞ3δð3ÞðΔÞ

¼ 1

3
lim
t→0

�
1

2E
tDðtÞ

�
¼ 0 ð44Þ

which reproduces the von Laue condition (35). As a third consistency test we verify the differential equation (34)
connecting the pressure and shear forces. Inserting the expressions (42a) and (42b) into Eq. (34), defining z ¼ jΔ⃗jr,
recalling that t ¼ −Δ⃗2, and using primes to denote derivatives of a function with respect to its argument, we obtain

2

3

∂sðrÞ
∂r þ 2sðrÞ

r
þ ∂pðrÞ

∂r ¼
Z

d3Δ
2Eð2πÞ3

�
2

3

�
−
1

2
j02ðzÞ

�
þ 2

z

�
−
1

2
j2ðzÞ

�
þ
�
1

3
j00ðzÞ

��
jΔ⃗j½tDðtÞ� ¼ 0 ð45Þ
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which vanishes because the expression in the curly brackets
is zero due to the identity j00ðzÞ − j02ðzÞ − 3j2ðzÞ=z ¼ 0.

B. Densities of a pointlike particle

Let us compute the static EMT densities of a pointlike
Klein-Gordon particle. With the results from Sec. II B we
obtain for the energy density, pressure, and shear forces as
defined in Eqs. (38a), (39a), and (39b) the results

T00ðr⃗Þ ¼ m2

Z
d3Δ

Eð2πÞ3 e
iΔ⃗ r⃗ ¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − ∇⃗2=4
q δð3Þðr⃗Þ;

pðrÞ ¼ 1

3

Z
d3Δ

2Eð2πÞ3 Δ⃗
2eiΔ⃗ r⃗ ¼ −

1

6

∇⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∇⃗2=4

q δð3Þðr⃗Þ;

sðrÞ ¼ −
3

4

Z
d3Δ

2Eð2πÞ3 e
iΔ⃗ r⃗

�
ðe⃗rΔ⃗Þ2 −

1

3
Δ⃗2

�

¼ 1

8

3eire
j
r∇i∇j − ∇⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∇⃗2=4

q δð3Þðr⃗Þ: ð46Þ

As expected, the EMT densities of a pointlike particle are
given by singular δ-distributions or their derivatives. Notice
that in Eq. (46) it is understood that the derivatives act only
on the δ-functions.
The infinite tower of derivatives implicit in the square

roots is a consequence of what is sometimes referred to as
“relativistic corrections.” Let us first show that despite
these corrections the expressions are theoretically consis-
tent. For that we assume that the square roots in Eq. (46)
can be formally expanded in terms of a series in powers of

∇⃗2=ð4m2Þ. The derivatives on the δ-functions are handled
using

R
d3rhðr⃗Þ∇i∇jδð3Þðr⃗Þ ¼ ½∇i∇jhðr⃗Þ�r⃗¼0 where hðr⃗Þ

denotes a generic trial function. In the case of the mass
m ¼ R

d3rT00ðrÞ and the von Laue condition
R
d3rpðrÞ¼ 0

the trial functions are hðr⃗Þ ¼ 1, and we immediately see
that T00ðrÞ and pðrÞ in Eq. (46) comply with these
constraints. In order to verify that the D term as defined
in Eqs. (36a) and (36b) is correctly reproduced, we note
that in this case the trial function is hðr⃗Þ ¼ r2 and

∇i∇jrirj ¼ 12 and ∇⃗2r2 ¼ 6 holds. This confirms the
correct result D ¼ −1.
While the expressions are consistent in the above sense,

the presence of relativistic corrections artificially mimics an
internal structure. This can be seen, for instance, by
computing the moments of the energy density, which we
define and normalize such that the zeroth moment is unity
(it would be the mass of the particle, had we not normalized
it), the first moment is the mean square radius of T00ðr⃗Þ,
etc. With this definition, and assuming that the expansion of
the square root under the integral is allowed, we obtain for
the moments of the energy density

Mk ≡ 1

m

Z
d3rr2kT00ðr⃗Þ

¼
Z

d3rr2k

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ∇⃗2=ð4m2Þ
q δð3Þðr⃗Þ

3
75

¼
Z

d3rr2k
�X∞
j¼0

cjð∇⃗2Þjδð3Þðr⃗Þ
�
; ð47Þ

with cj ¼ ð2j − 1Þ!!=½ð4m2Þj2jj!� where ð−1Þ!! ¼ 1!! ¼ 1

and ð2jþ 1Þ!! ¼ 1 · 3 ·… · ð2j − 1Þ · ð2jþ 1Þ for j > 1.
Performing 2j partial integrations in each term of the sum

over j and using ½ð∇⃗2Þjr2k�r¼0 ¼ ð2kþ 1Þ!δjk yields

Mk ¼
ð2kþ 1Þ!!ð2k − 1Þ!!

ð4m2Þk : ð48Þ

Let us recall that for a pointlike particle one naturally
expects Mk ¼ δk0 and that Mk ≠ 0 for k > 0 would imply
an extended structure. This is a consequence of relativistic
corrections, and a general limitation of the interpretation of
3D-Fourier transforms of form factors as 3D densities. One
could also define moments of sðrÞ and pðrÞ analog to (47)
to show that relativistic corrections do not spoil the lowest
moments related to von Laue condition and the D term, as
shown in Sec. III B. However, higher moments of sðrÞ and
pðrÞ would be altered similarly to those of the energy
density and lead to unphysical results.
The presence of relativistic corrections is of course well

known, and their appearance can be understood in various
ways; see e.g. [11] for a review. In the next section we will
discuss how (and when) one can, at least in principle, go
about these relativistic corrections. It is important to notice
that the relativistic corrections set limitations for the
interpretation. Nevertheless formally all theoretical results
remain correct and consistent as we have shown above.

C. “Switching off” relativistic corrections

In order to “switch off” such relativistic corrections and
recover well-defined 3D densities consistent with the
notion of a pointlike particle, let us assume from now
on that we work in the heavy mass limit m → ∞, and we
retain only the respectively leading terms. Such a descrip-
tion in principle applies to the (free) Higgs boson, which is
the only presently known fundamental spin-0 particle. In
this way we obtain for a heavy boson

T00ðr⃗Þ ¼ mδð3Þðr⃗Þ;

pðrÞ ¼ −
∇⃗2

6m
δð3Þðr⃗Þ;

sðrÞ ¼ 3eire
j
r∇i∇j − ∇⃗2

8m
δð3Þðr⃗Þ: ð49Þ
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One sees immediately that the expressions in (49) are
consistent. The von Laue condition (35) is satisfied, one
obtains the same result D ¼ −1 for the D term using both
its representations in terms of sðrÞ and pðrÞ in Eqs. (36a)
and (36b), and the moments of the energy distribution
defined in Eq. (47) satisfy Mk ¼ δk0 as expected for a
pointlike particle.
An important question is this: the mass m of our boson

is large, but with respect to what? This question is ill
posed in a free theory where the only dimensionful
parameter is m, and the only available length scale is the
Compton wavelength of the particle λC ¼ 1=m. To give a
meaning to the heavy mass limit we must “give some
internal structure” to our heavy boson. To take into
consideration the effects of an internal structure, we
proceed here heuristically2 and replace the δ-functions
in the expressions (49) with suitably smeared-out regular
and normalized functions fðrÞ,

δð3Þðr⃗Þ → fðrÞ; I0 ≡
Z

d3rfðrÞ ¼ 1; ð50Þ

where it is understood that fðrÞ reduces to a δ-function in
some well-defined limit.
Let us investigate the effect of such an internal structure

on the energy density. We choose, at this point merely for
illustrative purposes, the following representation fRðrÞ for
the δ-function:

fRðrÞ ¼
1

π3=2R3
exp

�
−
r2

R2

�
ð51Þ

from which we recover fRðrÞ → δð3Þðr⃗Þ for R → 0. In the
heavy mass limit using the densities in Eq. (49) the “true”
first moment of the energy distributionM1, i.e. mean square
radius of the energy density, is given by

hr2Ei≡M1 ¼
3

2
R2: ð52Þ

Having a specific “(toy) model” for the energy density, we
can equally well evaluate the mean square radius of T00ðrÞ
using the expression (46) which includes relativistic cor-
rections. The result we obtain and condition required for the
interpretation in terms of 3D densities to be applicable are
as follows:

hr2Ei≡M1 ¼
3R2

2
ð1þ δrelÞ; δrel ≡ 1

2m2R2
≪ 1: ð53Þ

Thus relativistic corrections are negligible whenm2R2≫ 1,
i.e. when the Compton wavelength is small compared to

the “actual size” of the particle λ2C ≪ R2. We obtained
this condition here in the context of the mean square
radius of the energy density, but it holds also for
the other densities and can be derived from general
considerations [11].
It is instructive to estimate the size of the corrections as

defined in Eq. (53) for various particles; see Table I. For
light mesons, like pions, kaons or η the concept of 3D
densities is clearly not applicable. However, for heavier
mesons containing charmed quarks the concept makes
sense: e.g. for ηc the relativistic corrections are of the
order of Oð4%Þ. For nuclei the concept can be safely
applied: for instance for 4He, the lightest spin-0 nucleus,
the corrections are merely of the order of Oð0.05%Þ and
they diminish quickly for heavier nuclei. This can be
understood in the liquid drop model of the nucleus, where
a nucleus with mass number A has approximately the
mass ∼A × 0.93 GeV and the radius ∼A1=3 × 1.2 fm which
yields δrel ∼ 1.2A−8=3. Although they are not spin-0 par-
ticles, we have included the proton, deuteron and 6Li in
Table I for comparison. The concept of 3D densities is
applicable in all three cases with a reasonable accuracy of
the order of Oð3%Þ for the proton, Oð0.1%Þ for the
deuteron, and Oð0.1‰Þ for 6Li.
Notice that it is customary to speak about mean square

charge radii also for particles like (charged) pions and
kaons, even though the concept of 3D densities cannot be
applied here. These “radii” are simply defined by the

TABLE I. Masses, radii, and the sizes of relativistic corrections
δrel as defined in Eq. (53) for various spin-0 mesons and nuclei.
The proton, deuteron, and 6Li are included for comparison.
Masses and mean charge radii of mesons and protons are from
[60] except for the radii of η taken from the estimate [61] and ηc
taken from the lattice calculation [62]. Nuclear masses are from
[63] and nuclear mean charge radii from [64]. The smaller δrel is,
the safer it is to apply the 3D-density interpretation of form
factors.

Particle Jπ Mass (GeV) Size (fm) δrel

Pion 0− 0.14 0.67 2.2
Kaon 0− 0.49 0.56 2.5 × 10−1

η-meson 0− 0.55 0.68 1.4 × 10−1

ηc-meson 0− 2.98 0.26 3.8 × 10−2

Proton 1
2
þ 0.94 0.89 2.8 × 10−2

Deuteron 1þ 1.88 2.14 1.2 × 10−3

6Li 1þ 5.60 2.59 9.3 × 10−5

4He 0þ 3.73 1.68 5.0 × 10−4

12C 0þ 11.2 2.47 2.6 × 10−5

20Ne 0þ 18.6 3.01 6.2 × 10−6

32S 0þ 29.8 3.26 2.1 × 10−6

56Fe 0þ 52.1 3.74 5.1 × 10−7

132Xe 0þ 123 4.79 5.6 × 10−8

208Pb 0þ 194 5.50 1.7 × 10−8

244Pu 0þ 227 5.89 1.1 × 10−8

2We postpone here the question of how to describe such an
“internal structure” in terms of a microscopic dynamical La-
grangian theory. This question will be addressed later.
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slopes of the electric form factors as, e.g. in the case of
the pion

FπðtÞ ¼ 1þ hr2π;emi
6

tþOðt2Þ; or hr2π;emi ¼ 6F0
πðtÞjt¼0:

ð54Þ

Of course, one can introduce the concept of the “spatial
structure” and “size” of pions and kaons (and other
particles) without relativistic corrections by working with
2D densities [65–68]. In that approach the 2D radius of
the particle is still related to the slope of the form factor,
but now as FπðtÞ¼ 1þ 1

4
hr2π;em;2DitþOðt2Þ [in each case

the numerical prefactor is 1=ð2dspaceÞ with dspace the
number of space dimensions in the Fourier transform].
But the concepts of pressures, shear forces and mechani-

cal stability are inherently 3D. No interpretation exists for
the stress tensor in terms of 2D densities. Therefore, if we
wish to learn about the mechanical stability of nucleons and
nuclei, we have to pay the price of dealing with 3D
densities and the associated relativistic corrections.
However, the relativistic “blurring” of the 3D densities
for nucleons and nuclei, about 3% for protons and much
less for nuclei, seems acceptably small to carry on this
program.
It is important to stress the different objectives of the 2D-

vs 3D-density interpretations. The 2D-density description
is exact and this is indispensable for a rigorous probabilistic
partonic interpretation. The 3D-density description does
not describe partonic probability densities. It describes in
our context the mechanical response functions of a system.
These are to be understood as correlation functions which
comewith relativistic corrections. This approach is justified
and gives valuable insights, as long as the corrections are
acceptably small. As shown in Table I, this is the case in
particular also in the phenomenologically relevant cases of
the nucleon and nuclei.

D. Stress tensor of an extended spin-0 particle

In this section we investigate the stress tensor of a
pointlike (heavy) boson which “is given” some “internal
structure.” We continue proceeding heuristically (see foot-
note 2) and replace the δ-function in the expressions for
pðrÞ and sðrÞ in Eq. (49) with a suitable regular normalized
function fðrÞ as given in Eq. (50). We shall assume that
fðrÞ has the properties that (a) it is a radially symmetric
function of r⃗, (b) it is at least three times continuously
differentiable, (c) it satisfies r3f00ðrÞ → 0 and r2f0ðrÞ → 0
for r → 0, and (d) it vanishes at large distances faster
than any power of r. These restrictions will be convenient
in the following, even though some of them could be
relaxed (e.g. a large-r behavior ∝ 1=r5 would be sufficient
in all physically relevant situations [49] including the
chiral limit).

From Eq. (49) we obtain the results

pðrÞ ¼ −
1

6m

�
f00ðrÞ þ 2

r
f0ðrÞ

�
;

sðrÞ ¼ 1

4m

�
f00ðrÞ − 1

r
f0ðrÞ

�
; ð55Þ

where the primes denote derivatives with respect to the
argument. It is important that in Eq. (55) we use the same
function fðrÞ in the expressions for sðrÞ and pðrÞ. This is
dictated by the conservation of the EMT, which imposes the
differential equation (34). In fact, the relation (34) holds
exactly:

2

3

∂sðrÞ
∂r þ 2sðrÞ

r
þ ∂pðrÞ

∂r
¼ 2

3

�
f000ðrÞ
4m

−
f00ðrÞ
4mr

þ f0ðrÞ
4mr2

�
þ 2

r

�
f00ðrÞ
4m

−
f0ðrÞ
4mr

�

þ
�
−
f000ðrÞ
6m

−
2f00ðrÞ
6mr

þ 2f0ðrÞ
6mr2

�
¼ 0 ð56Þ

for every function fðrÞ which satisfies the properties
(a)–(c). [Only here we need that fðrÞ is three times
continuously differentiable. For all other purposes two
times continuously differentiable would be sufficient.]
Since Eq. (56) holds for the extended particle and since
it is equivalent to the conservation of the EMT, it is clear
that all other properties related to the conservation of the
EMT are also satisfied. Let us show this explicitly. The von
Laue condition is

Z
∞

0

drr2pðrÞ ¼ 1

6m

Z
∞

0

drðr2f00ðrÞ þ 2rf0ðrÞÞ

¼ 1

6m

Z
∞

0

dr
∂
∂r ðr

2f0ðrÞÞ ¼ 0 ð57Þ

for every function fðrÞ which satisfies the properties
(a)–(c). This proves Eq. (35). Finally, for the D term of
an extended particle we obtain from the shear forces and
pressure in Eq. (34) the unambiguous result

D ¼ m
Z

d3rr2pðrÞ ¼ −4π
Z

∞

0

dr
�
r4
f00ðrÞ
6

þ r3
f0ðrÞ
3

�

¼ −
�
4 · 3I0

6
−
3I0
3

�
¼ −1; ð58aÞ

¼−
4m
15

Z
d3rr2sðrÞ¼−4π

Z
∞

0

dr

�
r4
f00ðrÞ
15

− r3
f0ðrÞ
15

�

¼−
�
4 ·3I0
15

þ3I0
15

�
¼−1; ð58bÞ

where we performed one or two partial integrations in the
respective terms to express the final results in terms of the
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integral I0 introduced in Eq. (50). The conclusion is that
the propertyD ¼ −1 holds also for an extended boson, and
this is guaranteed by the normalization of the function fðrÞ
in Eq. (50).
At this point a comment is in order. One must choose

one and the same representation for δð3Þðr⃗Þ when
smearing out the δ-functions in the expressions for
pðrÞ and sðrÞ in Eq. (49), because they are connected
by the relations (34) and (56). However, there is no
reason why we should use the same regular function
fðrÞ when smearing out T00ðrÞ. At this point of our
considerations, T00ðrÞ is unrelated to pðrÞ and sðrÞ.
This is of course an unphysical feature. The expressions
for all EMT densities should be derived from a
Lagrangian of a dynamical theory. A nontrivial question
is whether it is possible to construct a dynamical
theory where a particle has the property D ¼ −1 but
is extended and exhibits the EMT densities of a
“smeared-out pointlike” particle.
Before addressing this question in the next section, we

visualize the EMT densities of such an “extended particle.”
For purely illustrative purposes, we choose the representa-
tion fRðrÞ for the δ-function defined in Eq. (51). The results
are shown in Fig. 1. It is remarkable that in this way we
effortlessly (without invoking dynamics, just by smearing
out a pointlike particle) recover the main features of the
EMT densities calculated nonperturbatively in dynamical
theories of Q-balls [42–44], chiral solitons [49,50], or
Skyrmions [51,52].

IV. STRONGLY INTERACTING
GAUSSIAN SCALAR FIELD

The previous section has shown that the free-theory
result D ¼ −1 persisted even if the pointlike spin-0 boson
was given an extended structure. Thereby we “introduced”
the internal structure in a heuristic way. The emerging
question is this: can one construct a microscopic dynamical
theory in which the spin-0 particles
(a) have an extended structure,

(b) have the desired propertyD ¼ −1 of a free “pointlike”
particle, and

(c) exhibit the heuristically obtained EMT densities
corresponding to “smeared δ-functions” or their
derivatives?

The answer is yes. In the following we will present one
such theory, which can be formulated in the Q-ball system
already mentioned in Sec. II E. We will begin by briefly
reviewing the description of the EMT properties of Q-balls
[42] in Sec. IVA, and then show that for a specific Q-ball
potential one deals with exactly our heuristically smeared-
out pointlike particles from Sec. IV B. To streamline the
presentation we address technical details of this theory
separately in Sec. IV C and discuss potential applications in
Sec. IV D.

A. Brief review of the EMT properties of Q-balls

A brief introduction to Q-balls was already given in
Sec. II E. To make this work self-contained, we review first
the generalQ-ball properties [39] including the expressions
for the EMT densities of Q-balls derived in [42].
The theory defined in Eq. (27) of Sec. II E admits

nontopological solitons for a suitable potential V [39]. In
their rest frame the soliton solutions are given by the
expression quoted in Eq. (29) with the radial field ϕðrÞ
obeying the equation of motion and the boundary con-
ditions (primes denote differentiation with respect to the
argument)

ϕ00ðrÞ þ 2

r
ϕ0ðrÞ þ ω2ϕðrÞ − V 0ðϕÞ ¼ 0;

ϕð0Þ≡ ϕ0 ≠ 0; ϕ0ð0Þ ¼ 0; ϕðrÞ → 0 for r → ∞:

ð59Þ

The global U(1) symmetry implies a Noether current with
the conserved charge

Q ¼
Z

d3xρchðrÞ; ρchðrÞ ¼ ωϕðrÞ2; ð60Þ

0

0.5

1

0 1 2

(a)
T00(r)

r/R

0

0.5

1

0 1 2

(b)
p(r)

s(r)

r/R

-0.1

0

0.1

0.2

0 1 2

(c)
r2p(r)

r/R

FIG. 1. (a) The energy density T00ðrÞ in units of T00ð0Þ as a function of r in units of R for a smeared-out point-particle from the
Gaussian representation (51) of a δ-function. (b) The same as Fig. 1(a) but for sðrÞ and pðrÞ in units of pð0Þ. (c) Visualization of the von
Laue condition Eq. (35) with units as in Fig. 1(b). In the limit R → 0 [which implies T00ð0Þ → ∞ and pð0Þ → ∞] one recovers the
original singular expressions (49). Notice that D ¼ −1 holds both for finite R and in the limit R → 0. For the 3D interpretation to be
physically sound R is required to be larger than the Compton wavelength of the particle.
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whose sign is determined by ω. Below we choose ω > 0
without loss of generality. The EMT densities read

T00ðrÞ ¼
1

2
ω2ϕðrÞ2 þ 1

2
ϕ0ðrÞ2 þ V; ð61aÞ

pðrÞ ¼ 1

2
ω2ϕðrÞ2 − 1

6
ϕ0ðrÞ2 − V; ð61bÞ

sðrÞ ¼ ϕ0ðrÞ2: ð61cÞ

The Q-ball densities satisfy the relation

T00ðrÞ þ pðrÞ ¼ ωρchðrÞ þ
1

3
sðrÞ; ð62Þ

which implies the interesting Q-ball specific relation

D ¼ 4

9
ðωQMhr2Qi −M2hr2EiÞ; ð63Þ

with the Q-ball mass M and mean square radii of energy
and charge densities defined as

M ¼
Z

d3xT00ðrÞ; hr2Ei ¼
1

M

Z
d3xr2T00ðrÞ;

hr2Qi ¼
1

Q

Z
d3xr2ρchðrÞ: ð64Þ

B. Q-balls in logarithmic potential with D= − 1
To find a microscopic theory of smeared-out elementary

particles, we consider Q-balls in the logarithmic potential

L ¼ 1

2
ð∂μΦ1Þð∂μΦ1Þ þ

1

2
ð∂μΦ2Þð∂μΦ2Þ − V log;

V log ¼ AðΦ2
1 þΦ2

2Þ − BðΦ2
1 þΦ2

2Þ logðCðΦ2
1 þΦ2

2ÞÞ:
ð65Þ

This potential is not bound from below, and understood as
the limiting case of a well-defined theory; see Sec. IV C.
Actually two parameters are sufficient to define this theory:
we can replace C → 1=B and A → A − B logðACÞ without
loss of generality which we shall do from now on. For this
potential the equations of motion for the radial field reads

ϕ00ðrÞ þ 2

r
ϕ0ðrÞ þ ðω2 − 2Aþ 2BÞϕðrÞ

þ 2BϕðrÞ log
	ϕðrÞ2

B



¼ 0: ð66Þ

The solution satisfying the boundary conditions (59) can be
found analytically and is given by

ϕðrÞ ¼ ϕ0 expð−Br2Þ; ϕ0 ¼
ffiffiffiffi
B

p
exp

�
2Aþ 4B − ω2

4B

�
:

ð67Þ

With the solution (67) allQ-ball properties can be evaluated
analytically. In particular, we obtain for the densities

T00ðrÞ ¼ ðω2 − 2Bþ 4B2r2ÞϕðrÞ2; ð68aÞ

pðrÞ ¼
�
2B −

8

3
B2r2

�
ϕðrÞ2; ð68bÞ

sðrÞ ¼ 4B2r2ϕðrÞ2; ð68cÞ

ρchðrÞ ¼ ωϕðrÞ2: ð68dÞ

The expressions for sðrÞ and pðrÞ satisfy the general
differential equation (34), pðrÞ satisfies the von Laue
condition (35), and all densities comply with the Q-ball
specific relation (62). For the global Q-ball properties we
obtain

Q ¼ N0ω; M ¼ N0ðBþ ω2Þ; D ¼ −N2
0ðBþ ω2Þ;

N0 ≡ ϕ2
0

�
π

2B

�
3=2

ð69aÞ

hr2Ei ¼
3

4B
3Bþ ω2

Bþ ω2
; hr2Qi ¼

3

4B
: ð69bÞ

It is important to stress that the same result for D follows in
three different ways, from Eqs. (36a), (36b) and (63). At
this point it is also worth stressing that we obtain an
analytic result for D which is manifestly negative, in
agreement with all available theoretical calculations.
Next we discuss the requirements on the parameters. The

conditions (37b), (31), (37a) imply (in this order)

2

3
sðrÞ þ pðrÞ ¼ 2BϕðrÞ2 ≥ 0 ⇔ B ≥ 0; ð70aÞ

d
dω

�
M
Q

�
¼ d

dω

�
ωþ B

ω

�
≥ 0 ⇔ ω2 ≥ B; ð70bÞ

T00ðrÞ ¼ ðω2 − 2Bþ 4B2r2ÞϕðrÞ2 ≥ 0 ⇔ ω2 ≥ 2B:

ð70cÞ

All conditions are satisfied and the solutions classically
stable if 2ω2 ≥ B > 0 [we exclude B ¼ 0 in (70a) which
would reproduce the free theory]. For the limiting value
ω2 ¼ 2B the energy density vanishes in the center, which is
a feature not observed so far in the Q-ball literature to the
best of our knowledge. For 2B < ω2 < 4B the energy
density exhibits a dip in the center. Such dips occur
naturally when the “surface tension” of the Q-matter is
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strong enough to produce a peak in T00ðrÞ at the “edge” of
the Q-ball [42]. Finally, for ω2 ≥ 4B we have a T00ðrÞ
which has no dip and is monotonically decreasing for all r.
Notice that the parameter A is completely unconstrained.

We can choose
ffiffiffiffi
B

p
to serve as a unit of mass in our theory,

and 1=
ffiffiffiffi
B

p
as a length unit. Then the role of A is to provide

an overall rescaling of the fields by the factor expð1
2
AB−1Þ,

as can be seen from (67). This implies a corresponding
rescaling of the properties in (69a) via N0 ∝ expðAB−1Þ.
While at this point A can take any value, in Sec. IV C we
will see that certain restrictions for A exist.
Now we discuss how to fix the parameters such that

D ¼ −1. We notice that in general for our logarithmic
Q-balls

ð−DÞ
Q2

¼ 1þ B
ω2

> 1; ð71Þ

where the inequality arises from 0 < B ≤ 2ω2. Clearly,
parameters can be chosen such that eitherD¼−1 orQ ¼ 1
but not both simultaneously (unless one considered a
limit like ω → ∞ for fixed B). However, Q is a conserved
but not a topological quantum number and not required to
be an integer. It also does not need to correspond in general
to the electric charge. Notice that, if we wished to do it,
we could simply redefine the unit in which the charges
are measured to have integer-valued charges. Thus, there
is no principle obstacle to have D ¼ −1. Notice that
similarly M2 ¼ ð−DÞðω2 þ BÞ holds, implying the nice
result M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ B

p
for D ¼ −1.

To obtain the desired value for the D term D ¼ −1 we
may fix A and ω as follows:

ω2 ¼ αB; A ¼ B
2

�
α − 4 − log

�
π3

8
ð1þ αÞ

��
; ð72Þ

with an arbitrary positive parameter α which will be
constrained shortly. In this way we obtain

D ¼ −1; M ¼
ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
; Q ¼

ffiffiffiffiffiffiffiffiffiffiffi
α

1þ α

r
;

hr2Ei ¼
3

4B
3þ α

1þ α
; hr2Qi ¼

3

4B
: ð73Þ

For any value of α we have D ¼ −1. Stability consider-
ations (70a)–(70c) require α ≥ 2, leaving this parameter
otherwise unconstrained. In order to further constrain α we
consider our criterion (53) with R2 → hr2Qi. (We could
equally well use hr2Ei for that, but due to the general relation
hr2Qi < hr2Ei the criterion is more restrictive with hr2Qi.) We
obtain

δrel ¼
2

3

1

1þ α
: ð74Þ

At this point the parameter α is still not fixed, and we
are free to choose its value to make relativistic corrections
as small as we wish; for instance choosing α > 65
guarantees δrel < 1%.
In order to close the loop and make contact with the

heuristic discussion in Secs. III C and III D we remark that
the densities can be rewritten in terms of the Gaussian
introduced in Eq. (51) to smear out the δ-functions as
follows:

T00ðrÞ ¼ M

�
α − 2

αþ 1
þ 2

1þ α

r2

R2

�
fðrÞ; ρchðrÞ ¼ QfðrÞ;

ð75aÞ

pðrÞ ¼ −
1

6M

� ∂2

∂r2 þ
2

r
∂
∂r

�
fðrÞ;

sðrÞ ¼ 1

4M

� ∂2

∂r2 −
1

r
∂
∂r

�
fðrÞ; ð75bÞ

fðrÞ≡ 1

π3=2R3
exp

�
−
r2

R2

�
with R ¼ 1ffiffiffiffiffiffi

2B
p : ð75cÞ

The smeared-out δ-function representation for T00ðrÞ
differs from that of the other densities (we discussed
that this is in general expected). Notice that fðrÞ≡
MϕðrÞ2 and

R
d3rfðrÞ2 ¼ 1. We can consider several

limits.
In the large-α limit with B kept fixed in Eq. (72) the

energy density can be expressed in terms of the same
smeared-out function fðrÞ which defines pðrÞ and sðrÞ. In
this interesting limit D ¼ −1, Q → 1 and hr2i i → 3=ð4BÞ
(i ¼ E, Q) are fixed while the mass grows as M →

ffiffiffiffiffiffi
αB

p
,

justifying the applicability of the 3D-density description
with δrel → 0.
Another way to implement limits is to keep α fixed

[at a large enough value to keep δrel in (74) reasonably
small] and take B → ∞. Now we recover a heavy
particle which becomes pointlike as hr2i i → 0 in this
limit. Then fðrÞ → δð3ÞðrÞ and we literally recover the
description of a heavy pointlike particle, with D ¼ −1
of course, which we wrote down heuristically in
Eq. (49) in Sec. III C.
We consider finally the limit that α → ∞ and B → 0

such that the mass M ¼ ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p ffiffiffiffi
B

p
remains fixed.

Nothing prevents us from choosing M to be moderately
small or even light (but it must be nonzero). However,
in this limit the size of our light particle grows since
hr2i i → 3α=M which guarantees the smallness of δrel in
(74) and the applicability of the 3D-density description.
We are not aware of systems of this kind in particle
physics, but Rydberg atoms (fixed and moderate mass,
extremely large size) provide an example from atomic
physics.
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It is gratifying to notice that there is no way to take
a limit in which one could recover a light and small
(pointlike) particle, even if one were willing to pay the price
of large relativistic corrections in Eq. (74). This is not
surprising: our very starting point was the assumption that
the 3D-density description is applicable, so our theory does
not permit us to take such a limit.
Figure 1 basically shows the EMT densities of our

logarithmic Q-ball. More precisely, Fig. 1(a) shows
T00ðrÞ for α ≫ 1, while Figs. 1(b) and 1(c) show the exact
shear forces and the pressure distributions for any α. We
recall that the results in Fig. 1 were initially obtained on the
basis of heuristic arguments (smearing out a pointlike
particle), and now we have derived them from a dynamical
theory.
Finally, let us remark that the logarithmic potential

also admits excited states, which will be addressed
elsewhere.

C. Proper boundary conditions
for logarithmic Q-ball theory

This section is devoted to several technical, but indis-
pensable details regarding the logarithmic potential in
Eq. (65) which is not bound from below and does not
constitute an “acceptable” Q-ball potential in the sense of
Ref. [39]. Here we present a potential which is acceptable,
bound from below, and contains our log-potential as a
limiting case.
Let us denote for simplicity V ¼ VðϕÞ where ϕ ¼ ϕðrÞ

is the radial field. V is an acceptableQ-ball potential if (i) V
is two times continuously differentiable with Vð0Þ ¼ 0,
V 0ð0Þ ¼ 0, V 00ð0Þ ¼ ω2

max ≡m2
Φ > 0, VðϕÞ > 0 for ϕ ≠ 0;

(ii) VðϕÞ=ϕ2 has a minimum at some ϕmin ≠ 0 which
defines the lower limit ω2

min ¼ 2VðϕminÞ=ϕ2
min for frequen-

cies; and (iii) positive numbers a, b, c exist with c > 2 such
that 1

2
m2

ΦΦ2 − VðϕÞ ≤ min½a; bjϕjc�.
To construct a potential complying with the above

criteria and containing (65) as a limiting case, we intro-
duce the dimensionless parameters 0 < εi ≪ 1 with
i ¼ 1, 2. One acceptable regular logarithmic potential
Vreg is defined by

Vreg ¼ Aϕ2 þ ε1ϕ
4 − Bϕ2 log

�
ε2 þ

ϕ2

B

�
: ð76Þ

The role of the term with ε1ϕ4 is to make sure the potential
is bound from below for ε1 > 0. The effect of ε2 is to
ensure that a regular small field expansion of the potential
exists, Vreg ¼ ðA − B log ε2Þϕ2 þOðϕ4Þ, which generates
a finite mass term for the fundamental field. In the limit that
the εi are negligible we recover the log-potential (65).
Below we will see how this limit is understood. We begin
by considering the limiting frequencies (30) and their
difference,

ω2
max ¼ m2

Φ ¼ ½V 00
regðϕÞ�ϕ¼0 ¼ 2A − 2B log ε2; ð77aÞ

ω2
min ¼ min

ϕ

�
2VregðϕÞ

ϕ2

�
¼ 2Aþ 2Bð1þ log ε1 − ε1ε2Þ;

ð77bÞ
Δω2 ¼ ω2

max − ω2
min ¼ 2Bfðε1ε2Þ; fðzÞ ¼ z − log z − 1:

ð77cÞ
We first show that Δω2 > 0; i.e. that there is a finite
ω-range for solitons to exist. This is the case because B > 0
holds due to (37b) (still valid for εi ≪ 1) and fðzÞ > 0
for 0 < z < 1.
Next we will show that ω2

min > 0 which means that
VregðϕÞ=ϕ2 > 0 at its minimum. Notice that in the general
situation the expression for ω2

min in (77b) does not need to
be positive: for given A and B one cannot have arbitrarily
small ε1. This imposes a constraint on the parameters. The
general condition is

ω2
min > 0 ⇔ ε1 expð1 − ε1ε2Þ < expð−A=BÞ: ð78aÞ

Here we are interested in the specific situation withD ¼ −1
where A, B are related to each other by Eq. (72) modulo
negligible OðεiÞ corrections. This implies

ω2
min > 0 ⇔ ε1 > c0

ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

eα

r
þOðε2i Þ; c0 ¼ e

ffiffiffiffiffi
π3

8

r
;

i.e. ε1 cannot be arbitrarily small. In practice, however, this
is a loose bound as α must be large enough to ensure small
relativistic corrections δrel [Eq. (74)]. For instance, if we
demand δrel ≲ 1% then α ≳ 66 and ε1 ≳ 2.1 × 10−13. Thus
ε1 can be chosen so small that it can be neglected for
practical purposes. Even the limit ε1 → 0 can be realized
for α → ∞ in which case we deal with the heavy mass limit
of a fixed-size particle; see Sec. IV B. We remark that
ω2
min > 0 also guarantees VregðϕÞ > 0 for ϕ ≠ 0, which

ensures that ϕ ¼ 0 is the correct vacuum of the theory.
Obviously also ω2

max > 0 since ω2
max ¼ ω2

min þ Δω2 and
we have already proven that ω2

min and Δω2 are both
positive. This is also clear from (77a) where (for
ε2 ≪ 1) we see that ω2

max is evidently positive and defines
the mass of the Φi-quanta. This completes the demonstra-
tion that Vreg satisfies the criteria (i) and (ii) of an
acceptable potential.
Finally we turn to the criterion (iii) and introduce the

notation

UeffðϕÞ≡ 1

2
m2

Φϕ
2 − VregðϕÞ ¼ ε2B2hðzÞ;

hðzÞ ¼ z logð1þ zÞ − εz2; z ¼ ϕ2

ε2B
; ε ¼ ε1ε2:

ð79Þ

JONATHAN HUDSON and PETER SCHWEITZER PHYSICAL REVIEW D 96, 114013 (2017)

114013-16



The function hðzÞ satisfies

hðzÞ ≤ z logð1þ zÞ ≤ z2 ⇔ UeffðϕÞ ≤ bjϕjc;
b ¼ ε2B2; c ¼ 4: ð80Þ

This bound is useful for ϕ < ϕeff;max where UeffðϕÞ
exhibits a maximum. For ϕ ≥ ϕeff;max a stronger bound
is provided by UeffðϕÞ ≤ Ueffðϕeff;maxÞ. To determine the
latter we need the extrema of UeffðϕÞ and consider

h0ðzÞ ¼ logð1þ zÞ þ z
1 − z

− 2εz¼! 0 ð81Þ

which has one solution at z ¼ 0 corresponding to a local
minimum. The second solution describes the global maxi-
mum at large z ≫ 1 where we may approximate (81) as

h0ðzÞ ¼ logðzÞ þ 1 − 2εzþOð1=z2Þ¼! 0which is solved by

z ¼ −
1

2ε
W−1

�
−
2ε

e

�
¼ 1

2ε
log

�
e
2ε

�
þ 1

2ε
log

�
log

�
e
2ε

��

þ � � � : ð82Þ

W−1ðxÞ denotes the inverse function of y ¼ x expðxÞ,
known as the Lambert W-function, which is defined for
x ≥ −1=e and multivalued at negative x. More precisely,
W−1ðxÞ denotes the branch with W−1ðxÞ ≤ −1. In the
second step in (82) we explored the asymptotic expansion
ofW−1ðxÞ for small ð−xÞ → 0 [69] with the dots indicating
subsubleading terms. Keeping only the leading terms we
find for the position and value of the global maximum of
UeffðϕÞ the results

ϕ2
eff;max ¼

B
2ε1

log

�
e

2ε1ε2

�
þ � � � ;

Ueffðϕeff;maxÞ ¼
B2

4ε1
log2

�
e

2ε1ε2

�
þ � � � ð83Þ

which shows that a maximum exists for εi > 0. Thus
UeffðϕÞ ≤ min½a; bjϕjc� where we can choose a ¼
Ueffðϕeff;maxÞ and b, c as shown in Eq. (80). This completes
the demonstration that also the criterion (iii) is satisfied.
To end this section we briefly report the results of a

numerical check with the scope to investigate the size of the
deviations for D and other quantities for εi ≠ 0. We have
chosen the parameters B ¼ 2.5, α ¼ 65 and a common
value ϵ≡ ε1 ¼ ε2 ¼ 10−5 for the sake of easier compari-
son. Recall that other Q-ball parameters are fixed by
Eq. (72) which ensures D ¼ −1 for εi → 0. Let us in
the following denote the additional dependence on ϵ of the
quantities as ϕðr; ϵÞ, MðϵÞ, etc. with ϕðr; 0Þ, Mð0Þ, etc.
corresponding to ϕðrÞ, M in Sec. IV B where the εi were
strictly zero. To measure the deviations we introduce
δϕðrÞ ¼ ϕðr; ϵÞ − ϕðr; 0Þ, δM ¼ MðϵÞ −Mð0Þ, etc. For
the radial field we obtain

−0.6 × 10−3 <
δϕðrÞ
ϕðrÞ < 0.3 × 10−3 ð84Þ

with the largest negative deviation at small r and the largest
positive deviation around r ¼ ð1–2Þ. For the integrated
quantities we obtain

δQ
Q

¼ −0.5 × 10−3;
δM
M

¼ −0.6 × 10−3;

δD
D

¼ 4 × 10−3;
δhr2Ei
hr2Ei

¼ 3 × 10−3;

δhr2Qi
hr2Ei

¼ 3 × 10−3: ð85Þ

Let us remark that the relative accuracy of the used
numerical method is of the order ϵnum ¼ Oð10−7Þ which
we verified by reproducing within such accuracy the
numerical value of D using the three different methods
(36a), (36b), and (63) and by performing other numerical
tests as described in [42].
For the D term we obtain for our chosen ϵ ¼ 10−5 the

valueDðϵÞ ¼ −0.995828 instead of −1. Notice that we had
to chose ϵ ≫ ϵnum ¼ Oð10−7Þ. Otherwise the effect of
nonzero ϵ could not be resolved within our numerical
accuracy. At the same time, for the chosen parameters α, B
we have the theoretical constraint ε1 > 2.1 × 10−13 (see
above). Such small ϵ ¼ ε1 ¼ ε2 can be truly neglected for
all practical (numerical) purposes. This demonstrates how
our logarithmic potential (65) can be practically understood
as the limiting case of the theory (76).

D. Potential applications in cosmology
and beyond standard model

We end this section with an exercise to get some
feeling for the involved numbers. The only fundamental
scalar particle known in the standard model is the Higgs
boson. If we would choose e.g. α ¼ 99 and our logarithmic
Q-ball to have the mass of the Higgs boson, then mHiggs ¼
10

ffiffiffiffi
B

p
and hr2Higgsi1=2 ¼ 0.014 fm. It is not in our scope to

discuss here the phenomenology of standard model exten-
sions with a composed Higgs; see e.g. [70,71]. Let us only
remark that in such extensions of the standard model the
Higgs is typically considered to be composed of new
particles with masses often in the TeV range, implying a
much smaller size ∼ð1 TeVÞ−1 ∼ 0.0002 fm compared to
what our logarithmic Q-ball picture would suggest. Notice,
however, that this not necessarily a contradiction because
the size dictated by the logarithmicQ-ball theory is not due
to interactions with external (new physics) particles, but
due to self-interactions and the observed Higgs boson
signal [60] does not need to be incompatible with such an
internal boson size. Indeed, logarithmic potentials for a
Higgs self-interaction can be derived naturally from
beyond-standard-model theories [72] whereby only the
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Higgs self-interaction is modified, but not the couplings to
other standard model particles. The effective infrared
theory derived in [72] contains a logarithmic Higgs-mass
term analog to our effective theory (65). An attractive
possibility is that the Higgs could be a relatively light
soliton of much heavier elementary scalar fields of a
beyond-standard-model theory. Finally, let us remark that
logarithmic potentials have been considered in the liter-
ature, also for instance in the context of inflationary models
driven by logarithmic potentials [73] or baryogenesis in
minimally supersymmetric extensions of the standard
model [74–76]. Such logarithmic potentials have to be
understood as effective potentials which can be generated,
for instance, radiatively [77,78].

V. CONCLUSIONS

We have presented a study of the EMT form factors in
spin-0 systems. Particular emphasis was put on the D term,
an interesting but so far experimentally unknown particle
property [6], which plays the key role in accessing
information on the internal forces inside extended particles
such as nucleons and nuclei [7]. Our study has focused on
free, weakly and strongly interacting theories and has
revealed that the D term is the particle property which is
most strongly dependent on the dynamics of the theory.
As a starting point we studied the D term in free-field

theory, and showed that the free Klein-Gordon theory makes
the unambiguous prediction D ¼ −1. This result, originally
obtained by Pagels in 1965 [1] and largely overlooked in
recent literature, is analog to the prediction g ¼ 2 for the
anomalous magnetic moment from the Dirac equation.
We illustrated the particular sensitivity of the D term to

the dynamics by exploring the Φ4 theory. Neither the mass
nor the spin are affected by introducing a weak Φ4

interaction in the free theory. But the D term is changed
from its free theory value D ¼ −1 to − 1

3
no matter how

infinitesimally weak the interaction due to renormalization
[23] (assuming the mass is renormalized such that it
coincides with its counterpart in the classical Lagrangian).
Interestingly in QCD the Goldstone bosons of sponta-

neous chiral symmetry breaking have the D terms D ¼ −1
in the soft-pion limit, just as in free-field theory. This is a
nontrivial consequence of chiral symmetry breaking
[26,27]. On the basis of results from the literature [32]
we estimated the D terms of pions, kaons, and η-mesons
which are numerically close to D ¼ −1. In general,
however, in strongly interacting theories one may encoun-
ter sizable (always negative) values jDj ≫ 1 for the D
terms, as we have shown by reviewing results from nuclei
[37] and Q-balls [42–44].
The deeper reason why the D term is more strongly

sensitive to dynamics than mass and spin is because the
latter are related to operators of the Poincaré group, which
imposes rigid constraints. The D term is in spin-0 (and

spin-1
2
) systems the only quantity related to the EMT with

no constraint due to generators of the Poincaré group. For
this reason theD term offers a unique and sensitive probe of
the dynamics. Although the mass itself is of course also the
result of dynamics, nevertheless the observation is that D
exhibits a far stronger sensitivity to dynamics, as is
exemplified by our insights from “switching on” inter-
actions in Φ4 theory and is supported by many studies.
The second important focus of this work was the

interpretation of EMT form factors in terms of 3D densities,
giving insights into the stress tensor and “mechanical
forces” inside composite particles [7]. Again we started
from the free theory, tested the formalism by applying it to a
pointlike particle, and showed the internal consistency of
the 3D description. This description is justified in the heavy
mass limit which requires the introduction of an additional
scale, the size of a particle. We quantified the corrections to
this picture and found that they are reasonably small for a
particle with the mass and size of the nucleon, and safely
negligible even for the lightest nuclei.
We showed that the free theory result D ¼ −1 persists

even when the spin-0 boson is not pointlike but given
“some internal structure.” For that we heuristically smeared
out the pointlike particle solution and showed that the
resulting description is consistent. We constructed a micro-
scopic theory where the “giving” of an internal structure to
a particle is implemented dynamically. This theory allows
us to “interpolate” between extended and pointlike particle
solutions with the latter emerging in a certain parametric
limit. The interaction in this microscopic theory is given
by a logarithmic potential. Interactions of such type have
been explored in the literature in various contexts including
beyond-standard-model phenomenology, Higgs physics
and cosmology. Remarkably, this theory can be solved
analytically. The solution is a nontopological soliton
of Q-ball type [39] which, when formulated in its rest
frame in terms of a complex scalar field, is of the type
Φðt; x⃗Þ ¼ Φ0 expðiωtÞ expð−r2=R2Þ, i.e. a Gaussian.
We stress that we use the 3D-density approach as a

framework to interpret mechanical response functions of a
system: the stress tensor, shear forces and pressure are
inherently 3D concepts. The interpretation of such res-
ponse functions in terms of 3D densities should be taken
with a grain of salt due to relativistic corrections. In the case
of the phenomenologically interesting nucleon and nuclei
such corrections are, however, acceptably small to allow us
to carry on this program and gain valuable insights into
internal forces.
A derivation of a 2D interpretation of theD term in terms

of light-cone densities was beyond the scope of this work.
Such an interpretation, which would be free of relativistic
corrections [65] and would shed new light on the D term,
remains to be addressed in future studies.
This work contributes to a better understanding of the D

term, which has emerged already in the pre-QCD era as a
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fixed pole contribution in the angular momentum plane to
the virtual Compton scattering amplitude in the framework
of Regge theory [79–81] (which reflects that the D term
determines the asymptotics of GPDs in the limit of the
renormalization scale μ → ∞ [9,10]; see also [82,83] for
discussions). After a first vague and inevitably model-
dependent glimpse on the D term from the HERMES
experiment [84] more insights are expected [85] on deeply
virtual Compton scattering off nucleons [86] and nuclei
[87] from Jefferson Lab, COMPASS at CERN [88], and the
envisioned future Electron-Ion-Collider [89] which will
allow us to test the theoretical understanding of this
fascinating property.
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APPENDIX A: NOTATION

There appears to be no unique notation for EMT form
factors in the literature. Here are some of the used notations
(on the left-hand side of each equation) in relation to our
notation (on the right-hand side of each equation):

Ref: ½1�; Eq: ð8Þ∶ G1ðq2Þ
2m2 ¼ AðtÞ; G2ðq2Þ

2m2 ¼ −DðtÞ; q2 ¼ t; ðA1Þ

Ref:½11�; Eq: ð3.152Þ∶ θ2ðΔ2Þ ¼ AðtÞ; θ1ðΔ2Þ ¼ −DðtÞ; Δ2 ¼ t; ðA2Þ

Ref:½32�; Eq: ð25Þ∶ θ2ðq2Þ ¼ AðtÞ; θ1ðq2Þ ¼ −DðtÞ; q2 ¼ t; ðA3Þ

Ref:½37�; Eq: ð2Þ∶ 1

2
MAðtÞ ¼ AðtÞ; 2

5
dAðtÞ ¼ −DðtÞ: ðA4Þ

Notice also that in GPD literature, e.g. [6,9], the notion
of the D term is used in a wider sense than in this work.
There the D term is a contribution, Daðz; tÞ for a ¼ q; q̄; g
with q ¼ u; d;… and z ¼ x

ξ with support in the region
jxj ≤ jξj, to unpolarized GPDs. In even Mellin moments,
e.g.

R
dxxn−1Haðx;ξ;tÞ¼can;0ðtÞþcan;2ðtÞξ2þ���þcan;nðtÞξn

with n even, this contribution gives rise to the generalized
form factors can;nðtÞ. The Daðz; tÞ can (for the purposes of
leading order evolution) be conveniently expanded in
Gegenbauer polynomials with coefficients da1ðtÞ;da3ðtÞ;…
where the dan−1ðtÞ are related to the can;nðtÞ. In contrast to
this, in our work theD term is defined more narrowly as the
form factor associated with the Lorentz structure ðΔμΔν −
gμνΔ2Þ in the Lorentz decomposition of the matrix elements
of the total EMT operator. Our DðtÞ coincides with
4
5
d1ðtÞ ¼ 4

5

P
ad

a
1ðtÞ in the notation of [9].

APPENDIX B: D TERM OF POINTLIKE
PARTICLE FROM 3D DENSITIES

It is instructive to “rederive” the result D ¼ −1 of a free
pointlike particle using the concept of 3D densities and
consistency considerations. We start with two natural
assumptions: (i) the EMT form factors of a free pointlike
particle are constant and (ii) the energy density of a
pointlike particle must be given by T00ðrÞ ¼ mδð3Þðr⃗Þ if
the particle is “heavy” or by the expression in Eq. (46) valid
for any m > 0.
The constraint Að0Þ ¼ 1 in (4a) immediately implies

with assumption (i) that AðtÞ ¼ 1 for all t. By the same

argument DðtÞ ¼ D is of course also t independent, but
its value is a priori unknown. To determine the value of D
we use assumption (ii) which implies that the square
bracket in the expression for T00ðrÞ in Eq. (38a) must
be a constant,

T00ðrÞ ¼ m2

Z
d3Δ

Eð2πÞ3 e
iΔ⃗ r⃗

�
AðtÞ − t

4m2
ðAðtÞ þDðtÞÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ const

:

ðB1Þ

Clearly, we will recover the desired result if and only if
AðtÞ þDðtÞ ¼ 0. As we have already established that
AðtÞ ¼ 1 these considerations immediately lead us to the
conclusion that DðtÞ ¼ −1, and in particular

D ¼ −1 ðB2Þ

for a pointlike heavy particle. In this way, by imposing the
abstract mathematical notion of a pointlike particle, we
recover D ¼ −1 for a free pointlike particle as a consis-
tency condition of the 3D-density description. Notice
that we have to explore here T00ðrÞ for our purposes.
Analog considerations of other EMT densities would not
constrain D.
The above arguments do not apply to the massless

case discussed in footnote 1 simply because our concepts
require a massive particle. These arguments also do not
apply to e.g. the Φ4 theory, because the bosons are not
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free there, and similarly in other interacting theories.
This explains why in general we obtain different D terms
in other theories. For Goldstone bosons of chiral symmetry
breaking it is D ¼ −1 in the soft-pion limit, but this cannot
be “explained” in the above way: in this limit the Goldstone
bosons are massless, and 3D-density concepts are not
applicable. The result D ¼ −1 for Goldstone bosons is a
nontrivial consequence of chiral symmetry breaking and
soft-pion theorems.

APPENDIX C: CANONICAL VS
CONFORMAL EMT

In this work we have seen that theD term depends on the
used EMT definition. We encountered two definitions:
(i) the canonical EMT which is defined as the Noether
current of space-time translations of the theory and is
symmetric in the spin-0 case [Eq. (10)] and (ii) the
conformal EMT which is given by (10) supplemented by
the improvement term (16) which, in the limit where all
dimensionful parameters in a Lagrangian are taken to zero,
ensures conformal symmetry at the classical level (which is
broken in many theories by quantum corrections and
renormalization).
In the free massless case it is necessary to work with

the conformal EMT, because this theory is conformally
invariant and the improvement term (16) is essential to
preserve this property; see footnote 1. The massive Φ4

theory is not conformally invariant, but it is appropriate to
use the conformal EMT also here because adding the
improvement term renders the EMT operator of that theory
finite; see Sec. II C and [23]. For Goldstone bosons it is
forbidden to use the conformal EMT as the improvement
term would violate chiral symmetry [30,31]. Hence in these
theories it is clear, for one reason or another, whether the
canonical or the conformal EMT has to be used.
In other cases, it might be less clear which definition of

the EMT should be used. For instance, in the free massive
theory we argued that it is appropriate to use the canonical
EMT due to the lack of a unique prescription why an
improvement term should be added; see Sec. II C. We have
seen that this choice receives a certain support in the shape
of the consistency argument discussed in Appendix B. But
one does not need to be convinced by the argument of
Appendix B, and it is legitimate to wonder what we would
obtain from a conformal EMT. In the massive free theory
case the answer is just D ¼ −1=3 instead of −1; cf.
footnote 1.
Also the results for the D term in the Q-ball system

(Refs. [42–44] and Sec. IV B) were obtained from the
canonical EMT. At this point we are not aware of an
argument why a conformal EMT should be used for these
calculations. But it is instructive to explore it for the sake of
obtaining insight into how the EMT densities of an
extended particle might be affected by working with one
EMT definition or the other. When the improvement term

(16) is included in the Q-ball theory, then the EMT
densities are altered as follows:

T00ðrÞconformal ¼ T00ðrÞcanonical;Eq: ð61aÞ þ δhT00ðrÞ ðC1aÞ

pðrÞconformal ¼ pðrÞcanonical;Eq: ð61bÞ þ δhpðrÞ ðC1bÞ

sðrÞconformal ¼ sðrÞcanonical;Eq: ð61cÞ þ δhsðrÞ ðC1cÞ

with the additional terms given, in any Q-ball theory with
an acceptable (in the sense of Sec. IV C) potential, by

δhT00ðrÞ ¼ −h
1

r
ðrϕðrÞ2Þ00 ðC2aÞ

δhpðrÞ ¼ −h
�
1

3
ðϕðrÞ2Þ00 þ 2

3

1

r
ðϕðrÞ2Þ0 − 1

r
ðrϕðrÞ2Þ00

�
:

ðC2bÞ

δhsðrÞ ¼ −h
�
ðϕðrÞ2Þ00 − 1

r
ðϕðrÞ2Þ0

�
: ðC2cÞ

We see that the conformal energy density differs from the
canonical one. But due to

Z
d3δhT00ðrÞ ¼ −4πh

Z
∞

0

drrðrϕðrÞ2Þ00

¼ −4πh½rðrϕðrÞ2Þ0 − ðrϕðrÞ2Þ�∞0 ¼ 0

ðC3Þ

one obtains the same mass from the conformal and
canonical EMT for every Q-ball theory which is of course
expected. Similarly the conformal pressure differs from
the canonical one, but it preserves the von Laue condition
since

Z
∞

0

drr2δhpðrÞ

¼ −h
Z

∞

0

drr2
�
1

3
ðϕðrÞ2Þ00 þ 2

3

1

r
ðϕðrÞ2Þ0 − 1

r
ðrϕðrÞ2Þ00

�

¼ −h
�
r2

3
ðϕðrÞ2Þ0 − rðrϕðrÞ2Þ0 þ ðrϕðrÞ2Þ

�
∞

0

¼ 0:

ðC4Þ

Thus, independently of whether we use the conformal or
canonical EMT (for the latter the proof was given in [42]) to
describe the internal forces, the necessary condition for
stability is satisfied in the same way.
The conformal expressions for sðrÞ and pðrÞ yield the

same D term via Eqa. (36a) and (36b). This can be seen by
taking the difference of the expressions forD from pressure
and shear forces, which yields
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m
Z

d3rr2δhpðrÞ þ
4m
15

Z
d3rr2δhsðrÞ

¼ 4

5
mh4π

Z
∞

0

drðr4ϕðrÞϕ0ðrÞÞ0 ¼ 0: ðC5Þ

Again this is a result valid for any Q-ball theory. However,
the canonical and the conformal D term differ, which is not
surprising; see Sec. II. We obtain

Dconformal ¼ Dcanonical;Eqs: ð36a;bÞ þ δhD;

δhD ¼ −
4

3
h4πm

Z
∞

0

drr3ðϕðrÞ2Þ0 > 0; ðC6Þ

where in the last step we conclude that δhD is positive,
because ϕðrÞ2 is a monotonically decreasing function
of r, i.e. ðϕðrÞ2Þ0 < 0, making the integrand in Eq. (C6)
negative.
So far we have considered a general Q-ball theory. It is

insightful to look at our analytically solvable logarithmic
Q-ball theory from Sec. IV where all the results can be
obtained analytically. The modification of the conformal as
compared to canonical densities is particularly lucid in this
theory, namely

T00ðrÞconformal ¼ T00ðrÞcanonical;Eq: ð61aÞ
þ 6hpðrÞcanonical;Eq: ð61bÞ; ðC7aÞ

pðrÞconformal ¼ pðrÞcanonical;Eq: ð61bÞ × ð1 − 4hÞ; ðC7bÞ

sðrÞconformal ¼ sðrÞcanonical;Eq: ð61cÞ × ð1 − 4hÞ: ðC7cÞ

Thus for logarithmic Q-balls, the modification of the
energy density is proportional to the pressure which
(conformal or not) integrates to zero as we have seen
above. This illustrates how the modified energy density can
still yield the same Q-ball mass. The modifications
of pressure and shear forces result in a simple overall
prefactor 1 − 4h ¼ 1

3
(with h ¼ 1

6
in 3þ 1 space-time

dimensions). This explains how in the conformal case
the Laue condition is satisfied, and why we still get the
same D term from pressure and shear forces. The value of
D is, however, reduced by the factor 1 − 4h ¼ 1

3
. In

particular, with the parameters (72) which ensure
Dcanonical ¼ −1 we obtain Dconformal ¼ − 1

3
.

Thus, in the logarithmic Q-ball theory the conformal
EMT yields an equally satisfactory description of EMT
densities as the canonical EMT. We checked that this
really is a general feature in the Q-ball system. For instance
in the Q-ball theory with the sextic potential explored
in Refs. [42–44] and reviewed in Sec. II E one obtains
qualitatively the same picture, although the relation
Dconformal∶Dcanonical ¼ 1∶3 is specific to the logarithmic
Q-ball theory. Thus, if it became clear that a more consistent
description of EMT densities would be provided by the
conformal (instead of canonical) EMT, one could switch to
that description without sacrificing any of the insights
obtained in prior works. As mentioned at this point we
have no argument why the use of the conformal EMT could
be more appropriate than the use of the canonical EMT. One
possible situation to revise this point could occur when
considering quantum corrections to the classical Q-ball
solution [90], which was beyond the scope of this work.
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