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We study the long-distance properties of quantum chromodynamics in the Landau gauge in an expansion
in powers of the three-gluon, four-gluon, and ghost-gluon couplings, but without expanding in the quark-
gluon coupling. This is motivated by two observations. First, the gauge sector is well described by
perturbation theory in the context of a phenomenological model with a massive gluon. Second, the quark-
gluon coupling is significantly larger than those in the gauge sector at large distances. In order to resum the
contributions of the remaining infinite set of QED-like diagrams, we further expand the theory in 1=Nc,
where Nc is the number of colors. At leading order, this double expansion leads to the well-known rainbow
approximation for the quark propagator. We take advantage of the systematic expansion to get a
renormalization-group improvement of the rainbow resummation. A simple numerical solution of the
resulting coupled set of equations reproduces the phenomenology of the spontaneous chiral symmetry
breaking: for sufficiently large quark-gluon coupling constant, the constituent quark mass saturates when
its valence mass approaches zero. We find very good agreement with lattice data for the scalar part of the
propagator and explain why the vectorial part is poorly reproduced.
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I. INTRODUCTION

The long-distance regime of quantum chromodynamics
(QCD) is the arena of several important phenomena. Of
utmost phenomenological relevance is the so-called spon-
taneous chiral symmetry breaking (SχSB), which is respon-
sible for the dramatic increase of the running mass of the
light quarks, from a few MeV to roughly a third of the
nucleon mass, when the renormalization-group (RG) scale
is lowered from a few GeV down to zero. This behavior is
now clearly established by lattice simulations (see e.g.,
Refs. [1,2]), but its description within analytic approaches
remains a difficult problem. Indeed, this requires one to
control the theory in a regime where the couplings are
large, or even undefined, if one trusts standard perturbation
theory. In fact, it is widely believed that the whole infrared
regime of QCD is nonperturbative in nature and that its
properties can be accessed only through nonperturbative
approaches, such as nonperturbative renormalization
group (NPRG), Schwinger-Dyson (SD) equations, the
Hamiltonian formalism or lattice simulations [3–26].
On the analytical side, it is well understood that

the physics of SχSB can be reproduced by retaining a
certain family of diagrams, the so-called rainbow truncation
(for classical references on the subject, see Refs. [27–33];
some recent reviews are Refs. [34,35]). The correspond-
ing truncation for two-body bound states, the so-called

rainbow-ladder truncation, has been successfully applied
to meson spectroscopy [36,37]. This appears naturally as
the first nontrivial contribution in some nonperturbative ap-
proximation schemes, e.g., based on n-particle-irreducible
techniques [38–40]. Note, however, that SχSB requires a
sufficiently large coupling, as was first pointed out by
Nambu and Jona-Lasinio [41,42]. Consequently, it remains
unclear why the particular family of rainbow diagrams
should be retained while some other diagrams are dis-
carded. Moreover, some modeling is usually necessary for
the gluon propagator and the quark-gluon vertex.
A clue in order to explain the success of the rainbow

truncation may be the following. Recent works have shown
that the dynamics in the gauge sector can be described by
perturbative means within a massive deformation of the
standard Landau gauge QCD Lagrangian [43–46]. This is
motivated by thorough studies of QCD correlation func-
tions with lattice simulations, the solutions of truncated SD
and NPRG equations, as well as variational methods in the
Hamiltonian formalism [3–19]. In the Landau gauge, the
gluon propagator displays a saturation at small momenta
(the so-called decoupling—or massive—solution), while
the ghost propagator presents a massless behavior at
vanishing momentum [20–26], as in the bare theory. The
physical origin of this massive behavior for the gluons
evades the usual perturbative treatment of the theory.

PHYSICAL REVIEW D 96, 114011 (2017)

2470-0010=2017=96(11)=114011(15) 114011-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.114011
https://doi.org/10.1103/PhysRevD.96.114011
https://doi.org/10.1103/PhysRevD.96.114011
https://doi.org/10.1103/PhysRevD.96.114011


However, there is strong evidence that indicates that this
gluon mass is the major nonperturbative ingredient of the
infrared regime of Yang-Mills theory (for a recent general
discussion on the topic, see Ref. [46]). Indeed, for what
concerns pure Yang-Mills theories, it was shown in a series
of articles [43–45] that one-loop calculations of two- and
three-point correlation functions in a simple extension of
the Landau-gauge Faddeev-Popov Lagrangian by means
of a (phenomenologically motivated) gluon mass compare
quite well with lattice simulations, with a maximal error
ranging from 10 to 20% depending on the correlation
function. This is a particular case of the class ofCurci-Ferrari
(CF) Lagrangians [47]. This surprising result can be traced
back to the fact that, within this phenomenological model,
the interaction strength αS remains moderate, even in the
infrared regime,1 in agreement with lattice simulations.
Similar studies were also performed with dynamical

quarks [49,50]: the gluon, ghost and quark propagators, as
well as the quark-gluon correlation function were com-
puted at one loop in the massive extension of Landau-gauge
QCD. Most of the correlation functions that could be
compared with lattice simulations showed the correct
qualitative behaviors, with the noticeable exception of
the vectorial part of the quark propagator.2 However, for
small values of the bare quark masses, the quantitative
comparison to lattice data was less convincing in the quark
sector.
Again, lattice simulations give us an important clue

for understanding this poorer results in the presence of
dynamical quarks [2,52]. Indeed, although equal in the
ultraviolet, the coupling constants of the different sectors of
the theory differ significantly at long distances. Lattice
simulations show that the coupling in the quark sector is 2
to 3 times larger in the infrared than the one in the gauge
sector. This has also been observed in SD and NPRG
contexts [53,54] as well as in the one-loop calculation of
the quark-gluon vertex of Ref. [50]. This is illustrated in
Fig. 1, where we show the ratio between the quark-gluon
and ghost-gluon vertices in some kinematical configura-
tion. In this situation, a perturbative expansion in powers of
the quark-gluon coupling is questionable (recall that the
relevant expansion parameter is proportional to the square
of the coupling). Note that the fact that the quark-gluon
coupling must be larger than the one observed in the
gluonic sector is also in line with phenomenological
considerations [35]: the coupling observed on the lattice
in the gluonic sector is too small to trigger the SχSB.

In this article, we propose to extend the work of
Refs. [49,50] by taking into account the above observa-
tions. We treat the couplings in the gauge sector perturba-
tively while keeping all orders of the quark-gluon coupling.
At leading order, this reduces the set of diagrams to those
appearing in an Abelian theory. We further use an expan-
sion in the number of colors Nc [55] to obtain closed
expressions for the associated correlation functions (for a
classical reference on the validity of the large-Nc limit in
QCD, see, for instance, Ref. [56]; for a recent numerical
analysis of the question see, for instance, Ref. [57]). At
leading order in 1=Nc, this reduces to the rainbow-ladder
diagrams.3

This is most welcome since this set of diagrams is
known to capture the physics of SχSB [27–33]. The benefit
of the present approach is that this approximation is
obtained in a controlled expansion that can be, in principle,
systematically improved. In particular, at leading order,
the structure of the gluon propagator is determined by
perturbation theory in the CF model. Moreover, this allows
for a consistent treatment of both the ultraviolet renorm-
alization and the RG improvement of the rainbow-ladder
approximation.
We solve the resulting equations and show that they lead

to a dramatic increase of the running quark mass in the
infrared and to a dynamically generated quark mass in the
chiral limit. At a qualitative level, our results reproduce
the expected feature that the chiral symmetry breaking
occurs for a sufficiently large coupling. We show by an
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FIG. 1. A measure of the ratio of the quark-gluon and the ghost-
gluon couplings. Figure generated from the lattice data of
Ref. [52].

1In particular, there exist RG schemes in which no Landau pole
occurs [44,48].

2The reason for this mismatch can be traced back to the fact
that, in the Landau gauge and in the case of a massless gluon, the
vectorial part of the quark self-energy at one loop vanishes
identically; see, for instance, Ref. [51]. In the presence of the
gluon mass, this contribution is abnormally small and comparable
with the two-loop corrections.

3It is known that the large-Nc limit coincides with the rainbow-
ladder system of equations in the Nambu-Jona-Lasinio model
[58–60]. In QCD, because of the interactions in the gauge sector,
the large-Nc limit involves an infinite series of planar diagrams
beyond those contributing to the rainbow-ladder approximation.
An attempt to relate the large-Nc limit and the rainbow-ladder
approximation in QCD, using an effective gluon propagator, can
be found in Ref. [61].
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explicit comparison with lattice simulations that our sol-
ution describes with precision the scalar component of the
quark propagator for various values of the bare masses
(including values close to the chiral limit). The vectorial
component has the right behavior in the ultraviolet regime
but is not correctly reproduced in the infrared, for reasons
similar to the perturbative case mentioned above. We stress
that, even though one could, in principle, solve the
complete set of equations that arise from our expansion
scheme at leading order, we use here, for simplicity, an
ansatz for the running coupling. A complete treatment is
deferred to a subsequent work.
The article is organized as follows. In Sec. II, we present

the massive extension of Landau-gauge QCD and we
describe the double expansion in the couplings of the
pure gauge sector and in 1=Nc in Sec. III. In Sec. IV, we
write the equations which describe the resummation of
the corresponding Feynman diagrams at leading order.
We implement the corresponding RG improvement in
Sec. V. Finally, we solve the system of RG-improved
integro-differential equations for the quark propagator
and compare our results with lattice data in Sec. VI. We
conclude in Sec. VII. Some technical material related to the
RG improvement is gathered in an Appendix.

II. MASSIVE LANDAU-GAUGE QCD

Let us start by giving a short review of the model. As has
been well known since the pioneering work of Gribov [62]
the Faddeev-Popov procedure to fix the gauge in non-
Abelian gauge theories is not justified in the infrared
regime, because of the so-called Gribov ambiguity. To
overcome this issue, Gribov [62] and Zwanziger [63,64]
have proposed to modify the gauge-fixing procedure.
Although this approach does not completely fix the
Gribov ambiguity and requires taking into account many
new auxiliary fields, it has been applied with success to
the determination of correlation functions (in its refined
version [65]) or to the study of the deconfinement transition
[65,66]. Here instead, we follow the line initiated in
Ref. [43] and use a more phenomenological approach
which consists in adding a gluon mass term to the
Faddeev-Popov action in the Landau gauge.4 Following
these considerations, we work with the QCD action,
expressed in Euclidean space, with the usual Landau
gauge-fixing terms supplemented with a gluon mass term

S ¼
Z

ddx

�
1

4
Fa
μνFa

μν þ iha∂μAa
μ þ ∂μc̄aðDμcÞa

þ 1

2
m2

ΛðAa
μÞ2 þ

XNf

i¼1

ψ̄ iðDþMΛÞψ i

�
: ð1Þ

The covariant derivatives applied to fields in the adjoint (X)
and fundamental (ψ) representations read respectively

ðDμXÞa ¼ ∂μXa þ gΛfabcAb
μXc;

Dμψ ¼ ∂μψ − igΛAa
μtaψ ;

where fabc are the structure constants of the gauge group
and ta are the generators of the algebra in the fundamental
representation. The Euclidean Dirac matrices γ satisfy
fγμ; γνg ¼ 2δμν, =D ¼ γμDμ and Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ
gΛfabcAa

μAb
ν is the field-strength tensor. Finally, the param-

eters gΛ, MΛ and mΛ are respectively the bare coupling
constant, quark mass and gluon mass, defined at some
ultraviolet scale Λ. For simplicity, we only consider
degenerate quark masses, but the generalization to a more
realistic case is trivial. The previous action is standard,
except for the gluon mass. In actual perturbative calcu-
lations, this mass term appears through a modified bare
gluon propagator, which reads

Gab
0;μνðpÞ ¼ δab

1

p2 þm2
Λ

�
δμν −

pμpν

p2

�
: ð2Þ

The gluon and ghost sectors of this model have been
studied in Refs. [43–45] by using perturbation theory. The
quenched and unquenched two-point functions for gluons
and ghosts were calculated at one-loop order and compared
to the lattice simulations with an impressive agreement in
view of the simplicity of the calculations. The ghost-gluon
and three-gluon vertices were also calculated and compared
rather well to lattice data.5 These perturbative calculations
of correlation functions have been extended to finite
temperature in Refs. [71,72]. Also, physical observables,
such as the phase diagram and the behavior of the Polyakov
loop, were calculated with success [73,74]. In some cases,
two-loop calculations have been implemented and show
an improvement with respect to one-loop results [75,76].
To summarize, there are strong evidences that correlation
functions in the gauge sector can be calculated perturba-
tively with the model (1). The reason for that is the absence
of a Landau pole in the RG (for a certain class of
renormalization schemes) and that the relevant coupling
in the ghost/gluon sector remains moderate even in the

4Such a massive extension has been discussed in relation with
the Gribov problem in Ref. [67]. This modifies the infrared
behavior of the propagators in agreement with the findings of
lattice simulations while maintaining the properties of standard
perturbation theory in the ultraviolet (including the renormaliz-
ability of the model). Also, this avoids the introduction of further
auxiliary fields and leads to tractable analytical calculations
[44,45]. We also mention that a related approach was developed
in Ref. [68].

5Note however that the lattice data for three-point vertices have
larger error bars than for propagators so that this test is less
stringent. Very recently, more accurate lattice results for the three-
gluon vertex have been announced [69,70] but, for the moment,
these results have not been compared to those of Ref. [45].
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infrared. In fact, it was shown in Ref. [44] that the running
expansion parameter is always smaller than 0.4, and that
this rather large value is reached only in a small range of
RG scales.
The quark sector ofQCDwas also studied inRefs. [49,50]

within the phenomenological model (1) and we briefly
discuss the main results obtained there. The (renormalized)
quark propagator S, can be parametrized as

SðpÞ ¼ ½−iAðpÞpþ BðpÞ�−1 ¼ i ~AðpÞpþ ~BðpÞ; ð3Þ

where

~AðpÞ ¼ AðpÞ
A2ðpÞp2 þ B2ðpÞ ; ð4Þ

~BðpÞ ¼ BðpÞ
A2ðpÞp2 þ B2ðpÞ ; ð5Þ

so that the tree-level propagator corresponds to A ¼ 1 and
B ¼ MΛ. In Ref. [49], a one-loop calculation of the quark
propagator lead to a function MðpÞ ¼ BðpÞ=AðpÞ which
compares qualitatively well with lattice data when the bare
quark mass is not too small. In particular, there is an
important enhancement of the running quark mass in the
infrared. However, when the bare quark mass approaches
the chiral limit, the mass functionMðpÞ goes to zero and the
SχSB does not show up. This is not surprising because since
the works of Nambu and Jona-Lasinio [41,42], SχSB is
expected to occur for couplings above a certain critical
value. Such nonanalytic behavior cannot be captured at
finite loop order. A second disagreement of the results of
Ref. [49] with lattice data concerns the functionAðpÞ, but its
origin is much less profound. As is well known, there is no
one-loop correction to the function AðpÞ in the Landau
gauge, when the gluon mass is set to zero (see, for instance,
Ref. [51]). When the gluon mass is introduced, a (finite)
contribution to AðpÞ is generated at one loop, which is,
however, abnormally small and turns out to be of the same
order as two-loop corrections. In this situation, the one-loop
approximation is not justified and onewould need to include
two-loop corrections. The latter have not been computed so
far in the model (1) but the plausibility of this scenario was
tested in Ref. [49], where the known results for the two-loop
contribution in the ultraviolet regime [77] were included in
the analysis of the functionA. This yielded a good agreement
with lattice data.
Finally, the one-loop results for the quark-gluon vertex

[50] are in qualitative agreement with the lattice data for all
scalar components and for all momentum configurations
that have been simulated. Overall, the agreement becomes
poorer at very low momenta and is generally better for
quantities that are not sensitive to SχSB.
The main conclusion of such comparisons of one-loop

perturbative results in the phenomenological model (1)

against lattice data is that the agreement is significantly
better in the pure gauge sector than in the quark sector. This
can be understood from the relative magnitudes of the
corresponding coupling constants. Of course, the running
of the strong coupling constant is universal at one and two
loops in the ultraviolet regime. However, this property is
lost beyond two loops and also in a mass-dependent
scheme for momenta that are comparable to or smaller
than the largest mass in the problem. For instance, as
mentioned in the Introduction, a quantity that measures the
relative size of the quark-gluon coupling compared to the
ghost-gluon vertex is measured on the lattice [52] and is
represented in Fig. 1. One observes that the quark-gluon
coupling is significantly larger in the infrared. Moreover,
taking into account that the actual expansion parameter of
perturbation theory is proportional to the square of the
coupling, we conclude that the expansion parameter is
about 5 times larger in the quark sector than in the gluon/
ghost sector. The typical size of the latter being about a few
tenths along the relevant momentum range [44,46], one
concludes that the perturbative treatment of the quark-
gluon vertices is not justified. In any case, the nontrivial
phenomenon of SχSB is beyond the reach of a purely
perturbative analysis at any finite loop order.

III. A NEW APPROXIMATION SCHEME

To overcome the problems of perturbation theory in the
quark sector, we propose an improved approximation
scheme where the gluon/ghost couplings (denoted by gg)
are treated perturbatively but where all powers of the
quark-gluon coupling (denoted by gq) are taken into
account. We first discuss the example of the quark self-
energy, whose one- and two-loop diagrams are shown in
Fig 2. Diagrams (c) to (f) in Fig. 2 can be ignored at leading
order because they are suppressed by one or two powers
of gg. More generally, neglecting diagrams with nonzero
powers of gg leaves us with the infinite set of QED-like
diagrams which, however, has no known closed analytic
expression. We further simplify the problem by organizing
this set in powers of 1=Nc at fixed ’t Hooft coupling
λ ¼ g2qNc, where Nc is the number of colors [55]. At
leading order, only planar diagrams (i.e., with quark lines
on the border of the diagram) with no quark loop
contribute. In the example of Fig 2, diagrams (b) and (h)
in Fig. 2 are suppressed and the only diagrams left are
diagrams (a) and (g) in Fig. 2. This analysis can be
generalized to all orders. The result is well known: only
rainbow diagrams survive as represented in Fig 3. This set
of diagrams can be resummed through an integral equation
for the quark propagator which reads, diagrammatically,

=
− 1

( ) −
− 1

( )
ð6Þ
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where the thick line represents the (resummed) quark
propagator at leading order. We can easily guess the
predictions inferred from this set of diagrams in the
ultraviolet. Indeed, the universality of the coupling con-
stants and asymptotic freedom ensure that gg ∼ gq ≪ 1.
In this limit, the quark self-energy is dominated by the
contribution of the first diagram in the bracket of Fig. 3.
This observation is important because it ensures that the
one-loop ultraviolet behavior is recovered in this
approximation.6

The previous analysis can be generalized to any corre-
lation function. To improve standard perturbation theory
at l-loop order and take into account the fact that gq is
significantly larger than gg in the infrared, we write all
diagrams of standard perturbation theory with up to l

loops, count the powers of gg and 1=Nc that appear in these
diagrams and add all diagrams (with possibly more loops)
with the same powers of gg and 1=Nc. By construction, this
set of diagrams reproduces the results of standard pertur-
bation theory at l-loop order, but also reproduces, at
leading order, the rainbow-ladder approximation. In what
follows, we shall refer to this approximation scheme as the
rainbow-improved (RI) loop expansion.
As a next example, we now discuss the cases of the gluon

and ghost two-point self-energies at RI-one-loop order,
depicted in Fig. 4. The standard one-loop structures in the
pure gauge sector, i.e., diagrams (a), (b), (c), and (e) of
Fig. 4, are of order g2g, whereas the standard quark loop
diagram is of order 1=Nc. By inspection, we find that the
set of diagrams with the same powers of g2g and 1=Nc are
obtained by dressing the quark propagator according to
Fig. 3, as represented by the thick line in Fig. 4(d).

=
− 1

( ) −

+ + +

(b) (c) (d)

+

+ +

(a)

(e) ( f)

+ ...+

(h)(g)

− 1
( )

FIG. 2. One- and two-loop Feynman diagrams contributing to
the quark self-energy.

=
− 1

( ) − +

+ + + ...

− 1
( )

FIG. 3. Feynman diagrams with at most three loops contrib-
uting to the quark self-energy at leading order in a double
expansion in large Nc and small gg. These are the rainbow
diagrams of lowest order in quark-gluon coupling.

(b)(a)

(d)(c)

(e)

FIG. 4. Diagrams contributing to the gluon (first two lines)
and ghost (last line) self-energy at leading order in standard
perturbation theory.

(b)(a)

FIG. 5. One-loop-order diagrams contributing to the quark-
gluon vertex. The standard one-loop structures are identical, with
the resummed (thick) quark line replaced by the tree-level one.
Diagram (a) involves a three-gluon coupling whereas diagram
(b) is 1=Nc suppressed because all the gluon lines are not on the
same side of the quark line. In fact, this diagram is of order 1=N2

c
and is thus subdominant in the RI-loop expansion.

6In practice, we shall keep the combinatorial factors of finite
Nc in order to preserve the one-loop exactness of the approxi-
mation for any value of Nc.
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Another interesting example is the quark-gluon vertex
at RI-one-loop; see Fig. 5. In Fig. 5, the diagram (a) is of
order gg and diagram (b) on Fig. 5 is naivelly suppressed by
a factor 1=Nc respect to the tree-level contribution. In fact,
the suppression is rather of order 1=N2

c because the 1=Nc
contribution involves a factor trta ¼ 0. It is, thus, sublead-
ing in the RI-loop expansion. As it was the case for the
gluon self-energy, the complete set of diagrams of order gg
is obtained by dressing the quark propagators according to
Fig. 3. The set of diagrams of order 1=N2

c is richer. Indeed,
on top of dressing the quark propagators in Fig. 5(b), we
can also add infinitely many gluon ladders between the
two quark legs. It is interesting to note that these are all
ultraviolet finite and, accordingly, do not contribute to the
running of the quark-gluon coupling in the ultraviolet
regime.
We finally discuss the case of the meson propagator.

The diagrams contributing at RI-one-loop order are
depicted in Fig. 6, where it is understood that the quark
propagators are dressed according to the previous analy-
sis; see, in particular, Eq. (6). The meson propagator
includes the infinite set of ladder diagrams and the present
approximation coincides at leading order with the rain-
bow-ladder approximation for the meson spectroscopy.
This infinite series can be conveniently written in terms of
a dressed quark-antiquark-meson vertex, as represented in
Fig. 6, which satisfies the linear integral equation
depicted in Fig. 7. The latter clearly produces the required
ladder diagrams when formally iterated in powers of the
one-gluon-exchange rung. However, unlike this formal
series, the integral equation for the meson vertex has a
well-defined meaning and can be solved by standard
(numerical) methods.
To summarize, the double expansion in gg and 1=Nc

reproduces, at leading order, the standard rainbow-ladder
approximation. Obtaining this very powerful approxima-
tion of QCD in the framework of a systematic expansion
has three main assets. First, the justification of this
approximation arises from a genuine analysis of the relative
values of the couplings in QCD coming from lattice
simulations. To the best of our knowledge, the fact that
the rainbow-ladder approximation can be obtained from
such a systematic expansion has not been formulated
before. Second, the present analysis allows for a precise
organization of subleading corrections to the rainbow-
ladder whose contributions can, at least in principle, be
computed. This precise organization of the expansion has

important technical consequences. As we show below, it
enables us to control both the ultraviolet divergences
and the renormalization-group improvement of the equa-
tions (in general, a nontrivial issue for nonperturbative
approximations [8]) in a consistent way. Third, it moti-
vates the structure of the gluon propagator that has to be
used in actual calculations. In general, this requires some
modeling on top of the rainbow-ladder approximation.
Here, this comes directly from the success of the present
model in the gluon/ghost sector. We emphasize, however,
that the renormalization program beyond the leading-
order approximation is subtle. In fact the asymmetrical
treatment of the quark and ghost-gluon sectors may lead
to the breaking of the massive version of the BRST
symmetry, a symmetry that ensures the perturbative
renormalizability of the theory (1). As a consequence,
the renormalization program beyond leading order may
require further work. This goes beyond the scope of the
present article.

IV. IMPLICIT EQUATIONS FOR THE
QUARK PROPAGATOR

In this section, we analyze in detail the quark propagator
at leading order in the RI-loop expansion. The integral
equation depicted in Eq. (6) reads

S−1Λ ðpÞ ¼ −ipþMΛ

þ g2Λ

Z
jqj<Λ

γμtaSΛðqÞγνtbGab
0;μνðqþ pÞ; ð7Þ

where SΛ represents the (unrenormalized) quark propaga-
tor. Here, we have used an ultraviolet cutoff Λ to regularize
possible divergences in the loop integral.
As usual, finite correlation functions (that we note

without the Λ subscript) are obtained by introducing
renormalized fields

Aa
μ;Λ ¼

ffiffiffiffiffiffi
ZA

p
Aa
μ and ψΛ ¼ ffiffiffiffiffiffi

Zψ

p
ψ ; ð8Þ

and the renormalized masses and coupling constant

m2
Λ ¼ Zm2m2; MΛ ¼ ZMM; and gq;Λ ¼ Zgqgq:

ð9Þ

The renormalization factors of the quark sector can be fixed
by the prescription

FIG. 6. The infinite series of (ladder) diagrams contributing
to the meson propagator at RI-one-loop order: each new rung
brings additional factors g2q=Nc from the vertices and Nc from
a color loop. The infinite sum can be cast in a dressed quark-
antiquark-meson vertex.

FIG. 7. The linear integral equation for the quark-antiquark-
meson vertex. This formally generates the infinite series of one-
gluon-exchange ladder diagrams.
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S−1ðp ¼ μ0; μ0Þ ¼ −i=μ0 þMðμ0Þ; ð10Þ

where, for short, we use the same notation μ0 for the RG
scale and for a Euclidean vector of norm μ0. We consider

first a strict version of the approximation and defer the
detailed discussion of RG effects to a subsequent section.
Equation (7) can be decomposed into a scalar and a

vectorial component and expressed in terms of renormal-
ized quantities. We get

Z−1
ψ ðμ0ÞAðp; μ0Þ ¼ 1 − Z2

gqðμ0Þg2qðμ0ÞCF

Z
jqj<Λ

Zψ ðμ0Þ ~Aðq; μ0Þ
fðq; pÞZAðμ0Þ

ZAðμ0Þ½ðpþ qÞ2 þ Zm2ðμ0Þm2ðμ0Þ�
; ð11Þ

Z−1
ψ ðμ0ÞBðp; μ0Þ ¼ ZMðμ0ÞMðμ0Þ þ Z2

gqðμ0Þg2qðμ0ÞCF

Z
jqj<Λ

Zψðμ0Þ ~Bðq; μ0Þ
ðd − 1ÞZAðμ0Þ

ZAðμ0Þ½ðpþ qÞ2 þ Zm2ðμ0Þm2ðμ0Þ�
; ð12Þ

with

fðq; pÞ≡ 2p2q2 þ 3ðp2 þ q2Þðp · qÞ þ 4ðp · qÞ2
p2ðqþ pÞ2 : ð13Þ

Our notation for A and B (and correspondingly for ~A and ~B)
makes explicit that these functions depend on μ0 through
the renormalization scale used to define the renormalized
coupling and masses. For later convenience, we have
combined the renormalization factors with the associated
renormalized quantities in such a way that they reconstruct
the corresponding, μ0-independent, bare quantities. For
instance Zψðμ0Þ ~Aðq; μ0Þ ¼ ~AΛðqÞ is independent of μ0.
For SUðNcÞ, CF ¼ ðN2

c − 1Þ=ð2NcÞ ∼ Nc=2. Accordingly,
for large Nc, g2qCF ∼ λ=2 has a finite limit.
We now discuss the renormalization of Eqs. (11) and

(12). For consistency, we must treat the renormalization
factors in Eqs. (11) and (12) at the order of approximation
considered here, i.e., at order g0g and 1=N0

c. To this end, we
recall that the first correction to the gluon self-energy and
quark-gluon vertex are either of order gg or 1=Nc (see
Sec. III). Consequently, ZA, Zm2 and

ffiffiffiffiffiffi
ZA

p
ZψZgq can all be

set to 1 in Eqs. (11) and (12). Next, we observe that the
integral in Eq. (11) is finite for functions AðpÞ and BðpÞ
behaving as the bare expressions (up to logarithmic
corrections). We can therefore consistently take Zψ finite.
Its precise value is fixed by the condition (10) as explained
below. This generalizes the known result that, in the Landau
gauge, the quark renormalization factor is finite at one-loop
order in standard perturbation theory; see, e.g., Ref. [77].
We are thus left with the following equations at leading

order:

Aðp;μ0Þ ¼ Zψðμ0Þ

− g2qðμ0ÞCF

Z
jqj<Λ

~Aðq;μ0Þ
fðq;pÞ

ðpþ qÞ2 þm2ðμ0Þ
;

ð14Þ

Bðp; μ0Þ ¼ Zψ ðμ0ÞZMðμ0ÞMðμ0Þ

þ g2qðμ0ÞCF

Z
jqj<Λ

~Bðq; μ0Þ
d − 1

ðpþ qÞ2 þm2ðμ0Þ
:

ð15Þ

The ultraviolet divergence of the momentum integral in
Eq. (15) can be absorbed in the bare quark mass term (first
term on the right-hand side) and the renormalized equation
is, consequently, finite. It is actually more convenient to
consider expressions with no divergence at all. To do so, we
compute the difference between Bðp; μ0Þ and Bðμ0; μ0Þ ¼
Mðμ0Þ [note that Aðμ0; μ0Þ ¼ 1], which yields

Bðp; μ0Þ ¼ Mðμ0Þ þ g2qðμ0ÞCFðd − 1Þ× ð16Þ
Z
q

~Bðq; μ0Þ
�

1

ðpþ qÞ2 þm2ðμ0Þ
−

1

ðμ0 þ qÞ2 þm2ðμ0Þ
�
:

ð17Þ

The integral is now finite and we can safely take the limit
Λ → ∞, if ~Bðq; μ0Þ decreases fast enough as a function of q
in the ultraviolet. Note also that it does not have large
logarithmic contributions as long as p ∼ μ0 because the
integrand is suppressed for q ≪ μ0 or q ≫ μ0 as compared
to the region q ∼ μ0.

V. RENORMALIZATION-GROUP IMPROVEMENT

We could now try to find the self-consistent solutions of
the previous equations which are just a particular realiza-
tion of the rainbow approximation mentioned in the
Introduction. However, this direct solution has the difficulty
that the ultraviolet tails are not under control. Indeed, we
observe that the integral on the right-hand side of Eq. (17)
involves large logarithms ∼ lnðp=μ0Þ which spoil the
validity of perturbation theory. To make this point more
explicit, let us study the ultraviolet behavior of the solutions
of Eqs. (14) and (17). In this regime, where asymptotic
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freedom holds, we should retrieve the results of standard
perturbation theory, i.e., AðpÞ ∼ 1 and BðpÞ ∼ ðlnpÞα
where α < 0 is given by an actual one-loop calculation.
Instead, plugging these ultraviolet behaviors into the right-
hand side of Eq. (17), we find that the integral behaves as
ðlnpÞαþ1 when p ≫ m, which is not consistent with the
(assumed) behavior of the left-hand side. We get a clue of
the origin of the problem by observing that we do retrieve
the perturbative solution if we replace the coupling constant
gqðμ0Þ by a running coupling constant gqðpÞ in Eq. (17).
The reason is now clear, as for p ≫ μ0, Eq. (17) is not
under control: even if the expansion parameters αg and
1=Nc are small, large logarithms spoil its validity in that
regime. This is the standard problem of large logarithms in
perturbation theory, which can be dealt with by means of
the RG improvement.
To do so, we first make use of the RG equation:

ðμ∂μ − γψ þ βXi
∂Xi

ÞS−1 ¼ 0 ð18Þ

where Xi represents the various coupling constants and
masses of the theory, βXi

¼ μ∂μXi are the associated beta
functions, and

γψ ¼ μ∂μ lnZψ : ð19Þ

This equation states that the same correlation functions
can be obtained if the normalization prescriptions are fixed
at a different scale μ,

S−1ðp ¼ μ; μÞ ¼ −i=μþMðμÞ; ð20Þ

provided that the coupling constants and masses are
solutions of the flow equations. This change of RG scale
leads to a change of normalization of the correlation
function that can be fixed by integrating the renormaliza-
tion-group equation:

S−1ðp; μ; XiðμÞÞ ¼ zψðμ; μ0ÞS−1ðp; μ0; X0
i Þ; ð21Þ

with X0
i ¼ Xiðμ0Þ and

ln zψðμ; μ0Þ ¼
Z

μ

μ0

dμ0

μ0
γψ ðμ0Þ: ð22Þ

Evaluating now the previous equation at μ ¼ p and using
the normalization condition Eq. (20), we deduce that

Aðp; μ0Þ ¼ z−1ψ ðp; μ0Þ; ð23Þ

Bðp; μ0Þ ¼ z−1ψ ðp; μ0ÞMðpÞ: ð24Þ

We are thus left with the question of determining zψ ðp; μ0Þ
and MðpÞ. To that aim, we need to change the renormal-
ization scale while keeping the bare quantities fixed. Of

course this will simultaneously imply the running of the
parameters in the pure gauge sector (gluon mass and
couplings). We shall first determine the functions
zψðp; μ0Þ and MðpÞ and then discuss the running of the
remaining parameters.

A. Running of MðpÞ and expression for zψ
From the renormalization condition (20) applied to

Eq. (12) with μ0 ¼ p, we obtain the relation

Z−1
ψ ðpÞMðpÞ ¼ ZMðpÞMðpÞ þ Z2

gqðpÞg2qðpÞCFðd − 1Þ

×
Z
jqj<Λ

ZψðpÞ ~Bðq; pÞ

×
1

ðqþ pÞ2 þ Zm2ðpÞm2ðpÞ : ð25Þ

We now take a p-derivative at fixed bare quantities7 and
obtain

pM0ðpÞ − γψðpÞMðpÞ
¼ −Z2

ψðpÞZ2
gqðpÞg2qðpÞCFðd − 1Þ

×
Z
jqj<Λ

~Bðq; pÞ 2p2 þ 2p:q
½ðqþ pÞ2 þ Zm2ðpÞm2ðpÞ�2 : ð26Þ

Observe that the integral in the previous equation is
ultraviolet finite and we can send the cutoff Λ to infinity.
We finally replace A and B according to Eqs. (23) and (24)
and keep only the terms of order g0g and N0

c (i.e.,
Zm2 ¼ ZψZgq ¼ 1). We then arrive at the equation

pM0ðpÞ ¼ γψðpÞMðpÞ − g2qðpÞCFðd − 1Þ

×
Z
q
zψ ðq; pÞ

MðqÞ
q2 þM2ðqÞ

2p2 þ 2p:q
½ðqþ pÞ2 þm2ðpÞ�2 :

ð27Þ
We now derive a similar equation for zψ. The renorm-

alization condition (20) applied to Eq. (11) with μ0 ¼ p
leads to

Z−1
ψ ðpÞ ¼ 1 − Z2

gqðqÞg2qðpÞCF

×
Z
q
Zψ ðpÞ ~Aðq; pÞ

fðq; pÞ
ðpþ qÞ2 þ Zm2ðpÞm2ðpÞ :

ð28Þ
The anomalous dimension, which is needed in Eq. (27),
is obtained by taking a p-derivative at fixed bare theory.
We obtain

7The combinations Zψ ðpÞ ~Aðq; pÞ ¼ AΛðqÞ, Zψ ðpÞ ~Bðq; pÞ ¼
BΛðqÞ, Zm2ðpÞm2ðpÞ ¼ m2

Λ, and ZgqðpÞgqðpÞ ¼ gq;Λ do not
depend on p.
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γψðpÞ ¼ g2qðpÞCF

Z
q

zψðq; pÞ
q2 þM2ðqÞ

� pμ
∂

∂pμ
fðq; pÞ

ðpþ qÞ2 þm2ðpÞ

−
2ðp2 þ p:qÞfðq; pÞ
ððpþ qÞ2 þm2ðpÞÞ2

�
; ð29Þ

where, again, we have kept only terms of order g0g and N0
c

and we have used Eqs. (23) and (24). We note that a benefit
of the present (semi)perturbative treatment is that the
running coupling constant appears naturally in the flow
equations (27) and (29). This plays a crucial role in
obtaining the correct SχSB solutions [30,32], which usually
requires an appropriate modeling of the quark-gluon vertex
in nonperturbative setups [8].
We observe that Eqs. (26) and (29) still involve zψ and

we have to relate this quantity to M and Zψ to obtain a
closed system of equations. Because Zψ is finite, we
trivially obtain, from Eq. (19),

zψðp; μ0Þ ¼ Zψ ðpÞ=Zψðμ0Þ; ð30Þ

with

Zψ ðpÞ ¼ 1þ g2qðpÞCF

Z
q

zψðq; pÞ
q2 þM2ðqÞ

fðq; pÞ
ðpþ qÞ2 þm2ðpÞ ;

ð31Þ

which is obtained from Eq. (28) using ZgqðpÞZψ ðpÞ ¼ 1

and solving for Zψ ðpÞ. As a consequence, only functions of
a single variable [MðpÞ and ZψðpÞ] have to be considered.
We mention that we have a priori two different formulas
for zψ : either Eq. (30) or Eq. (23). The way they are related
is discussed in the Appendix.

B. Running of the coupling constant and
of the gluon mass

The set of equations (26) and (29) is not closed yet
because there appear the gluon mass and the quark-gluon
coupling at a running scale. In our approximation, this can
be deduced from a calculation of the quark-gluon vertex
and the gluon propagator at the same level of approxima-
tion. This can be performed by following the procedure
described before. However for the purposes of the present
paper, we will consider a simplified approximation where
the runnings of the coupling and the mass are given by
simple but realistic Ansätze. We defer a more systematic
analysis in the present approximation scheme to a
future work.
On the one hand, the gluon mass decreases logarithmi-

cally at large μ [44]. This slow evolution is expected to have
little influence on the integrals appearing in the implicit
equations (26) and (29). In the following, we just neglect
this effect and replace mðμÞ by some scale-independent
value mðμ0Þ ¼ m0.

On the other hand, asymptotic freedom implies that the
quark-gluon coupling gqðμÞ tends to zero in the deep
ultraviolet (where all couplings have a universal running).
Consequently, in this regime, the resummed diagrams
depicted in Fig. 5 simplify greatly and we are left with
the usual one-loop expression for the beta function

βg ¼ −β0g3ðμÞ; ð32Þ

with

β0 ¼
1

16π2

�
11

3
Nc −

2

3
Nf

�
; ð33Þ

where Nf is the number of light quarks. Equation (32) is
solved as

g2ðμÞ ¼ g2ðμ0Þ
1þ β0g2ðμ0Þ lnðμ2=μ20Þ

: ð34Þ

This behavior is valid as long as the RG scale is much larger
than the (quark and gluon) masses. However, there is an
intermediate regime where μ ≫ m0 but where the quark-
gluon coupling is still too large to apply the usual
perturbation theory. This intermediate regime could be
studied by calculating the full beta function in the RI-one-
loop order, as explained above; see Fig. 5. Instead, in this
work, we use the perturbative running and include by hand
a smooth freeze-out when μ≃m0. Again, a more system-
atic treatment is deferred to a future work. In practice,
we employ the following expression for the quark-gluon
running:

g2qðμÞ ¼
g20

1þ β0g20 ln
�
μ2þx2m2

0

x2m2
0

� ð35Þ

where x is a free parameter that fixes the precise point of
freeze-out. An asset of this simple truncation is that we can
vary the size of the quark-gluon vertex in the infrared and
check that SχSB occurs only for large enough coupling g0.
However, we must stress that this is an artifact of our
modelization (35). We mention also that our model for the
running of the coupling is such that gqðμÞ increases with
decreasing μ and saturates at g0 as μ → 0. This behavior
is not the one seen for instance in RG flows [53] where,
the quark-gluon coupling after some dramatic increase,
decreases as μ → 0. If the decrease takes place significantly
below the constituent quark mass, this effect should not
have an important effect in the present analysis. A more
systematic calculation would treat the quark-gluon vertex
at RI one-loop order, see Fig. 5, in which case there is no
free parameter to adjust in this vertex. This is under current
investigation. In principle, one should do the same
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procedure for the gluon anomalous dimensions also, but
again, we neglect this effect in the present article.

VI. IMPLEMENTATION AND RESULTS

We now detail our numerical procedure to solve the
coupled equations (26) and (29), together with the evolu-
tion of the coupling constant (35). We first perform the
angular integrals and obtain expressions where only a one-
dimensional integral needs to be performed numerically.
We then discuss the behavior of the functions MðpÞ and

Zψ ðpÞ when p ≫ m. This information is important for
controlling numerically the ultraviolet tails of the integrals.
We then describe the numerical resolution of the problem
and present our results.

A. Angular integration

To simplify the study of Eqs. (26) and (29), we first
perform analytically all angular integrals except the one
over the angle θ between the vectors p and q. Defining
u ¼ cos θ we obtain

ZψðpÞ ¼ 1þ g2qðpÞCFΩd−1

p2Zψ ðpÞð2πÞd
Z

∞

0

dqqd−1
ZψðqÞ

q2 þM2ðqÞ

×
Z

1

−1
duð1 − u2Þd−32 2p2q2 þ 3ðp2 þ q2Þpquþ 4p2u2q2

ðp2 þ 2pquþ q2Þðp2 þ 2pquþ q2 þm2
0Þ
; ð36Þ

−γψðpÞMðpÞ þ pM0ðpÞ ¼ −ðd − 1Þ g
2
qðpÞCFΩd−1

ZψðpÞð2πÞd
Z

∞

0

dqqd−1
Zψ ðqÞMðqÞ
q2 þM2ðqÞ

×
Z

1

−1
duð1 − u2Þd−32 2p2 þ 2puq

ðp2 þ 2qupþ q2 þm2
0Þ2

; ð37Þ

where Ωd ¼ 2πd=2=Γðd=2Þ. In integer dimensions, and in particular in d ¼ 4 on which we concentrate from now on, the
integral over u can be done analytically, which yields

ZψðpÞ ¼ 1þ g2qðpÞCF

32π2p4m2
0ZψðpÞ

Z
∞

0

dqq
ZψðqÞ

q2 þM2ðqÞ fjp
2 − q2j3 −m4

0½2m2
0 þ 3ðp2 þ q2Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2ðm2

0 − p2Þ þ ðm2
0 þ p2Þ2 þ q4

q
½2m4

0 þm2
0ðp2 þ q2Þ − ðp2 − q2Þ2�g; ð38Þ

−γψðpÞMðpÞ þ pM0ðpÞ ¼ −
3g2qðpÞCF

8π2p2ZψðpÞ
Z

∞

0

dqq
ZψðqÞMðqÞ
q2 þM2ðqÞ

�
m2

0 þ q2 −
m4

0 þm2
0ðp2 þ 2q2Þ − p2q2 þ q4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m4
0 þ 2m2

0ðp2 þ q2Þ þ ðp2 − q2Þ2
p

�
: ð39Þ

There remains to compute the angular integrals for the
anomalous dimension γψ given in Eq. (29). This calculation
is very similar to the one performed here for Zψ. Formally,
γψ is obtained by deriving Eq. (38) with respect to p while
keeping the ratio g2qðpÞ=Zψ ðpÞ fixed on the right-hand side.

B. The ultraviolet behavior of the equations

Our strategy is now to look for self-consistent solutions
to Eqs. (38) and (39), together with Eq. (35). In order to do
so, we shall assume specific behaviors for the functions
Zψ ðpÞ and MðpÞ when p ≫ m0 and check for their self-
consistency. In the next section, we shall verify explicitly
the conclusions of such an analysis by numerically solving
the full system of equations.

1. Ultraviolet limit for ZψðpÞ
We assume that Zψ ðpÞ behaves as some power of lnp

in the ultraviolet limit (p ≫ m0). We also assume that

MðpÞ ≪ p in that limit. By substituting these behaviors in
Eq. (38), it is relatively straightforward to see that the
loop term is suppressed by a positive power of m2

0=p
2.

Accordingly Zψ ðpÞ → 1 in that limit.

2. Ultraviolet limit for MðpÞ
In the limit p ≫ m0, we find two solutions for the

running mass MðpÞ. The first one, which we call “massive
behavior,” decreases as an inverse power of lnp. This is the
expected behavior away from the chiral limit. As we show
below, this solution is described by perturbation theory in
the ultraviolet limit. When the bare mass is reduced and
the chiral limit is approached, another solution appears (at
least for sufficiently large coupling constant; see below),
where MðpÞ decreases as an inverse power law in p. This
corresponds to the SχSB solution.
We first consider the massive case. We use that

Zψ ðpÞ → 1 in the ultraviolet and study the self-consistency
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of solutions which behave asMðpÞ ∼ lnαðp=m0Þ at large p.
Given that γψðpÞ goes to zero as a power law in p, the term
including γψ ðpÞ can always be neglected with respect to
pM0ðpÞ. Consider then the integral on the right-hand side
of Eq. (39) and divide it into three parts: q ≫ p,
m0 ≪ q≲ p, and q≲m0. The behaviors of the integral
in these three regions (taking into account the logarithmic
running of gq) are summarized in Table I.
From this analysis, we conclude that, a priori, there are

self-consistent solutions for any value of α in the massive
case. We can also observe that, in the massive solution, the
integral in Eq. (39) is dominated by momenta of the order
q ∼ p ≫ m0. This enables us to make contact with pertur-
bation theory. Indeed, in this regime, we can substitute the
perturbative approximation MðqÞ ¼ M0 lnαðq=m0Þ in the
integrals. This allows us to approximate

MðqÞ
q2 þM2ðqÞ ∼

M0 lnαðq=m0Þ
q2

ð40Þ

and the bracket in Eq. (39) simplifies to 2q2Θðp2 − q2Þ.
The integral can now be computed easily and we get

αM0 lnα−1ðp=m0Þ ¼ −g2ðpÞ~γMM0 lnαðp=m0Þ ð41Þ

where ~γM ¼ 3CF=ð8π2Þ. By using the ultraviolet running
of the coupling constant Eq. (34), we conclude that

α ¼ −
~γM
2β0

: ð42Þ

One obtains the same result as with the standard perturba-
tive analysis. Indeed, the latter gives

βM ¼ μ
dM
dμ

¼ −MγM ¼ −~γMMg2ðμÞ þOðg4Þ; ð43Þ

whose solution is, using the perturbative running of the
coupling (34),

M
M0

¼
�
1þ 2β0g20 ln

�
μ

μ0

��
− ~γM
2β0 ; ð44Þ

in agreement with the direct analysis of Eq. (39).

Next, we want to find the ultraviolet limit of the SχSB
solution. We assume thatMðpÞ ∼ pω lnδðp=m0Þ and repeat
the same analysis as in the massive case. We restrict the
analysis to ω < 1 to ensure that MðqÞ ≪ q when q ≫ m.8

Here, one has to treat the cases ω larger, smaller or equal to
−2 separately. In the last case,we need also to distinguish the
cases δ larger, smaller or equal to−1. Thesevarious cases are
summarized in Table II and we see that the only consistent
solution of this type corresponds to fω ¼ −2; δ > −1g,
where the dominant contribution comes from the regime9

m0 ≪ q ≪ p as expected [32,78].
To compute the exponent δ, we can thus safely setm0 ¼ 0

in the integrand of Eq. (39). As before, the term in brackets
becomes 2q2Θðp2 − q2Þ and, further using ZψðpÞ → const
and neglecting M2ðqÞ ≪ q2 in the denominator of the
integrand, we arrive at

pM0ðpÞ ≈ −
3g2qðpÞCF

8π2p2

Z
p2

m2
0

dq2MðqÞ: ð45Þ

Plugging MðpÞ ∝ p−2 lnδ p and extracting the multiplica-
tive constant of the leading contribution for large p, we find
that a consistent solution requires

1þ δ ¼ −α ¼ 9CF

11Nc − 2Nf
; ð46Þ

which reproduces the known results in the rainbow-ladder
approximation [8,32,78,79]. We stress that the proper
implementation of the running the coupling is a key
ingredient to obtain this result. The present perturbative
RG treatment allows for a consistent implementation of the
latter.

TABLE I. Large-p behavior of Eq. (39) for the massive
solution. The first column is the assumed UV behavior of the
left-hand side of the equation whereas the last three columns are
the contributions from the different regions of integration on the
right-hand side [including the prefactor g2qðpÞ=p2].

pM0ðpÞ q ≫ p m0 ≪ q≲ p q ∼m0

lnα−1 p p−2 lnα−1 p lnα−1 p p−2 ln−1 p

TABLE II. Large-p behavior of Eq. (39) for the SχSB solution.
The first column is the assumed UV behavior of the left-hand side
of the equation whereas the last three columns are the contribu-
tions from the different regions of integration on the right-hand
side [including the prefactor g2qðpÞ=p2]. We have distinguished
the cases ω > −2, ω < −2, fω ¼ −2; δ > −1g, fω ¼ −2; δ <
−1g and fω ¼ −2; δ ¼ −1g. Only the third case yields a possible
consistent solution.

pM0ðpÞ q ≫ p m0 ≪ q≲ p q ∼m0

pω>−2 lnδ p m2
0p

ω−2 lnδ−1 p pω lnδ−1 p p−2 ln−1 p
pω<−2 lnδ p m2

0p
ω−2 lnδ−1 p p−2 ln−1 p p−2 ln−1 p

p−2 lnδ>−1 p m2
0p

−4 lnδ−1 p p−2 lnδ p p−2 ln−1 p
p−2 lnδ<−1 p m2

0p
−4 lnδ−1 p p−2 ln−1 p p−2 ln−1 p

p−2 ln−1 p m2
0p

−4 ln−2 p p−2 lnðlnpÞ ln−1 p p−2 ln−1 p

8One can verify that in the case ω ≥ 1, no consistent solution
can be found.

9The range 0 ≤ q≲m0 of the integral is essentially constant
and its contribution to the right-hand side of Eq. (39) is always
controlled by g2qðpÞ=p2. The large momentum contribution q > p
vanishes atm0 ¼ 0 [see Eq. (45) below] and is thus suppressed by
at least one power of m2

0=p
2.
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C. Numerical implementation

In practice, for numerical purposes, the integral over q is
divided into two regions: one for q < Λ1 ¼ 10 GeV and
the ultraviolet region for Λ1 < q < Λ2 ¼ 20 GeV. In the
second region the values of ZψðqÞ and MðqÞ are replaced
by their ultraviolet expressions, i.e.,

ZUV
ψ ðqÞ ¼ 1 ð47Þ

MUVðqÞ ¼ b0

�
ln
q2 þm2

0

m2
0

�
α

þ b2
q2

�
ln
q2 þm2

0

m2
0

�−ðαþ1Þ

ð48Þ

where the exponent α is given in Eq. (42). The coefficients
b0 and b2 are chosen in order to makeMðpÞ continuous and
differentiable (so they are not free parameters).
For p < Λ1, we sample the functions ZψðpÞ and MðpÞ

on a regular grid with a lattice spacing of 0.05 GeV. We
have verified that the results presented below are converged
with respect to this choice. We solve the self-consistent
equations for the functions ZψðpÞ and MðpÞ iteratively
with initial conditions provided by their respective

perturbative expressions (48) and (48), with a fixed value
of MðΛ1Þ.

D. Chiral and massive behaviors

In Fig. 8, solutions for Eqs. (38) and (39) are shown
for different values of MðΛ1Þ for g0 ¼ 4 and x ¼ 5.
No chiral solution is found for this small value of g0.
However for g0 ¼ 11 a chiral solution appears as shown
in Fig. 9.
Unfortunately, in both cases the behavior of Aðp; μ0Þ ¼

z−1ψ ðp; μ0Þ ¼ Zψðμ0Þ=Zψ ðpÞ is not the correct one. This is
the same problem as with the one-loop results of Ref. [49].
There, it was also observed that the inclusion of two-loop
corrections gave the correct shape of this function as
explained in the Introduction. We expect this function to
be better described at RI-two-loop order. In Fig. 10 the
mass curveMðpÞ is represented on a log-log scale. One can
observe the approach in the chiral limit to an (approximate)
power-law behavior.
Finally in Fig. 11, we illustrate the two—chirally

symmetric versus chirally broken—phases of the system
by plotting the constituent quark mass Mðp ¼ 0Þ as a
function of the coupling parameter g0 (when varying g0 we
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FIG. 8. Solutions of Eqs. (38) and (39), Zψ ðpÞ and MðpÞ for
different values ofMðΛ1Þ ¼ 0.001, 0.005, 0.01, 0.02, 0.04, 0.08.
Parameters: Nf ¼ 2, Nc ¼ 3, m0 ¼ 0.4 GeV, g0 ¼ 4 and x ¼ 5.
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different values ofMðΛ1Þ ¼ 0.001, 0.005, 0.01, 0.02, 0.04, 0.08.
Parameters:Nf ¼ 2,Nc ¼ 3,m0 ¼ 0.4 GeV, g0 ¼ 11 and x ¼ 5.
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vary also x in such a way to keep ΛQCD fixed). This is done
for two values of the ultraviolet mass MðΛ1Þ very close to
the chiral limit. Observe that, as expected, the convergence
to the chiral limit is very slow for couplings approaching
the critical value.

E. Comparison with lattice data for Nf = 2

Figure 12 shows the comparison of the present results
with lattice data from Ref. [2]. This is done by fitting the
parameters (g0, x) so as to minimize the absolute error with
all data sets simultaneously. After fixing those parameters,
the various curves are fitted by varying the parameter
MðΛ1Þ.
The agreement is quite striking for the running mass

MðpÞ. This is a qualitative improvement with respect to the
one-loop results of Ref. [49]. This, of course, is due to
the rainbow improvement of the one-loop expressions in

the quark sector. It is, indeed, well known that the rainbow
resummation gives good agreement with lattice data even
near the chiral limit (see, for example, Refs. [35,54]). As
explained before, the main improvement of the present
work is that this resummation proceeds from a systematic
expansion scheme, which allows for a consistent RG
improvement of the equations.

VII. CONCLUSIONS

We have devised a systematic expansion scheme for
QCD at low energy based on a double expansion in
powers of the coupling strength gg in the Yang-Mills
sector of the theory and in powers of 1=Nc. It is based on
the observation that, at low energies, the coupling gg
differs significantly from the coupling gq in the quark
sector. The motivation for the 1=Nc expansion is more
practical and allows to obtain closed expressions for the
various correlation functions (let us point out however
that the validity of the 1=Nc expansion in QCD is well
established in the literature; see for instance Ref. [56]).
At leading order, this scheme reproduces the well-known
rainbow approximation. One of the benefits of our
approach is however that it allows for a systematic study
of higher-order corrections. Moreover, at the present
leading order, we are able to implement a consistent
RG improvement of the rainbow equations that yields a
better control of large logarithms.
In the present work, we have considered a simplified

running for the coupling. Among the possible exten-
sions of the present work, it will be interesting to
implement a realistic RG equation for the quark-gluon
coupling, based on the present approximation scheme.
Another interesting extension is the analysis of the next
approximation order in view of improving the descrip-
tion of the vectorial part of the quark propagator.
The present results open the way to applications

mainly in two directions. First, we would like to use
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FIG. 11. Constituent quark massMðp ¼ 0Þ as a function of the
coupling parameter g0 for two values of the ultraviolet mass
MðΛ1Þ. The variation of g0 is done by keeping ΛQCD fixed.
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for MðΛ1Þ ¼ 0.008, 0.01, 0.02, 0.022. Parameters: Nf ¼ 2,
Nc ¼ 3, m0 ¼ 0.4 GeV, g0 ¼ 7 and x ¼ 5.
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FIG. 10. Mass function MðpÞ on a log-log scale for different
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eters: Nf ¼ 2, Nc ¼ 3, m0 ¼ 0.4 GeV, g0 ¼ 11 and x ¼ 5. We
observe the onset of the power-law behavior at large momentum
as the chiral limit is approached. This signals the SχSB.
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the present scheme to calculate mesonic properties such
as the mass spectrum or decay rates. Given the well-
established success of the rainbow-ladder approximation
[35], this path seems promising. Second, we would like
to explore the QCD phase diagram both at finite
temperature and at finite chemical potential. The mas-
sive extension of QCD has been already applied with
success for that purpose in the heavy-quark regime [74].
The present work opens the way for the application of
this model to the lower quark masses, including the
chiral limit as well as physically realistic values.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial
support from Programa de Desarrollo de las Ciencias
Básicas (PEDECIBA) program and from the project of
the Agencia Nacional de Investigación e Innovación-
Fondo Clemente Estable ANII-FCE-1-126412. N.W.
would like to acknowledge Université Paris Diderot,
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APPENDIX: COMPATIBILITY OF THE
FORMULAS FOR zψ

In the core of the text, we found two different formulas
for zψ. In this appendix, we discuss the compatibility of
these expressions. The first expression

z−1ψ ðp; μ0Þ ¼
1þ g2qðμ0ÞCF

R
q

zψ ðq;μ0Þ
q2þM2ðqÞ

fðq;μ0Þ
ðμ0þqÞ2þm2ðμ0Þ

1þ g2qðpÞCF

R
q

zψ ðq;pÞ
q2þM2ðqÞ

fðq;pÞ
ðpþqÞ2þm2ðpÞ

ðA1Þ

is obtained by replacing in Eq. (30) the form of Zψ given in
Eq. (31). The second expression, obtained by combining
Eqs. (23) and (14), gives

z−1ψ ðp; μ0Þ ¼ Zψðμ0Þ − g2qðμ0ÞCF

×
Z
q

zψðq; μ0Þ
q2 þM2ðqÞ

fðq; pÞ
ðpþ qÞ2 þm2ðμ0Þ

: ðA2Þ

Using the fact that, to the order at which we are computing,
Zm2 ¼ ZψZg ¼ 1, we can write

z−1ψ ðp; μ0Þ ¼ Zψ ðμ0Þ
	
1 − Z2

gqðμ0Þg2qðμ0ÞCF

Z
q
Zψðμ0Þ

zψðq; μ0Þ
q2 þM2ðqÞ

fðq; pÞ
ðpþ qÞ2 þ Zm2ðμ0Þm2ðμ0Þ




¼ Zψ ðμ0Þ
	
1 − Z2

gqðpÞg2qðpÞCF

Z
q
Zψ ðpÞ

zψ ðq; pÞ
q2 þM2ðqÞ

fðq; pÞ
ðpþ qÞ2 þm2ðμ0Þ




¼ Zψ ðμ0Þ
	
1 −

g2qðpÞ
ZψðpÞ

CF

Z
q
ZψðpÞ

zψðq; pÞ
q2 þM2ðqÞ

fðq; pÞ
ðpþ qÞ2 þm2ðμ0Þ



ðA3Þ

which, owing to Eq. (28), is nothing but Eq. (A1). We have used that zψðμ0ÞZψðq; μ0Þ, Zgqðμ0Þgqðμ0Þ and Zm2ðμ0Þm2ðμ0Þ
do not depend on μ0.
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