
Color entanglement like effect in collinear twist-3 factorization

Jian Zhou
School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE),

Shandong University, Jinan, Shandong 250100, China
(Received 21 July 2017; published 1 December 2017)

We study the color entanglement like effect for T-odd cases in collinear twist-3 factorization. For an
example, we compute the transverse single spin asymmetry for direct photon production in pp collisions in
a pure collinear twist-3 approach. By analyzing the gauge link structure of the collinear gluon distribution
on the unpolarized target side, we demonstrate how the color entanglement–like effect arises in the
presence of the additional gluon attachment from a polarized projectile. The result is consistent with that
obtained from a hybrid approach calculation.
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I. INTRODUCTION

One of the key steps involved in proving QCD factori-
zation theorems is to decouple longitudinal gluon exchange
between active partons and the remnants of projectile/target
nucleons in a high-energy scattering process. By invoking
the Ward identity argument, longitudinal gluon exchange
to all orders can be absorbed into a gauge link that ensures
the gauge invariance of the operator definitions of parton
distribution functions. In the context of the transverse
momentum–dependent (TMD) factorization framework
[1], depending on color flow in a hard scattering, TMD
parton distributions could possess a quite complicated gauge
link structure [2–5]. A generalized TMD factorization was
proposed [3,4] to express cross sections in terms of process-
dependent TMDs when computing physical observables that
are sensitive to incoming parton transverse momenta.
However, further investigation [6] reveals that it is not

possible to disentangle simultaneous longitudinal gluon
attachments from both nucleon sides in nucleon-nucleon
collisions if color flow is nontrivial in the final state. This
phenomenon, commonly refereed to as color entangle-
ment, originates from the non-Abelian feature of QCD as
a gauge theory. It prevents us from describing parton
transverse momentum with separate correlation functions
for each external nucleon and thus leads to the break-
down of generalized TMD factorization. The phenom-
enological implications of the color entanglement like
effect have been explored from both theoretical and
experimental sides [7–10].
On the other hand, it is not yet entirely clear whether a

similar effect shows up in nucleon-nucleon collisions in
collinear factorization calculation. Though it is usually
believed to be absent in leading-twist collinear factoriza-
tion, at twist-3 level, one has to take into account an
additional gluon rescattering, which makes color flow more
complicated and could potentially give rise to the color
entanglement–like effect. In fact, the transverse single spin
asymmetry (SSA) for prompt photon production in pp

collisions computed in genuine collinear twist-3 factoriza-
tion [11,12] differs from that obtained in the hybrid approach
[13] by terms proportional to a new gluon distribution G4.
This new contribution results from the color entanglement–
like effect, which describes the emergence of the nontrivial
color structure when taking into account longitudinal gluon
attachments from both incoming nucleons. In contrast to
the color entanglement like effect in the context of TMD
factorization, the color entanglement–like effect does not
lead to factorization breaking in the hybrid approach and the
collinear factorization as shown below.
To some extent, the hybrid approach is a more complete

method in the sense that gluon rescattering on the unpo-
larized target side has been summed to all orders. One thus
has good reason to believe that the color entanglement–like
effect related to the G4 term contribution is missing in the
conventional collinear twist-3 calculation. The objective
of this paper is to explicitly work out color structure for
the diagrams with simultaneous longitudinal gluon attach-
ments from both incoming nucleon sides within the pure
collinear twist-3 factorization framework. To the best of
our knowledge, the gauge link structure of leading-twist
collinear parton distributions on the unpolarized target side
has never been carefully examined in the presence of an
additional gluon attachment from a polarized projectile. To
identify the color entanglement–like effect and compare it
with the hybrid approach, it is sufficient to take into account
one longitudinal gluon attachment from the unpolarized
target on each side of the cut, since this is the lowest
nontrivial order at which G4 receives a nonvanishing
contribution. As discussed in Sec. III, the gluon distribution
G4 indeed enters into the spin-dependent cross section in a
pure collinear twist-3 approach when going beyond one
gluon exchange approximation. As expected, we verified
that the hybrid approach and the collinear twist-3 approach
yield the same result in the collinear limit at the order under
consideration.
The paper is structured as follows. In the next section,

we briefly review the conventional collinear twist-3
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calculations for the SSA in direct photon production and
the derivation of the gauge link of the collinear gluon
distribution in leading-twist collinear factorization. In
Sec. III, we present our analysis for the gauge link structure
at twist-3 level in detail and recover the hybrid approach
result. In the end, we comment on more general cases and
discuss possible extensions of the current work in Sec. IV.

II. BRIEF REVIEW OF CONVENTIONAL
CALCULATIONS

The dominant production mechanism for prompt pho-
tons in high-energy collisions is Compton scattering
gq → γq as shown in Fig. 1. We start by introducing the
relevant kinematical variables and assign 4-momenta to the
particles according to

gðx0P̄Þ þ qðxPÞ → γðlγÞ þ qðlqÞ; ð1Þ

where P̄μ ¼ P̄−nμ and Pμ ¼ Pþpμ with nμ and pμ being
the commonly defined light cone vectors, normalized
according to p · n ¼ 1. The corresponding unpolarized
Born cross section reads

d3σ
d2lγ⊥dz

¼ αsαem
Nc

z½1þð1− zÞ2�
l4γ⊥

X

q

e2q

Z
1

xmin

dxfqðxÞx0Gðx0Þ;

ð2Þ

where z≡ lγ · n=ðxP · nÞ is the fraction of the incoming
quark momentum xP carried by the outgoing photon and
lγ⊥ is the photon transverse momentum. The meaning of
the other coefficients should be self-evident. Note that

x0 ¼ xP·lq
xP·P̄−P·lγ

is a function of x, and xmin is given by

xmin ¼ P·lγ
P·P̄−P·lq

. In the above formula, fqðxÞ and Gðx0Þ are
the usual integrated quark and gluon distributions,
respectively.

The operator definition of the collinear gluon distribution
is given by [1]

x0Gðx0Þ ¼
Z

dξþ

2πP̄− e
−ix0P̄−ξþhPjF−μ

a ðξþÞL̃acF
−μ
c ð0ÞjPi;

ð3Þ

where F−μ
a is the gauge field strength tensor and L̃ac ¼

P expf−g R ξþ
0 dzþfbacA−

b ðzÞg is the gauge link in the
adjoint representation. This gluon distribution can also
be defined in the fundamental representation [14],

x0Gðx0Þ ¼ 2

Z
dξþ

2πP̄− e
−ix0P̄−ξþ

× hPjTr½F−μ
a ðξþÞTaLF−μ

c ð0ÞTcL†�jPi; ð4Þ

where the gauge link takes form L ¼
Pexpf−igR ξþ

0 dzþTbA−
b ðzÞg.

The above gauge link is built up by summing longi-
tudinal gluon ðA−Þ attachment to all orders. As a warm-up
exercise, we first rederive the gauge link at lowest non-
trivial order by computing the diagrams illustrated in Fig. 2.
The gluon pole and the color structure associated with the
initial-state interaction in the amplitude is given by

1

x0g þ iϵ
Tr½TaTcTb�; ð5Þ

which yields the following contribution to the first-order
expansion of the gauge link:

hPjTr
�
F−μ
a ðξþÞTaF−μ

c ð0ÞTc

�
−ig

Z
0

−∞
dzþTbA−

b ðzÞ
��

jPi:

ð6Þ

And similarly, for the final-state interaction in the ampli-
tude, one has

1

−x0g þ iϵ
Tr½TaTbTc�

⇒ hPjTr
�
F−μ
a ðξþÞTa

�
−ig

Z
∞

0

dzþTbA−
b ðzÞ

�

× F−μ
c ð0ÞTc

�
jPi: ð7Þ

For Fig. 2(c), one has

1

x0g − iϵ
Tr½TbTaTc� ⇒ hPjTr

��
ig
Z

ξþ

−∞
dzþTbA−

b ðzÞ
�

× F−μ
a ðξþÞTaF−μ

c ð0ÞTc

�
jPi; ð8Þ

FIG. 1. Diagram contributing to direct photon production in
pp collisions. Gray circles indicate all possible photon line
attachments.
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and in Fig. 2(d),

1

−x0g − iϵ
Tr½TaTbTc�

⇒ hPjTr
�
F−μ
a ðξþÞTa

�
ig
Z

∞

ξþ
dzþTbA−

b ðzÞ
�

× F−μ
c ð0ÞTc

�
jPi: ð9Þ

Summing up all terms gives rise to the first nontrivial order
expansion of the gauge link. It is easy to generalize the
above derivation and absorb longitudinal gluon exchange
into the gauge link to all orders. Meanwhile, the gauge link
of the integrated quark distribution from the projectile
nucleon is built up by summing the longitudinal gluon Aþ
attachment. One does not expect that these two procedures
(summing A− and Aþ gluon exchanges) interfere with each
other at leading-twist level.
We now turn to review the conventional twist-3 calcu-

lation for the SSA in the prompt photon production process
[11,12]. In a covariant gauge calculation, as shown in
Fig. 3, an additional Aþ gluon that carries small transverse
momentum p⊥ must be exchanged in order to generate an
imaginary phase necessary for the nonvanishing SSA. One
can isolate the imaginary part by picking up gluon poles
generated via the initial-state interactions or the final-state
interactions as shown in Fig. 3. However, as is well known,
there is a complete cancelation between the contributions

from the different cut diagrams with a longitudinal gluon
attaching to the unobserved final-state produced particle.
This can be best seen by explicitly writing down the gluon
pole contribution and the on-shell condition from Fig. 3(c),

1

ðlq − xgP − k⊥Þ2 þ iϵ

����
pole

δðl2qÞ

¼ −iπδððlq − xgP − k⊥Þ2Þδðl2qÞ; ð10Þ

and from the left cut diagram, Fig. 3(d),

1

l2q − iϵ

����
pole

δððlq − xgP − k⊥Þ2Þ

¼ þiπδðl2qÞδððlq − xgP − k⊥Þ2Þ; ð11Þ

where lq ¼ xPþ x0P̄þ xgPþ p⊥ − lγ . Obviously, they
cancel each other out as the remaining parts of the
amplitude squared represented by Figs. 3(c) and 3(d) are
exactly same. The absence of the final-state interaction
contributions to the SSA in the current case is actually the
key observation that leads us to conclude that the color
entanglement like effect also shows up in collinear twist-3
factorization. We will explain the reasoning in details in the
next section.
To isolate the twist-3 effect, one proceeds by expand-

ing the amplitudes squared and the on-shell condition in
terms of p⊥,

(a) (b) (c) (d)

FIG. 3. Soft gluon pole contributions to the single spin asymmetry for direct photon production in pp collisions. Final-state interaction
contributions (c) and (d) to the spin asymmetry cancel out. The spin asymmetry only arises from the initial state interaction shown in (a)
and (b) in this process. Note that Aþ gluon carries small transverse momentum in the twist-3 calculation.

(a) (b) (c) (d)

FIG. 2. The lowest-order diagrams contributing to the gauge link of the integrated gluon distribution. Both the intial state intercation
shown in (a) and (c) and the final state interaction shown in (b) and (d) contribute to the gauge link.
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Hðp⊥Þδðl2qÞ ¼ Hðp⊥Þδðl2qÞjp⊥¼0

þ ∂Hðp⊥Þδðl2qÞ
∂pρ

⊥

����
p⊥¼0

pρ
⊥ þ � � � ð12Þ

The twist-3 spin-dependent part is the term linear in p⊥.
In this work, we only take into account the derivative
term contribution, for which case our analysis can be
greatly simplified without losing generality. For the
derivative term contribution, one can simply neglect
p⊥ in the hard part H,

−lργ⊥
lq · P

Hðp⊥ ¼ 0Þ
�∂δðl2qÞ

∂x
�

p⊥¼0

p⊥;ρ: ð13Þ

One then can carry out integration over p⊥ after converting
Aþ into the gauge-invariant formFρþ by partial integration.
The corresponding three-parton correlation function can be
cast into the form of the Efremov-Teryaev-Qiu-Sterman
(ETQS) function defined as [15,16]

TF;qðx1; x2Þ

¼
Z

dy−1 dy
−
2

4π
eix1P

þy−
1
þiðx2−x1ÞPþy−

2

× hP; S⊥jψ̄qð0ÞγþgϵS⊥ρnpFρ
þðy−2 Þψqðy−1 ÞjP; S⊥i;

ð14Þ

where we have suppressed gauge links. S⊥ denotes the
proton transverse spin vector. Note that our definition
of the ETQS functions differs by a factor g from the
convention used in Ref. [12].
Making use of the ingredients described above, the

calculation is straightforward. The derivative term contri-
bution to the spin-dependent cross section is given in
Refs. [11,12],

d3Δσ
d2lγ⊥dz

¼ αsαemNc

N2
c − 1

ðz2 − zÞ½1þ ð1 − zÞ2�
l4γ⊥

ϵlγS⊥np

l2γ⊥

×
X

q

e2q

Z
1

xmin

dxx0Gðx0Þ
�
−x

d
dx

TF;qðx; xÞ
�
:

ð15Þ

The same observable has also been computed in a hybrid
approach [13]. It has been found that two approaches do
not produce the same result. To be more explicit, x0Gðx0Þ
in the above formula is replaced with the combination
x0Gðx0Þ − x0G4ðx0Þ in the hybrid approach calculation in
the collinear limit. Numerically, the impact of G4 on the
SSA for photon production is limited as G4 is 1=N2

c
suppressed as compared to the normal integrated gluon
distribution G [13,17,18]. However, a recent work [19]
shows that the SSA for the forward inclusive jet production

in pp=pA collisions is proportional to the combination
x0Gðx0Þ − N2

cx0G4ðx0Þ, which drastically deviates from the
prediction of the conventional collinear twist-3 calcula-
tions. Therefore, from both the theoretical and phenom-
enological points of view, it is important to pin down the
source of the inconsistency between two approaches. We
address this issue in the next section.

III. GAUGE LINK STRUCTURE IN COLLINEAR
TWIST-3 FACTORIZATION

The new gluon distribution G4 appears in the hybrid
approach calculation results from the color entanglement–
like effect that arises when considering Aþ and A− gluon
exchanges from each side simultaneously. The operator
definition of the integrated G4 reads [17]

x0G4ðx0Þ ¼
2

Nc

Z
dξþ

2πP̄− e
−ix0P̄−ξþ

× hPjTr½LξF−μðξþÞ�Tr½L†
0F

−μð0Þ�jPi; ð16Þ

where the gauge link is given by

Lξ ¼ P exp

�
ig
Z þ∞

ξþ
dzþA−ðzþ; 0⊥Þ · T

�

× P exp

�
ig
Z þ∞

0

dz⊥A⊥ðþ∞þ; z⊥Þ · T
�

× P exp
�
ig
Z

0

þ∞
dz⊥A⊥ð−∞þ; z⊥Þ · T

�

× P exp

�
ig
Z

ξþ

−∞
dzþA−ðzþ; 0⊥Þ · T

�
ð17Þ

with transverse gauge links [20,21] being included. We are
now aiming to recover the above novel color structure
within the pure collinear twist-3 formalism. Before making
an all-order analysis, it is instructive to carry out an explicit
calculation at lowest nontrivial order. To this end, one has
to compute diagrams with one A− gluon attachment on each
side of cut due to Tr½Ta� ¼ 0.
As we focus on the derivative term contribution, we can

neglect transverse momentum p⊥ carried by the Aþ gluon
in the hard parts except for p⊥ dependence in the on-shell
condition δðl2qÞ. The hard parts computed from different
diagrams are then proportional to the twist-2 spin-
independent Born diagram contribution, but with different
gluon pole and color structure. Therefore, for the current
purpose, it is sufficient to only present the associated gluon
pole and color structure for each diagram.
We start the calculation by showing that the gauge

link only receives contributions from the soft gluon pole
in terms of momentum carried by the A− gluon. All hard
gluon pole contributions are canceled out. An explicit
example is demonstrated in Figs. 4(a) and 4(b). When we
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isolate a hard gluon pole from the quark propagator
marked with a black circle, the quark line is effectively
put on shell. One then can apply the Ward identity
argument to the part of the diagrams on the right side
of the vertical dashed line. It is easy to verify that the
hard gluon pole contributions are canceled out between
Figs. 4(a) and 4(b) due to the Ward identity. One is only
left with the soft gluon pole contribution generated
from the quark propagator marked with black square in
Fig. 4(b). Therefore, we only need to take into account the
soft gluon pole of the A− gluon from the initial-state
interaction and final-state interaction. The relevant dia-
grams are shown in Fig. 6.
To simplify the calculation of diagrams with the three

gluon vertex illustrated in Fig. 5, it is convenient to organize
the Aþ and A− gluon fusion amplitude into two terms,

−igfabc

ðxgPþ x0gP̄Þ2 þ iϵ
½gμνðx0gP̄ − xgPÞρ þ gνρð2xgPþ x0gP̄Þμ

þ gρμð−2x0gP̄ − xgPÞν�nμpν

¼ −igfabcðxgPþ x0gP̄Þρ
ðxgPþ x0gP̄Þ2 þ iϵ

−
−igfabcP̄ρ

xgP · P̄þ iϵ
; ð18Þ

where the first term in the second line does not contribute
to the final result due to the Ward identity. For example,
the contribution from the first term is canceled out when
summing up diagrams in Figs. 6(a), 6(d), and 6(i). One
can use the second term as the effective Feynman rule for the
Aþ and A− gluon fusion vertex in the following calculation.
It is important to notice that the associated gluon pole 1

xgP·P̄þiϵ

corresponds to the initial-state interaction contribution.
Using the above trick, it is easy to verify that the

summation of the hard parts in Figs. 6(i), 6(j), and 6(k)
vanishes,

Hi þHj þHk ¼ 0: ð19Þ

And in an exactly analogous fashion, one has

Ht þHu þHv ¼ 0: ð20Þ

Meanwhile, we also notice that

Hh ¼ 0; Hs ¼ 0: ð21Þ

We continue with the evaluation of Figs. 6(a) and 6(b),

Ha∝
1

xgþ iϵ
1

−x0g1− iϵ
1

x0gþ iϵ
Tr½TaTbTcTfTe�ifdef ð22Þ

Hb∝
1

xgþ iϵ
1

−x0g1− iϵ
1

x0gþ iϵ
Tr½TaTbTfTdTe�ifcef: ð23Þ

Summing them up, one obtains

Haþb∝
1

xgþ iϵ
1

−x0g1− iϵ
1

x0gþ iϵ

×fCFTr½TaTbTcTd�−Tr½TaTbTeTcTdTe�g; ð24Þ

which leads to the following gauge link structure:FIG. 5. Two longitudinally polarized gluons fusion diagram.

(a) (b)

FIG. 4. The hard gluon pole is yielded when quark lines marked with a black circle go on shell, while the quark propagator marked
with a black square gives rise to the soft gluon pole. Hard gluon pole contributions from (a) and (b) are canceled out due to the Ward
identity.
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Haþb ⇒ CFhPjTr
�
F−μ
a ðξþÞTa

�
ig
Z

∞

ξþ
dzþTbA−

b ðzÞ
�
F−μ
c ð0ÞTc

�
−ig

Z
0

−∞
dzþTdA−

d ðzÞ
��

jPi

− hPjTr
�
F−μ
a ðξþÞTa

�
ig
Z

∞

ξþ
dzþTbA−

b ðzÞ
�
TeF−μ

c ð0ÞTc

�
−ig

Z
0

−∞
dzþTdA−

d ðzÞ
�
Te

�
jPi: ð25Þ

The gluon poles and color structures associated with Figs. 6(c) to 6(g) are listed in the following:

Hc ∝
1

xg þ iϵ
1

−x0g1 − iϵ
1

−x0g þ iϵ
Tr½TaTbTdTfTe�ifcef ð26Þ

Hd ∝
1

xg þ iϵ
1

−x0g1 − iϵ

2lq · P̄

ðlq − x0gP̄ − xgPÞ2 þ iϵ
Tr½TaTbTfTcTe�ifdef ð27Þ

He ∝
−1

−xg þ iϵ
1

−x0g1 − iϵ
1

x0g þ iϵ
Tr½TaTbTeTcTdTe� ð28Þ

Hf ∝
−1

−xg þ iϵ
1

−x0g1 − iϵ

2lq · P̄

ðlq − x0gP̄ − xgPÞ2 þ iϵ
Tr½TaTbTeTdTcTe� ð29Þ

Hg ∝
−1

−x0g þ iϵ
1

−x0g1 − iϵ

2lq · P

ðlq − x0gP̄ − xgPÞ2 þ iϵ
Tr½TaTbTdTeTcTe�: ð30Þ

We further decompose the hard partsHd andHf into two termsHd ¼ Hd1 þHd2 andHf ¼ Hf1 þHf2, whereHd1,Hf1

denote contributions by picking up the gluon poles, 1
xgþiϵ and 1

−xgþiϵ, while the imaginary phase of Hd2, Hf2 is only

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(l) (m) (n) (o) (p)

(k)

(q) (r) (s) (t) (u) (v)

FIG. 6. The lowest nontrivial order diagrams giving rise to the color entanglement like effect. The mirror diagrams are not shown here.
Gluons directly attaching to gray circles are transversely polarized. Other gluons from the top part of the diagrams are longitudinally
polarized A−, while the Aþ gluon is exchanged between hard parts and the bottom part. The contributions from (h,s) and the sum of
(i,j,k,t,u,v) to the gauge link vanish if one uses the trick introduced after Eq. 18. The rest diagrams give rise to the nonvanishing
contribution to the gauge link.
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generated from the gluon pole 1
ðlq−x0gP̄−xgPÞ2þiϵ. When we isolate the imaginary phase from the pole 1

ðlq−x0gP̄−xgPÞ2þiϵ, an internal

quark propagator is effectively put on shell. The Ward identity then implies that

Hd2 þHf2 þHg ¼ 0: ð31Þ

This relation also can be readily verified by explicit calculation. The hard parts Hf1 and He represent the final-state
interaction contributions, which are canceled out by the corresponding left cut diagrams, as explained in the previous
section. We are now only left with

Hcþd1 ∝
1

xg þ iϵ
1

−x0g1 − iϵ
1

−x0g þ iϵ
fCFTr½TaTbTdTc� − Tr½TaTbTeTdTcTe�g; ð32Þ

which results in

Hcþd1 ⇒ CFhPjTr
�
F−μ
a ðξþÞTa

�
ig
Z

∞

ξþ
dzþTbA−

b ðzÞ
��

−ig
Z

∞

0

dzþTdA−
d ðzÞ

�
F−μ
c ð0ÞTc

�
jPi

− hPjTr
�
F−μ
a ðξþÞTa

�
ig
Z

∞

ξþ
dzþTbA−

b ðzÞ
�
Te

�
−ig

Z
∞

0

dzþTdA−
d ðzÞ

�
F−μ
c ð0ÞTcTe

�
jPi: ð33Þ

A similar analysis applies to the rest of diagrams. One finds that

Ho2 þHq2 þHr ¼ 0 ð34Þ

and the contributions from Hq1 and Hp drop out once combined with the corresponding left cut diagrams. One eventually
has

Hlþm ⇒ CFhPjTr
��

ig
Z

ξþ

−∞
dzþTbA−

b ðzÞ
�
F−μ
a ðξþÞTaF−μ

c ð0ÞTc

�
−ig

Z
0

−∞
dzþTdA−

d ðzÞ
��

jPi

− hPjTr
��

ig
Z

ξþ

−∞
dzþTbA−

b ðzÞ
�
F−μ
a ðξþÞTaTeF−μ

c ð0ÞTc

�
−ig

Z
0

−∞
dzþTdA−

d ðzÞ
�
Te

�
jPi ð35Þ

and

Hnþo1 ⇒ CFhPjTr
��

ig
Z

ξþ

−∞
dzþTbA−

b ðzÞ
�
F−μ
a ðξþÞTa

�
−ig

Z
∞

0

dzþTdA−
d ðzÞ

�
F−μ
c ð0ÞTc

�
jPi

− hPjTr
��

ig
Z

ξþ

−∞
dzþTbA−

b ðzÞ
�
F−μ
a ðξþÞTaTe

�
−ig

Z
∞

0

dzþTdA−
d ðzÞ

�
F−μ
c ð0ÞTcTe

�
jPi: ð36Þ

Collecting all pieces Haþb;Hcþd1;Hlþm;Hnþo1 together, it is easy to see that the summation of them gives rise to the
lowest nontrivial order expansion of the gauge link structure

CFhPjTr½F−μ
a ðξþÞTaLðξþ; 0ÞF−μ

c ð0ÞTcL†ðξþ; 0Þ�jPi
− hPjTr½L†ð−∞; ξþÞF−μ

a ðξþÞTaL†ðξþ;∞ÞTeLð∞; 0ÞF−μ
c ð0ÞTcLð0;−∞ÞTe�jPi; ð37Þ

where the term in the second line has quite a peculiar color
structure.Note that the final-state interactionsHq1,Hp,Hf1,
and He contribute to the twist-2 unpolarized cross section.
The principal value part of the gluon poles 1

−xgþiϵ and
1

xgþiϵ is

canceled out when adding up these contributions with the
second term in the above formula. Correspondingly, Aþ

gluon attachment is decoupled from the hard part and
can be absorbed into the gauge link of the collinear
quark distribution. This leads us to conclude that the
collinear twist-2 factorization is not affected by the
color entanglement–like effect at the order under consid-
eration. Meanwhile, it becomes clear that the emergence of
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the color entanglement–like effect in the collinear
twist-3 factorization essentially can be attributed to the
fact that the final-state interaction does not contribute to the
SSA. With this observation, one can generalize the above
analysis to all orders. Considering a diagram with an
arbitrary number of A− gluon attachments and one Aþ
attachment from the opposite side, the Aþ gluon can be
first decoupled from the hard part by invoking the Ward
identity argument once we sum over all possible Aþ
insertion points. After this has been done, multiple A−

exchange can be incorporated into the normal gauge link as
shown in the first line of Eq. (37). However, one has to keep

in mind that only initial -state interaction contributes to the
SSA in the current case. The gauge link structure associated
with final-state interaction given in the second line of
Eq. (37) has to be subtracted. The overall color structure
associated with initial-state interaction is thus given by
Eq. (37). Note that a similar argument also applies to the
SSA in other channels, for instance, inclusive hadron
production in pp collisions, because initial-state interaction
and final-state interaction do not generate contributions
with equal weight.
Equation (37) can be further cast into the following form

using the Fierz identity:

Nc

2
hPjTr½F−μ

a ðξþÞTaLðξþ; 0ÞF−μ
c ð0ÞTcL†ðξþ; 0Þ�jPi

−
1

2
hPjTr½L†ð−∞; ξþÞF−μ

a ðξþÞTaL†ðξþ;∞Þ�Tr½Lð∞; 0ÞF−μ
c ð0ÞTcLð0;−∞Þ�jPi: ð38Þ

One immediately recognizes this operator structure as the one that gives rise to the combination x0Gðx0Þ − x0G4ðx0Þ. The
corresponding spin-dependent cross section reads

d3Δσ
d2lγ⊥dz

¼ αsαemNc

N2
c − 1

ðz2 − zÞ½1þ ð1 − zÞ2�
l4γ⊥

ϵlγS⊥np

l2γ⊥

X

q

e2q

Z
1

xmin

dx½x0Gðx0Þ − x0G4ðx0Þ�
�
−x

d
dx

TF;qðx; xÞ
�
; ð39Þ

which is in full agreement with that obtained by extrapo-
lating the hybrid approach result to the collinear limit
[13]. As expected, the pure collinear twist-3 formalism
and the hybrid approach are consistent with each other in
the collinear limit after properly taking into account the
color entanglement–like effect in the collinear twist-3
formalism.
It is worth it to mention that there is a substantial

difference between the color entanglement like effect in
TMD factorization and the color entanglement–like effect
in collinear factorization. In the current case, a nontrivial
color structure characterized by aG4 term yielded by taking
into account longitudinal gluon attachments from both
incoming nucleons does not lead to the breakdown of
collinear twist-3 factorization at the order under consid-
eration. It is still possible to describe physical observables
in terms of the correlators associated with each nucleon
separately. As a consequence, the predicative power is
preserved in collinear twist-3 factorization.
We finish this section with a final remark. In this work,

we focus on the qg → γq channel as it is the dominant
source contributing to the SSA in the forward region.
From the theoretical point of view, it is also interesting to
study whether a nontrivial color structure shows up in the
qq̄ → γg channel. This is likely to be the case as the Ward
identity argument fails due to the absence of the final-state
interaction for the T-odd observable. However, it is not
clear if the relevant contribution can be factorizable in a

similar fashion or not. This deserves a further investigation
in the future.

IV. SUMMARY

In summary, we have shown that the color entanglement–
like effect plays a role in contributing to T-odd observables
within the genuine collinear twist-3 factorization frame-
work. For an example, we compute the SSA for direct
photon production in pp collisions using the collinear twist-
3 approach. Our calculation differs from the conventional
collinear twist-3 treatment by deriving the gauge link
structure on the unpolarized target side explicitly. We found
that the existence of the longitudinal gluon Aþ attachment
from the polarized projectile leads to a peculiar gauge link
structurewhen summing upA− gluon exchanges, which can
be summarized into the novel gluon distribution G4.
As expected, the pure collinear twist-3 formalism and the
hybrid approach do yield the same result in the overlap
region where they both apply. We emphasize that this is the
first instance of observable effects due to nontrivial gauge
links in collinear factorization.
In the present work, we only focus on the derivative term

contribution. But we anticipate that the nonderivative
term contribution and the soft fermion pole contribution
[22] are also affected by the color entanglement–like effect.
Moreover, it has been found in the hybrid approach
calculations [17–19] that the color entanglement–like effect
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also contributes to the SSAs in other processes in pp/pA
collisions. It is of great interest to confirm these results
within the pure collinear twist-3 approach, particularly in
view of the fact that the color entanglement–like effect
plays a crucial role in solving the sign mismatch problem
[19]. However, not all of the previous calculations
for T-odd observables (for instance, the SSA for jet
production in Semi-inclusive deeply inelastic scattering)
are affected by the identified color entanglement–like
effect. Nevertheless, many previous collinear twist-3 cal-
culations for T-odd observables (including those related to
the Boer-Mulders effect [23–26]) should be thoroughly
reexamined by analyzing the gauge link structure of the
collinear twist-2 parton distributions on the target side.
There are also some other theoretical issues that remain to

be addressed in future study. First of all, one has to
investigate if all pure gauge gluon Aþ attachments other
than the one carrying small transverse momentum can be

decoupled from hard parts and absorbed into the gauge link
in the ETQS function. If true, relevant cross sections are
factorizable in collinear twist-3 factorization. Otherwise,
collinear twist-3 factorization breaks down for T-odd
observables in pp collisions. Second, it is worth making
an effort to study the properties of the gluon distributionG4

at moderate or large x, such as its scale evolution and
behavior in somemodels. Finally, though we tend to believe
that the conventional collinear twist-3 formulation of T-even
observables [27–31] and fragmentation effects [32–39] are
not affected by the color entanglement–like effect, it would
be nice to verify this point by explicit calculations.
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