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We calculate the single spin asymmetry for the ep — eA(1232) process, for an electron beam polarized
normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange
approximation and are directly proportional to the absorptive part of a two-photon exchange amplitude.
As the intermediate state in such a two-photon exchange process is on its mass shell, the asymmetry allows
one to access for the first time the on-shell A — A as well as N* — A electromagnetic transitions. We
present the general formalism to describe the ep — eA beam normal spin asymmetry, and we provide a
numerical estimate of its value using the nucleon, A(1232), S,,(1535), and D3(1520) intermediate states.
We compare our results with the first data from the Qweak @JLab experiment and give predictions for the

A4@MAMI experiment.
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I. INTRODUCTION

A lot of information is available on the electromagnetic
structure of protons and neutrons, such as their magnetic
moments, charge radii, elastic form factors, or electromag-
netic polarizabilities. In contrast, our knowledge of the
electromagnetic structure of nucleon excited states is very
scarce. Even for the lowest excitation of the nucleon, the
prominent A(1232) resonance, the information is limited to
the nondiagonal N — A electromagnetic transition; see e.g.
Refs. [1-3] for some recent reviews. Deducing from such
measurements physical quantities such as the magnetic
dipole moment or the charge radius of the A(1232) state
has long required resorting to theoretical approaches which
relate the properties of the A to properties of the nucleon
and/or to the experimentally accessible N — A transition.
Such theoretical approaches include different types of
constituent quark models (see Ref. [1] for a review of
some of these models) and general large-N,. relations in
QCD [4-7], as well as chiral effective field theory including
nucleon and A fields [8—12]. In recent years, lattice
QCD has been able to also provide direct calculations of
such static quantities and form factors (FFs) for the A
resonance [13-15].

In order to experimentally access the electromagnetic
structure of the A(1232) resonance, and to directly com-
pare with lattice QCD predictions, a way to measure the
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diagonal A — A electromagnetic transition is required. As
the A(1232) is a very short lived resonance, the only viable
way is to use a reaction where the A is first produced, and
then couples to the electromagnetic field before decaying
into a N state. One such process which has been proposed
to access the magnetic dipole moment (MDM) of the
A*(1232) resonance is the radiative z° photoproduction
process yp — yAt — ya°p [9,16-20]. A first experimental
extraction of the A" (1232) MDM has been performed in
Ref. [21] using the reaction model of Ref. [18], resulting in
the value listed by PDG [22]:

par = 2.7 (stat) & 1.5(syst) + 3(theor)uy, (1)

with py = e/2My the nuclear magneton. One notices that
the error in Eq. (1) is dominated by the theoretical
uncertainty. A dedicated follow-up yp — yza°p experiment
[23] found it difficult to improve on the precision of the
AT MDM due to model dependencies in the used theo-
retical framework, which is needed to access the on-shell
y*AA vertex from such a reaction process.

Accessing the on-shell electromagnetic FFs of the
A(1232) resonance has not been possible in experiments
to date. To achieve such a goal, we need a two-photon
observable where the A is firstly produced on a proton
target by one virtual photon and then couples to the second
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photon leading to the A final state, which is then detected
through its #N decay. In order to properly access the on-
shell y*AA vertex, we need to look at the pole position of
the intermediate A state. If we want to realize such an
experiment with virtual photons it will in general be
dominated by the direct electromagnetic N — A transition
which involves only one photon and has been well studied
in experiments, e.g. through the pion electroproduction
process on a proton in the A region. If we aim to access the
electromagnetic A FFs, we need an observable where this
direct N — A transition through one photon is suppressed
or absent. An observable which realizes this is the beam
normal spin asymmetry for the ep — eA(1232) process,
which we study in this work.

Normal single spin asymmetries (SSA) for the ep — eR
processes, with R some well-defined state, e.g. recon-
structed through its invariant mass, with either the electron
beam or the hadronic target polarized normal to the
scattering plane, are exactly zero in the absence of two-
photon or multiphoton exchange contributions. These
normal SSAs are proportional to the imaginary (absorptive)
part of the two-photon exchange (TPE) amplitude, which
is the reason why they are exactly zero for real (non-
absorptive) processes such as one-photon exchange
(OPE). At leading order in the fine-structure constant,
a = e?/(4x) = 1/137, the normal SSA results from the
product between the OPE amplitude and the imaginary part
of the TPE amplitude; see Ref. [24] for a recent review. As
the SSA is proportional to the imaginary part of the TPE
amplitude at leading order in «, it guarantees that the
intermediate hadronic state is produced on its mass shell.

For a target polarized normal to the scattering plane, the
corresponding normal SSAs were predicted to be in the
(sub)percent range some time ago [25]. Recently, a first
measurement of the target normal SSA for the elastic
electron-"He scattering has been performed by the JLab
Hall A Collaboration, extracting a SSA for the elastic
electron-neutron subprocess, for a normal polarization of
the neutron, in the percent range [26]. For the experiments
with polarized beams, the corresponding normal SSAs for
the ep — ep process involve a lepton helicity flip which is
suppressed by the mass of the electron relative to its energy.
Therefore these beam normal SSAs were predicted to be in
the range of a few to a hundred ppm for electron beam
energies in the GeV range [27-29]. Although such asym-
metries are small, the parity-violation programs at the
major electron laboratories have reached precisions on
asymmetries with longitudinally polarized electron beams
well below the ppm level, and the next generation of such
experiments is designed to reach precisions at the sub-ppb
level [30]. The beam normal SSA, which is due to TPE and
thus parity conserving, has been measured over the past
15 years as a spin-off by the parity-violation experimental
collaborations at MIT-BATES (SAMPLE Collaboration)
[31], at MAMI (A4 Collaboration) [32,33], and at JLab
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(GO Collaboration [34,35], HAPPEX/PREX Collaboration
[36], and Qweak Collaboration [37]). The measured beam
normal SSA for the elastic ep — ep process ranges from a
few ppm in the forward angular range to around a hundred
ppm in the backward angular range, in good agreement
with theoretical TPE expectations.

Preliminary results from the QWeak Collaboration [38,39]
for the beam normal SSA for the ep — eA™*(1232) process
indicate that the asymmetry for the inelastic process is
around an order of magnitude larger than the elastic
asymmetry. It is the aim of this work to detail the formalism
to understand these inelastic beam normal spin asymmetries
and to study their sensitivity on the A(1232) electromagnetic
FFs as well as on the N* — A electromagnetic transitions.

The outline of this work is as follows. In Sec. II we
briefly recall the definition of the beam normal SSA.
In Sec. III, we describe the leading one-photon exchange
amplitude to the ep — eA process. Subsequently in
Sec. IV, we give the general expression of the absorptive
part of the two-photon exchange amplitude to the ep — e¢A
process, and we describe the dominant regions in the phase-
space integrations. In Sec. V, we provide the details of the
model for the hadronic tensor entering the ep — eA TPE
amplitude which we use in this work. Besides the inter-
mediate nucleon contribution, we subsequently describe
the A(1232), S,;(1535), and D;3(1520) resonance inter-
mediate state contributions. In Sec. VI, we show our results
and discussions. We compare with the existing data for
the Qweak@JLab experiment and provide predictions for
the A4@MAMI experiment. Our conclusions are given in
Sec. VII. We provide the quark model relations to relate the
electromagnetic A — S, and A — D3 helicity amplitudes
to the N — S1; and N — Dy3 helicity amplitudes in the
Appendix.

II. BEAM NORMAL SPIN ASYMMETRY

The beam normal single spin asymmetry (B,), corre-
sponding with the scattering of an electron with polariza-
tion normal to the scattering plane on an unpolarized
proton target, is defined by

GT_O-l
B,=—, 2
e 2)

where o4 () denotes the cross section for an unpolarized
target and for an electron spin parallel (antiparallel) to the
normal polarization vector, defined as

-

=08, f=kxk)/kxk]. (3

Applying the derivation of Ref. [25] to the case of a beam
polarization normal to the scattering plane, B, can be
expressed to order e? as
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~2Im[(Ty,)7,(AbsT,) ]
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where T, denotes the OPE amplitude, and AbsT,, the
absorptive part of the TPE amplitude between the initial
state i and the final state f. The beam polarization in the
initial state in Eq. (4) is understood along the direction of &.
The numerator in Eq. (4) corresponds (to order e?) to the
difference of squared amplitudes for normal beam polar-
izations 1 and |, while all other spins are summed over,
whereas the denominator is the squared amplitude summed
over all spins. The phase of the amplitude 7 is defined
through its relation to the S-matrix amplitude S = 1 —iT.
In Eq. (4), the absorptive part of the two-photon amplitude
is defined as'

4)

(AbSTy,) ;= > T/ T (5)

involving a sum over all physical (i.e. on-shell) intermedi-
ate states n.

Generally, as illustrated by Eq. (4), one-photon exchange
alone will give no beam normal single spin asymmetry.
The observed particle needs at least one further interaction.
When only the final electron is observed, which we
consider in this work, this means two or more photons
are exchanged. In the resonance region, one can imagine
observing instead a final pion, whence a nonzero B, is
possible even for one-photon exchange [40], since the
strong force guarantees final state interactions for the pion.

In the following, we will evaluate Eq. (4) for the e”p —
e~ A(1232) process. To this aim, we will discuss in Sec. III
the OPE amplitude T,,, and in Secs. IV and V the
absorptive part of the TPE amplitude.

ITII. ONE-PHOTON EXCHANGE AMPLITUDE

In this section, we briefly review the inelastic ep — eA
process in the OPE approximation (Fig. 1). The kinematics
of the inelastic transition,

e (k;se) + N(p,4) = e~ (K, s;) + A(p", ), (6)

is described by four-vectors k(k") of the initial (final)
electrons, and p(p’) of the nucleon (A). Furthermore,
s.(s,) denote the normal spin projections of the initial
(final) electrons, and A(1') the helicities of the nucleon (A).
In this work, we will use the notation ¢ for the momentum
transfer towards the hadronic system,

q=k-K=p'-p, (7)

'With this definition, one obtains the absorptive part from
unitarity as AbsTp; = i[(T); — (T7) 7).
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and adopt the usual definitions for the kinematical invar-
iants of this process,

s=(k+p? u=(k-p)P 1=¢=-0" (8
which are related as s+ u— Q> = M3, + M3 +2mZ,
where My (M,) are the nucleon (A) masses respectively,
and m, is the electron mass. Usually experiments are
performed at fixed beam energy E,, which determines s
as s = M% + m? + 2MyE,. Furthermore, it is conven-
tional in electron scattering to introduce the polarization
parameter ¢ of the virtual photon, which can be expressed
in terms of the above kinematical invariants as (neglecting
the electron mass)

e 2(M3ZM3 — su) .
5% + u? — 2M3 M3

©)
The OPE amplitude for the ep — eA process is
given by’

€2

Ty, = r (K, se)y,u(k,se)(A(p", A)|J#(0)|N(p. 4)).

(10)

with e the proton electric charge. The matrix element of the
hadronic current can be expressed in the covariant form:

(A(p", ) [J*(0)IN(p.4)) = ita(p". X )T ya (P, P)u(p. 2),
(11)
where u is the nucleon spinor, and u, is the Rarita-

Schwinger spinor for the A. Furthermore, the on-shell
y*NA vertex is given by

F%A(Pla r)

3(My+M ,
= \EM 93 (Q)ie™7 plg,s

MyQFas
— 9e(0*)(q°p"* — q - p'g™)ys
- 9c(0*)(q*q" — ¢*9™*)rs). (12)

where we use &p03 = +1, and where gy, gp, and gc
represent the three FFs describing the N — A vector
transition [1]. We furthermore introduce the shorthand
notation:

*For simplicity of notation, we will redefine here and in the
following the T-matrix elements by taking a global energy-
momentum conservation factor (27)*5*(k + p — k' — p') out of
the T-matrix element.
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Oipr = Q2+ (My + My)* (13)

Phenomenologically, the y*NA transition is usually
expressed in terms of a different set of FFs introduced by
Jones-Scadron [41], which are labeled G};, G, G¢, and
describe the magnetic dipole (M1), electric quadrupole (E2),
and Coulomb quadrupole (C2) transitions respectively. The
latter have the property that they have a one-to-one relation
with the imaginary parts of the pion electroproduction
multipoles at the resonance position, and they have been
extracted in experiments; see Ref. [1] for details. In terms of
these Jones-Scadron FFs, the FFs entering Eq. (12) are
straightforwardly related as

gu = Gy = G,
2
9=~ (M3 - M, - Q*)G}; + Q°Gyl.,
NA-
1
9= [4M3G} — (M3 — M}, — Q*)Gl, (14)
NA-

where all FFs are functions of Q. The spin averaged squared
matrix element for the ep — e¢A process in the OPE
approximation can then be expressed as

4
Sir,P Eénlxs,gzx (15)

spins

where the function Dy, (s, Q%) is given by

2030 (Mp + My)?

Dl}/(S? Qz) = (1 _g)M]Z\I

2
+e=G2|. (16)
M3 €

G2 +3G

In this work, we will take the empirical information on the
FFs Gj;(0%), Gi(Q?), and G5(Q?), characterizing the
electromagnetic N — A transition, from the MAID2007
analysis [42,43]. In this analysis, the empirical N — A
transition FFs have been expressed as

* QNA GHAs
hecl@) = (22 Joited). (17
with the so-called Ash FFs G};fgfc parametrized as [42,43]

Gi(0%) = 3.00(1 + 0.010%)e 3¢ Gy (02),
GiA(0?) = 0.064(1 — 0.02102)e~0160° G, (0?),

(1+0.1200?%) 4M3
1 +4.90%/(4M%) <M2 MN>

x e 0B GL(02), (18)

G (0?) =0.124
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for 02 in GeV?, and where G, (Q?) = 1/(1 + 0?/0.71)% is
the standard dipole FF. Note that the magnetic dipole N — A
transition provides by far the dominant contribution as
G;;(0) = 3.0, whereas the electric and Coulomb quadrupole
FFs are only at the few percent level relative to the magnetic
dipole FF in the low Q2 range.

We like to notice that in the forward direction, Q> — 0,
the function D;, for the ep — eA process behaves, for
fixed beam energy, approximately as

D 4 1(M2 + M%) ’
S ——
1}/ Q2—>0 1‘42 2 A N

1
Lon - Mﬁ)z}[czz 136E. (19)

4

In contrast, the corresponding function for the elastic
process ep — ep, which we denote by Df]l,, behaves as [29]

Dt — 1O (- M3F;

Q2 A Q2 (s —
o[- MRF — 45MR Y+ O(QY), (20)
N

where F| (F,) are the Dirac (Pauli) FFs of the nucleon
respectively. Equation (20) then leads at forward angles to the
characteristic 1/Q* Rutherford behavior for the elastic OPE
squared amplitude, defined by Eq. (15). On the other hand, the
ep — eA process, which necessarily involves a finite energy
and momentum transfer, behaves as the Pauli (F,) FF term of
the elastic process, which only leads to a 1/Q? behavior for
the squared amplitude at small Q?. We therefore see that the
OPE cross section for the ep — eA process, which enters the
denominator of B,,, is suppressed by one power of Q° relative
to its elastic counterpart. The TPE amplitude forthe ep — eA
process, on the other hand, does not have this same sup-
pression at forward angles, as we will see in the following.
As B, is proportional to the TPE amplitude relative to the
OPE amplitude [see Eq. (4)], this leads to an enhancement of
B, forthe ep — eA process at small values of Q2, relative to
its elastic counterpart.

k K

Y
Y

/

p p

FIG. 1. The one-photon exchange diagram. The grey blob
represents the electromagnetic vertex of the nucleon.
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FIG. 2. The discontinuity of the two-photon exchange diagram.
The cut blob represents the absorptive part of the doubly virtual
Compton amplitude on a nucleon.

IV. IMAGINARY (ABSORPTIVE) PART OF THE
TWO-PHOTON EXCHANGE AMPLITUDE

In this section we relate the imaginary part of the TPE
amplitude, which appears in the numerator of B,,, to the
absorptive part of the matrix element for the ep — eA
process, as shown in Fig. 2.

In the e p c.m. frame, its contribution can be
expressed as

Pl
AbsT, = [ S L mradks.)

e4

X—Q%Q%-W’”’(p’,/l’;p,/l), (21)
where the momenta are defined as indicated in Fig. 2,
with g, =k—-1, ¢ =k -1, q — q» = q, and where E,
is the energy of the intermediate lepton. Furthermore,
Q?=-gt=—(k=1)? and Q3=-¢5=—(K —1)? cor-
respond with the virtualities of the two spacelike
photons. Denoting the c.m. angle between initial and
final electrons as 6,,, the momentum transfer Q% =
—q*> > 0 can be expressed as

(s = M})(s = M3)

2
0" = 2s

(1=cosO.p) +O(m2). (22)

In Eq. (21), the hadronic tensor W**(p','; p, 1) corre-
sponds with the absorptive part of the doubly virtual
y*N — y*A tensor for two spacelike photons:

Wi (p Ay p.2) = (22)*6*(p + 41 — px)
X

< (A(p". )T (0)|X)(X[7*(0)IN (p.4)).
(23)
where the sum goes over all possible on-shell intermedi-

ate hadronic states X. We will use the unitarity relation
to express the full nonforward tensor in terms of
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electroproduction amplitudes y*N — X. The number of
intermediate states X which one considers in the calculation
will then put a limit on how high in energy one can reliably
calculate the hadronic tensor of Eq. (23). In this work, we
will model the tensor W*¥ as a sum over different baryon
intermediate states, and we will explicitly consider the
X =N, A(1232), §,,(1535), and D,5(1520) resonance
contributions.

The phase-space integral in Eq. (21) runs over the
three-momentum of the intermediate (on-shell) electron.
Evaluating the process in the e~ p c.m. system, we can
express the c.m. momentum of the intermediate electron as

1

1P =[5 -

me>2 - W2M<\/§ + me)2 - Wz]’ (24)
where W2 = p% is the squared invariant mass of the
intermediate state X. The c.m. momenta of the initial
(and final) electrons are given by an expression analogous
to Eq. (24) by replacing W? with M3, (M%) respectively.
The phase-space integral in Eq. (21) depends, besides the
magnitude |7| upon the solid angle of the intermediate
electron. We define the polar c.m. angle 6; of the
intermediate electron with respect to the direction of the
initial electron. The azimuthal angle ¢, is chosen such
that ¢; = 0 corresponds with the scattering plane of the
ep — eA process. Having defined the kinematics of the
intermediate electron, we can express the virtuality of both
exchanged photons. The virtuality of the photon with four-
momentum ¢; is given by

1
0 = 5 {(s — M3+ m2)(s — W2 +m2) — 4m?s

- \/(S—M,z\, +m2)? —4m?s

x\/(s = W2+ m2)?2 — dm2s cos 0, . (25)

The virtuality Q3 of the second photon has an expression
analogous to Eq. (25) with the replacements My — M,
and cosf; — cosf,, where 0, is the angle between the
intermediate and final electrons. In terms of the polar and
azimuthal angles 0, and ¢, of the intermediate electron,
one can express

cos 0, = sin B, sin; cos ¢p; + cos O, cosO;.  (26)

In case the intermediate electron is collinear with the
initial electron (i.e. for ; —» 0, ¢; — 0), denoting the
virtual photon virtualities for this kinematical situation
by Qfyes =076 =0.¢; =0), one obtains from
Eq. (25) that
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2 = m2 (W2 — Mlzv)2
1,VCS e(s_Wz)(S_MIZV)’
— W2
Q%,VCS = ((::_71‘421\])) Q2 + O(m%) (27)

We thus see that when the intermediate and initial
electrons are collinear, the photon with momentum g, =

-

k— 121 is also collinear with this direction, and its
virtuality becomes of order of O(m?), whereas the other
photon has a large virtuality, of order Q2. For the case
W = My, this precisely corresponds with the situation
where the first photon is soft (i.e. ¢; — 0), and where the
second photon carries the full momentum transfer
Q3 = Q2. For the case W > M, the first photon is hard
but becomes quasireal (i.e. Q3 ~m2). In this case, the
virtuality of the second photon is smaller than Q. An
analogous situation occurs when the intermediate electron
is collinear with the final electron (i.e. 8, — 0, ¢; — 0, in
which case 8, — 6.,,). The corresponding photon virtual-
ities are obtained from Eq. (27) by the replacements
Ot ves <> 03 yes and My <> M. The second photon is
quasireal in this case, and the first photon carries a
virtuality smaller than Q. For the special case of a A
intermediate state W = M, the second photon becomes
soft, and the first photon carries the full momentum
transfer Q2. These phase-space regions with one quasireal
photon and one virtual photon correspond with quasi-
virtual Compton scattering (quasi-VCS), and correspond
at the lepton side with the Bethe-Heitler process; see e.g.
Ref. [44] for details. They lead to large enhancements in
the integrand entering the absorptive part of the TPE
amplitude.

Besides the near singularities corresponding with quasi-
VCS, where the intermediate electron is collinear with either
the incoming or outgoing electrons, the TPE process also has
anear singularity when the intermediate electron momentum

goes to zero |f| — 0 (i.e. the intermediate electron is soft). In
this case the first photon takes on the full momentum of the
initial electron, i.e. g, — k, whereas the second photon takes
on the full momentum of the final electron, i.e. g, — K. One
immediately sees from Eq. (24) that this situation occurs
when the invariant mass of the hadronic state takes on its
maximal value W =W, =+/s —m,. In this case, the
photon virtualities are given by

%,RCS = %{(\/E— me)2 —Mzzv}v
Q% res :%{M—mev - M3}. (28)

This kinematical situation with two quasireal photons,
corresponding with quasireal Compton scattering (quasi-
RCS), also leads to an enhancement in the corresponding
integrand of AbsT),.
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In the upper panel of Fig. 3, we show the kinematical
accessible regions for the virtualities 07, Q3 in the phase-
space integral of Eq. (21) for a beam energy of E, =
0.855 GeV corresponding with the A4@MAMI experi-
ment, for different values of the c.m. angle 6.,. In the
lower panel we display these phase-space regions for three
different values of W, corresponding with the N, A(1232),

02%(GeV?)

00 02 04 06 08 1.0

01%(GeV?)
0.61 W=0.9353 Gev)
0.5F
0.4+ W=1.232 GeV
=
<]
2 03}
&
0.2}
0-1 W=1.535 GeV
0 0.2 0.4 0.6 0.8 1
Q*(GeV?)
FIG.3. Kinematical accessible region for the virtualities 02, Q3

in the phase-space integral of Egs. (21) and (29) entering the
ep — eA process. The upper panel shows the phase-space
regions for different c.m. angles 6, as indicated on the ellipses
for E, =0.855GeV (s=2.485GeV?), and for W = 0.9383 GeV
(i.e. for a nucleon intermediate state). The lower panel shows the
allowed values of the photon virtualities for different intermediate
states for 6, = 30°. We show three cases corresponding with the
contribution of N, A(1232) and S;;(1535) excitations. The
accessible regions correspond with the interior of the ellipses.
The intersection with the axes corresponds with quasi-VCS,
whereas the situation at W = /s — m, where all ellipses shrink to
the point QO = Q3 = 0 corresponds with quasi-RCS.

113010-6



BEAM NORMAL SPIN ASYMMETRY FOR THE ...

and S;;(1535) intermediate states. We notice from Fig. 3
that the largest possible photon virtualities in the TPE
amplitude occur for the nucleon intermediate state, whereas
for the S;;(1535) intermediate state both photons have very
small virtualities.

Using Eq. (21) for the absorptive part of the TPE
amplitude, and Eqs. (10) and (11) for the OPE amplitude,
we can then express the normal spin asymmetry B, of
Eq. (4) for the ep — eA process in terms of a three-
dimensional phase-space integral:

2 1 [ e
Bn:_672—3/ dW2<s W)
Dy, (s, Q%) 27)° Ja 8s

1
x/d§21 Q%QQI (L H*™), (29)

where the denominator factor Dy, (s, Q?) is originating
from the OPE process as given by Eq. (16), and
dQl = dcos 01d¢1.

The integrand in Eq. (29) arising from the interference
between the OPE and TPE amplitudes has been expressed
as a product of a lepton tensor L;,, and a hadron tensor
H*¥_ The polarized lepton tensor can be expressed as a
trace using the spin projection technique:

Ly = Tr{y (¥ +m )y, (] +m.)y,ys§(k +m.)},  (30)

where £ is the polarization vector of Eq. (3) for an electron
polarized normal to the scattering plane. We see from
Eq. (30) that the polarized lepton tensor vanishes for
massless electrons. Keeping only the leading term in m,,
it is given by

LK/,{Z/ = me(_Tr{ySyﬂlyugkyK} + Tr{YSk,}/ﬂlyvg}/K}
= Tr{ysk'v,r.dlrc}) + O(m3). (31)

Furthermore, the unpolarized hadron tensor HMv g
given by

H = [t (p/, )5 (p' p)u(p, ) W (p', 45 p, 4).
v

(32)

Equivalently, the phase-space integration in Eq. (29)
can be reexpressed in a Lorentz-invariant way as an
integral over photon virtualities Q3 and Q3 by using the
Jacobian

2 2

| Ocos, O, |

PHYSICAL REVIEW D 96, 113010 (2017)

Using Eq. (25) and an analogous expression for Q3, the
Jacobian is given by

J = [(s = W2 + m2)? — 4m2s]/ (4s?)

X [(s = M3, + m2)? — dm2s] V2
x (s = M} + m2)? = dm2s] V2
x sin @, sin @, sin ¢, (34)

leading to the equivalent expression for B,:

e’ 1 =me)? (s — W2
Dy, (s, Q%) (27)° Jw2 8s
J7(01.
« [ a0 B P ). (39)
0103
where the (Q?, Q3) integration regions cover the inside of

the ellipses as displayed in Fig. 3.

We can express the sum over the hadron spins in Eq. (32)
as a trace by expressing the hadron tensor W*¥ through an
operator W in spin space, defined as

W (p! 2 p.A) = g (p', VYW (p' p)u(p.2).  (36)

The spin summation in Eq. (32) can then be worked
out as

QK 3/2 v
Te{T5 (0. p)PLS? (0 MA)WP (', p)
x PU/2)(p, My)}, (37)

H<w =

where FX?A =y (F ) y" stands for the adjoint operator,
and where the spin-3/2 and spin-1/2 projectors for a
state of mass M are defined by

PO (p.M)=p+M, (38)

1
PSB/Z)(p’ M) - <ﬂ+ M) l:_gaﬁ + g]’a?ﬁ
1
+3—pz(ﬂ7apﬁ +pa7ﬁy):| . (39)

For narrow intermediate states X, which we will consider
in the following, the hadronic tensor is given by

H*M* = Z HKMV

where Hy stands for the contribution from each individual

> 2as(W? = MY)HY".  (40)
X

state X, and where we have defined Hy by removing a
o-function in invariant mass for each contributing resonance.
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Using Eq. (40) allows reducing the expression for B, in
Eq. (35) to a two-dimensional integral:

1 e? s — M3 5
B, __(2ﬂ)2D]y(S,Q2)ZX ( 8s )9(S_MX>
X/dQ%dQ%J_l(gl’zQZ)I (LK/“/HK/M/). (41)
0103

V. MODELS FOR THE HADRONIC TENSOR

In this section, we will model the hadronic tensor W## of
Eq. (36) as a sum over different baryon intermediate states.
We will explicitly consider X = N, A(1232), S;;(1535),
and D,3(1520) resonance contributions in the blob of
Fig. 2. The nucleon contribution is calculable based on
the empirical electromagnetic FFs for the nucleon and for
the N — A transition. We will express the A intermediate
state contribution in terms of the A electromagnetic FFs,
and we will use a lattice calculation for the latter for an
estimate. To estimate the unknown A — §;; and A — D3
electromagnetic transitions, we will use a constituent
quark model to relate them to the corresponding FFs for
the N — S;; and N - D3 electromagnetic transitions. The
latter FFs will be taken from experiments. We will detail
these different contributions in the following.

A. Nucleon intermediate state contribution

The contribution to W#*, corresponding with the
nucleon intermediate state in Fig. 2, is exactly calculable
in terms of on-shell y* NN and y*NA vertices as

W (p'. p) = 218(W? — M3)TR (P, pv)
S P<1/2)(pNaMN)F7VN(pN’ p), (42)

with py = p + ¢q,, where FIﬂV"A is as in Eq. (12), and the on-
shell y*NN vertex I}y is given by

(p +pN)U (43)

F Fo)y - F ,
(Fy + Fy)y 2 My

Cyn(pn.p) =

with F| (F,) the Dirac (Pauli) proton FFs respectively. For
the nucleon intermediate state contribution, the unpolarized
hadronic tensor entering Eqgs. (29) and (35) for B, can be
written as

HY = 2z8(W? —
aK 3/2
x Te{T% (p'. p)PL > (0 MA)THA (' py)

x PU2 (py, My)T5y (py. p)PYP (p, My)}.
(44)

M3)

PHYSICAL REVIEW D 96, 113010 (2017)
B. A(1232) intermediate state contribution

The matrix element of the electromagnetic current
operator J# between spin-3/2 states can be decomposed
into four multipole transitions: a Coulomb monopole (E0),
a magnetic dipole (M1), an electric quadrupole (E2) and
a magnetic octupole (M3). We firstly write a Lorentz-
covariant decomposition for the on-shell y*AA vertex
which exhibits manifest electromagnetic gauge invariance
is [1]

(A(p" ) [JF(0)|A(p. 2)) = g (p' . XTI (P, p)up(p. A,
(45)

where A (1) are the initial (final) A helicities, and where
% is given by

B
Faﬁ#(p p) |:F]Aga/}—|—FA q q :|7/M

(2M,)?

FA aff + FA q qﬁ ig/quv (46)
YoMy )E| 2My

where g =p' — p. F IA_2’3_4 are the A electromagnetic FFs
and depend on Q2. Note that F£(0) = e, is the A electric
charge in units of e (e.g., ex+ = +1). For further use we
also define the quantity 7, = Q*/(4M3).

A physical interpretation of the four electromagnetic
A — A transitions can be obtained by performing a
multipole decomposition [45.46]. The FFs F{, 5, can be

expressed in terms of the multipole form factors Gy, Gy,
Gy, and G5, as [14]

1 2t 4TA
P = 1o { Ot = 532Gt 5 G — 260}
A

1 2t 4t
G - ZAGA, —GY + 26, b,
1+1A{ B3 s

e b (143
+7a {G (1 +4%>G1$43] }
=)

j—

2 27
FA=— = 1G5 - (1+22)GS,
) (1+74) { £ ( 3
4
- {Gfﬂ - (1 +%) G,?B] } (47)
At Q% = 0, the multipole FFs define the charge e,, the

magnetic dipole moment u,, the electric quadrupole
moment Q,, and the magnetic octupole moment O, as
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e

€A = Géo(o)’ Ha = oM, Gfu(())
e e
Q= M—zAGéz (0), Oh = SR Gy3(0).  (48)

The inelastic contribution to W”*, corresponding with
the A(1232) intermediate state in the blob of Fig. 2, is
exactly calculable in terms of on-shell y*NA and y*AA
electromagnetic vertices as

WR“(p'. p) = 228(W? = MR (P pa)

PP (pa MO (pap).  (49)

with pp = p + ¢,. This allows us, for the A intermediate
state contribution, to evaluate the unpolarized hadronic
tensor entering Eqs. (29) and (35) for B, as

HYY =2726(W? — M3)
< Te{T% (p'. p)PY> (0 MATRE (P pa)

x PP (pa. MAT¥A(pa. p)PY2) (p, My)}.
(50)

In the following, we will study the sensitivity of B,, to the
A electromagnetic FFs. For the purpose of obtaining an
estimate on the expected size of B,, we will also directly
compare with lattice calculations for the A FFs. We will use
the results for the hybrid lattice calculation of Ref. [14],
which was performed for a pion mass of m, = 353 MeV.
The lattice results for G%, were fitted in Ref. [14] by a
dipole parametrization

1
G5 (0 =55, 51
(0 = (15 g2 /ag,y oy
with resulting fit value
A%, = 1.160 £ 0.078 GeV?. (52)

The FFs G4, and G%, were fitted by exponential para-
metrizations since the expected large Q° dependence for
these FFs drops more quickly than a dipole form:

= Gy (0)e™% /¥,

= G2,(0)e™ /M, (53)

Gy (Q%)
G (Q%)
The fit to the lattice calculations found as values [14]

G2,(0) =3.04+024, A2, =0.935+0.122 GeV2,
Gg,(0) = -2. 06+21 32;’ A%, =0. 54+é 26;) GeV>.
(54)

PHYSICAL REVIEW D 96, 113010 (2017)

The magnetic octupole form factor G4,; was found to be
compatible with zero within the statistical accuracy obtained
in Ref. [14], and it will be neglected in our calculation.

C. S11(1535) intermediate state contribution

In this section we consider the contribution to B,
when the intermediate state corresponds with the
S11(1535) resonance. The S, (1535) resonance, with mass
Mg = 1.535 GeV, and quantum numbers / = 1/2 and
JP =1/27, is the negative parity partner of the nucleon.

A Lorentz-covariant decomposition of the matrix
element of the electromagnetic (e.m.) current operator J*
for the y*NS;; transition, satisfying manifest e.m. gauge
invariance, can be written as

(S11(ps.4s)[7#(0)IN(p.4)) = w(ps. 4s)Cys(ps. p)u(p.4).
(55)

where y is the spinor for the Sy field, pg (4s) is its four-
momentum (helicity) respectively, and where the vertex
I is given by

Dhs(ps.p) =FYS <7” —r-qq—ﬂ>7/s +Fé’sﬂ%
q° (My + Mj)

(56)

with g = pg — p. The functions F{3 are the e.m. FFs for
the y*NS,, transition and depend on Q2.

Equivalently, one can parametrize the y*/N S, transition
through two helicity amplitudes A;/, and §;/,, which are
defined in the Sy, rest frame. These S;; rest frame helicity
amplitudes are defined through the following matrix

elements of the e.m. current operator:

AYS = Nys(S1(0.+1/2)|J,, - €i__, IN(=.—1/2)).
VS = Nys (811 (0. +1/2)[)°IN (=, +1/2)). (57)

where both spinors are chosen to have the indicated
spin projections along the z-axis (which is chosen along
the virtual photon direction) and where the transverse
photon polarization vector entering A;,, is given by
€1 = —1/v/2(1,i,0). Furthermore in Eq. (57), we
introduced the conventional normalization factor

e

Nys = .
VAMy (M5 — M})

The helicity amplitudes are also functions of the photon
virtuality Q? and have been extracted from data on the
pion electroproduction process on the proton. Using the

(58)
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empirical parametrizations of the helicity amplitudes Af/sz,

and Sffz from Ref. [43], which are listed in Eq. (AS8), the
transition FFs can then be obtained as

NS _ 0’
: V2NysOnsi Qs

{AZIVS (Mg — My)V?2 (&) sS }

/2 Onsi Ons-) /2
NS _ (Mg B szv)
2 V2NysOusi Qs
Q? 2Mg
{A%SZ "My - My) ﬁ(QNHQNs_) S‘/Z}
(59)

where we generalized the shorthand notation of Eq. (13) as

e =00+ (M £ M), (60)
with i, j = N, A, S, D denoting the N, A, Sy, D3 states in
the following.

A Lorentz-covariant decomposition of the matrix
element of the e.m. current operator J# for the transition
7*S11 A, satisfying manifest e.m. gauge invariance, can be
written as

(S11(ps, As)[7#(0)[A(pas Aa))

= l/_/(Ps,/ls)FZ”s(P& PA)”a(pA”IA)v (61)

where the vertex I'Ys is given by

PHYSICAL REVIEW D 96, 113010 (2017)

where P = (pp + ps)/2 and g = pg — pa. In the defini-
tion of Eq. (62), the FFs are defined for the AT — §;
transition, and the prefactor 1/ (QAS_QA5+) was chosen
such that the resulting e.m. FFs F{3 ; are dimensionless.

The helicity amplitudes are defined through the follow-
ing specific matrix elements of the electromagnetic current
operator,

Aéls/z = Nas(S11(0,=1/2)|J,, - €f{:+1 |A(=q.-3/2)),

AffzzNAs<S“(6,+1/2)\J 4 A(=G—1/2)),
S%;ésNAS<SH<6,+1/2>|J°|A<—q,+1/2>>, (63)

where the subscripts on the helicity amplitudes indicate the
S11 spin projections along the z-axis (which is chosen along
the virtual photon direction), and where we introduced the
normalization factor

e
NAS = . (64)
4Mg(M5 — M3)

Note that we can relate the above helicity amplitudes A%”

for the A — B transition, in the rest frame of the baryon
resonance B with helicity Ap, to the corresponding ampli-
tudes AfAA for the B — A transition, in the rest frame of the
A with helicity A4, as

A,?f = ’73’7AA1A_B/1Av (65)
1
CYs(ps. pa) = 7 1{(q7" =7 - qg™*)MF?S
as(Ps-ps) = Oas-Oas+ { JMsFi with #, 75 the corresponding intrinsic parities.
+ ( G*P* —q- P gaﬂ> FAS The relations between the helicity amplitudes of Eq. (63)
2 .. )
“ 2 ap\ AS and the transition FFs for the electromagnetic A — Sy,
+(¢°¢" — q¢°g™)F 3 I3 (62) transition can be obtained as
|
AS _ AS
A= NASQAS— [\/—Auz A_l/z}’
e T R B e
NasOas- / / NasQisy Qas— / 2l NpsQis, Qs
2+ M% +3M3 2VOM \Mg(M% — M3
F3S = [\/_Al/z Aéf/z} (Q - > M) [‘/_Al/z +AA1/2] Vo, 3S( > )Sl/z (66)
2NASQAS— 2N psQhsi OQas- NasQus: Qas—

As the helicity amplitudes A%} ), A7), and S} are not
known from experiments, we will estimate them using a
nonrelativistic quark model, as detailed in the Appendix.

The quark model provides relations between the helicity

|
amplitudes for the A — §;; transition and the correspond-
ing ones for the p — S;; and p — D5 transitions, as given
by Eqgs. (AS5) and (A7). For the numerical estimates, we will
use these relations and use the empirical results of Eq. (A8)
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for the electromagnetic p — S;; and p — D3 helicity
amplitudes as input.

The inelastic contribution to W#*, corresponding with
the S;;(1535) intermediate state, can then be expressed in
terms of on-shell y*NS;; and y*AS|, vertices as

Wi (p', p) = 216(W* — M3 (ps. p')
x P/2) (ps, Ms)rlfvs(l’s, p), (67)

where the adjoint vertex %% =y0(I%%)7y0 is given by
exactly the same operator as in Eq. (62), with g =
ps— p' in this case denoting the outgoing photon
momentum.

This allows us, for the S;; intermediate state contribu-
tion, to evaluate the unpolarized hadronic tensor entering

Egs. (29) and (35) for B,, as

H{Y = 276(W? - M3)
x Te{T% (p'. p)PY > (0 M) s(ps. 1)
X P(l/z)(PSaMS)FNS<pS7p)P(l/z)(p,MN>}- (68)

D. D3(1520) intermediate state contribution

We next consider the contribution to B, when the
intermediate state corresponds with the D;3(1520) reso-
nance. This is the lowest mass baryon resonance, with mass

= 1.520 GeV, which has quantum numbers / = 1/2
and J© =3/2".

A Lorentz-covariant decomposition of the matrix
element of the e.m. current operator J* for the y*ND3
transition, satisfying manifest e.m. gauge invariance, is
given by

(Dy3(pp>Ap)[J#(0)[N(p, 1))
=Wo(Pp:40)p(Pp. P)U(p. 4), (69)

with pp (4p) denoting the four-momentum (helicity) of the
D1 state respectively, where v, is the Rarita-Schwinger
spinor for the Dy; field, and where the vertex 'y, is
given by

Yy (pp.p) = O O {(¢“r" = q - yg*)MpFYP
- +

+(¢°pp* — q - ppg™)FYP
+ (g°q" - ¢*g*)FyP}, (70)

with ¢ = pp — p. In Eq. (70), the prefactor was chosen
such that the resulting e.m. FFs F{'?; are dimensionless.

PHYSICAL REVIEW D 96, 113010 (2017)

In the same way as we did for the y*NS;; transition
above, one can also parametrize the y*ND 5 transition
through helicity amplitudes in the D3 rest frame.

For the spin-3/2 resonance, we need three helicity

amplitudes Aév/g, AZIV/L; and SVH ', which are defined

through the following matrix elements of the e.m.
current operator:

A’!/% = NND<D13(6, +3/2)1, - €41 IN(=4G, +1/2)),

AVB = Nyp(Di3(0,+1/2)J, - €, IN(=G,—1/2)),
SVB = Nyp(Dy3(0. +1/2)[/°IN(=G. +1/2)). (71)

with Nyp defined, analogously as in Eq. (58), as

e
VAM (M3,

Nyp = (72)

- M)

Using the empirical parametrizations of the helicity
amplitudes Aé’/Dz, Af/Dz, and S"° 1> from Ref. [43], which
are listed in Eq. (AS8), the transition FFs can then be
obtained as

1
FND AND \/gAND
NNDQND—{ 3/2 1/2
1
FND + FND —
: : NNDQ%/D+QND—
x {(M%) — M3, - 07)[ANE + V3ANZ)
— 4\/—M Q2 SND}
QND+QND— 1/2
2M>
FND — _ D AND 3AND
o B g vanie
*[(Mz ~ ) SND} (73)
QND+QND— 1/2

A Lorentz-covariant decomposition for the on-shell
y*AD ;5 vertex which exhibits manifest electromagnetic
gauge invariance as

(D13(pps4p)[T*(0)|A(pasAa))

= 0p(Pp. A)T2 (Pps Pa)ta(Pasda),  (74)
where p, (pp) are the four-momenta and A, (1p) the

helicities of A (D3) respectively, and where the vertex V%
is given by
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Faﬁ”(pDva)
a,p H
— | FAD ﬂ+FADL:|<ﬂ_ . 6]_)
{19" S My + M) Y 7qq2 Ys
q°q’
(My+Mp)

io"q,
2] (My+ Mp) 7

_ [Fngaﬂ e
FAD

My ¥ M) 73)

(g™q" — ¢*q%)ys.

where g = pp — pa.

Although we will only need on-shell vertices in this
work, one can also define consistent vertices for off-shell
spin-3/2 particles which satisfy a spin-3/2 gauge invari-
ance, as discussed in Refs. [47,48], i.e. (p4) T%% = 0 and
(pD)ﬁF‘Z/Z‘ = 0, by replacing e.g. in Eq. (75)

T (PAPha” — PAPS P — PHPLPA

MM,

+ o PP}

or

q-p q-p
q°q’ — <q“ 2 ApZ) (q” = DPD> (77)

A D

2 ~ A
ASf = NAD\/;QAD+{F1AD - ZMA(MADD+ M)
Ap-
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For the A — D;; amplitude, there are five helicity
amplitudes, defined by the following matrix elements of
the e.m. current operator,

y/
855 = Nap(D13(0, +3/2)|[J°|A(=4. +3/2)),
St5 = Nap(Di3(0, +1/2)[J°|A(=G, +1/2)), (78)
where N,p is defined as
e
Npap = 79
80 A, (M7, — M) 7
It is also convenient to introduce
My,—M
FD = FAD 4 (22 "8 ) pAD, 80
[ 3t (MD T, ) 2 (80)

The helicity amplitudes for the electromagnetic A — D3
transition are obtained as

P .

D .
AAD N \/: JAD Fap
Si72 = Nap\[3Qaneq Fi oMy (M + Ma)

AD _
Af 2=

AD _
S3/2

Sl/2

Nap—

NAD

Nap

+

V2 Oap+
6 MuM,

2M [, Q?
Qip: Qan-

2 2
QADwL QAD—

2(Mp + My)?

{ (Q2+M2 +M )FAD

2 2
Qap+Qan-

AD (M MA) AD—

(Mp + My)?

P3P+ F?

(Mp + M,)

QAD+ OQap-

6M3M , O?

{_(MD —My)FYP +

{(Q2 + M} + M3 —MpM,) [—(MD — My)FPP +

|:(MD — My)F3P

Inverting the relations in Eq. (81) gives

C(Mp+ M)

2
OQan-

QiD— FAD:| +
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~ 3 1
FAD:\/: MoAAD M ABD)
l 2NADQAD+(MD+MA)( pAZy T My 3/2)

FAD (MD+MA) {2MDQ2sAD
NapQip: Qip- 302
FAP /B (Mp +M,)
NapQip, Qan-
—~ \/_MDMA(MD +My)ASDY,
NADQAD+QAD
+ \/;QAD+QAD—[MD(Q2 +Mp(Mp
—V3MpMa(Mp — M)A /2]}
MM
FAP =6 —— P78 (ASD _ ALD).
> NapQap: Qip- V2 32

As discussed above for the electromagnetic A — Sy
transition, for our numerical estimates we will also use the
quark model to relate the helicity amplitudes for the
A — D3 transition to the corresponding ones for the p —
Sy; and p — D3 transitions, as given by Eqgs. (A5) and
(A7), and use the empirical results of Eq. (A8) for the latter.

The inelastic contribution to W#*, corresponding with
the D3(1520) intermediate state, can then be expressed in
terms of on-shell y*ND; and y*AD,5 vertices as

= =3
W (', p) = 228(W? — M35 (pp. p')

x PP (pp. Mp)T(pp.p).  (83)

where the adjoint vertex I = y0(I%#)"0 is given by the
same operator as in Eq. (75), with ¢ = pp — p’ in this case
denoting the outgoing photon momentum, and where in
addition the sign of the term proportional to the FF F£P is
reversed.

This allows us, for the D5 intermediate state contribu-
tion, to evaluate the unpolarized hadronic tensor entering
Egs. (29) and (35) for B,, as

Hpy' = 2n5(W?
ad 3/2
< Te{T% (p'. p)PY > (0 M) (P ')

X P<3/2)(PD,MD)F§7D(PD,P)P“/z)(P»MN)}-
(84)

- Mj)

VI. RESULTS AND DISCUSSION

In this section, we will show estimates for the normal
beam SSA using the hadronic model described above,

—M,))ALD 12~

M
\/>QAD+ QAD— (M) = My) (MpASD, + MAA3/2)}

(Mp + M,)

{Mp(Q® + Mp(Mp + M))ASD, + MA(Q* + Ma(Mp + My))ASH

{2MDQ2[(Q2 + M3, + M3 — MpM)S5H = 3MaM St

MA(Q* = Ma(Mp — My))ASH

(82)

[
which includes the contributions of N, A(1232),
S11(1535), and D3(1520) intermediate states.

To visualize the contributions from different kinematical
regions entering Eq. (41) for B,,, we will show density plots
of the integrand in

40203
B, = 1 85
. / oror 110700 (85)

where we defined a dimensionless density function
1(Q3, 03) by separating out the factor 1/(Q370Q3) in the
integrand of Eq. (41).

Due to the photon virtualities in the denominator, the full
integrand of B, is very strongly peaked towards the quasi-
VCS regions, where either Q% or Q3 becomes of order
O(m?) [see Eq. (27)], corresponding with the physical
situations where the intermediate electron is collinear with
either the incident or scattered electrons. Furthermore,
when /s approaches the invariant mass W of an inter-
mediate baryon resonance, one also obtains an enhance-
ment as both photons become quasireal; see Eq. (28). As
the integrand is amplified in the region of small Q% and/or
Q% due to these near singularities, special care is needed
when integrating over these regions numerically.

The electromagnetic transition strengths are encoded in
the dimensionless density function 7(Q%, Q3) in Eq. (85).
Using the model for the hadronic tensor outlined in Sec. V,
we show the density functions 1(Q3, Q3) for a beam
energy E, = 0.855 GeV of the A4d@MAMI experiment,
in Figs. 4 and 5 for the N and A(1232) intermediate states
respectively.

In Fig. 6, we show our result for the angular dependence
of B, for a beam energy E, = 1.165 GeV, corresponding
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FIG. 4. Plot of the density 1(Q?, Q3) entering the integrand of
B, in Eq. (85) for the nucleon intermediate state contribution
for E, = 0.855 GeV. The upper and lower panels show the
distribution for 6., = 30 deg and 6., = 150 deg, respectively.
The integrand takes zero value along the dashed curve. Larger
negative (positive) values of I correspond with stronger shades
of blue (red). The distance between the contours corresponds
with 0.5 x 1078 for the upper panel and 1.25 x 1077 for the
bottom panel.

with the Qweak@JLab experiment [38]. We notice from
Fig. 6 that the nucleon and A intermediate state contribu-
tions to B,, are strongly forward peaked. This behavior for
the ep — eA process is unlike the corresponding B,, for the
elastic process. The measured value for B,, for the elastic
ep — ep process ranges from a few ppm in the forward
angular range to around a hundred ppm in the backward
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FIG.5. Plot of the density 1(Q?, Q3) entering the integrand of
B, in Eq. (85) for the A intermediate state contribution for
E, = 0.855 GeV. The upper and lower panels show the dis-
tribution for 6., = 30 deg and 6., = 150 deg, respectively. The
integrand takes zero value along the dashed curve. Larger
negative (positive) values of I correspond with stronger shades
of blue (red). The distance between the contours corresponds
with 0.5 x 1077 for the upper panel and 0.5 x 107 for the
bottom panel.

angular range for beam energies below and around 1 GeV
[31-37], in good agreement with theoretical TPE expect-
ations [29]. For the inelastic process ep — eA, we expect
an enhancement of B, in the forward angular range,
corresponding with low Q2, since the OPE process which
enters the denominator of B,, is suppressed by one power of
Q7 relative to its elastic counterpart, as seen from Egs. (19)
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FIG. 6. Beam normal spin asymmetry B, for the e”p — ¢” AT
process as a function of the lab scattering angle for a beam energy
E, =1.165 GeV. The curves denote the contributions from
different intermediate states: nucleon (dashed-dotted red curve),
A(1232) (dashed blue curve), S;;(1535) + D3(1520) (dotted
violet curve), and N + A + S;;(1535) + D5(1520) (solid black
curve). The data point is from the Qweak Collaboration [38].

and (20). We furthermore see from Fig. 6 that the sum
of §;(1535) + D5(1520) contributions does not show
such forward angular enhancement as their electromagnetic
transitions are suppressed by an extra momentum
transfer. The S;; and D;; contributions show a similar
size and strength, and their combined contribution to B,
becomes larger than the A(1232) contribution for angles
Orp, > 45 deg.

In Fig. 6, we also show a first data point for the beam
normal SSA for the e”p — e~ AT (1232) process which has

70 { E,=0.855GeV

T

60

W
o
T

B, (ppm)

P R B T"“-\--‘-:TH:#.-.-‘.-A.YL
80 100 120 140 160 180
0, (deg)

20 40 60

FIG.7. Beam normal spin asymmetry B,, forthe e"p — e”A™
process as function of the lab scattering angle for a beam
energy E, = 0.855 GeV where data have been taken by the
A4@MAMI experiment [32,33]. The curves denote the con-
tributions from different intermediate states: nucleon (dashed-
dotted red curve), A(1232) (dashed blue curve), S;;(1535) +
D5(1520) (dotted violet curve), and N + A + S;(1535) +
Dy3(1520) (solid black curve).
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been reported by the Qweak Collaboration [38]. Despite its
large error bar, the data point at a forward angle of 0,,, =
8.3 deg shows a large value of B,, of around 40 ppm for this
process. The data point is very well described both in sign
and magnitude by our calculation, confirming the large
expected enhancement in the forward angular range. Since
the S;,(1535) + D15(1520) contribution is very small at
this angle, B, is dominated by N and A intermediate states
at this forward angle. Furthermore, since the N — N,
N — A electromagnetic transitions are well known from
experiments, and the A — A electromagnetic transition is
completely dominated by the coupling to the A™ charge at
this forward angle, the model dependence in our prediction
is very small at this angle.

In Figs. 7 and 8, we show the corresponding results for
different kinematics corresponding with the A4@MAMI
experiment. Figure 7 shows the result for £, = 0.855 GeV.

300

: E, = 0.420 GeV
250 |
200 f

150 F5

B, (ppm)

100 |
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0 P S S EUR SR e,
20 40 60 80 100 120 140 160 180
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FIG. 8. Beam normal spin asymmetry B, for the e~ p — e~ A"
process as a function of the lab scattering angle, for beam
energies in the A-resonance region where data have been
taken by the A4@MAMI experiment [32,33]. Upper panel:
E, =0.420 GeV; lower panel: E, =0.570 GeV. The curves
denote the contributions from different intermediate states:
nucleon (dashed-dotted red curves), A(1232) (dashed blue
curves), and N + A (solid black curves).
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FIG. 9. Sensitivity of the beam normal spin asymmetry B,, for
the e”p — e~ AT process at E, = 0.570 GeV on the AT mag-
netic dipole moment. The curves denote the contributions from
N + A intermediate states for different values of u, [in units of
e/(2My)]: up = 1.5 (blue dashed curve), u, = 3.0 (black solid
curve), and p, = 4.5 (red dashed-dotted curve).

This beam energy corresponds with a value /s =~
1.58 GeV, which is closer to the S$;;(1535) and
D3(1520) thresholds. We therefore expect an enhance-
ment of their contributions. As one gets very close to the
threshold for an intermediate state contribution, one
approaches the situation where the intermediate electron
becomes soft, and both photons have small virtualities
[see Eq. (28)], corresponding with the quasireal Compton
process.

Figure 8 shows the results for B,, for two beam energies
of the A4@MAMI experiment below the thresholds for
S11(1535) and D15(1520). These kinematical situations are
therefore dominated by N and A intermediate state con-
tributions. We see that the corresponding asymmetries
become large at forward angles. In the angular range
O, = 30-40 deg, where potential data exist from the
A4@MAMI experiment, we predict B, = 200-250 ppm
for E, =0.420 GeV and B, =75-95 ppm for E, =
0.570 GeV. It will be interesting to confront these numbers
with experiments.

In Fig. 9, we also show the sensitivity of B, at E, =
0.570 GeV to the value of the A" magnetic dipole moment
up. We compare our results for three values of pp
corresponding with the theoretical uncertainty range which
is currently listed by PDG, given in Eq. (1). We see from
Fig. 9 that for 6y, around 90°, B, varies by around 5 ppm
when varying u, in the range p, = 1.5-4.5 [in units
e/(2M,)], in a region where B,, is about 28 ppm.

VII. CONCLUSIONS

In this work, we have presented the general formalism to
describe the beam normal spin asymmetry B,, for the ep —
eA"(1232) process. This beam normal SSA arises from an

PHYSICAL REVIEW D 96, 113010 (2017)

interference between a one-photon exchange amplitude and
the absorptive part of a two-photon exchange amplitude. As
the intermediate state in the TPE amplitude is on its mass
shell, it allows access to the A — A and N* — A electro-
magnetic transitions, which otherwise are not accessible in
an experiment without resorting to a theory framework. We
have provided estimates for this asymmetry by considering
nucleon, A(1232), §;;(1535), and D5(1520) intermediate
states. We find that B,, for the ep — eA process shows a
strong enhancement in the forward angular range, as
compared to its counterpart for the elastic process
ep — ep, which has been measured by several collabora-
tions. The forward enhancement of B, for the inelastic
process is due to the OPE process for the ep — eA process,
entering the denominator of B,,, which is suppressed by one
power of Q7 relative to its elastic counterpart. The normal
beam SSA for the ep — eA reaction therefore offers an
increased sensitivity to the absorptive part of the TPE
amplitude. We have compared our results for B, with the
first data point for the e”p — e~ AT process from the
Qweak@JLab experiment and found that the forward
angle data point is very well described both in sign and
magnitude by our calculation. We have also given pre-
dictions for the A4@MAMI experiment, for which data
have been taken, and we have shown the sensitivity of this
observable to the AT magnetic dipole moment. It will be
interesting to analyze those data and provide a comparison
with the above theory predictions.
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APPENDIX: ELECTROMAGNETIC A — S;; AND
A — D;; TRANSITIONS IN THE QUARK MODEL

For calculations with the S;; and D3 intermediate
states, we need the A — S;; and A — D5 transition matrix
elements, as well as the proton to S;; and D;3 matrix
elements. The latter are known from analyses of scattering
with proton targets [43], but for the former no direct
experimental information is available.

However, using ideas from SU(6) or from the constitu-
ent quark model one can relate the transition matrix
elements involving A’s to those involving nucleons. We
shall implement these ideas in a nonrelativistic (NR) limit,
and give the helicity amplitudes for the transitions
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connecting a A to the S;; or D3 in terms of those
connecting a proton to the same states. A summary of
the techniques and the relevant results are given here.
Details regarding the techniques can be found in [49],
and the same methods of course can be used for other
transitions as well [49-52].

The helicity matrix elements, defined for the present
cases in Egs. (63) and (78), contain the operators J,, - €
and J°. At the quark level in a NR limit, these operators
become
Jﬂ'é‘g:l—>3A€q3S3++3B€q3L3+, JO—’3C€q3. (Al)
The operators are written in anticipation of use in a wave
function completely antisymmetric among the quarks, so
we only evaluate for the third quark and multiply by 3; e 3
is the charge of the third quark, S;, is the spin raising
operator for the third quark, and L, similarly is the angular
momentum raising operator. We have let the photon three-
momentum be in the z-direction. The factors A, B, and C
depend on position; C is the simplest example, being just
€'9% where z3 is the z coordinate of the third quark. Details
of the derivations may be found in [49] starting from a
Hamiltonian formalism, and one can obtain the same
results using a NR reduction of standard relativistic
expressions for the current.

The A state has the same spatial wave function as the
nucleon state, and it may in short form be given as

A(S.)) = oot xs,)- (A2)

where v, ¢, and y respectively represent the space, flavor,
and spin wave functions of the three quarks; the color wave
function 1is tacit; superscripts S indicate a wave function
that is totally symmetric; the subscripts on the space wave
function indicate orbital angular momentum and projec-
tion, L and L,; and the subscript on the spin wave function
is the spin projection. The flavor wave function, here and
elsewhere in this section, is chosen to be for the total charge
+1 state.

The states S1;(1535) and D;5(1520) are negative parity
states usually associated with the SU(6) 70-plet states
where the three quarks are collectively in a spin-1/2,
flavor octet state. Mixing with other states is possible
but will be ignored for now. The wave functions, again in

short form, are
1 1/2
LZ SZ

1 J
m:ig(]z

( ¢MS MS+¢MA MA)
(¢MA MS+¢MS MA)}’

x {I/IM
(A3)
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where J is a stand-in for S;; when J = 1/2 or D;3 when
J = 3/2. The first symbol after the summation sign is the
Clebsch-Gordan coefficient, and superscripts MS and MA
stand for mixed symmetry states where the first pair of
quarks is either symmetric or antisymmetric.

The crucial matrix elements involving the spatial
wave function of the ground state N or A on one side
and the mixed symmetry states of the 70-plet on the other
side are

A(Q%) = (Wit [Alwoo)
(Qz) <W115|BL3+|W00>
1(Q2) = <1//105|C|z//00>, (Ad)

where A, By, and C; are generally real. The MA states do
not enter because of symmetry considerations. Then,

N
AAS SAA 2
]/2 3\/— (Q)
N
A%, = -2 A1(Q),
Ash =0,
N 2
s =-"2 o)
Npav2
ARD, = = =P A0, (AS)

The B amplitudes also do not enter, because of the
mismatched spins of the A and Sy;, D;3 quark wave
functions, meaning that the S5, operator is always needed.
Similarly, all the scalar S;; and D15 transition amplitudes to
the A are zero. Normalizations Ng, and Np, are given in
Egs. (64) and (79), respectively.

A pair of proton to 70-plet amplitudes are

Af;i—%s( {(0%) + V3B,(0)),
ATD = Moo (/34,02 + B (0%)). (A6)

V6

These allow us to obtain A; from measured amplitudes,

D S
N |2 \/iAf/z Af/z
p

pS

(A7)
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The MAID parametrizations are [43]

PHYSICAL REVIEW D 96, 113010 (2017)

Af}gz = 664 X 10_3 GeV—1/2(1 + 1-608Q2)€_0'70Q2’

S]f}S'z =-2.0x 10—3 GeV—l/Z(l + 23-9Q2)€_0'81Q2,
APD = 227.4 x 107 GeV=1/2(1 + 8.5800 — 0.2520° + 0.3570% )~ 20€°,
AR =160.6 x 107> GeV="/2(1 — 082007 + 0.5410* - 0.0160%)e~"062",

S[l)/DZ = —-63.5x 10_3 GeV—1/2<1 +4-19Q2)€_3‘40Q2,

for Q% in GeV?2.
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