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We calculate the single spin asymmetry for the ep → eΔð1232Þ process, for an electron beam polarized
normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange
approximation and are directly proportional to the absorptive part of a two-photon exchange amplitude.
As the intermediate state in such a two-photon exchange process is on its mass shell, the asymmetry allows
one to access for the first time the on-shell Δ → Δ as well as N� → Δ electromagnetic transitions. We
present the general formalism to describe the ep → eΔ beam normal spin asymmetry, and we provide a
numerical estimate of its value using the nucleon, Δð1232Þ, S11ð1535Þ, and D13ð1520Þ intermediate states.
We compare our results with the first data from the Qweak@JLab experiment and give predictions for the
A4@MAMI experiment.
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I. INTRODUCTION

A lot of information is available on the electromagnetic
structure of protons and neutrons, such as their magnetic
moments, charge radii, elastic form factors, or electromag-
netic polarizabilities. In contrast, our knowledge of the
electromagnetic structure of nucleon excited states is very
scarce. Even for the lowest excitation of the nucleon, the
prominent Δð1232Þ resonance, the information is limited to
the nondiagonalN → Δ electromagnetic transition; see e.g.
Refs. [1–3] for some recent reviews. Deducing from such
measurements physical quantities such as the magnetic
dipole moment or the charge radius of the Δð1232Þ state
has long required resorting to theoretical approaches which
relate the properties of the Δ to properties of the nucleon
and/or to the experimentally accessible N → Δ transition.
Such theoretical approaches include different types of
constituent quark models (see Ref. [1] for a review of
some of these models) and general large-Nc relations in
QCD [4–7], as well as chiral effective field theory including
nucleon and Δ fields [8–12]. In recent years, lattice
QCD has been able to also provide direct calculations of
such static quantities and form factors (FFs) for the Δ
resonance [13–15].
In order to experimentally access the electromagnetic

structure of the Δð1232Þ resonance, and to directly com-
pare with lattice QCD predictions, a way to measure the

diagonal Δ → Δ electromagnetic transition is required. As
the Δð1232Þ is a very short lived resonance, the only viable
way is to use a reaction where the Δ is first produced, and
then couples to the electromagnetic field before decaying
into a πN state. One such process which has been proposed
to access the magnetic dipole moment (MDM) of the
Δþð1232Þ resonance is the radiative π0 photoproduction
process γp → γΔþ → γπ0p [9,16–20]. A first experimental
extraction of the Δþð1232ÞMDM has been performed in
Ref. [21] using the reaction model of Ref. [18], resulting in
the value listed by PDG [22]:

μΔþ ¼ 2.7þ1.0−1.3ðstatÞ � 1.5ðsystÞ � 3ðtheorÞμN; ð1Þ

with μN ¼ e=2MN the nuclear magneton. One notices that
the error in Eq. (1) is dominated by the theoretical
uncertainty. A dedicated follow-up γp → γπ0p experiment
[23] found it difficult to improve on the precision of the
ΔþMDM due to model dependencies in the used theo-
retical framework, which is needed to access the on-shell
γ�ΔΔ vertex from such a reaction process.
Accessing the on-shell electromagnetic FFs of the

Δð1232Þ resonance has not been possible in experiments
to date. To achieve such a goal, we need a two-photon
observable where the Δ is firstly produced on a proton
target by one virtual photon and then couples to the second
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photon leading to the Δ final state, which is then detected
through its πN decay. In order to properly access the on-
shell γ�ΔΔ vertex, we need to look at the pole position of
the intermediate Δ state. If we want to realize such an
experiment with virtual photons it will in general be
dominated by the direct electromagnetic N → Δ transition
which involves only one photon and has been well studied
in experiments, e.g. through the pion electroproduction
process on a proton in the Δ region. If we aim to access the
electromagnetic Δ FFs, we need an observable where this
direct N → Δ transition through one photon is suppressed
or absent. An observable which realizes this is the beam
normal spin asymmetry for the ep → eΔð1232Þ process,
which we study in this work.
Normal single spin asymmetries (SSA) for the ep → eR

processes, with R some well-defined state, e.g. recon-
structed through its invariant mass, with either the electron
beam or the hadronic target polarized normal to the
scattering plane, are exactly zero in the absence of two-
photon or multiphoton exchange contributions. These
normal SSAs are proportional to the imaginary (absorptive)
part of the two-photon exchange (TPE) amplitude, which
is the reason why they are exactly zero for real (non-
absorptive) processes such as one-photon exchange
(OPE). At leading order in the fine-structure constant,
α ¼ e2=ð4πÞ≃ 1=137, the normal SSA results from the
product between the OPE amplitude and the imaginary part
of the TPE amplitude; see Ref. [24] for a recent review. As
the SSA is proportional to the imaginary part of the TPE
amplitude at leading order in α, it guarantees that the
intermediate hadronic state is produced on its mass shell.
For a target polarized normal to the scattering plane, the

corresponding normal SSAs were predicted to be in the
(sub)percent range some time ago [25]. Recently, a first
measurement of the target normal SSA for the elastic
electron-3He scattering has been performed by the JLab
Hall A Collaboration, extracting a SSA for the elastic
electron-neutron subprocess, for a normal polarization of
the neutron, in the percent range [26]. For the experiments
with polarized beams, the corresponding normal SSAs for
the ep → ep process involve a lepton helicity flip which is
suppressed by the mass of the electron relative to its energy.
Therefore these beam normal SSAs were predicted to be in
the range of a few to a hundred ppm for electron beam
energies in the GeV range [27–29]. Although such asym-
metries are small, the parity-violation programs at the
major electron laboratories have reached precisions on
asymmetries with longitudinally polarized electron beams
well below the ppm level, and the next generation of such
experiments is designed to reach precisions at the sub-ppb
level [30]. The beam normal SSA, which is due to TPE and
thus parity conserving, has been measured over the past
15 years as a spin-off by the parity-violation experimental
collaborations at MIT-BATES (SAMPLE Collaboration)
[31], at MAMI (A4 Collaboration) [32,33], and at JLab

(G0 Collaboration [34,35], HAPPEX/PREX Collaboration
[36], and Qweak Collaboration [37]). The measured beam
normal SSA for the elastic ep → ep process ranges from a
few ppm in the forward angular range to around a hundred
ppm in the backward angular range, in good agreement
with theoretical TPE expectations.
Preliminary results from the QWeak Collaboration [38,39]

for the beam normal SSA for the ep → eΔþð1232Þ process
indicate that the asymmetry for the inelastic process is
around an order of magnitude larger than the elastic
asymmetry. It is the aim of this work to detail the formalism
to understand these inelastic beam normal spin asymmetries
and to study their sensitivity on theΔð1232Þ electromagnetic
FFs as well as on the N� → Δ electromagnetic transitions.
The outline of this work is as follows. In Sec. II we

briefly recall the definition of the beam normal SSA.
In Sec. III, we describe the leading one-photon exchange
amplitude to the ep → eΔ process. Subsequently in
Sec. IV, we give the general expression of the absorptive
part of the two-photon exchange amplitude to the ep → eΔ
process, and we describe the dominant regions in the phase-
space integrations. In Sec. V, we provide the details of the
model for the hadronic tensor entering the ep → eΔ TPE
amplitude which we use in this work. Besides the inter-
mediate nucleon contribution, we subsequently describe
the Δð1232Þ, S11ð1535Þ, and D13ð1520Þ resonance inter-
mediate state contributions. In Sec. VI, we show our results
and discussions. We compare with the existing data for
the Qweak@JLab experiment and provide predictions for
the A4@MAMI experiment. Our conclusions are given in
Sec. VII. We provide the quark model relations to relate the
electromagnetic Δ → S11 and Δ → D13 helicity amplitudes
to the N → S11 and N → D13 helicity amplitudes in the
Appendix.

II. BEAM NORMAL SPIN ASYMMETRY

The beam normal single spin asymmetry (Bn), corre-
sponding with the scattering of an electron with polariza-
tion normal to the scattering plane on an unpolarized
proton target, is defined by

Bn ¼
σ↑ − σ↓
σ↑ þ σ↓

; ð2Þ

where σ↑ (σ↓) denotes the cross section for an unpolarized
target and for an electron spin parallel (antiparallel) to the
normal polarization vector, defined as

ξμ ¼ ð0; ξ⃗Þ; ξ⃗≡ ðk⃗ × k⃗ 0Þ=jk⃗ × k⃗ 0j: ð3Þ

Applying the derivation of Ref. [25] to the case of a beam
polarization normal to the scattering plane, Bn can be
expressed to order e2 as
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Bn ≃
2Im½ðT1γÞ�fiðAbsT2γÞfi�P

spinsjT1γj2
; ð4Þ

where T1γ denotes the OPE amplitude, and AbsT2γ the
absorptive part of the TPE amplitude between the initial
state i and the final state f. The beam polarization in the
initial state in Eq. (4) is understood along the direction of ξ⃗.
The numerator in Eq. (4) corresponds (to order e2) to the
difference of squared amplitudes for normal beam polar-
izations ↑ and ↓, while all other spins are summed over,
whereas the denominator is the squared amplitude summed
over all spins. The phase of the amplitude T is defined
through its relation to the S-matrix amplitude S ¼ 1 − iT.
In Eq. (4), the absorptive part of the two-photon amplitude
is defined as1

ðAbsT2γÞfi ≡
X
n

T�
nfTni; ð5Þ

involving a sum over all physical (i.e. on-shell) intermedi-
ate states n.
Generally, as illustrated by Eq. (4), one-photon exchange

alone will give no beam normal single spin asymmetry.
The observed particle needs at least one further interaction.
When only the final electron is observed, which we
consider in this work, this means two or more photons
are exchanged. In the resonance region, one can imagine
observing instead a final pion, whence a nonzero Bn is
possible even for one-photon exchange [40], since the
strong force guarantees final state interactions for the pion.
In the following, we will evaluate Eq. (4) for the e−p →

e−Δð1232Þ process. To this aim, we will discuss in Sec. III
the OPE amplitude T1γ , and in Secs. IV and V the
absorptive part of the TPE amplitude.

III. ONE-PHOTON EXCHANGE AMPLITUDE

In this section, we briefly review the inelastic ep → eΔ
process in the OPE approximation (Fig. 1). The kinematics
of the inelastic transition,

e−ðk; seÞ þ Nðp; λÞ → e−ðk0; s0eÞ þ Δðp0; λ0Þ; ð6Þ

is described by four-vectors kðk0Þ of the initial (final)
electrons, and pðp0Þ of the nucleon (Δ). Furthermore,
seðs0eÞ denote the normal spin projections of the initial
(final) electrons, and λðλ0Þ the helicities of the nucleon (Δ).
In this work, we will use the notation q for the momentum
transfer towards the hadronic system,

q ¼ k − k0 ¼ p0 − p; ð7Þ

and adopt the usual definitions for the kinematical invar-
iants of this process,

s ¼ ðkþ pÞ2; u ¼ ðk − p0Þ2; t ¼ q2 ≡ −Q2; ð8Þ

which are related as sþ u −Q2 ¼ M2
N þM2

Δ þ 2m2
e,

where MNðMΔÞ are the nucleon (Δ) masses respectively,
and me is the electron mass. Usually experiments are
performed at fixed beam energy Ee, which determines s
as s ¼ M2

N þm2
e þ 2MNEe. Furthermore, it is conven-

tional in electron scattering to introduce the polarization
parameter ε of the virtual photon, which can be expressed
in terms of the above kinematical invariants as (neglecting
the electron mass)

ε ¼ 2ðM2
NM

2
Δ − suÞ

s2 þ u2 − 2M2
NM

2
Δ
: ð9Þ

The OPE amplitude for the ep → eΔ process is
given by2

T1γ ¼ −
e2

Q2
ūðk0; s0eÞγμuðk; seÞhΔðp0; λ0ÞjJμð0ÞjNðp; λÞi;

ð10Þ

with e the proton electric charge. The matrix element of the
hadronic current can be expressed in the covariant form:

hΔðp0; λ0ÞjJμð0ÞjNðp; λÞi≡ ūαðp0; λ0ÞΓαμ
NΔðp0; pÞuðp; λÞ;

ð11Þ

where u is the nucleon spinor, and uα is the Rarita-
Schwinger spinor for the Δ. Furthermore, the on-shell
γ�NΔ vertex is given by

Γαμ
NΔðp0; pÞ

≡
ffiffiffi
3

2

r
ðMΔ þMNÞ
MNQ2

NΔþ
½gMðQ2Þiεαμρσp0

ρqσ

− gEðQ2Þðqαp0μ − q · p0gαμÞγ5
− gCðQ2Þðqαqμ − q2gαμÞγ5�; ð12Þ

where we use ε0123 ¼ þ1, and where gM, gE, and gC
represent the three FFs describing the N → Δ vector
transition [1]. We furthermore introduce the shorthand
notation:

1With this definition, one obtains the absorptive part from
unitarity as AbsTfi ¼ i½ðTÞfi − ðT†Þfi�.

2For simplicity of notation, we will redefine here and in the
following the T-matrix elements by taking a global energy-
momentum conservation factor ð2πÞ4δ4ðkþ p − k0 − p0Þ out of
the T-matrix element.
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Q2
NΔ� ≡Q2 þ ðMΔ �MNÞ2: ð13Þ

Phenomenologically, the γ�NΔ transition is usually
expressed in terms of a different set of FFs introduced by
Jones-Scadron [41], which are labeled G�

M, G
�
E, G

�
C, and

describe the magnetic dipole (M1), electric quadrupole (E2),
and Coulomb quadrupole (C2) transitions respectively. The
latter have the property that they have a one-to-one relation
with the imaginary parts of the pion electroproduction
multipoles at the resonance position, and they have been
extracted in experiments; see Ref. [1] for details. In terms of
these Jones-Scadron FFs, the FFs entering Eq. (12) are
straightforwardly related as

gM ¼ G�
M −G�

E;

gE ¼ −
2

Q2
NΔ−

½ðM2
Δ −M2

N −Q2ÞG�
E þQ2G�

C�;

gC ¼ 1

Q2
NΔ−

½4M2
ΔG

�
E − ðM2

Δ −M2
N −Q2ÞG�

C�; ð14Þ

where all FFs are functions ofQ2. The spin averaged squared
matrix element for the ep → eΔ process in the OPE
approximation can then be expressed as

X
spins

jT1γj2 ≡ e4

Q2
D1γðs;Q2Þ; ð15Þ

where the function D1γðs;Q2Þ is given by

D1γðs;Q2Þ ¼ 2Q2
NΔ−ðMΔ þMNÞ2
ð1 − εÞM2

N

×
�
G�2

M þ 3G�2
E þ ε

Q2

M2
Δ
G�2

C

�
: ð16Þ

In this work, we will take the empirical information on the
FFs G�

MðQ2Þ, G�
EðQ2Þ, and G�

CðQ2Þ, characterizing the
electromagnetic N → Δ transition, from the MAID2007
analysis [42,43]. In this analysis, the empirical N → Δ
transition FFs have been expressed as

G�
M;E;CðQ2Þ ¼

�
QNΔþ

MN þMΔ

�
G�Ash

M;E;CðQ2Þ; ð17Þ

with the so-called Ash FFs G�Ash
M;E;C parametrized as [42,43]

G�Ash
M ðQ2Þ ¼ 3.00ð1þ 0.01Q2Þe−0.23Q2

GDðQ2Þ;
G�Ash

E ðQ2Þ ¼ 0.064ð1 − 0.021Q2Þe−0.16Q2

GDðQ2Þ;

G�Ash
C ðQ2Þ ¼ 0.124

ð1þ 0.120Q2Þ
1þ 4.9Q2=ð4M2

NÞ
�

4M2
Δ

M2
Δ −M2

N

�

× e−0.23Q
2

GDðQ2Þ; ð18Þ

forQ2 in GeV2, and whereGDðQ2Þ ¼ 1=ð1þQ2=0.71Þ2 is
the standard dipole FF. Note that themagnetic dipoleN → Δ
transition provides by far the dominant contribution as
G�

Mð0Þ ¼ 3.0, whereas the electric and Coulomb quadrupole
FFs are only at the few percent level relative to the magnetic
dipole FF in the low Q2 range.
We like to notice that in the forward direction, Q2 → 0,

the function D1γ for the ep → eΔ process behaves, for
fixed beam energy, approximately as

D1γ ⟶
Q2→0

4

M2
N

��
s −

1

2
ðM2

Δ þM2
NÞ
�

2

þ 1

4
ðM2

Δ −M2
NÞ2
�
½G�2

M þ 3G�2
E �: ð19Þ

In contrast, the corresponding function for the elastic
process ep → ep, which we denote byDel

1γ, behaves as [29]

Del
1γ ⟶

Q2→0

16

Q2
ðs −M2

NÞ2F2
1

þ 4

M2
N
½ðs −M2

NÞ2F2
2 − 4sM2

NF
2
1� þOðQ2Þ; ð20Þ

where F1 (F2) are the Dirac (Pauli) FFs of the nucleon
respectively. Equation (20) then leads at forward angles to the
characteristic 1=Q4 Rutherford behavior for the elastic OPE
squared amplitude, definedbyEq. (15).On the other hand, the
ep → eΔ process, which necessarily involves a finite energy
and momentum transfer, behaves as the Pauli (F2) FF term of
the elastic process, which only leads to a 1=Q2 behavior for
the squared amplitude at small Q2. We therefore see that the
OPE cross section for the ep → eΔ process, which enters the
denominator ofBn, is suppressed by one power ofQ2 relative
to its elastic counterpart. TheTPE amplitude for theep → eΔ
process, on the other hand, does not have this same sup-
pression at forward angles, as we will see in the following.
As Bn is proportional to the TPE amplitude relative to the
OPE amplitude [see Eq. (4)], this leads to an enhancement of
Bn for the ep → eΔ process at small values ofQ2, relative to
its elastic counterpart.

FIG. 1. The one-photon exchange diagram. The grey blob
represents the electromagnetic vertex of the nucleon.
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IV. IMAGINARY (ABSORPTIVE) PART OF THE
TWO-PHOTON EXCHANGE AMPLITUDE

In this section we relate the imaginary part of the TPE
amplitude, which appears in the numerator of Bn, to the
absorptive part of the matrix element for the ep → eΔ
process, as shown in Fig. 2.
In the e−p c.m. frame, its contribution can be

expressed as

AbsT2γ ¼
Z

d3 l⃗
ð2πÞ32El

ūðk0; s0eÞγμðγ · lþmeÞγνuðk; seÞ

×
e4

Q2
1Q

2
2

·Wμνðp0; λ0;p; λÞ; ð21Þ

where the momenta are defined as indicated in Fig. 2,
with q1 ≡ k − l, q2 ≡ k0 − l, q1 − q2 ¼ q, and where El
is the energy of the intermediate lepton. Furthermore,
Q2

1 ≡ −q21 ¼ −ðk − lÞ2 and Q2
2 ≡ −q22 ¼ −ðk0 − lÞ2 cor-

respond with the virtualities of the two spacelike
photons. Denoting the c.m. angle between initial and
final electrons as θcm, the momentum transfer Q2 ≡
−q2 > 0 can be expressed as

Q2 ¼ ðs −M2
NÞðs −M2

ΔÞ
2s

ð1 − cos θcmÞ þOðm2
eÞ: ð22Þ

In Eq. (21), the hadronic tensor Wμνðp0; λ0;p; λÞ corre-
sponds with the absorptive part of the doubly virtual
γ�N → γ�Δ tensor for two spacelike photons:

Wμνðp0;λ0;p;λÞ ¼
X
X

ð2πÞ4δ4ðpþ q1 −pXÞ

× hΔðp0;λ0ÞjJ†μð0ÞjXihXjJνð0ÞjNðp;λÞi;
ð23Þ

where the sum goes over all possible on-shell intermedi-
ate hadronic states X. We will use the unitarity relation
to express the full nonforward tensor in terms of

electroproduction amplitudes γ�N → X. The number of
intermediate states X which one considers in the calculation
will then put a limit on how high in energy one can reliably
calculate the hadronic tensor of Eq. (23). In this work, we
will model the tensor Wμν as a sum over different baryon
intermediate states, and we will explicitly consider the
X ¼ N, Δð1232Þ, S11ð1535Þ, and D13ð1520Þ resonance
contributions.
The phase-space integral in Eq. (21) runs over the

three-momentum of the intermediate (on-shell) electron.
Evaluating the process in the e−p c.m. system, we can
express the c.m. momentum of the intermediate electron as

jl⃗j2 ¼ 1

4s
½ð ffiffiffi

s
p

−meÞ2 −W2�½ð ffiffiffi
s

p þmeÞ2 −W2�; ð24Þ

where W2 ≡ p2
X is the squared invariant mass of the

intermediate state X. The c.m. momenta of the initial
(and final) electrons are given by an expression analogous
to Eq. (24) by replacing W2 with M2

N ðM2
ΔÞ respectively.

The phase-space integral in Eq. (21) depends, besides the
magnitude jl⃗j, upon the solid angle of the intermediate
electron. We define the polar c.m. angle θ1 of the
intermediate electron with respect to the direction of the
initial electron. The azimuthal angle ϕ1 is chosen such
that ϕ1 ¼ 0 corresponds with the scattering plane of the
ep → eΔ process. Having defined the kinematics of the
intermediate electron, we can express the virtuality of both
exchanged photons. The virtuality of the photon with four-
momentum q1 is given by

Q2
1 ¼

1

2s

�
ðs −M2

N þm2
eÞðs −W2 þm2

eÞ − 4m2
es

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −M2

N þm2
eÞ2 − 4m2

es
q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −W2 þm2

eÞ2 − 4m2
es

q
cos θ1

�
: ð25Þ

The virtuality Q2
2 of the second photon has an expression

analogous to Eq. (25) with the replacements MN → MΔ
and cos θ1 → cos θ2, where θ2 is the angle between the
intermediate and final electrons. In terms of the polar and
azimuthal angles θ1 and ϕ1 of the intermediate electron,
one can express

cos θ2 ¼ sin θcm sin θ1 cosϕ1 þ cos θcm cos θ1: ð26Þ

In case the intermediate electron is collinear with the
initial electron (i.e. for θ1 → 0, ϕ1 → 0), denoting the
virtual photon virtualities for this kinematical situation
by Q2

i;VCS ≡Q2
i ðθ1 ¼ 0;ϕ1 ¼ 0Þ, one obtains from

Eq. (25) that

FIG. 2. The discontinuity of the two-photon exchange diagram.
The cut blob represents the absorptive part of the doubly virtual
Compton amplitude on a nucleon.
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Q2
1;VCS ≃m2

e
ðW2 −M2

NÞ2
ðs −W2Þðs −M2

NÞ
;

Q2
2;VCS ≃ ðs −W2Þ

ðs −M2
NÞ

Q2 þOðm2
eÞ: ð27Þ

We thus see that when the intermediate and initial
electrons are collinear, the photon with momentum q⃗1 ¼
k⃗ − k⃗1 is also collinear with this direction, and its
virtuality becomes of order of Oðm2

eÞ, whereas the other
photon has a large virtuality, of order Q2. For the case
W ¼ MN , this precisely corresponds with the situation
where the first photon is soft (i.e. q1 → 0), and where the
second photon carries the full momentum transfer
Q2

2 ≃Q2. For the case W > MN , the first photon is hard
but becomes quasireal (i.e. Q2

1 ∼m2
e). In this case, the

virtuality of the second photon is smaller than Q2. An
analogous situation occurs when the intermediate electron
is collinear with the final electron (i.e. θ2 → 0, ϕ1 → 0, in
which case θ1 → θcm). The corresponding photon virtual-
ities are obtained from Eq. (27) by the replacements
Q2

1;VCS ↔ Q2
2;VCS and MN ↔ MΔ. The second photon is

quasireal in this case, and the first photon carries a
virtuality smaller than Q2. For the special case of a Δ
intermediate state W ¼ MΔ, the second photon becomes
soft, and the first photon carries the full momentum
transfer Q2. These phase-space regions with one quasireal
photon and one virtual photon correspond with quasi-
virtual Compton scattering (quasi-VCS), and correspond
at the lepton side with the Bethe-Heitler process; see e.g.
Ref. [44] for details. They lead to large enhancements in
the integrand entering the absorptive part of the TPE
amplitude.
Besides the near singularities corresponding with quasi-

VCS, where the intermediate electron is collinear with either
the incoming or outgoing electrons, the TPE process also has
a near singularity when the intermediate electron momentum
goes to zero jl⃗j → 0 (i.e. the intermediate electron is soft). In
this case the first photon takes on the full momentum of the
initial electron, i.e. q⃗1 → k⃗, whereas the second photon takes
on the full momentum of the final electron, i.e. q⃗2 → k⃗0. One
immediately sees from Eq. (24) that this situation occurs
when the invariant mass of the hadronic state takes on its
maximal value W ¼ Wmax ≡ ffiffiffi

s
p

−me. In this case, the
photon virtualities are given by

Q2
1;RCS ¼

meffiffiffi
s

p fð ffiffiffi
s

p
−meÞ2 −M2

Ng;

Q2
2;RCS ¼

meffiffiffi
s

p fð ffiffiffi
s

p
−meÞ2 −M2

Δg: ð28Þ

This kinematical situation with two quasireal photons,
corresponding with quasireal Compton scattering (quasi-
RCS), also leads to an enhancement in the corresponding
integrand of AbsT2γ .

In the upper panel of Fig. 3, we show the kinematical
accessible regions for the virtualities Q2

1; Q
2
2 in the phase-

space integral of Eq. (21) for a beam energy of Ee ¼
0.855 GeV corresponding with the A4@MAMI experi-
ment, for different values of the c.m. angle θcm. In the
lower panel we display these phase-space regions for three
different values of W, corresponding with the N, Δð1232Þ,

FIG. 3. Kinematical accessible region for the virtualitiesQ2
1; Q

2
2

in the phase-space integral of Eqs. (21) and (29) entering the
ep → eΔ process. The upper panel shows the phase-space
regions for different c.m. angles θcm as indicated on the ellipses
for Ee¼0.855GeV (s¼2.485GeV2), and for W ¼ 0.9383 GeV
(i.e. for a nucleon intermediate state). The lower panel shows the
allowed values of the photon virtualities for different intermediate
states for θcm ¼ 30°. We show three cases corresponding with the
contribution of N, Δð1232Þ and S11ð1535Þ excitations. The
accessible regions correspond with the interior of the ellipses.
The intersection with the axes corresponds with quasi-VCS,
whereas the situation atW ¼ ffiffiffi

s
p

−me where all ellipses shrink to
the point Q2

1 ¼ Q2
2 ≃ 0 corresponds with quasi-RCS.
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and S11ð1535Þ intermediate states. We notice from Fig. 3
that the largest possible photon virtualities in the TPE
amplitude occur for the nucleon intermediate state, whereas
for the S11ð1535Þ intermediate state both photons have very
small virtualities.
Using Eq. (21) for the absorptive part of the TPE

amplitude, and Eqs. (10) and (11) for the OPE amplitude,
we can then express the normal spin asymmetry Bn of
Eq. (4) for the ep → eΔ process in terms of a three-
dimensional phase-space integral:

Bn ¼ −
e2

D1γðs;Q2Þ
1

ð2πÞ3
Z ð ffiffisp

−meÞ2

M2

dW2

�
s −W2

8s

�

×
Z

dΩ1

1

Q2
1Q

2
2

ImðLκμνHκμνÞ; ð29Þ

where the denominator factor D1γðs;Q2Þ is originating
from the OPE process as given by Eq. (16), and
dΩ1 ¼ d cos θ1dϕ1.
The integrand in Eq. (29) arising from the interference

between the OPE and TPE amplitudes has been expressed
as a product of a lepton tensor Lλμν and a hadron tensor
Hλμν. The polarized lepton tensor can be expressed as a
trace using the spin projection technique:

Lκμν ¼ Trfγκð=k0 þmeÞγμð=lþmeÞγνγ5=ξð=kþmeÞg; ð30Þ

where ξα is the polarization vector of Eq. (3) for an electron
polarized normal to the scattering plane. We see from
Eq. (30) that the polarized lepton tensor vanishes for
massless electrons. Keeping only the leading term in me,
it is given by

Lκμν ¼ með−Trfγ5γμ=lγν=ξ=kγκg þ Trfγ5=k0γμ=lγν=ξγκg
− Trfγ5=k0γμγν=ξ=kγκgÞ þOðm2

eÞ: ð31Þ

Furthermore, the unpolarized hadron tensor Hλμν is
given by

Hκμν ¼
X
λ;λ0

½ūαðp0; λ0ÞΓακ
NΔðp0; pÞuðp; λÞ��Wμνðp0; λ0;p; λÞ:

ð32Þ

Equivalently, the phase-space integration in Eq. (29)
can be reexpressed in a Lorentz-invariant way as an
integral over photon virtualities Q2

1 and Q2
2 by using the

Jacobian

J ¼
				 ∂Q2

1

∂ cos θ1
∂Q2

2

∂ϕ1

				: ð33Þ

Using Eq. (25) and an analogous expression for Q2
2, the

Jacobian is given by

J ¼ ½ðs −W2 þm2
eÞ2 − 4m2

es�=ð4s2Þ
× ½ðs −M2

N þm2
eÞ2 − 4m2

es�1=2
× ½ðs −M2

Δ þm2
eÞ2 − 4m2

es�1=2
× sin θcm sin θ1 sinϕ1; ð34Þ

leading to the equivalent expression for Bn:

Bn ¼ −
e2

D1γðs;Q2Þ
1

ð2πÞ3
Z ð ffiffisp

−meÞ2

M2

dW2

�
s −W2

8s

�

×
Z

dQ2
1dQ

2
2

J−1ðQ1; Q2Þ
Q2

1Q
2
2

ImðLκμνHκμνÞ; ð35Þ

where the ðQ2
1; Q

2
2Þ integration regions cover the inside of

the ellipses as displayed in Fig. 3.
We can express the sum over the hadron spins in Eq. (32)

as a trace by expressing the hadron tensor Wμν through an
operator Ŵ in spin space, defined as

Wμνðp0; λ0;p; λÞ≡ ūβðp0; λ0ÞŴβμνðp0; pÞuðp; λÞ: ð36Þ

The spin summation in Eq. (32) can then be worked
out as

Hκμν ¼ Trf ~Γακ
NΔðp0; pÞPð3=2Þ

αβ ðp0;MΔÞŴβμνðp0; pÞ
× Pð1=2Þðp;MNÞg; ð37Þ

where ~Γαβ
NΔ ≡ γ0ðΓαβ

NΔÞ†γ0 stands for the adjoint operator,
and where the spin-3=2 and spin-1=2 projectors for a
state of mass M are defined by

Pð1=2Þðp;MÞ ¼ =pþM; ð38Þ

Pð3=2Þ
αβ ðp;MÞ ¼ ð=pþMÞ

�
−gαβ þ

1

3
γαγβ

þ 1

3p2
ð=pγαpβ þ pαγβ=pÞ

�
: ð39Þ

For narrow intermediate states X, which we will consider
in the following, the hadronic tensor is given by

Hκμν ≡X
X

Hκμν
X ¼

X
X

2πδðW2 −M2
XÞ ~Hκμν

X ; ð40Þ

where HX stands for the contribution from each individual
state X, and where we have defined ~HX by removing a
δ-function in invariant mass for each contributing resonance.
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Using Eq. (40) allows reducing the expression for Bn in
Eq. (35) to a two-dimensional integral:

Bn ¼ −
1

ð2πÞ2
e2

D1γðs;Q2Þ
X
X

�
s −M2

X

8s

�
θðs −M2

XÞ

×
Z

dQ2
1dQ

2
2

J−1ðQ1; Q2Þ
Q2

1Q
2
2

ImðLκμν
~Hκμν
X Þ: ð41Þ

V. MODELS FOR THE HADRONIC TENSOR

In this section, wewill model the hadronic tensor Ŵβμν of
Eq. (36) as a sum over different baryon intermediate states.
We will explicitly consider X ¼ N, Δð1232Þ, S11ð1535Þ,
and D13ð1520Þ resonance contributions in the blob of
Fig. 2. The nucleon contribution is calculable based on
the empirical electromagnetic FFs for the nucleon and for
the N → Δ transition. We will express the Δ intermediate
state contribution in terms of the Δ electromagnetic FFs,
and we will use a lattice calculation for the latter for an
estimate. To estimate the unknown Δ → S11 and Δ → D13

electromagnetic transitions, we will use a constituent
quark model to relate them to the corresponding FFs for
theN → S11 andN → D13 electromagnetic transitions. The
latter FFs will be taken from experiments. We will detail
these different contributions in the following.

A. Nucleon intermediate state contribution

The contribution to Ŵβμν, corresponding with the
nucleon intermediate state in Fig. 2, is exactly calculable
in terms of on-shell γ�NN and γ�NΔ vertices as

Ŵβμν
N ðp0; pÞ ¼ 2πδðW2 −M2

NÞΓβμ
NΔðp0; pNÞ

× Pð1=2ÞðpN;MNÞΓν
NNðpN; pÞ; ð42Þ

with pN ≡ pþ q1, where Γ
βμ
NΔ is as in Eq. (12), and the on-

shell γ�NN vertex Γν
NN is given by

Γν
NNðpN; pÞ≡ ðF1 þ F2Þγν − F2

ðpþ pNÞν
2MN

; ð43Þ

with F1 (F2) the Dirac (Pauli) proton FFs respectively. For
the nucleon intermediate state contribution, the unpolarized
hadronic tensor entering Eqs. (29) and (35) for Bn can be
written as

Hκμν
N ¼ 2πδðW2 −M2

NÞ
× Trf ~Γακ

NΔðp0; pÞPð3=2Þ
αβ ðp0;MΔÞΓβμ

NΔðp0; pNÞ
× Pð1=2ÞðpN;MNÞΓν

NNðpN; pÞPð1=2Þðp;MNÞg:
ð44Þ

B. Δð1232Þ intermediate state contribution

The matrix element of the electromagnetic current
operator Jμ between spin-3=2 states can be decomposed
into four multipole transitions: a Coulomb monopole (E0),
a magnetic dipole (M1), an electric quadrupole (E2) and
a magnetic octupole (M3). We firstly write a Lorentz-
covariant decomposition for the on-shell γ�ΔΔ vertex
which exhibits manifest electromagnetic gauge invariance
is [1]

hΔðp0; λ0ÞjJμð0ÞjΔðp; λÞi≡ ūαðp0; λ0ÞΓαβμ
ΔΔ ðp0; pÞuβðp; λÞ;

ð45Þ

where λ (λ0) are the initial (final) Δ helicities, and where
Γαβμ
ΔΔ is given by

Γαβμ
ΔΔ ðp0; pÞ ¼ −

�
FΔ
1 g

αβ þ FΔ
3

qαqβ

ð2MΔÞ2
�
γμ

−
�
FΔ
2 g

αβ þ FΔ
4

qαqβ

ð2MΔÞ2
�
iσμνqν
2MΔ

; ð46Þ

where q ¼ p0 − p. FΔ
1;2;3;4 are the Δ electromagnetic FFs

and depend on Q2. Note that FΔ
1 ð0Þ ¼ eΔ is the Δ electric

charge in units of e (e.g., eΔþ ¼ þ1). For further use we
also define the quantity τΔ ≡Q2=ð4M2

ΔÞ.
A physical interpretation of the four electromagnetic

Δ → Δ transitions can be obtained by performing a
multipole decomposition [45,46]. The FFs FΔ

1;2;3;4 can be
expressed in terms of the multipole form factors GE0, GM1,
GE2, and GM3, as [14]

FΔ
1 ¼ 1

1þ τΔ

�
GΔ

E0 −
2τΔ
3

GΔ
E2 þ τΔ

�
GΔ

M1 −
4τΔ
5

GΔ
M3

��
;

FΔ
2 ¼ −

1

1þ τΔ

�
GΔ

E0 −
2τΔ
3

GΔ
E2 −GΔ

M1 þ
4τΔ
5

GΔ
M3

�
;

FΔ
3 ¼ 2

ð1þ τΔÞ2
�
GΔ

E0 −
�
1þ 2τΔ

3

�
GΔ

E2

þ τΔ

�
GΔ

M1 −
�
1þ 4τΔ

5

�
GΔ

M3

��
;

FΔ
4 ¼ −

2

ð1þ τΔÞ2
�
GΔ

E0 −
�
1þ 2τΔ

3

�
GΔ

E2

−
�
GΔ

M1 −
�
1þ 4τΔ

5

�
GΔ

M3

��
: ð47Þ

At Q2 ¼ 0, the multipole FFs define the charge eΔ, the
magnetic dipole moment μΔ, the electric quadrupole
moment QΔ, and the magnetic octupole moment OΔ as
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eΔ ¼ GΔ
E0ð0Þ; μΔ ¼ e

2MΔ
GΔ

M1ð0Þ;

QΔ ¼ e
M2

Δ
GΔ

E2ð0Þ; OΔ ¼ e
2M3

Δ
GΔ

M3ð0Þ: ð48Þ

The inelastic contribution to Ŵβμν, corresponding with
the Δð1232Þ intermediate state in the blob of Fig. 2, is
exactly calculable in terms of on-shell γ�NΔ and γ�ΔΔ
electromagnetic vertices as

Ŵβμν
Δ ðp0; pÞ ¼ 2πδðW2 −M2

ΔÞΓβγμ
ΔΔðp0; pΔÞ

× Pð3=2Þ
γδ ðpΔ;MΔÞΓδν

NΔðpΔ; pÞ; ð49Þ

with pΔ ≡ pþ q1. This allows us, for the Δ intermediate
state contribution, to evaluate the unpolarized hadronic
tensor entering Eqs. (29) and (35) for Bn as

Hκμν
Δ ¼ 2πδðW2 −M2

ΔÞ
× Trf ~Γακ

NΔðp0; pÞPð3=2Þ
αβ ðp0;MΔÞΓβγμ

ΔΔðp0; pΔÞ
× Pð3=2Þ

γδ ðpΔ;MΔÞΓδν
NΔðpΔ; pÞPð1=2Þðp;MNÞg:

ð50Þ

In the following, we will study the sensitivity of Bn to the
Δ electromagnetic FFs. For the purpose of obtaining an
estimate on the expected size of Bn, we will also directly
compare with lattice calculations for the Δ FFs. We will use
the results for the hybrid lattice calculation of Ref. [14],
which was performed for a pion mass of mπ ¼ 353 MeV.
The lattice results for GΔ

E0 were fitted in Ref. [14] by a
dipole parametrization

GΔ
E0ðQ2Þ ¼ 1

ð1þQ2=Λ2
E0Þ2

; ð51Þ

with resulting fit value

Λ2
E0 ¼ 1.160� 0.078 GeV2: ð52Þ

The FFs GΔ
M1 and GΔ

E2 were fitted by exponential para-
metrizations since the expected large Q2 dependence for
these FFs drops more quickly than a dipole form:

GΔ
M1ðQ2Þ ¼ GΔ

M1ð0Þe−Q
2=Λ2

M1 ;

GΔ
E2ðQ2Þ ¼ GΔ

E2ð0Þe−Q
2=Λ2

E2 : ð53Þ

The fit to the lattice calculations found as values [14]

GΔ
M1ð0Þ ¼ 3.04� 0.24; Λ2

M1 ¼ 0.935� 0.122 GeV2;

GΔ
E2ð0Þ ¼ −2.06þ1.27

−2.35 ; Λ2
E2 ¼ 0.54þ1.69

−0.25 GeV2:

ð54Þ

The magnetic octupole form factor GΔ
M3 was found to be

compatible with zero within the statistical accuracy obtained
in Ref. [14], and it will be neglected in our calculation.

C. S11ð1535Þ intermediate state contribution

In this section we consider the contribution to Bn
when the intermediate state corresponds with the
S11ð1535Þ resonance. The S11ð1535Þ resonance, with mass
MS ¼ 1.535 GeV, and quantum numbers I ¼ 1=2 and
JP ¼ 1=2−, is the negative parity partner of the nucleon.
A Lorentz-covariant decomposition of the matrix

element of the electromagnetic (e.m.) current operator Jμ

for the γ�NS11 transition, satisfying manifest e.m. gauge
invariance, can be written as

hS11ðpS; λSÞjJμð0ÞjNðp;λÞi≡ ψ̄ðpS;λSÞΓμ
NSðpS;pÞuðp;λÞ;

ð55Þ

where ψ is the spinor for the S11 field, pS (λS) is its four-
momentum (helicity) respectively, and where the vertex
Γμ
NS is given by

Γμ
NSðpS;pÞ ¼ FNS

1

�
γμ − γ · q

qμ

q2

�
γ5 þFNS

2

iσμνqν
ðMN þMSÞ

γ5;

ð56Þ

with q≡ pS − p. The functions FNS
1;2 are the e.m. FFs for

the γ�NS11 transition and depend on Q2.
Equivalently, one can parametrize the γ�NS11 transition

through two helicity amplitudes A1=2 and S1=2, which are
defined in the S11 rest frame. These S11 rest frame helicity
amplitudes are defined through the following matrix
elements of the e.m. current operator:

ANS
1=2 ≡ NNShS11ð0⃗;þ1=2ÞjJμ · ϵμλ¼þ1jNð−q⃗;−1=2Þi;

SNS
1=2 ≡ NNShS11ð0⃗;þ1=2ÞjJ0jNð−q⃗;þ1=2Þi; ð57Þ

where both spinors are chosen to have the indicated
spin projections along the z-axis (which is chosen along
the virtual photon direction) and where the transverse
photon polarization vector entering A1=2 is given by

ϵ⃗λ¼þ1 ¼ −1=
ffiffiffi
2

p ð1; i; 0Þ. Furthermore in Eq. (57), we
introduced the conventional normalization factor

NNS ≡ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MNðM2

S −M2
NÞ

p : ð58Þ

The helicity amplitudes are also functions of the photon
virtuality Q2 and have been extracted from data on the
pion electroproduction process on the proton. Using the
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empirical parametrizations of the helicity amplitudes ApS
1=2,

and SpS1=2 from Ref. [43], which are listed in Eq. (A8), the
transition FFs can then be obtained as

FNS
1 ¼ Q2ffiffiffi

2
p

NNSQNSþQ2
NS−

×

�
ANS
1=2 − ðMS −MNÞ

ffiffiffi
2

p �
2MS

QNSþQNS−

�
SNS
1=2

�
;

FNS
2 ¼ ðM2

S −M2
NÞffiffiffi

2
p

NNSQNSþQ2
NS−

×

�
ANS
1=2 þ

Q2

ðMS −MNÞ
ffiffiffi
2

p �
2MS

QNSþQNS−

�
SNS
1=2

�
;

ð59Þ

where we generalized the shorthand notation of Eq. (13) as

Q2
ij� ≡Q2 þ ðMi �MjÞ2; ð60Þ

with i; j ¼ N;Δ; S; D denoting the N, Δ, S11, D13 states in
the following.
A Lorentz-covariant decomposition of the matrix

element of the e.m. current operator Jμ for the transition
γ�S11Δ, satisfying manifest e.m. gauge invariance, can be
written as

hS11ðpS; λSÞjJμð0ÞjΔðpΔ; λΔÞi
≡ ψ̄ðpS; λSÞΓαμ

ΔSðpS; pΔÞuαðpΔ; λΔÞ; ð61Þ

where the vertex Γαμ
ΔS is given by

Γαμ
ΔSðpS; pΔÞ ¼

1

QΔS−QΔSþ
fðqαγμ − γ · qgαμÞMΔFΔS

1

þ ðqαPμ − q · PgαμÞFΔS
2

þ ðqαqμ − q2gαμÞFΔS
3 g; ð62Þ

where P≡ ðpΔ þ pSÞ=2 and q≡ pS − pΔ. In the defini-
tion of Eq. (62), the FFs are defined for the Δþ → S11
transition, and the prefactor 1=ðQΔS−QΔSþÞ was chosen
such that the resulting e.m. FFs FΔS

1;2;3 are dimensionless.
The helicity amplitudes are defined through the follow-

ing specific matrix elements of the electromagnetic current
operator,

AΔS
−1=2 ≡ NΔShS11ð0⃗;−1=2ÞjJμ · ϵμλ¼þ1jΔð−q⃗;−3=2Þi;
AΔS
1=2 ≡ NΔShS11ð0⃗;þ1=2ÞjJμ · ϵμλ¼þ1jΔð−q⃗;−1=2Þi;

SΔS1=2 ≡ NΔShS11ð0⃗;þ1=2ÞjJ0jΔð−q⃗;þ1=2Þi; ð63Þ

where the subscripts on the helicity amplitudes indicate the
S11 spin projections along the z-axis (which is chosen along
the virtual photon direction), and where we introduced the
normalization factor

NΔS ≡ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MSðM2

S −M2
ΔÞ

p : ð64Þ

Note that we can relate the above helicity amplitudes AΔB
λB

for the Δ → B transition, in the rest frame of the baryon
resonance B with helicity λB, to the corresponding ampli-
tudes ABΔ

λΔ
for the B → Δ transition, in the rest frame of the

Δ with helicity λΔ, as

ABΔ
λΔ

¼ ηBηΔAΔB
1−λΔ ; ð65Þ

with ηB, ηΔ the corresponding intrinsic parities.
The relations between the helicity amplitudes of Eq. (63)

and the transition FFs for the electromagnetic Δ → S11
transition can be obtained as

FΔS
1 ¼ −

1

NΔSQΔS−

h ffiffiffi
3

p
AΔS
1=2 − AΔS

−1=2

i
;

FΔS
2 ¼ 1

NΔSQΔS−

h ffiffiffi
3

p
AΔS
1=2 − AΔS

−1=2

i
−
ðQ2 þM2

S −M2
ΔÞ

NΔSQ2
ΔSþQΔS−

h ffiffiffi
3

p
AΔS
1=2 þ AΔS

−1=2

i
−

4
ffiffiffi
6

p
MΔMSQ2

NΔSQ3
ΔSþQ

2
ΔS−

SΔS1=2;

FΔS
3 ¼ −

1

2NΔSQΔS−

h ffiffiffi
3

p
AΔS
1=2 − AΔS

−1=2

i
þ ðQ2 þM2

S þ 3M2
ΔÞ

2NΔSQ2
ΔSþQΔS−

h ffiffiffi
3

p
AΔS
1=2 þ AΔS

−1=2

i
−
2
ffiffiffi
6

p
MΔMSðM2

S −M2
ΔÞ

NΔSQ3
ΔSþQ

2
ΔS−

SΔS1=2: ð66Þ

As the helicity amplitudes AΔS
−1=2, A

ΔS
1=2, and SΔS1=2 are not

known from experiments, we will estimate them using a
nonrelativistic quark model, as detailed in the Appendix.
The quark model provides relations between the helicity

amplitudes for the Δ → S11 transition and the correspond-
ing ones for the p → S11 and p → D13 transitions, as given
by Eqs. (A5) and (A7). For the numerical estimates, we will
use these relations and use the empirical results of Eq. (A8)
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for the electromagnetic p → S11 and p → D13 helicity
amplitudes as input.
The inelastic contribution to Ŵβμν, corresponding with

the S11ð1535Þ intermediate state, can then be expressed in
terms of on-shell γ�NS11 and γ�ΔS11 vertices as

Ŵβμν
S11

ðp0; pÞ ¼ 2πδðW2 −M2
SÞ ~Γβμ

ΔSðpS; p0Þ
× Pð1=2ÞðpS;MSÞΓν

NSðpS; pÞ; ð67Þ

where the adjoint vertex ~Γβμ
ΔS ≡ γ0ðΓβμ

ΔSÞ†γ0 is given by
exactly the same operator as in Eq. (62), with q ¼
pS − p0 in this case denoting the outgoing photon
momentum.
This allows us, for the S11 intermediate state contribu-

tion, to evaluate the unpolarized hadronic tensor entering
Eqs. (29) and (35) for Bn as

Hκμν
S11

¼ 2πδðW2 −M2
SÞ

× Trf ~Γακ
NΔðp0; pÞPð3=2Þ

αβ ðp0;MΔÞ ~Γβμ
ΔSðpS; p0Þ

× Pð1=2ÞðpS;MSÞΓν
NSðpS; pÞPð1=2Þðp;MNÞg: ð68Þ

D. D13ð1520Þ intermediate state contribution

We next consider the contribution to Bn when the
intermediate state corresponds with the D13ð1520Þ reso-
nance. This is the lowest mass baryon resonance, with mass
MD ¼ 1.520 GeV, which has quantum numbers I ¼ 1=2
and JP ¼ 3=2−.
A Lorentz-covariant decomposition of the matrix

element of the e.m. current operator Jμ for the γ�ND13

transition, satisfying manifest e.m. gauge invariance, is
given by

hD13ðpD; λDÞjJμð0ÞjNðp; λÞi
≡ ψ̄αðpD; λDÞΓαμ

NDðpD; pÞuðp; λÞ; ð69Þ

with pD (λD) denoting the four-momentum (helicity) of the
D13 state respectively, where ψα is the Rarita-Schwinger
spinor for the D13 field, and where the vertex Γαμ

ND is
given by

Γαμ
NDðpD; pÞ ¼

1

QND−QNDþ
fðqαγμ − q · γgαμÞMDFND

1

þ ðqαpD
μ − q · pDgαμÞFND

2

þ ðqαqμ − q2gαμÞFND
3 g; ð70Þ

with q≡ pD − p. In Eq. (70), the prefactor was chosen
such that the resulting e.m. FFs FND

1;2;3 are dimensionless.

In the same way as we did for the γ�NS11 transition
above, one can also parametrize the γ�ND13 transition
through helicity amplitudes in the D13 rest frame.
For the spin-3=2 resonance, we need three helicity
amplitudes AND

3=2, AND
1=2 and SND

1=2, which are defined
through the following matrix elements of the e.m.
current operator:

AND
3=2 ≡ NNDhD13ð0⃗;þ3=2ÞjJμ · ϵμλ¼þ1jNð−q⃗;þ1=2Þi;

AND
1=2 ≡ NNDhD13ð0⃗;þ1=2ÞjJμ · ϵμλ¼þ1jNð−q⃗;−1=2Þi;

SND
1=2 ≡ NNDhD13ð0⃗;þ1=2ÞjJ0jNð−q⃗;þ1=2Þi; ð71Þ

with NND defined, analogously as in Eq. (58), as

NND ≡ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MNðM2

D −M2
NÞ

p : ð72Þ

Using the empirical parametrizations of the helicity
amplitudes ApD

3=2, A
pD
1=2, and SpD1=2 from Ref. [43], which

are listed in Eq. (A8), the transition FFs can then be
obtained as

FND
1 ¼ 1

NNDQND−
fAND

3=2 −
ffiffiffi
3

p
AND
1=2g;

FND
1 þ FND

2 ¼ 1

NNDQ2
NDþQND−

×

�
ðM2

D −M2
N −Q2Þ½AND

3=2 þ
ffiffiffi
3

p
AND
1=2�

−
4
ffiffiffi
6

p
M2

DQ
2

QNDþQND−
SND
1=2

�
;

FND
3 ¼ −

2M2
D

NNDQ2
NDþQND−

�
AND
3=2 þ

ffiffiffi
3

p
AND
1=2

þ
ffiffiffi
6

p ðM2
D −M2

N −Q2Þ
QNDþQND−

SND
1=2

�
: ð73Þ

A Lorentz-covariant decomposition for the on-shell
γ�ΔD13 vertex which exhibits manifest electromagnetic
gauge invariance as

hD13ðpD; λDÞjJμð0ÞjΔðpΔ; λΔÞi
≡ ψ̄βðpD; λDÞΓαβμ

ΔDðpD; pΔÞuαðpΔ; λΔÞ; ð74Þ

where pΔ (pD) are the four-momenta and λΔ (λD) the
helicities ofΔ (D13) respectively, and where the vertex Γ

αβμ
ΔD

is given by
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Γαβμ
ΔDðpD; pΔÞ

¼ −
�
FΔD
1 gαβ þ FΔD

3

qαqβ

ðMΔ þMDÞ2
��

γμ − γ · q
qμ

q2

�
γ5

−
�
FΔD
2 gαβ þ FΔD

4

qαqβ

ðMΔ þMDÞ2
�

iσμνqν
ðMΔ þMDÞ

γ5

−
FΔD
5

ðMΔ þMDÞ
ðgαμqβ − gβμqαÞγ5; ð75Þ

where q≡ pD − pΔ.
Although we will only need on-shell vertices in this

work, one can also define consistent vertices for off-shell
spin-3=2 particles which satisfy a spin-3=2 gauge invari-
ance, as discussed in Refs. [47,48], i.e. ðpΔÞαΓαβμ

ΔD ¼ 0 and
ðpDÞβΓαβμ

ΔD ¼ 0, by replacing e.g. in Eq. (75)

gαβ →
1

M2
ΔM

2
D
fp2

Δp
2
Dg

αβ − p2
Δp

α
Dp

β
D − p2

Dp
α
Δp

β
Δ

þ pΔ · pDpα
Δp

β
Dg; ð76Þ

or

qαqβ →

�
qα −

q · pΔ

p2
Δ

pα
Δ

��
qβ −

q · pD

p2
D

pβ
D

�
: ð77Þ

For the Δ → D13 amplitude, there are five helicity
amplitudes, defined by the following matrix elements of
the e.m. current operator,

AΔD
3=2 ≡ NΔDhD13ð0⃗;þ3=2ÞjJμ · ϵμλ¼þ1jΔð−q⃗;þ1=2Þi;

AΔD
1=2 ≡ NΔDhD13ð0⃗;þ1=2ÞjJμ · ϵμλ¼þ1jΔð−q⃗;−1=2Þi;

AΔD
−1=2 ≡ NΔDhD13ð0⃗;−1=2ÞjJμ · ϵμλ¼þ1jΔð−q⃗;−3=2Þi;
SΔD3=2 ≡ NΔDhD13ð0⃗;þ3=2ÞjJ0jΔð−q⃗;þ3=2Þi;
SΔD1=2 ≡ NΔDhD13ð0⃗;þ1=2ÞjJ0jΔð−q⃗;þ1=2Þi; ð78Þ

where NΔD is defined as

NΔD ≡ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MDðM2

D −M2
ΔÞ

p : ð79Þ

It is also convenient to introduce

~FΔD
1;3 ¼ FΔD

1;3 þ
�
MD −MΔ

MD þMΔ

�
FΔD
2;4 : ð80Þ

The helicity amplitudes for the electromagnetic Δ → D13

transition are obtained as

AΔD
3=2 ¼ NΔD

ffiffiffi
2

3

r
QΔDþ

�
~FΔD
1 −

Q2
ΔD−

2MΔðMD þMΔÞ
FΔD
5

�
;

AΔD
−1=2 ¼ NΔD

ffiffiffi
2

3

r
QΔDþ

�
~FΔD
1 þ Q2

ΔD−
2MDðMD þMΔÞ

FΔD
5

�
;

AΔD
1=2 ¼ NΔD

ffiffiffi
2

p

6

QΔDþ
MΔMD

�
2ðQ2 þM2

D þM2
ΔÞ ~FΔD

1 −
Q2

ΔDþQ
2
ΔD−

ðMD þMΔÞ2
~FΔD
3 þ ðMD −MΔÞQ2

ΔD−
ðMD þMΔÞ

FΔD
5

�
;

SΔD3=2 ¼ NΔD
Q2

ΔDþQΔD−

2MDQ2

�
−ðMD −MΔÞ ~FΔD

1 þ Q2
ΔD−

ðMD þMΔÞ
FΔD
2

�
;

SΔD1=2 ¼ NΔD
Q2

ΔDþQΔD−

6M2
DMΔQ2

�
ðQ2 þM2

D þM2
Δ −MDMΔÞ

�
−ðMD −MΔÞ ~FΔD

1 þ Q2
ΔD−

ðMD þMΔÞ
FΔD
2

�

þ Q2
ΔDþQ

2
ΔD−

2ðMD þMΔÞ2
�
ðMD −MΔÞ ~FΔD

3 −
Q2

ΔD−
ðMD þMΔÞ

FΔD
4

�
þ Q2

ΔD−Q
2

ðMD þMΔÞ
FΔD
5

�
: ð81Þ

Inverting the relations in Eq. (81) gives
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~FΔD
1 ¼

ffiffiffi
3

2

r
1

NΔDQΔDþðMD þMΔÞ
ðMDAΔD

−1=2 þMΔAΔD
3=2Þ;

FΔD
2 ¼ ðMD þMΔÞ

NΔDQ2
ΔDþQ

3
ΔD−

�
2MDQ2SΔD3=2 þ

ffiffiffi
3

2

r
QΔDþQΔD−

ðMD −MΔÞ
ðMD þMΔÞ

ðMDAΔD
−1=2 þMΔAΔD

3=2Þ
�
;

~FΔD
3 ¼

ffiffiffi
6

p ðMD þMΔÞ
NΔDQ3

ΔDþQ
2
ΔD−

fMDðQ2 þMDðMD þMΔÞÞAΔD
−1=2 þMΔðQ2 þMΔðMD þMΔÞÞAΔD

3=2

−
ffiffiffi
3

p
MDMΔðMD þMΔÞAΔD

1=2g;

FΔD
4 ¼ 2ðMD þMΔÞ3

NΔDQ4
ΔDþQ

5
ΔD−

�
2MDQ2½ðQ2 þM2

D þM2
Δ −MDMΔÞSΔD3=2 − 3MΔMDSΔD1=2�

þ
ffiffiffi
3

2

r
QΔDþQΔD−½MDðQ2 þMDðMD −MΔÞÞAΔD

−1=2 −MΔðQ2 −MΔðMD −MΔÞÞAΔD
3=2

−
ffiffiffi
3

p
MDMΔðMD −MΔÞAΔD

1=2�
�
;

FΔD
5 ¼

ffiffiffi
6

p MDMΔ

NΔDQΔDþQ2
ΔD−

ðAΔD
−1=2 − AΔD

3=2Þ: ð82Þ

As discussed above for the electromagnetic Δ → S11
transition, for our numerical estimates we will also use the
quark model to relate the helicity amplitudes for the
Δ → D13 transition to the corresponding ones for the p →
S11 and p → D13 transitions, as given by Eqs. (A5) and
(A7), and use the empirical results of Eq. (A8) for the latter.
The inelastic contribution to Ŵβμν, corresponding with

the D13ð1520Þ intermediate state, can then be expressed in
terms of on-shell γ�ND13 and γ�ΔD13 vertices as

Ŵβμν
D13

ðp0; pÞ ¼ 2πδðW2 −M2
DÞ ~Γβγμ

ΔDðpD; p0Þ
× Pð3=2Þ

γδ ðpD;MDÞΓδν
NDðpD; pÞ; ð83Þ

where the adjoint vertex ~Γβγμ
ΔD ≡ γ0ðΓβγμ

ΔDÞ†γ0 is given by the
same operator as in Eq. (75), with q ¼ pD − p0 in this case
denoting the outgoing photon momentum, and where in
addition the sign of the term proportional to the FF FΔD

5 is
reversed.
This allows us, for the D13 intermediate state contribu-

tion, to evaluate the unpolarized hadronic tensor entering
Eqs. (29) and (35) for Bn as

Hκμν
D13

¼ 2πδðW2 −M2
DÞ

× Trf ~Γακ
NΔðp0; pÞPð3=2Þ

αβ ðp0;MΔÞ ~Γβγμ
ΔDðpD; p0Þ

× Pð3=2Þ
γδ ðpD;MDÞΓδν

NDðpD; pÞPð1=2Þðp;MNÞg:
ð84Þ

VI. RESULTS AND DISCUSSION

In this section, we will show estimates for the normal
beam SSA using the hadronic model described above,

which includes the contributions of N, Δð1232Þ,
S11ð1535Þ, and D13ð1520Þ intermediate states.
To visualize the contributions from different kinematical

regions entering Eq. (41) for Bn, we will show density plots
of the integrand in

Bn ≡
Z

dQ2
1dQ

2
2

Q2
1Q

2
2

IðQ2
1; Q

2
2Þ; ð85Þ

where we defined a dimensionless density function
IðQ2

1; Q
2
2Þ by separating out the factor 1=ðQ2

1Q
2
2Þ in the

integrand of Eq. (41).
Due to the photon virtualities in the denominator, the full

integrand of Bn is very strongly peaked towards the quasi-
VCS regions, where either Q2

1 or Q2
2 becomes of order

Oðm2
eÞ [see Eq. (27)], corresponding with the physical

situations where the intermediate electron is collinear with
either the incident or scattered electrons. Furthermore,
when

ffiffiffi
s

p
approaches the invariant mass W of an inter-

mediate baryon resonance, one also obtains an enhance-
ment as both photons become quasireal; see Eq. (28). As
the integrand is amplified in the region of small Q2

1 and/or
Q2

2 due to these near singularities, special care is needed
when integrating over these regions numerically.
The electromagnetic transition strengths are encoded in

the dimensionless density function IðQ2
1; Q

2
2Þ in Eq. (85).

Using the model for the hadronic tensor outlined in Sec. V,
we show the density functions IðQ2

1; Q
2
2Þ for a beam

energy Ee ¼ 0.855 GeV of the A4@MAMI experiment,
in Figs. 4 and 5 for the N and Δð1232Þ intermediate states
respectively.
In Fig. 6, we show our result for the angular dependence

of Bn for a beam energy Ee ¼ 1.165 GeV, corresponding
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with the Qweak@JLab experiment [38]. We notice from
Fig. 6 that the nucleon and Δ intermediate state contribu-
tions to Bn are strongly forward peaked. This behavior for
the ep → eΔ process is unlike the corresponding Bn for the
elastic process. The measured value for Bn for the elastic
ep → ep process ranges from a few ppm in the forward
angular range to around a hundred ppm in the backward

angular range for beam energies below and around 1 GeV
[31–37], in good agreement with theoretical TPE expect-
ations [29]. For the inelastic process ep → eΔ, we expect
an enhancement of Bn in the forward angular range,
corresponding with low Q2, since the OPE process which
enters the denominator of Bn is suppressed by one power of
Q2 relative to its elastic counterpart, as seen from Eqs. (19)

FIG. 5. Plot of the density IðQ2
1; Q

2
2Þ entering the integrand of

Bn in Eq. (85) for the Δ intermediate state contribution for
Ee ¼ 0.855 GeV. The upper and lower panels show the dis-
tribution for θcm ¼ 30 deg and θcm ¼ 150 deg, respectively. The
integrand takes zero value along the dashed curve. Larger
negative (positive) values of I correspond with stronger shades
of blue (red). The distance between the contours corresponds
with 0.5 × 10−7 for the upper panel and 0.5 × 10−6 for the
bottom panel.

FIG. 4. Plot of the density IðQ2
1; Q

2
2Þ entering the integrand of

Bn in Eq. (85) for the nucleon intermediate state contribution
for Ee ¼ 0.855 GeV. The upper and lower panels show the
distribution for θcm ¼ 30 deg and θcm ¼ 150 deg, respectively.
The integrand takes zero value along the dashed curve. Larger
negative (positive) values of I correspond with stronger shades
of blue (red). The distance between the contours corresponds
with 0.5 × 10−8 for the upper panel and 1.25 × 10−7 for the
bottom panel.
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and (20). We furthermore see from Fig. 6 that the sum
of S11ð1535Þ þD13ð1520Þ contributions does not show
such forward angular enhancement as their electromagnetic
transitions are suppressed by an extra momentum
transfer. The S11 and D13 contributions show a similar
size and strength, and their combined contribution to Bn
becomes larger than the Δð1232Þ contribution for angles
θlab > 45 deg.
In Fig. 6, we also show a first data point for the beam

normal SSA for the e−p → e−Δþð1232Þ process which has

been reported by the Qweak Collaboration [38]. Despite its
large error bar, the data point at a forward angle of θlab ¼
8.3 deg shows a large value of Bn of around 40 ppm for this
process. The data point is very well described both in sign
and magnitude by our calculation, confirming the large
expected enhancement in the forward angular range. Since
the S11ð1535Þ þD13ð1520Þ contribution is very small at
this angle, Bn is dominated by N and Δ intermediate states
at this forward angle. Furthermore, since the N → N,
N → Δ electromagnetic transitions are well known from
experiments, and the Δ → Δ electromagnetic transition is
completely dominated by the coupling to the Δþ charge at
this forward angle, the model dependence in our prediction
is very small at this angle.
In Figs. 7 and 8, we show the corresponding results for

different kinematics corresponding with the A4@MAMI
experiment. Figure 7 shows the result for Ee ¼ 0.855 GeV.

Ee = 1.165 GeV
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FIG. 6. Beam normal spin asymmetry Bn for the e−p → e−Δþ
process as a function of the lab scattering angle for a beam energy
Ee ¼ 1.165 GeV. The curves denote the contributions from
different intermediate states: nucleon (dashed-dotted red curve),
Δð1232Þ (dashed blue curve), S11ð1535Þ þD13ð1520Þ (dotted
violet curve), and N þ Δþ S11ð1535Þ þD13ð1520Þ (solid black
curve). The data point is from the Qweak Collaboration [38].
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FIG. 7. Beam normal spin asymmetry Bn for the e−p → e−Δþ
process as function of the lab scattering angle for a beam
energy Ee ¼ 0.855 GeV where data have been taken by the
A4@MAMI experiment [32,33]. The curves denote the con-
tributions from different intermediate states: nucleon (dashed-
dotted red curve), Δð1232Þ (dashed blue curve), S11ð1535Þ þ
D13ð1520Þ (dotted violet curve), and N þ Δþ S11ð1535Þ þ
D13ð1520Þ (solid black curve).
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Ee = 0.570 GeV
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FIG. 8. Beam normal spin asymmetry Bn for the e−p → e−Δþ
process as a function of the lab scattering angle, for beam
energies in the Δ-resonance region where data have been
taken by the A4@MAMI experiment [32,33]. Upper panel:
Ee ¼ 0.420 GeV; lower panel: Ee ¼ 0.570 GeV. The curves
denote the contributions from different intermediate states:
nucleon (dashed-dotted red curves), Δð1232Þ (dashed blue
curves), and N þ Δ (solid black curves).
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This beam energy corresponds with a value
ffiffiffi
s

p
≈

1.58 GeV, which is closer to the S11ð1535Þ and
D13ð1520Þ thresholds. We therefore expect an enhance-
ment of their contributions. As one gets very close to the
threshold for an intermediate state contribution, one
approaches the situation where the intermediate electron
becomes soft, and both photons have small virtualities
[see Eq. (28)], corresponding with the quasireal Compton
process.
Figure 8 shows the results for Bn for two beam energies

of the A4@MAMI experiment below the thresholds for
S11ð1535Þ andD13ð1520Þ. These kinematical situations are
therefore dominated by N and Δ intermediate state con-
tributions. We see that the corresponding asymmetries
become large at forward angles. In the angular range
θlab ¼ 30–40 deg, where potential data exist from the
A4@MAMI experiment, we predict Bn ≃ 200–250 ppm
for Ee ¼ 0.420 GeV and Bn ≃ 75–95 ppm for Ee ¼
0.570 GeV. It will be interesting to confront these numbers
with experiments.
In Fig. 9, we also show the sensitivity of Bn at Ee ¼

0.570 GeV to the value of the Δþ magnetic dipole moment
μΔ. We compare our results for three values of μΔ
corresponding with the theoretical uncertainty range which
is currently listed by PDG, given in Eq. (1). We see from
Fig. 9 that for θlab around 90°, Bn varies by around 5 ppm
when varying μΔ in the range μΔ ¼ 1.5–4.5 [in units
e=ð2MΔÞ], in a region where Bn is about 28 ppm.

VII. CONCLUSIONS

In this work, we have presented the general formalism to
describe the beam normal spin asymmetry Bn for the ep →
eΔþð1232Þ process. This beam normal SSA arises from an

interference between a one-photon exchange amplitude and
the absorptive part of a two-photon exchange amplitude. As
the intermediate state in the TPE amplitude is on its mass
shell, it allows access to the Δ → Δ and N� → Δ electro-
magnetic transitions, which otherwise are not accessible in
an experiment without resorting to a theory framework. We
have provided estimates for this asymmetry by considering
nucleon, Δð1232Þ, S11ð1535Þ, and D13ð1520Þ intermediate
states. We find that Bn for the ep → eΔ process shows a
strong enhancement in the forward angular range, as
compared to its counterpart for the elastic process
ep → ep, which has been measured by several collabora-
tions. The forward enhancement of Bn for the inelastic
process is due to the OPE process for the ep → eΔ process,
entering the denominator of Bn, which is suppressed by one
power of Q2 relative to its elastic counterpart. The normal
beam SSA for the ep → eΔ reaction therefore offers an
increased sensitivity to the absorptive part of the TPE
amplitude. We have compared our results for Bn with the
first data point for the e−p → e−Δþ process from the
Qweak@JLab experiment and found that the forward
angle data point is very well described both in sign and
magnitude by our calculation. We have also given pre-
dictions for the A4@MAMI experiment, for which data
have been taken, and we have shown the sensitivity of this
observable to the Δþ magnetic dipole moment. It will be
interesting to analyze those data and provide a comparison
with the above theory predictions.
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APPENDIX: ELECTROMAGNETIC Δ → S11 AND
Δ → D13 TRANSITIONS IN THE QUARK MODEL

For calculations with the S11 and D13 intermediate
states, we need the Δ → S11 and Δ → D13 transition matrix
elements, as well as the proton to S11 and D13 matrix
elements. The latter are known from analyses of scattering
with proton targets [43], but for the former no direct
experimental information is available.
However, using ideas from SUð6Þ or from the constitu-

ent quark model one can relate the transition matrix
elements involving Δ’s to those involving nucleons. We
shall implement these ideas in a nonrelativistic (NR) limit,
and give the helicity amplitudes for the transitions
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FIG. 9. Sensitivity of the beam normal spin asymmetry Bn for
the e−p → e−Δþ process at Ee ¼ 0.570 GeV on the Δþ mag-
netic dipole moment. The curves denote the contributions from
N þ Δ intermediate states for different values of μΔ [in units of
e=ð2MΔÞ]: μΔ ¼ 1.5 (blue dashed curve), μΔ ¼ 3.0 (black solid
curve), and μΔ ¼ 4.5 (red dashed-dotted curve).
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connecting a Δ to the S11 or D13 in terms of those
connecting a proton to the same states. A summary of
the techniques and the relevant results are given here.
Details regarding the techniques can be found in [49],
and the same methods of course can be used for other
transitions as well [49–52].
The helicity matrix elements, defined for the present

cases in Eqs. (63) and (78), contain the operators Jμ · ϵ
μ
λ¼1

and J0. At the quark level in a NR limit, these operators
become

Jμ ·ϵ
μ
λ¼1→3Aeq3S3þþ3Beq3L3þ; J0→3Ceq3: ðA1Þ

The operators are written in anticipation of use in a wave
function completely antisymmetric among the quarks, so
we only evaluate for the third quark and multiply by 3; eq3
is the charge of the third quark, S3þ is the spin raising
operator for the third quark, and L3þ similarly is the angular
momentum raising operator. We have let the photon three-
momentum be in the z-direction. The factors A, B, and C
depend on position; C is the simplest example, being just
eiqz3 where z3 is the z coordinate of the third quark. Details
of the derivations may be found in [49] starting from a
Hamiltonian formalism, and one can obtain the same
results using a NR reduction of standard relativistic
expressions for the current.
The Δ state has the same spatial wave function as the

nucleon state, and it may in short form be given as

jΔðSzÞi ¼ jψS
00ϕ

SχSSzi; ðA2Þ

where ψ , ϕ, and χ respectively represent the space, flavor,
and spin wave functions of the three quarks; the color wave
function is tacit; superscripts S indicate a wave function
that is totally symmetric; the subscripts on the space wave
function indicate orbital angular momentum and projec-
tion, L and Lz; and the subscript on the spin wave function
is the spin projection. The flavor wave function, here and
elsewhere in this section, is chosen to be for the total charge
þ1 state.
The states S11ð1535Þ and D13ð1520Þ are negative parity

states usually associated with the SUð6Þ 70-plet states
where the three quarks are collectively in a spin-1=2,
flavor octet state. Mixing with other states is possible
but will be ignored for now. The wave functions, again in
short form, are

jJ; Jzi ¼
1

2

X
Lz;Sz

 
J 1 1=2

Jz Lz Sz

!

× fψMS
1Lz

ð−ϕMSχMS
Sz

þ ϕMAχMA
Sz

Þ
þ ψMA

1Lz
ðϕMAχMS

Sz
þ ϕMSχMA

Sz
Þg; ðA3Þ

where J is a stand-in for S11 when J ¼ 1=2 or D13 when
J ¼ 3=2. The first symbol after the summation sign is the
Clebsch-Gordan coefficient, and superscripts MS and MA
stand for mixed symmetry states where the first pair of
quarks is either symmetric or antisymmetric.
The crucial matrix elements involving the spatial

wave function of the ground state N or Δ on one side
and the mixed symmetry states of the 70-plet on the other
side are

A1ðQ2Þ ¼ hψMS
10 jAjψS

00i;
B1ðQ2Þ ¼ hψMS

11 jBL3þjψS
00i;

C1ðQ2Þ ¼ hψMS
10 jCjψS

00i; ðA4Þ

where A1, B1, and C1 are generally real. The MA states do
not enter because of symmetry considerations. Then,

AΔS
1=2 ¼

NSΔ

3
ffiffiffi
3

p A1ðQ2Þ;

AΔS
−1=2 ¼ −

NSΔ

3
A1ðQ2Þ;

AΔD
3=2 ¼ 0;

AΔD
1=2 ¼ −

NDΔ

3

ffiffiffi
2

3

r
A1ðQ2Þ;

AΔD
−1=2 ¼ −

NDΔ
ffiffiffi
2

p

3
A1ðQ2Þ: ðA5Þ

The B amplitudes also do not enter, because of the
mismatched spins of the Δ and S11, D13 quark wave
functions, meaning that the S3þ operator is always needed.
Similarly, all the scalar S11 andD13 transition amplitudes to
the Δ are zero. Normalizations NSΔ and NDΔ are given in
Eqs. (64) and (79), respectively.
A pair of proton to 70-plet amplitudes are

ApS
1=2 ¼

NpSffiffiffi
6

p ð−A1ðQ2Þ þ
ffiffiffi
2

p
B1ðQ2ÞÞ;

ApD
1=2 ¼

NpDffiffiffi
6

p ð
ffiffiffi
2

p
A1ðQ2Þ þ B1ðQ2ÞÞ: ðA6Þ

These allow us to obtain A1 from measured amplitudes,

A1ðQ2Þ ¼
ffiffiffi
2

3

r � ffiffiffi
2

p
ApD
1=2

NpD
−
ApS
1=2

NpS

�
: ðA7Þ
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The MAID parametrizations are [43]

ApS
1=2 ¼ 66.4 × 10−3 GeV−1=2ð1þ 1.608Q2Þe−0.70Q2

;

SpS1=2 ¼ −2.0 × 10−3 GeV−1=2ð1þ 23.9Q2Þe−0.81Q2

;

ApD
1=2 ¼ −27.4 × 10−3 GeV−1=2ð1þ 8.580Q2 − 0.252Q4 þ 0.357Q8Þe−1.20Q2

;

ApD
3=2 ¼ 160.6 × 10−3 GeV−1=2ð1 − 0.820Q2 þ 0.541Q4 − 0.016Q8Þe−1.06Q2

;

SpD1=2 ¼ −63.5 × 10−3 GeV−1=2ð1þ 4.19Q2Þe−3.40Q2

; ðA8Þ

for Q2 in GeV2.
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