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Semi-inclusive charge-changing neutrino reactions on targets of heavywater are investigatedwith the goal
of determining the relative contributions to the total cross section of deuterium and oxygen in kinematics
chosen to emphasize the former. The study is undertaken for conditions where the typical neutrino beam
energies are in the few GeV region, and hence relativistic modeling is essential. For this, the previous
relativistic approach for the deuteron is employed, together with a spectral function approach for the case of
oxygen. Upon optimizing the kinematics of the final-state particles assumed to be detected (typically a muon
and a proton) it is shown that the oxygen contribution to the total cross section is suppressed by roughly an
order ofmagnitude comparedwith the deuterium cross section, thereby confirming that CCν studies of heavy
water can effectively yield the cross sections for deuterium, with acceptable backgrounds from oxygen. This
opens the possibility of using deuterium to determine the incident neutrino flux distribution, to have it serve
as a target for which the nuclear structure issues are minimal, and possibly to use deuterium to provide
improved knowledge of specific aspects of hadronic structure, such as to explore the momentum transfer
dependence of the isovector axial-vector form factor of the nucleon.
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I. INTRODUCTION

In two recent studies the subject of semi-inclusive
charge-changing neutrino (CCν) reactions with nuclei [1]
and application to the special case of deuterium [2] were
presented. Analogous to the semi-inclusive reaction ðe; e0xÞ
where one assumes that the scattered electron and some
particle x are detected in coincidence, in the weak inter-
action case one considers reactions of the type ðνl;l−xÞ
and ðν̄l;lþxÞ. These involve incident neutrinos or anti-
neutrinos of specific flavor (l ¼ e, μ or τ) together with
coincident detection of the corresponding charged leptons
and some particle x. In the present work we shall focus on
nucleons ejected from the nucleus, and hence x ¼ N, where
N ¼ p or n. Note that in the nuclear case the “natural” type
of nucleon may not be the one of interest, whereas for a
single-nucleon target and when no other particle is pro-
duced other than the final-state nucleon (i.e., no pion
production, kaon production, etc.) charge conservation
forces the final-state nucleon to be only of one type.
Namely, in this latter case one only has reactions of the
type νl þ n → l− þ p and ν̄l þ p → lþ þ n. In the
present work we shall specialize still further and consider
only incident neutrinos, final-state negative leptons and

emission of protons (x ¼ p). For completeness in defining
the terminology commonly being used, we note that
reactions where only the final-state leptons are detected,
such as ðe; e0Þ, ðνl;l−Þ or ðν̄l;lþÞ, are called inclusive
reactions.
As has become quite clear in recent years, the typical

high-energy neutrino beams used in studies of neutrino
oscillations, typically at neutrino energies of around a GeV
to tens of GeV, Eν, have rather broad spreads in energy.
These experiments use detectors which measure CCν
reactions from a variety of nuclei and extraction of the
incident neutrino energy then depends upon either the
measurement of three-particle final states [3] or on the use
nuclear models and formulas for reconstructing the neu-
trinos energy from inclusive scattering cross sections [4].
The second approach, which is most commonly in use,
requires models of the inclusive reaction and use of event
generators including only simple models of the inclusive
reaction. This introduces model dependence into the
extraction of the incident neutrino energy Eν and therefore
also into the distance over energy ratio L=Eν that enters
in the standard oscillation expressions. However, as dis-
cussed in [2], deuterium provides, at least in principle, an
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exception to the typical case of heavier nuclei. Namely,
once so-called “no-pion” events are isolated, all that can
occur for the case of incident neutrinos is the reaction
νl þ 2H → l− þ pþ p. Upon detecting two of the three
particles in the final state and knowing the direction of the
incident neutrino the neutrino’s energy can be reconstructed
using nothing beyond the kinematics of the reaction. This
indeed was used in the original bubble chamber experi-
ments to extract the axial form factor (see [5] and references
therein.) In [2] a specific relativistic model for the deu-
terium ground state and final NN scattering state was
employed to model this reaction; in the present study we
use the same model for the A ¼ 2 states and the required
electroweak current matrix elements.
This said, there are still practical issues of which to be

aware. Namely, making very large target/detectors of hydro-
gen or deuterium is problematical because of the safety
issues involved and the difficulty of providing very large
amounts of these nuclei. Using target/detectors of something
involving large fractions of deuterium together with other
light nuclei, such as heavy water (D2O) or deuterated
methane (CD4), might alleviate the safety issue and could
provide practical amounts of deuterium, although having
other nuclei such as oxygen or carbon present will introduce
greater complexity to the analysis of the data. In this studywe
have focused on a specific case to explore how such mixed
nuclear cases behave; specifically, here we consider the case
of 2H2

16O. The goal is to takewhat we have already done for
deuterium, add model results for CCν semi-inclusive reac-
tions on 16O and determine whether this approach can
potentially be used as an alternative to the methods currently
in use.One expects the deuteron events to bevery peaked and
to occur in a different part of the kinematic space involved
from the oxygen events, and, aswell, the oxygen events to be
much more spread in the appropriate kinematic variables so
that the ratio of deuterium to oxygen becomes quite
favorable. Indeed, we shall show that this is the case.
We will be drawing on our previous study of semi-

inclusive CCν reactions in [1] to highlight and quantify the
differences of deuterium and a more typical nucleus such as
oxygen (here the nucleus could be chosen to be carbon or
any other relatively light nucleus). As a specific model for
the oxygen case we employ the spectral function approach
of [6,7]. The goal will be to optimize the selection of semi-
inclusive events for the case of deuterium and then see what
emerges for the “background” from the oxygen events.
The paper is organized as follows. In Sec. II we

summarize the necessary formalism for the semi-inclusive
CCν reaction, taking as a basis the previous study reported
in [1], and include some of the relevant formalism needed
to interrelate the experimental “lab frame” to the so-called
“q-frame”. In Sec. III we specialize the results of the
previous section to the case of deuterium to make very clear
the advantage provided by this particular nucleus. We do
not repeat the discussion of the formalism for the dynamics

and currents involved in the deuterium case, since these
have been reported in [2]. For the case of oxygen we
present the required formalism in the context of the spectral
function in Sec. IV, following which we employ the two
models discussed above to obtain typical results for heavy
water and present these in Sec. V. In Sec. VI we offer our
conclusions, while in the Appendix we collect expressions
for the off shell single-nucleon response functions
employed for the oxygen spectral function case.

II. SEMI-INCLUSIVE CROSS SECTION

Semi-inclusive CCν scattering is represented by the
Feynman diagram shown in Fig. 1, where Qμ is the
four-momentum of the W-boson,

Kμ ¼ ðε; kÞ ð1Þ

is the incident lepton four-momentum and

K0μ ¼ ðε0; k0Þ ð2Þ

is the four-momentum of the lepton in the final state, where
ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and ε0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þm02p

are the energies of the
incident and final leptons with respective massesm and m0.
Then the four-momentum transfer is

Qμ ¼ Kμ − K0μ ¼ ðε − ε0; k − k0Þ ¼ ðω; qÞ: ð3Þ

The four-momentum of the target nucleus with a nucleon
number A can be written in its rest frame as

Pμ
A ¼ ðMA; 0Þ: ð4Þ

The four-momentum of the detected nucleon is

Pμ
N ¼ ðEN; pNÞ; ð5Þ

P

P

P
N

A-1

AK

K

Q

FIG. 1. Feynman diagram for semi-inclusive charge-changing
neutrino reactions involving a target nucleus with nucleon
number A with emission and detection of a nucleon with four-
momentum Pμ

N together with the detection of a final-state charged
lepton with four-momentum K0μ.
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where mN is the nucleon mass, EN ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2N þm2

N

p
and the

four-momentum of the residual A − 1 system is

Pμ
A−1 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m þW2

A−1

q
; pm

�
ð6Þ

with the invariant mass WA−1.

The energy of an incoming neutrino can be determined
by measuring the three-momenta of the outgoing charged
lepton, which we take to be a muon in what follows
(although clearly the e or τ cases can also be considered),
and nucleon, corresponding to kinematics B of [1]. In this
case the fourfold differential cross section in the laboratory
frame is then

dσ
dk0dΩk0dpNdΩL

N
¼ G2cos2θcmNk02p2

NWA−1

2ð2πÞ5kε0EN

Z
d3pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
m þW2

A−1

p ημνWμνδ4ðK þ PA − K0 − PN − PA−1Þ

¼ G2cos2θcmNk02p2
NWA−1

2ð2πÞ5kε0EN

Z
d3pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
m þW2

A−1

p ημνWμνδ
�
εþMA − ε0 − EN −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q �

× δðk − k0 − pN − pmÞ; ð7Þ

where G is the weak interaction coupling constant and θc is the Cabibbo mixing angle. Defining

EB ¼ ε0 þ EN −MA ð8Þ

and

pB ¼ k0 þ pN; ð9Þ

the cross section becomes

dσ
dk0dΩk0dpNdΩL

N
¼ G2cos2θcmNk02p2

NWA−1

2ð2πÞ5kε0EN

Z
d3pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
m þW2

A−1

p ημνWμνδ
�
ε − EB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q �
δðk − pB þ pmÞ

¼ G2cos2θcmNk02p2
NWA−1

2ð2πÞ5kε0EN

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpB − kÞ2 þW2

A−1

p ημνWμνδ
�
ε − EB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpB − kÞ2 þW2

A−1

q �
: ð10Þ

Using the remaining δ-function, the incident neutrino
momentum and energy are given by

k0 ¼
1

aB

�
XBpB cos θB þ EB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

q �
ð11Þ

and

ε0 ¼
1

aB

�
EBXB þ pB cos θB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

q �
; ð12Þ

where

XB ¼ 1

2
ðp2

B − E2
B þW2

A−1 −m2Þ ð13Þ

and

aB ¼ p2
B cos

2 θB − E2
B: ð14Þ

The energy-conserving δ-function can be rewritten as

δ
�
ε − EB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpB − kÞ2 þW2

A−1

q �

¼ ε0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpB − kÞ2 þW2

A−1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

p δðk − k0Þ: ð15Þ

The cross section then becomes

dσ
dk0dΩk0dp2

NdΩL
N

¼ G2cos2θcmNk02εp2
NWA−1v0

2ð2πÞ5kε0EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

p F 2
χδðk − k0Þ; ð16Þ

where F 2
χ ≡ ημνWμν=v0 with v0 ≡ ðεþ ε0Þ2 − q2. The

resulting response may be written
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F 2
χ ¼ V̂CCðwVVðIÞ

CC þ wAAðIÞ
CC Þ þ 2V̂CLðwVVðIÞ

CL þ wAAðIÞ
CL Þ þ V̂LLðwVVðIÞ

LL þ wAAðIÞ
LL Þ þ V̂TðwVVðIÞ

T þ wAAðIÞ
T Þ

þ V̂TT ½ðwVVðIÞ
TT þ wAAðIÞ

TT Þ cos 2ϕN þ ðwVVðIIÞ
TT þ wAAðIIÞ

TT Þ sin 2ϕN �
þ V̂TC½ðwVVðIÞ

TC þ wAAðIÞ
TC Þ cosϕN þ ðwVVðIIÞ

TC þ wAAðIIÞ
TC Þ sinϕNÞ�

þ V̂TL½ðwVVðIÞ
TL þ wAAðIÞ

TL Þ cosϕN þ ðwVVðIIÞ
TL þ wAAðIIÞ

TL Þ sinϕN �
þ χ½V̂T 0wVAðIÞ

T 0 þ V̂TC0 ðwVAðIÞ
TC0 sinϕN þ wVAðIIÞ

TC0 cosϕNÞþV̂TL0 ðwVAðIÞ
TL0 sinϕN þ wVAðIIÞ

TL0 cosϕNÞ� ð17Þ

with

χ ¼
�−1 for neutrinos

1 for antineutrinos
: ð18Þ

The kinematic functions Va and response functions wi
j are

as defined in [1] with the explicit dependence on the
azimuthal angle ϕN defined in the q-fixed frame. Response
functions labeled by the superscript ðIIÞ vanish in the plane
wave limit.
If the neutrino momentum distribution normalized to

unity is designated as PðkÞ, the cross section weighted by
this distribution is then given by

�
dσ

dk0dΩk0dpNdΩL
N

�

¼
Z

∞

0

dk
G2cos2θcmNk02εp2

NWA−1

2ð2πÞ5kε0EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

p v0F 2
χδðk− k0ÞPðkÞ

¼G2cos2θcmNk02ε0p2
NWA−1v0

2ð2πÞ5k0ε0EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
Bþm2aB

p F 2
χPðk0Þ: ð19Þ

Next it is useful to interrelate the variables in the
laboratory frame shown in Fig. 2 to those in the so-called
q-system shown in Fig. 3. We have the following identities
relating the angles in the two systems:

cos θN ¼ cos θLN cos θq − cosϕL
N sin θLN sin θq ð20Þ

sin θN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θN

q
ð21Þ

cosϕN ¼ cosϕL
N sin θLN cos θq þ cos θLN sin θq

sin θN
ð22Þ

sinϕN ¼ sinϕL
N sin θLN

sin θN
; ð23Þ

and the inverse relations are given by

cos θLN ¼ cos θN cos θq þ cosϕN sin θN sin θq ð24Þ

sin θLN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θLN

q
ð25Þ

cosϕL
N ¼ cosϕN sin θN cos θq þ cos θN sin θq

sin θLN
ð26Þ

sinϕL
N ¼ sinϕN sin θN

sin θLN
: ð27Þ

Note that as the neutrino energy changes, even for fixed
directions for the outgoing muon and nucleon, the direction
of the momentum transfer also changes, and, therefore,
through these relationships, the polar and azimuthal angles
in the q-system also change. The lab system is relevant
when experimental issues are being considered; however,
the q-system with the 3-direction along the momentum of
the exchanged boson has special symmetries that are
masked in the lab system.
Here, we want to express the cross section in lab frame.

This can be done by using Eqs. (22) and (23) to replace the

'

1'

1'3'-plane
(k,k',q)

q

k

q l L

p

k'
-

2

3' k

L
Laboratory System

FIG. 2. Semi-inclusive ðνμ; μ−pÞ CCν reaction in the laboratory
frame. Here the incident neutrino with three-momentum k is
along the 30 direction, the neutrino and the final-state muon with
three-momentum k0 lie in the 10–30 plane and the normal to the
plane defines the 20 direction. The outgoing nucleon (here a
proton) has three-momentum pN and is traveling in the direction
characterized by the polar angle θLN and azimuthal angle ϕL

N in the
lab system, as shown.
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azimuthal angular dependence in Eq. (17) and by defining
the three-momenta

k ¼ kû30 ; ð28Þ

k0 ¼ k0ðsin θlû10 þ cos θlû30 Þ ð29Þ

and

pN ¼ pNðcosϕL
N sin θLN û10 þ sinϕL

N sin θLNû20 þ cos θLNû30 Þ;
ð30Þ

where θl is the lepton scattering angle. The unit vectors in
the lab frame are û10 , û20 and û30 , as shown in Fig. 2. The
three-momentum transfer is

q ¼ k − k0; ð31Þ

and its square is

q2 ¼ k2 þ k02 − 2kk0 cos θl: ð32Þ

The angle between k and q can be obtained from

k · q ¼ kq cos θq ¼ k · k − k · k0 ¼ k2 − kk0 cos θl; ð33Þ

which can be solved to yield

cos θq ¼
k − k0 cos θl

q
: ð34Þ

Similarly we can use

k · pB ¼ kpB cos θB ¼ k · ðk0 þ pNÞ
¼ ðkk0 cos θl þ kpN cos θLNÞ ð35Þ

to obtain

pB cos θB ¼ k0 cos θl þ pN cos θLN: ð36Þ
The remaining expressions needed to obtain the cross
section in the lab frame are

p2
B ¼ k02 þp2

N þ 2k0 · pN
¼ k02 þp2

N þ 2k0pNðcosϕL
N sinθLN sinθl þ cosθLN cosθlÞ

ð37Þ
and

p2
m ¼ k2 þ p2

B − 2k · pB ¼ k2 þ p2
B − 2kpB cos θB: ð38Þ

As noted in [2], Eq. (19) applies also to the case of
exclusive scattering from the deuteron by making the
substitutions MA → Md and WA−1 → mN .

III. DEUTERIUM

For the purpose of determining whether the deuterium
cross section can be separated from that of oxygen, we wish
to choose kinematics which are optimal for the deuteron
and then use the values k0 and pN determined from the
deuteron in calculating the semi-inclusive scattering from
oxygen.
To obtain the optimal kinematics for scattering from the

deuteron we start with Mandelstam s for the virtual W and
the deuteron. This is given by

s ¼ ðPd þQÞ2 ¼ ðMd þ ωÞ2 − q2: ð39Þ
The scaling variables [8]

y ¼ ðMd þ ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

NÞ
p
2s

−
q
2

ð40Þ

and

Y ¼ yþ q ð41Þ
can be used to obtain limiting values for the magnitude of
the missing momentum pm as

jyj ≤ pm ≤ Y: ð42Þ

Since the deuteron cross section behaves roughly as the
deuteron momentum distribution nðpmÞ, which peaks at
pm ¼ 0, the cross section can be optimized by choosing
kinematics such that y ¼ 0. Solving this for the incident
neutrino energy yields

p

2

3

1

13-plane

q

FIG. 3. Semi-inclusive ðνμ; μ−pÞ CCν reaction in the q-system.
Here the three-momentum transfer q defines the 3 direction, the
neutrino and the final-state muon lie in the 1–3 plane and the
normal to the plane defines the 2 direction. The outgoing nucleon
(here a proton) has three-momentum pN and is traveling in the
direction characterized by the polar angle θN and azimuthal angle
ϕN in the q-system, as shown.
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ε0 ¼
1

2½ðε0 −Md þmNÞ2 − k02cos2ðθlÞ�
fζk0 cosðθlÞ½−2ε02ðm2 − 2ðMd −mNÞ2Þ

− 4ε0ðMd −mNÞð−m2 þM2
d − 2MdmN þm02Þ þ 2k02m2 cosð2θlÞ þm4 − 2m2M2

d

þ 4m2MdmN − 4m2m2
N þM4

d − 4M3
dmN þ 4M2

dm
2
N þ 2M2

dm
02 − 4MdmNm02 þm04�12

− 2ε02Md þ 2ε02mN þ ε0m2 þ 3ε0M2
d − 6ε0MdmN þ 2ε0m2

N þ ε0m02 −m2Md þm2mN

−M3
d þ 3M2

dmN − 2Mdm2
N −Mdm02 þmNm02g; ð43Þ

where

ζ ¼
�−1 for θl ≤ π

2

1 for θl > π
2

: ð44Þ

Four-momentum conservation for the deuteron requires
that

0 ¼ Md þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þm2

N

q
ð45Þ

0 ¼ q − pN þ pm: ð46Þ
Using Eq. (45) the square of the detected nucleon momen-
tum is

p2
N ¼

�
Md þ ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þm2

N

q �2
−m2

N: ð47Þ

Using Eq. (46),

pm ¼ q − pN; ð48Þ
yields

p2
m ¼ q2 þ p2

N − 2pNq cos θN: ð49Þ
Solving this for cos θN gives

cos θN ¼ q2 þ p2
N − p2

m

2pNq
: ð50Þ

By specifying k0, θl, ϕN and using Eqs. (47) and (50), the
lab frame angles are then given by Eqs. (24), (25), (26) and

(27). This provides a complete set of input variables to
evaluate the deuteron and oxygen cross sections. Note that
Eq. (50) results in a correlation of the values of pN

and cos θLN .
All of the conditions required by these constrained

kinematics can only be satisfied by limiting

0≤ θl ≤
�
cos−1ðε0−MdþmN

k0 Þ for − k0 < ε0 −MdþmN ≤ k0

π for ε0 −MdþmN ≤−k0
:

ð51Þ

The deuterium matrix elements needed to construct the
cross section are described in [2].

IV. SPECTRAL FUNCTION

For this work we estimate the oxygen semi-inclusive
cross sections using a factorized spectral function model
represented by Fig. 4. The current matrix element for this
model can be written as

hpN; sN ;PA−1; sA−1jJμðqÞjPA; sAi
¼ ūðpN; sNÞaJμðqÞabΨðPA−1; sA−1;PA; sAÞbc; ð52Þ

where sN , sA and sA−1 are the spins of the ejected
proton, target nucleus and residual system, respectively,
and ΨðPA−1; sA−1;PA; sAÞ represents a three-point
function with the A line truncated. The Dirac indices are
explicitly indicated. The nuclear response tensor is then
given by

Wμν ¼
X
sN

X
sA

X
sA−1

ūðpN; sNÞaJνðqÞabΨðPA−1; sA−1;PA; sAÞbcΨ̄ðPA−1; sA−1;PA; sAÞcdJμð−qÞdeuðpN; sNÞe

¼
X
sN

ūðpN; sNÞaJνðqÞab
1

8π
ΛþðpmÞbdSðpm; EmÞJμð−qÞdeuðpN; sNÞe

¼ 1

8π
Tr½Jμð−qÞΛþðpNÞJνðqÞΛþðpmÞ�Sðpm; EmÞ

¼ 1

8π
wμνðPA − PA−1; QÞSðpm; EmÞ; ð53Þ
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where wμνðPA − PA−1; QÞ is an off shell single-nucleon
response tensor and Sðpm;EmÞ is the spectral function. The
missing energy is approximated by

Em ≅ Es þ E; ð54Þ

where Es is the separation energy,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW0

A−1
2

q
; ð55Þ

and W0
A−1 is the invariant mass of the lowest state of the

residual system. Energy conservation requires that

0 ¼ MA þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q

¼ MA þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW0

A−1
2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW0

A−1
2

q

¼ MA þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
− E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW0

A−1
2

q
: ð56Þ

So E can also be written as

E ¼ MA þ ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW0

A−1
2

q
: ð57Þ

From momentum conservation pN ¼ q − pm, and therefore

E¼MAþω−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq−pmÞ2þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
mþW0

A−1
2

q
: ð58Þ

The range of E is then limited by

Eþ ≤ E ≤ E−; ð59Þ

where

E−¼MAþω−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm−qÞ2þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
mþW0

A−1
2

q
ð60Þ

and

Eþ¼max
�
MAþω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpmþqÞ2þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
mþW0

A−1
2

q
;0
�
:

ð61Þ

The normalization of the spectral function Sðpm; EmÞ is
defined here such that

Z
∞

0

dEmSðpm; EmÞ ¼ nðpmÞ ð62Þ

is the momentum distribution and

1

ð2πÞ3
Z

∞

0

dpmp2
mnðpmÞ ¼ A − Z: ð63Þ

Expressing the four-momentum of the struck nucleon as

Pμ
A − Pμ

A−1 ¼ ðMA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
m þW2

A−1

q
;−pmÞ; ð64Þ

defining

p ¼ −pm ð65Þ

and using energy conservation

MA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þW2

A−1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
− ω; ð66Þ

one has

Q

P

P

P

P

N

A-1

A
K

K

A

m

FIG. 4. Feynman diagram for a factorized approximation to the
semi-inclusive charge-changing neutrino reaction illustrated for
the general case in Fig. 1.

FIG. 5. DUNE flux converted to a probability density as a
function of k in GeV.
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FIG. 6. Probability weighted cross sections for k0 ¼ 1 GeV for various scattering angles θl. The solid lines represent twice the
deuteron cross section, and the dashed lines are for the oxygen cross section versus θLN . The value of pN is represented by the dotted
lines. For all cases the azimuthal angle is fixed at ψL

N ¼ 180°.
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Pμ
A−Pμ

A−1¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
Nþm2

N

q
−ω;p

�

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
Nþm2

N

q
−ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

N

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

N

q
;p
�

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
Nþm2

N

q
−ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

N

q
;0
�

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
N

q
;p
�

¼ðδ;0Þþ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
N

q
;p
�
¼ΔμþPμ; ð67Þ

where

Pμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
N

q
; p
�

ð68Þ

is an on shell four-vector and

Δμ ¼ ðδ; 0Þ ð69Þ

is off shell with

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

N

q
− ω: ð70Þ

The quantity F 2
χ in Eq. (19) is then given by

F 2
χ ≅

1

8π
~F 2
χSðpm; EmÞ; ð71Þ

where

FIG. 7. As for Fig. 6 but now for k0 ¼ 2 GeV.
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~F 2
χ ¼ V̂CCð ~wVVðIÞ

CC þ ~wAAðIÞ
CC Þ þ 2V̂CLð ~wVVðIÞ

CL þ ~wAAðIÞ
CL Þ þ V̂LLð ~wVVðIÞ

LL þ ~wAAðIÞ
LL Þ þ V̂Tð ~wVVðIÞ

T þ ~wAAðIÞ
T Þ

þ V̂TTð ~wVVðIÞ
TT þ ~wAAðIÞ

TT Þ cos 2ϕN þ V̂TCð ~wVVðIÞ
TC þ ~wAAðIÞ

TC Þ cosϕN þ V̂TLð ~wVVðIÞ
TL þ ~wAAðIÞ

TL Þ cosϕN

þ χ½V̂T 0 ~wVAðIÞ
T 0 þ V̂TC0 ~wVAðIÞ

TC0 sinϕN þ V̂TL0 ~wVAðIÞ
TL0 sinϕN �: ð72Þ

The off shell single-nucleon response functions ~wi
j are

listed in the Appendix.
Since the invariant mass of the residual A − 1 system is

not measured, it is necessary that the semi-inclusive
cross section be integrated over all possible values of
WA−1 to give

�
dσ

dk0dΩL
k0dpNdΩL

N

�

¼
Z

∞

W0
A−1

dWA−1
G2cos2θcmNk02ε0p2

NWA−1v0
8ð2πÞ6k0ε0EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

p
× ~F 2

χSðpm; EmÞPðk0Þ; ð73Þ

where W0
A−1 is the lowest possible mass for the residual

system which in some cases may not be a bound state. For
the specific case considered in the present study this
corresponds to the ground state mass of 15O.
Note that the integral over the invariant mass requires

that k0 and ε0 in Eqs. (11) and (12) must take on a range of
values rather than being fixed as in the case of the deuteron.

V. RESULTS

For the purposes of this paper, we have chosen to weight
the cross sections using the flux momentum distribution for
the DUNE experiment [9] normalized to unit area, repre-
sented PðkÞ as shown in Fig. 5. The spectral function for
oxygen is from [6,7] renormalized according to the units
and conventions used here.
Figures 6, 7 and 8 show cross sections for 2H and 16O for

k0 ¼ 1; 2 and 3 GeV respectively, as a function of the polar
angle of the detected proton θLN , for a variety of lepton
scattering angles subject to the y ¼ 0 constraint (see
Sec. III) and the restriction required by Eq. (51). For each
scattering angle, the values of the incident neutrino energy
k and the momentum transfer q are given for the deuteron.
For oxygen these quantities cover a range of values due to
their dependence on the invariant mass WA−1 which is
integrated over to the semi-inclusive cross section. For
completeness, each figure contains the momentum of the
detected proton pN as a function of θLN with values given by
the right-hand scale. Since for 2H2

16O there are two
deuterium nuclei for each oxygen nucleus, the cross
sections for deuterium are multiplied by a factor of 2. In

FIG. 8. As for Fig. 6 but now for k0 ¼ 3 GeV.
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all cases the maximum value of the oxygen cross section is
at most one tenth of the deuterium cross section at its
maximum value with the relative size decreasing for
increased the muon energy and scattering angle. It should
be remembered, however, that these cross sections are
evaluated and kinematics chosen to maximize the contri-
bution of deuterium.
The size of the deuterium cross sections relative to

those of oxygen may still seem rather startling. The
explanation for this is straightforward. The semi-inclusive
cross sections are roughly proportional to the neutron
momentum distributions for the two nuclei as shown in
Fig. 9. Note that the maximum value of the deuterium
momentum distribution is roughly 5 times as large as that
for oxygen. Given that there are two deuterium nuclei
for each oxygen nucleus, this difference in the peak values
of the deuterium and oxygen momentum distributions

explains the difference in the size of the cross section
shown above. Figure 10 shows the inclusive cross sections
for deuterium and oxygen as a function of the incident
neutrino momentum. This shows that integrating over all
possible values of proton three-momentum results in a
much larger and broader quasielastic peak for oxygen than
for deuterium, as should be expected. This indicates that the
unconstrained semi-inclusive cross section is distributed
over a much larger region of phase space than that for
deuterium.

VI. CONCLUSIONS

The study presented in this paper of the semi-inclusive
charge-changing neutrino reaction ðνμ; μ−pÞ on a target of
heavy water (D2O) indicates that by careful choice of muon
and proton three-momenta it is theoretically possible to
separate deuterium events from those for oxygen. Naive
considerations such as simply counting the number of
neutrons provided by the two nuclei, namely, two for the
two deuterium nuclei versus eight for the oxygen might
lead one to expect that the latter will constitute a large
background when the goal is to focus on events from the
former. Such is basically the case for inclusive scattering
where only the muon is assumed to be detected and
integrations over the complete missing-energy-momentum
region allowed by the lepton kinematics are involved.
However, as discussed in the previous section where results
are given, this expectation is not necessarily the case for
semi-inclusive studies: the spectral function for deuterium
is sharply peaked at small values of the missing momen-
tum, whereas that for oxygen peaks at larger missing
momenta where contributions from the 1p-shell are
dominant and at low missing momenta but at higher
missing energies where the 1s-shell contributions occur.
Furthermore, these contributions to the oxygen spectral
function are spread much more widely in missing momen-
tum than the corresponding sharply peaked ones for
deuterium, roughly by the factor of 4 obtained by forming
the ratio of the Fermi momenta for the two nuclei, namely
55 MeV=c for deuterium and 230 MeV=c for oxygen.
These simple considerations alone indicate why the detec-
tion of both the muon and proton for appropriate choices of
kinematics hold promise for isolating the deuterium events
from those involving the oxygen. The basic idea is to
choose the kinematics to favor the former while avoiding
the dominant 1p-shell contributions of the latter.
In passing we note that the high missing energy/missing

momentum region, while contributing perhaps 20% to the
inclusive cross section, is essentially irrelevant for the
semi-inclusive cross section as the strength there is very
broadly distributed and little is picked up when the line
integrals over the oxygen spectral function are performed.
Typically this region accounts for only a few percent
compared with the dominant “shell-model” regions. In
contrast, for inclusive scattering a wide region in the

FIG. 10. Inclusive CCν cross sections for 2H (solid line) and 16O
(dashed line).

FIG. 9. Neutron momentum distributions for 2H (solid line) and
16O (dashed line).
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missing-energy-momentum plane must be integrated, and
thus, even though spread over a wide region, a very
different conclusion is reached, namely, that this region
contributes much more significantly to the total cross
section.
In summary, from this theoretical study it appears that

targets such as heavy water or deuterated methane con-
taining significant amounts of deuterium together with light
nuclei such as oxygen or carbon have the potential to
provide unique information for studies of charge-changing
neutrino reactions. Upon isolating the deuterium events
using semi-inclusive reactions the kinematics alone will
yield the incident neutrino energy on an event-by-event
basis. Moreover, the cross section for such reactions on
deuterium are arguably the best known throughout the
periodic table even at quite high energies where relativistic
modeling of the type used in the present work is under-
taken. This being the case, such measurements hold the
promise of determining the incident neutrino flux, thereby
providing a very high-quality calibration of other existing
or planned near detectors for neutrino oscillation experi-
ments. Additionally, the fact that the nuclear structure
issues are so well under control for the case of deuterium
means that measurements of this type could serve in
determining other aspects of the reaction, for instance,
yielding new insights into the nature of the isovector axial-
vector form factor of the nucleon.
The next step is to determine whether or not this method

is practicable. This requires that the deuterium and oxygen
cross sections be studied as functions of the five required
input variables at kinematics other than the constrained
kinematics used here. This is necessary to determine the
accuracy with which one must measure the magnitudes of
the muon and proton momenta and angles. This is
complicated due to the coupling of these variables that
arises from the requirement that the missing mass and
energy fall within the region where appreciable support is
provided by the spectral functions of the nuclei, and by the
rotation from the natural coordinate system located along
the direction of the three momentum transferred by the
leptons to the nucleus, which is not measurable, to the
known direction of the neutrino beam. In effect, with finite
resolutions the line integrals over the oxygen spectral
function presented in the present work become integrations
over specific areas in the missing-energy-momentum plane.
Preliminary explorations of the kinematics suggest that,
while still much more selective than a full integration over
the kinematically allowed region as would be the case for
inclusive scattering where one has no knowledge about the
final-state ejected proton, this is nevertheless a nontrivial

issue. The issue when the goal is to isolate the deuterium
contribution from the oxygen contribution is to have
sufficient resolution to be able to select events that cover
the former, but avoid the main strength of the latter, namely,
contributions arising from the p-shell parts of the oxygen
spectral function. Clearly this is not possible for fully
inclusive measurements; however, the preliminary explo-
rations of the semi-inclusive cross section look promising.
Nevertheless, to be meaningful such explorations of the
semi-inclusive cross section require the involvement of
experimentalists with the experience and resources to
perform simulations in which the capabilities of real-world
detectors are taken into account, and clearly such simu-
lations lie outside the scope of the present theoretical study,
although some work has begun in this direction.
Once the kinematical requirements are sufficiently

understood, the issue now is an experimental one: can a
practical target/detector of heavy water be realized? How
are the protons in the final state to be detected? Can layers
of (normal, undeuterated) scintillator be used, as some have
suggested, or are there other techniques to employ? Also:
what is the optimal oscillation experiment using heavy
water? While a near detector of heavy water appears worth
contemplating, a far detector would be more challenging.
Perhaps this last issue should be viewed in reverse, starting
with the largest practical heavy water detector, then using
the cross section to find how far from the neutrino source it
could be placed, and then, finally, determining from the
“sweet spot” for oscillation studies what beam energy is
appropriate.
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APPENDIX: OFF SHELL SINGLE-NUCLEON RESPONSE FUNCTIONS

8m4
N ~wVVðIÞ

CC ¼ 4E2
pð4F2

1ðjQj2Þm2
N þ F2

2ðjQj2ÞjQj2Þ þ 4Epωð4F2
1ðjQj2Þm2

N þ F2
2ðjQj2ÞjQj2Þ

− 4F2
1ðjQj2Þm2

N jQj2 − 8F1ðjQj2ÞF2ðjQj2Þm2
Nðω2 þ jQj2Þ þ F2

2ðjQj2Þðω2jQj2 − 4m2
Nðω2 þ jQj2ÞÞ

− 2δð2Ep þ ωÞðF2
2ðjQj2Þð2Epωþ ω2 − jQj2Þ − 4F2

1ðjQj2Þm2
NÞ

þ δ2ð−4E2
pF2

2ðjQj2Þ − 12EpF2
2ðjQj2Þωþ 4F2

1ðjQj2Þm2
N þ F2

2ðjQj2ÞðjQj2 − 5ω2ÞÞ
− 4δ3F2

2ðjQj2ÞðEp þ ωÞ − δ4F2
2ðjQj2Þ ðA1Þ

8m4
N ~wAAðIÞ

CC ¼ 16E2
pG2

AðjQj2Þm2
N þ 16EpG2

AðjQj2Þm2
Nω − 4G2

AðjQj2Þm2
Nð4m2

N þ jQj2Þ
− 8GAðjQj2ÞGPðjQj2Þm2

Nω
2 þ G2

PðjQj2Þω2jQj2 þ δð16EpG2
AðjQj2Þm2

N þ 8G2
AðjQj2Þm2

Nω

− 8GAðjQj2ÞGPðjQj2Þm2
Nω − 2G2

PðjQj2Þω3Þ þ δ2ð4G2
AðjQj2Þm2

N −G2
PðjQj2Þω2Þ ðA2Þ

8m4
N ~wVVðIÞ

CL ¼ 2Epð2p∥ þ qÞð4F2
1ðjQj2Þm2

N þ F2
2ðjQj2ÞjQj2Þ þ ωð8F2

1ðjQj2Þm2
Np∥

− 8F1ðjQj2ÞF2ðjQj2Þm2
Nqþ F2

2ðjQj2Þð−4m2
Nqþ 2p∥jQj2 þ qjQj2ÞÞ

× δ½ðF2
2ðjQj2Þð−ð4E2

pqþ Epωð4p∥ þ 6qÞ þ 2ω2ðp∥ þ qÞ − jQj2ð2p∥ þ qÞÞÞ
þ 8F2

1ðjQj2Þm2
Np∥ − 4F1ðjQj2ÞF2ðjQj2Þm2

NqÞ�
− δ2F2

2ðjQj2Þð4Epqþ 2ωp∥ þ 3ωqÞ − δ3F2
2ðjQj2Þq ðA3Þ

8m4
N ~wAAðIÞ

CL ¼ 8EpG2
AðjQj2Þm2

Nð2p∥ þ qÞ þ ωð8G2
AðjQj2Þm2

Np∥ − 8GAðjQj2ÞGPðjQj2Þm2
Nqþ G2

PðjQj2ÞqjQj2Þ
× δð8G2

AðjQj2Þm2
Np∥ − 4GAðjQj2ÞGPðjQj2Þm2

Nq − 2G2
PðjQj2Þω2qÞ − δ2G2

PðjQj2Þωq ðA4Þ

8m4
N ~wVVðIÞ

LL ¼ 16F2
1ðjQj2Þm2

Np∥ðp∥ þ qÞ − 8F1ðjQj2ÞF2ðjQj2Þm2
Nq

2 þ F2
2ðjQj2ÞðjQj2ð2p∥ þ qÞ2 − 4m2

Nq
2Þ

− 2δF2
2ðjQj2Þqð2Ep þ ωÞð2p∥ þ qÞ − δ2F2

2ðjQj2Þqð4p∥ þ qÞ ðA5Þ

8m4
N ~wAAðIÞ

LL ¼ 16G2
AðjQj2Þm2

Np∥ðp∥ þ qÞ − 8GAðjQj2ÞGPðjQj2Þm2
Nq

2 þ G2
PðjQj2Þq2jQj2

− 2δG2
PðjQj2Þωq2 − δ2G2

PðjQj2Þq2 ðA6Þ

8m4
N ~wVVðIÞ

T ¼ 4ð4F1ðjQj2ÞF2ðjQj2Þm2
N jQ2j þ F2

2ðjQj2Þð2m2
N þ p2⊥ÞjQ2j þ 2F2

1ðjQj2Þm2
Nð2p2⊥ þ jQ2jÞÞ

− 16δF1ðjQj2Þm2
Nωþ δ2½8E2

pF2
2ðjQj2Þ þ 8EpF2

2ðjQj2Þω − 8F2
1ðjQj2Þm2

N

− 2F2
2ðjQj2ÞjQj2ðF1ðjQj2Þ þ F2ðjQj2ÞÞ� þ 4δ3F2

2ðjQj2Þð2Ep þ ωÞ þ 2δ4F2
2ðjQj2Þ ðA7Þ

8m4
N ~wAAðIÞ

T ¼ 8G2
AðjQj2Þm2

Nð4m2
N þ 2p2⊥ þ jQj2Þ − 16δG2

AðjQj2Þm2
Nω − 8δ2G2

AðjQj2Þm2
N ðA8Þ

8m4
N ~wVVðIÞ

TT ¼ −4p2⊥ð4F2
1ðjQj2Þm2

N þ F2
2ðjQj2ÞjQj2Þ ðA9Þ

8m4
N ~wAAðIÞ

TT ¼ −16G2
AðjQj2Þm2

Np
2⊥ ðA10Þ

8m4
N ~wVVðIÞ

TC ¼ 4
ffiffiffi
2

p
p⊥ð2Ep þ ωÞð4F2

1ðjQj2Þm2
N þ F2

2ðjQj2ÞjQj2Þ
þ 4

ffiffiffi
2

p
δp⊥ðF2

2ðjQj2Þð−2Epω − ω2 þ jQj2Þ þ 4F2
1ðjQj2Þm2

NÞ − 4δ2
ffiffiffi
2

p
F2
2ðjQj2Þωp⊥ ðA11Þ

8m4
N ~wAAðIÞ

TC ¼ 16
ffiffiffi
2

p
G2

AðjQj2Þm2
Np⊥ð2Ep þ ωÞ þ 16

ffiffiffi
2

p
δG2

AðjQj2Þm2
Np⊥ ðA12Þ

8m4
N ~wVVðIÞ

TL ¼ 4
ffiffiffi
2

p
p⊥ð2p∥ þ qÞð4F2

1ðjQj2Þm2
N þ F2

2ðjQj2ÞjQj2Þ − 4
ffiffiffi
2

p
δF2

2ðjQj2Þp⊥qð2Ep þ ωÞ
− 4

ffiffiffi
2

p
δ2F2

2ðjQj2Þp⊥q ðA13Þ
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8m4
N ~wAAðIÞ

TL ¼ 16
ffiffiffi
2

p
G2

AðjQj2Þm2
Np⊥ð2p∥ þ qÞ ðA14Þ

8m4
N ~wVAðIÞ

T 0 ¼−32GAðjQj2Þm2
NðF1ðjQj2ÞþF2ðjQj2ÞÞðωp∥−EpqÞ−16δGAðjQj2Þm2

Nð2F1ðjQj2Þp∥−F2ðjQj2ÞqÞ ðA15Þ

8m4
N ~wVAðIÞ

TC0 ¼ −32
ffiffiffi
2

p
GAðjQj2Þm2

Np⊥qðF1ðjQj2Þ þ F2ðjQj2ÞÞ − 4
ffiffiffi
2

p
δF2ðjQj2ÞGPðjQj2Þωp⊥q ðA16Þ

8m4
N ~wVAðIÞ

TL0 ¼ −32
ffiffiffi
2

p
GAðjQj2Þm2

Nωp⊥ðF1ðjQj2ÞþF2ðjQj2ÞÞ− 4
ffiffiffi
2

p
δp⊥ð8F1ðjQj2ÞGAðjQj2Þm2

N −F2ðjQj2ÞGPðjQj2Þq2Þ;
ðA17Þ

where

p∥ ¼
p · q
q

ðA18Þ

p⊥ ¼ jp × qj
q

ðA19Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

N

q
ðA20Þ

jQ2j ¼ q2 − ω2: ðA21Þ

The isovector electromagnetic form factors F1 and F2 are
from [10,11], and the weak form factors GA and GP are
simple dipole forms as used in [2].
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