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The relaxion mechanism provides a potentially elegant solution to the hierarchy problem without
resorting to anthropic or other fine-tuning arguments. This mechanism introduces an axion-like field,
dubbed the relaxion, whose expectation value determines the electroweak hierarchy as well as the QCD
strong CP-violating θ̄ parameter. During an inflationary period, the Higgs mass squared is selected to be
negative and hierarchically small in a theory which is consistent with ’t Hooft’s technical naturalness
criteria. However, in the original model proposed by Graham, Kaplan, and Rajendran [Phys. Rev. Lett. 115,
221801 (2015)], the relaxion does not solve the strong CP problem, and in fact contributes to it, as the
coupling of the relaxion to the Higgs field and the introduction of a linear potential for the relaxion
produces large strong CP violation. We resolve this tension by considering inflation with a Hubble scale
which is above the QCD scale but below the weak scale, and estimating the Hubble temperature
dependence of the axion mass. The relaxion potential is thus very different during inflation than it is today.
We find that provided the inflationary Hubble scale is between the weak scale and about 3 GeV, the relaxion
resolves the hierarchy, strong CP, and dark matter problems in a way that is technically natural.
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I. INTRODUCTION

Although the Standard Model represents a significant
triumph for both theoretical and experimental particle
physics, questions remain. One outstanding challenge is
the strong CP problem, where the nondetection of an
electric dipole moment for the neutron requires a tremen-
dous fine-tuning of the strong CP-violating θ̄ parameter
[1–3]. The most elegant solution to this problem is the
Peccei-Quinn (PQ) mechanism, in which θ̄ is determined
by the expectation value of a pseudo-Nambu-Goldstone
boson known as the axion [4–6]. The energy density of the
QCD vacuum is minimized at the CP-conserving value of
θ̄ ¼ 0. Even though the weak interactions violate CP, the
ground state of the full theory is at θ̄ ∼ 10−16 [7], which is
much smaller than the experimental limit of θ̄ < 10−10 from
the electric dipole moment of the neutron [8–10]. The
coupling of the axion can be made arbitrarily weak, allowing
it to escape various direct detection searches [11–13].
Happily, for sufficiently weak coupling, the axion is

inevitably produced in the early Universe via the misalign-
ment mechanism, in which case the axion can address
another outstanding problem: which particle(s) constitutes
the dark matter that appears to dominate cosmic structures
[14–16]. Axion darkmatter has become the subject of active
detection searches, with the Axion DarkMatter Experiment
exploring the theoretically preferred mass range [17–20].
Recently, Graham, Kaplan and Rajendran (GKR) [21]

proposed a new use for the axion: to address the electro-
weak hierarchy problem. While one might naively expect

that the weak scale would be coincident with the Planck
scale, instead Fermi’s constant GF, which is determined by
the Higgs expectation value, is 34 orders of magnitude
larger than Newton’s constant GN . In the Standard Model,
the Higgs expectation value is determined by a mass
squared parameter whose renormalized value is 34 orders
of magnitude smaller than the Planck scale squared, and it
is unknown why the Higgs has this mass.
Furthermore, the tiny value of the Higgs mass squared

parameter violates the ’t Hooft naturalness condition that a
parameter should be very small only when a value of zero
increases the symmetry of the theory [22]. The relaxion
model tackles this problem by having the Higgs mass
squared determined by dynamics which selects a small
value. The relaxion theory does contain a small parameter,
namely a tiny coupling of the relaxion to the Higgs field,
but this small parameter is natural in the ’t Hooft sense, as it
breaks the PQ symmetry. During inflation the relaxion
evolves slowly until the Higgs mass squared parameter
becomes negative. Then the Higgs develops an expectation
value and the resulting backreaction stops the evolution of
the relaxion and the Higgs mass squared value remains
small and negative.
This relaxion mechanism satisfies ’t Hooft’s technically

natural standard, but it also introduces new problems. In
addition to potential problems with fine-tuning [23,24], the
θ̄ angle which the axion mechanism was introduced to
make small ends up being ∼Oð1Þ, as it is determined by
equal competition between QCD dynamics, which prefers a
value of zero, and the PQ-symmetry-breaking coupling of
the relaxion to the Higgs field. In the original axion
mechanism, the minimum of the potential is θ̄ ∼ 0, but
in this new relaxion picture, the potential is tilted and that is
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no longer the case. Thus, while the relaxion mechanism
may provide an elegant resolution to the electroweak
hierarchy problem, in doing so it (re)produces a new
(old) problem. In fact the problem is worse, because while
in the minimal standard model θ̄ is a free parameter, in the
relaxion model θ̄ is dynamically determined to be large.
GKR suggested solving this problem by having the

relaxion-Higgs coupling determined by the inflaton field
and having this coupling reduce dramatically post inflation,
so that today the relaxion value is determined solely by
QCD. However, there are no a priori technical or natural-
ness arguments for this particular resolution. Another
possibility they suggested is to keep the QCD axion
uncoupled to the Higgs, and have the relaxion be an
axion-like particle for a new, nonstandard interaction,
a resolution that does not share the axion’s appealing
necessity to resolve another challenge faced by the
Standard Model.
In this paper, we consider the Hubble scale dependence

of the relaxion potential and the resulting parameter space.
The Hubble scale during inflation acts like a temperature,
cutting off infrared effects, with similar effects on dynam-
ics. Although at low temperatures (below the QCD scale)
the axion mass is temperature independent, above the QCD
scale, this is not the case. We find that by relaxing the
requirement of Kaplan et al. that the Hubble scale remain
below the QCD scale [25,26], it is possible to find ourselves
in an inflated patch of the Universe where there is a high
ratio between the high-temperature mass of the relaxion
and the low-temperature mass.
In this scenario, the strength of the relaxion-Higgs

coupling can be reduced tremendously with the relaxion
mechanism still determining a hierarchically small value of
the weak scale during inflation, as long as during inflation
the backreaction for the Higgs vacuum expectation value
of the relaxion potential has a similar size as the PQ-
symmetry-breaking scale. The effects of QCD on the
relaxion potential at low temperature are then much larger
after inflation than they are during inflation. Therefore, the
value of the relaxion today is mostly determined by the
QCD contribution to the potential, and it approximately
aligns with the CP-conserving value of θ̄.
In Sec. II, we review the GKR relaxion mechanism in

some detail. Section III goes on to describe how the
relaxion mechanism is affected by finite-temperature field
theory considerations during inflation. In this section we
introduce the “landscape relaxion” in which different
patches of the Universe have different values of the
relaxion. We consider a statistical ensemble of inflated
patches and show that a patch like ours with a small weak
scale and small θ̄ is typical. Finally, in Sec. IV, we discuss
our conclusions and suggest the use of the relaxion for
Weinberg’s anthropic landscape solution to the cosmologi-
cal constant problem [27].

II. REVIEW OF THE (REL)AXION

The axion is a (pseudo)scalar field ϕ that implements the
PQ solution to the strong CP problem. The PQ mechanism
addresses this Standard Model issue through a spontane-
ously broken global U(1) symmetry, which leads to the
production of a Goldstone boson, the axion. Because the
PQ symmetry is not exact in the presence of nonperturba-
tive QCD effects, the axion obtains a potential, which is
minimized when the θ̄ parameter is zero. Having such a
symmetry is technically natural as the PQ symmetry
breaking is only due to nonperturbative effects which are
negligible at short distances. At low temperatures, the axion
potential is of the form

VðϕÞ ¼ Λ4ð1 − cos ðϕ=faÞÞ: ð1Þ
Λ ∼ 0.1 GeV is a parameter of order the QCD scale, and fa
is the PQ-symmetry-breaking scale, often referred to as the
axion decay constant.
The axion is a potential candidate for dark matter

because it can be shown that the abundance of axion dark
matter in the Universe is determined by fa with the value

Ωa ∼
�

fa
1011–12 GeV

�
7=6

: ð2Þ

Uncertainty in the expression comes from the temperature
dependence of the axion mass, as well as uncertainties in
axion cosmology such as whether the PQ symmetry breaks
before or after inflation, and, in the former case, on the
value of the axion expectation value in our patch of the
Universe during inflation.
In the relaxion scenario, the axion is repurposed to

address the electroweak hierarchy problem. A PQ-breaking
linear term in the ϕ potential is introduced, as well as a
coupling between ϕ and the Higgs field h. In addition, the
range over which ϕ can vary is expanded exponentially.
As the relaxion rolls down its potential, initially the Higgs
mass squared is positive and the quarks are massless.
With massless quarks, there is no QCD contribution to the
relaxion potential. The Higgs mass squared parameter
decreases until it becomes negative and the Higgs field
acquires a vacuum expectation value. At this point, the
quarks obtain mass and a QCD contribution to the relaxion
potential turns on. The QCD contribution stops the relaxion
from evolving further and the Higgs has apparently
naturally arrived at the correct value.
Unlike in the original axion model, if one views the

relaxion as a pseudo-Goldstone boson corresponding
to spontaneous breaking of a Peccei-Quinn symmetry,
the model must contain an exponentially large discrete
symmetry group and the range of the field is much larger
than the Planck scale [28]. Note however that some recent
work [29,30] showed how certain multifield models can
produce such an effective theory. The full set of relaxion
couplings are
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L ¼ c1gM2ϕ − ðM2 − gϕÞjh2j þ
�
ϕ

fa

��
g2

16π2

�
G ~G: ð3Þ

Here ϕ is the relaxion, h is the Higgs field, g is a small
coupling, c1 is a positive parameter of order one,M is a high
mass, and fa is similar to the usual axion decay constant.
There is a symmetry ϕ → ϕþ c in the limit where non-
perturbative QCD effects are turned off and g → 0. The
cutoff scale of this effective theory is taken to be of order
the Higgs mass parameterM. The range Δϕ over which the
relaxion can evolve is taken to be Δϕ > M2=g, which will
turn out to be much larger than fa. The origin of the small
parameter g is not addressed, but any renormalization of g is
proportional to g. Conceivably g might arise from non-
perturbative breaking of the PQ symmetry from something
other than QCD. As long as some high-scale new physics
cuts off any quadratic divergences at the scaleM, the theory
is technically natural.

III. RELAXION DURING INFLATION:
A LANDSCAPE PHENOMENON

Since it is expected that during inflation perturbations
in the metric can induce fluctuations of the Higgs field
which scale with the Hubble parameter such that per
Hubble time [31]

δh ¼ H
2π

; ð4Þ

Kaplan et al. imposed a requirement on the relaxion that the
classical deterministic evolution should dominate over the
random thermal wandering in a Hubble time,

H < ΛQCD; H < ðgM2Þ1=3: ð5Þ
Then using

gM2fa ∼m2
af2a ð6Þ

and

H > M2=MPl ð7Þ
(so that the inflationary energy density was greater than the
change in the energy density due to ϕ rolling) they
concluded

M <

�
m2

af2aM3
Pl

fa

�
1=6

∼ 107
�
109 GeV

fa

�
1=6

: ð8Þ

With this constraint, the Hubble scale during inflation is
necessarily below the QCD scale. Phenomenologically this
is consistent with current constraints on the tensor-to-scalar
ratio from data [32]. However in this scenario, the θ̄
parameter is of order one today, in contradiction with
laboratory experiments [33].

A. Addressing the CP problem

To address the relaxion’s strong CP problem, we first
note that the effects of the horizon during inflation has
similar effects on the dynamics as a finite temperature
(see, e.g. Ref. [34] for a review). Therefore, we estimate
the effects of a high Hubble scale by using the finite-
temperature computation of the relaxion mass evaluated at
a temperature of H. We then confront the relaxion’s CP
problem by relaxing the requirement of Eq. (5) and do not
try to suppress the landscape of final relaxion values. In the
process, we do not invoke any anthropic principle for the
weak scale, but rather we examine the parameters for which
the majority of vacua agree with observation in that they
have a hierarchically small weak scale. We call the result
the “landscape relaxion.”
When the Higgs field h has a positive mass squared, it

does not have a vacuum expectation value (VEV), and the
quarks are massless. Massless quarks greatly suppress
the effects of QCD instantons, which give the relaxion its
mass. Neglecting the variation in the Hubble scale during
inflation, and including the effects of QCD instantons, we
take the relaxion potential to be

VðϕÞ ¼ −gM2ϕþ ðM2 − gϕÞjh2j − fðvÞ
b

ðm2
af2aÞ cos

�
ϕ

fa

�

ð9Þ

where the zero-temperature value of the relaxion mass is
ma. The factor b is the ratio of the zero-temperature value of
the relaxion mass squared to the value of the mass squared
during inflation. We assume that the nonzero-temperature
value of the relaxion mass is given per Refs. [15,35]. We
parametrize the backreaction of the Higgs VEV on the
relaxion potential by the function fðvÞ which is a function
of the Higgs VEV v, noting that v is a function of ϕ. We
take fðvÞ ¼ 1 when the Higgs VEV takes its final value.
When the Higgs mass squared is positive, which happens
when ðM2 − gϕÞ > 0, we neglect the tiny correction to the
relaxion potential and take fðvÞ to be zero.
We give a qualitative description of the relaxion dynamics

as follows. At the start of inflationwe have ðM2 − gϕÞ > 0, a
positive Higgsmass squared, and v ¼ 0. Every Hubble time,
H−1,ϕwanders randomly by an amount of orderH=ð2πÞ. In
addition the expectationvalue ofϕ evolves classically.When
v ¼ 0, the expectation value of ϕ is pushed by the −gM2ϕ
term in the potential and changes by an amount gM2=H2 per
Hubble time. After N ∼H2=g2 Hubble times, the relaxion
average value has changed by ∼ðM2=gÞ, as needed for the
average value of the Higgs mass squared to be negative.
Using a random walk model of Δϕ ∼H per Hubble time
gives a spread in the value ofϕ of order

ffiffiffiffi
N

p
H ∼H2=g. Thus

after H2=g2 Hubble times the Higgs mass squared has
evolved to ∼0�H2. We assumeH to be much smaller than
the value of the Higgs mass in our patch of the Universe.
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After ∼ð1þH2=M2ÞðH2=g2Þ e-folds, most of the relaxion
values are such that the Higgs mass squared is slightly
negative.
For classical evolution, as was assumed by GKR, the

slow roll of the average expectation value stops due to
backreaction when M2g ¼ fðvÞðm2

af2aÞ=ðfabÞ. We take
this to happen by definition at ðM2 − gϕÞ ¼ −m2

h, where
−m2

h is the value of the Higgs mass parameter in our world,
which happens after about ∼ð1þm2

h=M
2ÞðH2=g2Þ e-folds.

If the backreaction happens in a similar manner when H is
large, the Universe consists of a tremendous number of
causally disconnected patches, each with a different value
of ϕ. However, due to the small value of g, at the time when
the backreaction takes place, the spread in the value of the
Higgs mass squared parameter is small, of order H2. The
probability distribution will continue to spread until the end
of inflation, with the variance in the weak scale of order
g

ffiffiffiffiffiffiffiffi
H3t

p
. Therefore as long as inflation does not last for more

than m4
h=ðg2H2Þ e-folds, the variance in the weak scale is

less than the weak scale.

We now examine this picture more quantitatively.

B. The probability distribution of relaxion values

The large spread in relaxion values is not in accord with a
deterministic classical picture of the dynamics. We may
examine the backreaction using the Fokker-Planck equa-
tion, as described in the context of Higgs dynamics in
Ref. [36]

∂P
∂t ¼ ∂

∂ϕ
�
H3

8π2
∂P
∂ϕ þ V 0P

3H

�
: ð10Þ

Here Pðϕ; tÞ is the probability of finding the value ϕ for the
relaxion at time t.
For constant H and constant V 0, just as indicated by our

qualitative discussion, a solution to Eq. (10) is a spreading
Gaussian, with the width growing as t1=2, and the mean
value slowly rolling down the potential. We define P0ðϕ; tÞ
to be the probability of finding the value ϕ for the relaxion
at time t, for the case where the initial distribution is a delta

FIG. 1. This figure is primarily to give readers an intuition for the similarities and differences in the two models. In the landscape case
the QCD contribution to the potential is greatly reduced during inflation, and the explicit PQ symmetry breaking is also much smaller.
The scales on the left and right differ drastically. In both cases, during inflation, the relaxion dynamics are affected by both the PQ-
breaking parameter and QCD nonperturbative affects. For the GKR case the relaxion potential during inflation is almost the same as it is
today. For the landscape case, the QCD contribution to the potential is vastly larger today than it was during inflation, so the scale used
for depicting VðϕÞ is increased accordingly for the late Universe. Top left: During inflation, H ≲ ΛQCD, θ ∼ 1. Bottom left: Late
Universe, H ∼ 0, θ ∼ 1. Top right: During inflation, MW > H ≫ ΛQCD, θ ∼ 1. Bottom right: Late Universe, H ∼ 0, θ ∼ 0.
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function and the backreaction from QCD is turned off, so
that V 0 ¼ −gM2,

P0ðϕ; tÞ ¼
ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffi
H3t

p e−2π
2ðϕ−gM2t=ð3HÞÞ2

H3t : ð11Þ

GKR assumed that for an initial distribution with a small
spread in the values of ϕ, P stops evolving when most of
the values of ϕ are in a regime where V 0 ∼ 0. Because V 0 is
an oscillating function of ϕ, this approximation requires
that P can be approximated by a delta function of ϕ.
A qualitative picture of the dynamics when the center of

the distribution P0 reaches the regime where the QCD
contribution to the potential is important is as follows.
Pðϕ; tÞ will evolve to become larger in regions where the
potential is locally minimized with respect to ϕ and smaller
in regions of local maxima. Due to this backreaction, the
expectation value of ϕ will stop increasing.
In order to give a more quantitative treatment, as we do

not know how to find an exact solution of the Fokker-
Planck equation in the presence of the QCD term, we treat
the QCD contribution as a perturbation. We take V 0 to be

−gM2 þ λϵ0ðϕÞ, where ϵ0 ¼ − fðvÞ
fab

ðm2
af2aÞ sinð ϕfaÞ. We take

P ¼ P0 þ λpðϕ; tÞ and treat λ as an expansion parameter.
Collecting terms which are linear in λ we find that p
satisfies

∂p
∂t ¼ ∂

∂ϕ
�
H3

8π2
∂p
∂ϕþ ϵ0ðϕÞP0ðϕ; tÞ

3H

�
: ð12Þ

We see that the equation for the perturbation has the
same form as the heat equation with a driving term, also
known as the forced heat equation, and we may solve it
using a Green’s function technique, which results in an
explicit albeit complicated integral. The appropriate
Green’s function G is the solution to the homogenous
equation multiplied by a step function

Gðt; t0;ϕ;ϕ0Þ ¼
ffiffiffiffiffiffi
2π

p
θðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H3ðt − t0Þ
p e

−2π2 ðϕ−ϕ0Þ
2

H3ðt−t0Þ ð13Þ

so we take the integral of this Green’s function multiplied
by the driving term

pðϕ; tÞ ¼
Z

t

0

dt0

Z
∞

−∞
dϕ0

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3ðt − t0Þ

p e
−2π2 ðϕ−ϕ0Þ

2

H3ðt−t0Þ
∂

∂ϕ0

�
ϵ0ðϕ0ÞP0ðϕ0; t0Þ

3H

�

¼
Z

t

0

dt0

Z
∞

−∞
dϕ0

−ð2πÞ52ðϕ − ϕ0Þ
H

9
2ðt − t0Þ3=2

e
−2π2 ðϕ−ϕ0Þ

2

H3ðt−t0Þ
ϵ0ðϕ0ÞP0ðϕ0; t0Þ

3H

¼
Z

t

0

dt0

Z
∞

−∞
dϕ0

−8π3ðϕ − ϕ0Þϵ0ðϕ0Þ
3H7ðt − t0Þ32t

1
2

0

e
−2π2

�
ðϕ−ϕ0Þ2
H3ðt−t0Þ

þðϕ0−gM2t0=ð3HÞÞ2
H3t0

�

≈
Z

t

0

dt0

Z
∞

−∞
dϕ0

−8π3ðϕ − ϕ0Þϵ0ðϕ0Þ
3H7ðt − t0Þ32t

1
2

0

e
−2π2

�
ðϕ0−ϕt0=tÞ2tþϕ2ðt−t0Þt0=t

H3ðt−t0Þt0

�

¼
Z

t

0

dt0

Z
∞

−∞
dϕ0

−8π3ðϕð1þ t0=tÞ − ϕ0Þϵ0ðϕ0 þ ϕt0=tÞ
3H7ðt − t0Þ32t

1
2

0

e
−2π2

�
ðϕ0Þ2tþϕ2ðt−t0Þt0=t

H3ðt−t0Þt0

�
ð14Þ

where we have changed variables ϕ0 → ϕ0 þ ϕt0=t and
dropped terms which are proportional to g in the fourth line
since we are mainly interested in studying the effects of the
backreaction from QCD. Note that this means we are taking
the distribution function to be localized at ϕ ¼ 0 at t ¼ 0,
which is an acceptable assumption since we may always
shift t and ϕ to an arbitrary value. It is also acceptable to
ignore the evolution of the mean value of P0 during the
backreaction because as we show below, the backreaction
sets in quickly enough that we may ignore the terms
proportional to g during this process.

This equation is exactly solvable, but the full solution
is not needed to serve our purposes. Rather than sharing
the exact solution, we focus on extracting information
related to whether the time scale for the backreaction to
become significant is short enough, such that the
approximation of neglecting the motion of the center of
the probability distribution is sufficiently accurate. The
term ϵ0 oscillates and the concern is that the integrand
will be greatly suppressed by cancellations. Taking
ϵ0 ¼ q sinðϕ=faÞ, with q ¼ m2

afa=b, we obtain
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pðϕ; tÞ ≈
Z

t

0

dt0

Z
∞

−∞
dϕ0

−8π3qðϕð1þ t0=tÞ − ϕ0Þ sinðϕ0þϕt0=t
fa

Þ
3H7ðt − t0Þ32t

1
2

0

e
−2π2

�
ðϕ0Þ2tþϕ2ðt−t0Þt0=t

H3ðt−t0Þt0

�
ð15Þ

¼
Z

t

0

dt0
q

ffiffiffiffiffiffi
2π

p
e
ðH3t0ðt0−tÞ

8π2f2a
−2π2ϕ2

H3t
ÞðH3ðt − t0Þt0 cosðϕt0tfa

Þ − 4π2faϕðtþ t0Þ sinðϕt0tfa
ÞÞ

3t
3
2ðt − t0ÞfaH11

2

: ð16Þ

We assume the backreaction stops the expectation value
of ϕ from evolving further once p becomes of similar
magnitude as P0. We wish to examine whether the time
scale for this to happen is short or long compared with the
very long time scale tHiggs over which the Higgs VEV
changes by order one, which is tHiggs ∼Hm2

h=ðg2M2Þ. We
examine the value of the integral at ϕ ¼ 0 since this is a
relatively arbitrary value as well as being a point at which
the cosine is extremized and the distribution is localizing.
We have checked numerically that our result does not
significantly depend on ϕ. At ϕ ¼ 0 we get a relatively
simple expression:

pð0; tÞ ≈
2π2qe

− H3t
32π2f2aerfi

� ffiffiffiffiffiffiffiffiffiffi
H3t

32π2f2a

q �
3H4

ð17Þ

while

P0ð0; tÞ ∼
1ffiffiffiffiffiffiffiffi
H3t

p : ð18Þ

For small t, we Taylor expand Eq. (17)

pð0; tÞ
P0ð0; tÞ

∼
qt
Hfa

ð19Þ

where we have dropped Oð1Þ factors for simplicity. The
ratio grows approximately linearly in t and becomes of
Oð1Þ at a time tbackreaction

tbackreaction ∼
faH
q

: ð20Þ

We compare the (long) backreaction time scale with the
(very long) time scale tHiggs and obtain

tback reaction

tHiggs
∼
fag
m2

h

: ð21Þ

The numbers we will arrive at in the next section give a
small value for g relative to all relevant scales, and the time-
scale ratio is generally less than ∼10−26.

C. A technically natural solution
to the strong CP problem

At the end of inflation theHubble parameter decreases.As
the Universe subsequently cools, the QCD contribution to
the relaxion potential increases. The parameter b, which is
defined to be the ratio of the QCD contribution to the
relaxion potential today to the QCD contribution during
inflation, determines the value of θ̄ as follows. During
inflation the QCD contribution is comparable to the explicit
symmetry breaking. Once the Universe has cooled, the
explicit symmetry breaking remains the same, but the QCD
contribution is larger by a factor of b. Since the QCD
contribution is minimized at θ̄ ¼ 0, provided b > 1010, the
strongCP problem is solved (Fig. 1). Such a value can occur
naturally if, using finite temperature to estimate the QCD
contribution to the relaxion potential during inflation, the
Hubble scale during inflation lies in the approximate range

3 GeV < H < 100 GeV: ð22Þ

The lower bound is determined by estimating the temper-
ature at which the QCD contribution to the potential is at
least 1010 times smaller than the zero-temperature value, and
the upper bound is required so that the Hubble temperature
does not prevent the Higgs field from gaining an expectation
value during inflation. Such low-scale inflationary models
appear to be required by the relaxion but have also been
considered relevant in other cosmological contexts [37–42].
The tiny size of g and enormous range of ϕ required to

make this scenario work may seem rather extravagant. The
value of g is given by

g ∼
m2

af2a
M2fab

∼ 10−30 MeV
ð10 TeVÞ2

M2

1010

b
: ð23Þ

[Note that at zero temperature f2am2
a ∼ ð80 MeVÞ4 for the

QCD axion independent of ma.] This extremely tiny
number is, however natural, in the sense that it violates
the Peccei-Quinn symmetry which is otherwise only
violated by UV insensitive nonperturbative QCD effects.
Thus radiative quantum corrections to g are proportional to
g. With H > 3 GeV, the number of required e-foldings
during inflation is a large number, at least ∼1033. The range
of ϕ is also enormous. With M ∼ 10 TeV, ϕ must change
by ∼1044 GeV. An upper limit on M comes from
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combining Eqs. (7) and (22), which gives an upper limit of
M < 1011 GeV.
In addition, ϕ is spread over about at least 1020 distinct

vacua and perhaps many more. These are all similar, as the
weak scale only varies by a fraction ∼H=mh over all of
these, and the strong CP parameter is of order 1=b in all of
them. For larger H, g is tinier and b is larger. We note that
for H just below the weak scale, the Higgs expectation
value during inflation will be much smaller than it is today,
and all six quark masses play a role in suppressing
instantons, so extremely large values of b are possible in
this limit. Such extreme numbers are the price to pay to
avoid introducing arbitrary couplings or new particles to
resolve the strong CP problem with the relaxion.

D. Taking measure of our inflationary Universe

In Ref. [21], the authors stated that the scale of inflation
must observe the constraintH < ðgM2Þ1=3 in order to avoid
needing to address the measure problem, which naturally
arises in the context of eternal inflation [43], which is the
attractor configuration for most inflationary pictures. In the
eternal inflation scenario, an infinite number of inflationary
regions are continuously produced, and it is difficult to
make statements about probabilities such as the one
estimated in Sec. III B. Specifically in the case of the
landscape relaxion, our Fokker-Planck treatment neglects
the effects of the relaxion energy density on the expansion
rate after inflation has ended. Regions with higher energy
density will expand faster and therefore make up an
increasingly large percentage—insofar as one can be
calculated—of the physical spacetime. Thus, the question
arises of whether a similar probability estimate to the one
above can be made to address whether we are likely to end
up in the region with electroweak symmetry breaking.
For these reasons, the original attempt to avoid the

measure problem is understandable, although it introduces
different challenges. This includes requiring an unusually
low Hubble scale that is many orders of magnitude below
what is usually modeled in typical inflationary theories, and
the requirement that the linear term in the relaxion potential
turns off after inflation. However, as noted above, low-scale
inflation can be workable, so this is not a catastrophic
change to early Universe dynamics. Yet another problem of
the original relaxion model is that which we address in this
paper: resolving the strong CP and dark matter problems.
The initially proposed solution involves introducing a
coupling to the inflaton which is only motivated by the
need to address the value of θ rather than any fundamental
symmetry considerations. By introducing a solution that
raises the minimum Hubble scale in order to take the
temperature dependence of the axion mass into account, we
reintroduce a landscape which suggests that we should also
address the measure problem.
It may seem like we are now in an impossible situation,

where neither the GKR relaxion nor the landscape relaxion

provide satisfactory solutions to both the electroweak
hierarchy problem and the strong CP problem without
introducing unattractive cosmological features. Yet, we
contend that there are promising solutions to the measure
problem which can potentially offer a way out (e.g.
Refs. [44–46]) and which have distinct observational
signatures [47]. While we leave a more complete picture
to future work, we note here that the measure problem can
be resolved by one particularly promising mechanism
known as the scale-factor cutoff measure [47].
In the scale-factor cutoff scenario, the relative probability

of any two events A and B occurring is calculated in the
following manner:

pðAÞ
pðBÞ≡ lim

tc→∞

nðA;ΓðΣ; tcÞÞ
nðB;ΓðΣ; tcÞÞ

; ð24Þ

where nðA;ΓÞ and nðB;ΓÞ are the number of events of
types A and B, respectively, in a spacetime region we call Γ,
which is constructed from a hypersurface Σ and a time
coordinate t. The time coordinate has been implicitly
introduced via the cutoff tc, which selects a finite spacetime
region before the limit of tc is taken to infinity. Thus we
start with an inflating spatial region Σ and follow its
evolution along geodesics orthogonal to it. Following the
global time cutoff mechanism [44,48,49], the cutoff time tc
is introduced, but ultimately taken to infinity. Therefore we
calculate probabilities by averaging over the spacetime
volume that exists in a comoving region measured in time t,
which ultimately goes to infinity. It can be shown that these
probabilities are independent of which hypersurface Σ is
chosen.
The scale-factor cutoff measure is our preferred mecha-

nism for addressing the problem because it provides a
method for stating a numerical probability given a correct
theory of quantum gravity while not suffering from various
difficult-to-resolve issues that arise in other mechanisms,
for example the problem of bias toward young observers,
which introduces another problem known as “the young-
ness paradox.” In addition, it has been shown in Ref. [47]
that this mechanism provides a compelling resolution to the
cosmological constant problem, so it is reasonable to
expect that the same will be true for the landscape relaxion.
We leave to future work a detailed calculation which
shows this.

IV. IN CONCLUSION, A LANDSCAPE

In the original relaxion paper, GKR imposed the restric-
tion H < ΛQCD, giving as an explanation that they wished
to avoid a landscape of possible values for the relaxion
field. Unfortunately that prediction gives the wrong answer
for the QCD strong CP parameter θ̄. GKR proposed some
solutions, e.g. having the PQ-breaking parameter become
exponentially small when the inflaton turns off, but they did
not propose a symmetry-protected reason for how this
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could happen. They also considered having the relaxion be
distinct from the QCD axion.
In the current work, we conclude that if we relax the

upper bound on H given in the original relaxion paper, at
the price of introducing a small but symmetry-protected
number and assuming an even longer period for inflation
with an even larger range for the relaxion, then the relaxion
may be used to also solve the strong CP problem and
provide dark matter. When the inflationary Hubble scale is
higher than ΛQCD (but still below the weak scale), then the
Hubble scale acts like a temperature in suppressing the
effects of large QCD instantons. Small instantons mean that
the explicit PQ breaking is also much smaller while
maintaining sufficient backreaction to implement the relax-
ion mechanism.
Once the post-inflationary Universe has cooled to well

below the QCD scale, the instanton effects become much
larger, by a factor b, and dominate the relaxion potential.
The zero-temperature value of θ̄ comes out to order 1=b, so
that the relaxion solves the strong CP problem provided
that b > 1010. The restriction that b > 1010 places a lower
bound on H of order 3 GeV, which is above the upper
bound of GKR. In this higher-H scenario, the expectation
value of the relaxion is spread over an exponentially large
number of local minima of the relaxion potential. However
the spread in the value of the weak scale is still small. Thus
the relaxion provides a natural mechanism for the produc-
tion of a landscape of universes with similar values of the
weak scale but different vacuum energies.
While our relaxion does populate a landscape of vacua,

we have not invoked any anthropic arguments for the strong
CP, weak hierarchy, or dark matter problems. However, we
still have a finely tuned cosmological constant in most or all

of these vacua. We conclude by succumbing to the
temptation to remark that the relaxion landscape could
allow a way to address the cosmological constant problem
via Weinberg’s anthropic landscape [27]. The argument of
Weinberg is that only those vacua with energy small
enough to allow for structure formation before the expan-
sion of the Universe accelerates will have galaxies, stars
and observers. The change in the value of the energy
density between adjacent metastable vacua is M2gfa ∼
m2

af2a=b. With an extreme value of b, the energy differences
between vacua with similar particle properties are smaller
than the size of the cosmological constant. Such a large
value of b could be possible in the case where the
inflationary Hubble scale is not too far below the weak
scale. This would at least reduce the scope of the cosmo-
logical constant problem to ensuring that the range of
energies scanned by metastable vacua includes the value 0.
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