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Encouraged by the recent discovery of the Ξcc baryon, we investigate two-body nonleptonic weak
decays of doubly charmed, Ξcc, baryons. We calculate the branching ratios for Cabibbo-Kobayashi-
Maskawa–favored and–suppressed modes in factorization and pole model approaches. The preliminary
estimates of nonfactorizable W-exchange contributions are obtained using the pole model. We find that the
W-exchange contributions to Ξcc decays, being sizable, cannot be ignored.
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I. INTRODUCTION

The resolution of the longstanding puzzle involving the
Ξcc states has been much awaited since their first obser-
vations were reported by the SELEX Collaboration [1,2].
Most recently, the LHCb Collaboration announced the
observation of a doubly charmed Ξþþ

cc baryon [3] found
in the Λþ

c K−πþπþ mass spectrum. The mass of the
observed state is determined as MΞþþ

cc
¼ 3621.40� 0.72�

0.27� 0.14 MeV, while the mass difference MΞþþ
cc

−
MΛþ

c
¼ 1334.94� 0.72� 0.27 MeV. The new observa-

tion of a doubly heavy charm baryon has revamped the
interest of heavy flavor physicists as being a good candi-
date with which to study the heavy-quark dynamics.
Although the lifetime, τΞcc

, has not yet been given
experimentally, ample theoretical estimates exist in the
literature that range from ∼50–670 fs [4–9]. Another
interesting aspect of doubly heavy baryons is their spec-
troscopy [8–11]. In addition to the three quark dynamics,
the doubly heavy baryons can be identified by the set of
quantum numbers ðJP; SdÞ in the diquark picture, where Sd
is the spin of the heavy diquark. Thus, spins of the two
heavy quarks are coupled to form the (Sd ¼ 1) symmetric
spin configuration of a diquark fQ1Q2g and the (Sd ¼ 0)
antisymmetric spin configuration of a diquark ½Q1Q2�. The
general convention is to denote the antisymmetric state as a
primed one, i.e., jB0i, and the symmetric heavy-diquark
state as an unprimed, jBi, state. Also, the wave functions
of the jBi and jB0i states are expected to mix [12–18].
However, in the present work we consider three quarks as a
independent dynamical entities.
Theoretically, the mass spectra, magnetic moments, and

radiative and semileptonic decays of the doubly charmed
baryons have been the center of interest for the last decade
[4–36]. On the contrary, the progress in the heavy-baryon
nonleptonic weak decays has been very slow [37–46],
although the recent experimental observations have revived

the activities in nonleptonic decays of heavy baryons in the
last few years [47–61]. Thus, we put our focus on the two-
body nonleptonic weak decays of doubly charmed baryons.
Very recently, weak decays of doubly heavy baryons were
analyzed in SU(3) symmetry and in the quark-diquark
picture using factorization and the light front approach
[57,58]. In another interesting work, the analysis of factor-
izable Ξþþ

cc → Σþþ
c K̄ð�Þ0 decays was carried out using the

covariant confined quark model (CCQM) [59]. The theo-
retical interpretation of the experimentally favored decay
chain Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ K̄�0ð→ K−πþÞ due to the

dominant branching ratios of the daughter decays is first
presented in Ref. [60]. In addition, the short-distance and
long-distance (W-exchange) contributions to the decay
channels of Ξcc baryons are calculated more systematically
using factorization and final-state interaction (FSI) rescat-
tering, respectively [60]. The branching ratios of nonlep-
tonic decays of the doubly heavy baryons are predicted in the
perturbative QCD (pQCD) [61].
Unlike meson decays, W-exchange contributions do not

experience helicity and color suppression in heavy baryon
decays [62–71]. Consequently, the W-exchange contribu-
tions are expected to be as important as the factorization.
In fact, many of the observed charm baryon decays
receive contributions solely from W-exchange diagrams.
Therefore, in the present work, we give preliminary
estimates of W-exchange (pole) contributions using the
pole model. To obtain the factorization contributions, we
use form factors based on the nonrelativistic quark model
(NRQM) [72] and heavy quark effective theory (HQET)
[73], which have worked reasonably well in explaining
weak decays of charm baryons. Also, we use a more
accurate approach [74] to include SU(4) symmetry-
breaking effects in the evaluation of meson-baryon strong
couplings. To calculate the pole amplitude (W-exchange
contributions), we use nonrelativistic approximation
[37,75] to evaluate the weak matrix element. It may be
noted that for a first estimate of pole contributions we
consider ground-state 1

2
þ–intermediate baryon pole terms

only. Moreover, the 1
2
−–intermediate pole terms are difficult
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(for being nontrivial) to calculate, and little is known about
the strong coupling constants of the 1

2
−–baryons involved. It

has been shown in the past [70,76] that SU(4) symmetry
breaking could be induced by the variation of a spatial
baryon wave function overlap in weak decay amplitude. We
find that pole contributions are significantly enhanced
upon the inclusion of flavor-dependent effects via
jψð0Þj2 variation; consequently, we get larger branching
ratios for the decays involving W-exchange diagrams.
Thus, a number of decays have sizable branching ratios
that could be suitable for future experimental measure-
ments at LHCb, CEPC Belle II, etc. The present paper is

organized as follows. In Sec. II, we give the Hamiltonian
and decay rate formula. Section III deals with the evalu-
ation of decay amplitudes. Numerical results and discus-
sions are given in Sec. IV. We summarize our findings in
the last section.

II. HAMILTONIAN AND DECAY RATE

The charm changing two-body nonleptonic decays of
(doubly heavy) baryons, emitting pseudoscalar (P) meson,
proceed through usual current ⊗ current effective weak
Hamiltonian,

Heff
W ¼ GFffiffiffi

2
p fVudV�

cs½c1ðūdÞV−Aðc̄sÞV−A þ c2ðs̄dÞV−AðūcÞV−A�ðΔC¼ΔS¼−1Þ

þ VudV�
cd½c1fðs̄cÞV−AðūsÞV−A − ðd̄cÞV−AðūdÞV−Ag

þ c2fðūcÞV−Aðs̄sÞV−A − ðūcÞV−Aðd̄dÞV−Ag�ðΔC¼−1;ΔS¼0Þ

− VusV�
cd½c1ðd̄cÞV−AðūsÞV−A þ c2ðūcÞV−Aðd̄sÞV−A�ðΔC¼−ΔS¼−1Þg; ð1Þ

where Vij denote the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements and ðq̄iqjÞV−A ≡ q̄iγμð1 − γ5Þqj denotes
the weak V-A current. The Hamiltonian consists of CKM-
favored (ΔC ¼ ΔS ¼ −1), CKM-suppressed (ΔC ¼ −1;
ΔS ¼ 0), and CKM–doubly suppressed (ΔC ¼
−ΔS ¼ −1) decay modes. The QCD (Wilson) coefficients
c1ðμÞ ¼ 1.2, c2ðμÞ ¼ −0.51 at μ ≈m2

c in the large Nc limit
are used in the analysis (for a review, see Ref. [77]). The
coefficients c1 and c2 may be treated as free parameters for
being affected by nonfactorizable contributions. In general,
the transition amplitude can be expressed in terms of the
reduced matrix element for the Bið12þ; piÞ → Bfð12þ; pfÞ þ
Pkð0−; qÞ decay process,

AðBi → BfPÞ≡ hBfðpfÞPkðqÞjHeff
W jBiðpiÞi

¼ iūBf
ðpfÞðAþ Bγ5ÞuBi

ðpiÞ; ð2Þ

where uBi
represent Dirac spinors for initial and final (1

2
þ)

baryons Bi and Bf. A and B denote the parity-violating (PV)
s-wave and parity-conserving (PC) p-wave amplitudes,
respectively.
The decay rate formula for the Bi → BfP process is

given by

ΓðBi → BfPÞ ¼
pc

8π

Ef þmf

mi

�
jAj2 þ Ef −mf

Ef þmf
ðjBj2Þ

�
:

ð3Þ

Here,mi andmf are the masses of the initial- and final-state
baryons. The magnitude of the 3-momentum pc of the
final-state particles in the rest frame of Bi is

pc ¼
1

2mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

i − ðmf −mPÞ2�½m2
i − ðmf þmPÞ2�

q
;

where mP is the mass of emitted pseudoscalar meson, and

Ef �mf ¼
ðmi �mfÞ2 −m2

P

2mi
:

The corresponding asymmetry parameter is given by

α ¼
2 pc
Efþmf

Re½A � B��
jAj2 þ p2

c
ðEfþmfÞ2 jBj

2
� : ð4Þ

To estimate the decay rate and asymmetry parameters, we
require numerical evaluation of calculating the amplitudes,
A and B.

III. DECAY AMPLITUDES

The hadronic matrix element for the Bi → Bf þ Pk
process can receive dominant contributions from factori-
zation and pole processes and thus can be given as

hBfPkjHW jBii≡APole þAFac; ð5Þ

where APole and AFac denote the pole and factorization
amplitudes, respectively. The pole diagrams mainly involve
the W-exchange process contributions that are evaluated
using the pole model framework [63]. In the pole
model, the weak and strong vertices are separated by the
introduction of a set of intermediate states into the decay
process. It may also be noted that factorization may
be considered as a correction to pole contributions where
t-channel pole process is equivalent to the tree-level
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diagram, i.e., factorizable process. The contribution of
both pole and factorization processes can be summed up
in terms of s-wave (PV) and p-wave (PC) amplitudes.
We wish to point out that we have ignored the relative
strong phases involved in the decay amplitudes in our
calculation for being difficult to estimate in the present
scenario; however, such phases can contribute to some of
the CP-violating asymmetries.

A. Pole amplitudes

The decay amplitude, APole, can be calculated from the
reduced matrix element

hBfjHjBii ¼ ūBi
ðAþ γ5BÞuBf

; ð6Þ

between two 1
2
þ–baryon states expressed in terms of PVand

PC amplitudes, A and B, receptively. The baryonic decay in
the pole model involves a hadronic intermediate state that
first is produced in the strong process and then goes
through a weak transition to the final baryon. Thus, A
and B can simply be expressed in term of masses, strong
couplings, and weak matrix elements. The pole amplitude
consisting of contributions of s and u channels for positive-
parity intermediate baryon ðJP ¼ 1

2
þÞ poles are denoted by

APole and BPole,

APole ¼ Σ
n

�
g
BfBn

Pk
bni

mi þmn
þ gBnBi

Pk
bfn

mf þmn

�
; ð7Þ

BPole ¼ −Σ
n

�
g
BfBn

Pk
ani

mi −mn
þ gBnBi

Pk
afn

mf −mn

�
; ð8Þ

where gijk are the strong meson-baryon coupling constants.
The weak baryon-baryon matrix elements aij and bij are
defined as

hBijHW jBji ¼ ūBi
ðaij þ γ5bijÞuBj

: ð9Þ

For a preliminary study, we will restrict ourself to the
contributions from parity-conserving amplitudes for the
following reasons:
(1) It is well known that the PV matrix element bij

vanishes in the SU(3) flavor symmetry limit,
i.e., hBfPkjHPV

W jBii ¼ 0. Since for charmed baryon
decays bij ≪ aij, the contributions of

1
2
þ–pole terms

are expected to be suppressed in s-wave amplitudes
and dominant in p-wave amplitudes. Moreover, the
presence of the sum of the baryon masses in the
denominator further suppresses their contributions.
Thus, consideration of PC terms only turns out to be
a good approximation for heavy-baryon decays.

(2) Estimation of 1
2
−–pole terms is a nontrivial task in the

present scenario as it involves knowledge of strong

coupling constants and weak metrics elements of
1
2
−–baryons.

(3) Furthermore, it has been argued by Fayyazuddin
and Riazuddin [37] that, in the leading nonrelativ-
istic approximation, one can ignore JP ¼ 1

2
−; 3

2
−…,

and higher (orbital) resonances in order to connect
them to the relevant ground-state (s-wave) wave
function in the overlap integral to satisfy the
normalization condition; thus, only the PC ampli-
tude survives.

B. Weak transitions

The flavor symmetric and quark model weak
Hamiltonian [41,67] involved in weak transitions for the
quark-level process qi þ qj → ql þ qm is given by

HW ≅ VilV�
jmc−ðmcÞ½B̄½i;j�kB½l;m�kH

½l;m�
½i;j� �; ð10Þ

here, c− ¼ c1 þ c2, and the antisymmetrization among
the indices is represented by the brackets, [,]. The spurion

transforms likeH½1;3�
½2;4�. Equation (10) can be written in terms

of the weak amplitude, aW , for CKM-favored and CKM-
suppressed modes:

HW ≅ aW ½B̄½i;j�kB½l;m�kH
½l;m�
½i;j� �: ð11Þ

As discussed in the literature [42,70,71], a rough estimate
of aW can be made based on symmetry arguments.
However, SU(4) symmetry (being badly broken) ignores
QCD enhancements due to hard gluon exchanges, con-
tributing through c−, at corresponding mass scales, that will
affect the weak transition.
To calculate numerical values of pole terms, the weak

matrix element hBfjHPC
W jBii can be treated in the

leading nonrelativistic approximation [37]. Moreover,
decays of doubly heavy baryons involve heavy-to-heavy
transitions; thus, the use of nonrelativistic approximation
suits the present analysis. Following the analysis of
Riazuddin and Fayyazuddin [37], we obtained the weak
transition amplitudes for the charm baryons as a first
approximation,

MPC ¼ GFffiffiffi
2

p VduVcs

X
i>j

ðγ−i αþj þ αþi γ
−
j Þð1 − σi · σjÞ; ð12Þ

where Si ¼ σi=2 are Pauli spinors representing the spin
of ith quark. The operators αþi and γ−j convert d → u
and c → s, respectively [76]. The weak Hamiltonian can
be obtained by using Fourier transformation of (12),

HPC
W ¼ GFffiffiffi

2
p VduVcs

X
i≠j

αþi γ
−
j ð1 − σi · σjÞδ3ðrÞ; ð13Þ
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which gives the first estimate of the pole terms. The
spatial baryon wave function overlap, δ3ðrÞ≡
hψfjδ3ðrÞjψ ii, is usually assumed to be flavor invariant
such that

hψfjδ3ðrÞjψ iic ≈ hψfjδ3ðrÞjψ iis: ð14Þ

The relation (14) connects nonleptonic charmed baryon
decays with hyperon decays in SU(4) symmetry. The
SU(4) being badly broken due to the large mass
difference between s and c quarks should yield a larger
mismatch between strange and charm baryon wave
function overlaps. Several methods have been proposed
in the literature to address this issue by the introduction
of a correction factor based on different arguments (for
a summary, see Ref. [71]). In the present analysis, we
follow our previous work [76] by treating jψð0Þj2 (based
of dimensionality argument) as a flavor-dependent
quantity. It may be noted that a reliable estimate of
the baryon ground-state wave function at the origin (at
charm mass scale) can be obtained from, precisely
known, experimental masses of baryons using hyperfine
splitting, which in turn yields

mΣc
−mΛc

mΣ −mΛ
¼ αsðmcÞ

αsðmsÞ
msðmc −muÞjψð0Þj2c
mcðms −muÞjψð0Þj2s

: ð15Þ

Thus, we get

jψð0Þj2c
jψð0Þj2s

≈ 2.1; ð16Þ

for αsðmcÞ
αsðmsÞ ≈ 0.53 [70,76]. Thus, the variation of flavor-

dependent baryon spatial wave function overlap would
lead to a substantial correction in branching ratios of
doubly heavy baryons. The numerical results are dis-
cussed in Sec. IV.

C. Strong coupling constants

In general, meson-baryon strong couplings are obtained
from the SU(4)-invariant strong Hamiltonian. In the present
work, we follow a relatively accurate method used by
Khanna and Verma [74] to calculate the baryon-baryon-
pseudoscalar (BB0P) couplings. We extend their analysis to
include SU(4)-breaking effects by employing the null result
of Coleman and Glashow for the tadpole-type symmetry
breaking. The SU(4)-broken (SB) baryon-meson strong
couplings are calculated by

gBB
0

P ðSBÞ ¼ MB þM0
B

2MN

� ffiffiffi
8

3

r
ms −mu

mc −mu

�
gBB

0
P ðSymÞ; ð17Þ

where gBB
0

P ðSymÞ is the value of SU(4) symmetric cou-
plings [74,76]. Effects of symmetry breaking are such that

it should yield larger values of strong couplings as
compared to symmetric ones due to mass dependence,
consequently leading to larger pole contributions for
heavy-baryon decays. The obtained absolute numerical
values and expressions of relevant strong meson-
baryon coupling constants are presented in Table I. The
gBB

0
P ðSBÞ are expressed in terms of gDð¼ 8.4Þ and
gFð¼ 5.6Þ [41,78].

TABLE I. Expressions of strong-coupling constants and their
absolute numerical values.

Strong couplings gBB
0

P Absolute values gBB
0

P (SB)

gΞcΛ
D

�
gDffiffi
2

p þ gF
3
ffiffi
2

p
�

3.30

gΞ
0
cΛ

D

ffiffi
3

pffiffi
2

p ðgD − gFÞ 1.60

gΞ
þþ
cc Σc

D
−ðgD þ gFÞ 11.00

gΞcΣ
D

� ffiffiffi
3

p
gD þ gFffiffi

3
p
�

8.40

gΞ
0
cΣ

D
ð−gD þ gFÞ 1.40

gΞ
þ
ccΛþ

c
D

� ffiffiffi
3

p
gD − gFffiffi

3
p
�

8.60

gΞcΣ
D

� ffiffi
3

pffiffi
2

p gD þ gFffiffi
6

p
�

5.90

gΞ
0
cΣ

D

�
− gDffiffi

2
p þ gFffiffi

2
p
�

0.01

gΞcΞ
Ds −

ffiffiffi
3

p
gD − gFffiffi

3
p
�

8.60

gΞcΣ
Ds

ð−gD þ gFÞ 1.40

gΞcΛþ
c

K

� ffiffiffi
2

p
gD − 2

ffiffiffi
2

p gF
3

�
16.70

gΞ
0
cΛþ

c
K

ffiffiffi
2

p gFffiffi
3

p 11.80

gΞcΞc
π

�
gD − 2 gF

3

�
12.30

gΞ
0
cΞc

π − gFffiffi
3

p 8.70

gΞ
þ
ccΞþ

cc
π

ð−gD þ gFÞ 10.80

gΞ
þ
ccΞþ

cc
η

0.12gD þ 0.08gF 1.50

gΞcΞc
η −0.96gF 14.50

gΞ
0
cΞc

η
0.80ðgD − gFÞ 8.40

gΞcΞc
η0

1.70gD − 1.1gF 21.20

gΞ
0
cΞc

η0
0.27gF 4.00

gΞ
þ
ccΞþ

cc
η0

0.60ðgD − gFÞ 6.90

gΞ
þ
ccΞc

π −
ffiffiffi
2

p gF
3

12.30

gΞcΞc
π

� ffiffiffi
2

p
gD − 2

ffiffiffi
2

p gF
3

�
17.40

gΞcΣþþ
c

K
2 gFffiffi

3
p 17.00

gΞ
0
cΞ0

c
π

gD 23.10

gΞ
0
cΞ0

c
η

0.12gD 2.80

gΞ
þ
ccΞþ

cc
η 0.77

�
gD − gF

�
8.40

gΞ
0
cΞ0

c
η0

1.7gD 39.80

gΞcΞ0
c

π −
ffiffi
2

pffiffi
3

p gF 12.30

gΣcΛþ
c

π − 2gFffiffi
3

p 16.33

(Table continued)

NEELESH SHARMA and ROHIT DHIR PHYSICAL REVIEW D 96, 113006 (2017)

113006-4



D. Factorization

The factorizable decay amplitudes (ignoring the scale
factors) can be expanded in terms of the following reduced
matrix elements:

AFacðBi → Bf þ PkÞ
≡ hPkðqÞjAμj0ihBfðpfÞjVμ þ AμjBiðpiÞi: ð18Þ

The baryon-baryon matrix elements of the weak currents
can be expressed in terms of form factors fi and gi (as
functions of q2) [62,63] as

hBfðpfÞjVμjBiðpiÞi

¼ ūfðpfÞ
�
f1γμ −

f2
mi

iσμνqν þ
f3
mi

qμ

�
uiðpiÞ; ð19Þ

and

hBfðpfÞjAμjBðpiÞi

¼ ūfðpfÞ
�
g1γμγ5 −

g2
mi

iσμνqνγ5 þ
g3
mi

qμγ5

�
uiðpiÞ:

ð20Þ

The decay constant fP of the emitted pseudoscalar meson,
Pk, is defined as

hPkðqÞjAμj0i ¼ ifPmP: ð21Þ

The factorizable amplitudes could be simplified to

AFac
1 ¼ −

GFffiffiffi
2

p FCfPck½ðmi −mfÞfBi;Bf

1 ðm2
PÞ�;

BFac
1 ¼ GFffiffiffi

2
p FCfPck½ðmi þmfÞgBi;Bf

1 ðm2
PÞ�;

where the factor FC is a product of appropriate CKM
factors and Clebsch-Gordan (CG) coefficients and ck are
corresponding QCD coefficients.
We use the NRQM [72] and the HQET [73] to calculate

the baryon-baryon transition form factors fi and gi. In the
NRQM calculations, the form factors are calculated in the
Breit frame and include several corrections like the hard-
gluon QCD contributions, the q2 dependence of the form
factors, and the wave-function mismatch. Later, in the
heavy-quark sector, a 1=mQ correction to the baryon-
baryon transition form factors was introduced within the
heavy-quark symmetry constraints using HQET. The
obtained transition form factors are given in Table II.
We use the mixing scheme for η and η0 mesons

η0ð0.958Þ ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ cosϕP þ ðss̄Þ sinϕP;

ηð0.547Þ ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ sinϕP − ðss̄Þ cosϕP; ð22Þ

where ϕP ¼ θideal − θphyP and θphyP ¼ −15.4° [79]. The
decay constants [79,80] relevant for the present analysis
are given as

fπ ¼ 131 MeV; fη ¼ 133 MeV;

fη0 ¼ 126 MeV; fK ¼ 160 MeV;

fD ¼ 207.4 MeV and fDs
¼ 255 MeV:

TABLE I. (Continued)

Strong couplings gBB
0

P Absolute values gBB
0

P (SB)

gΞ
0
cΞ0

c
π

ffiffiffi
2

p
gD 32.60

gΞcΩ0
c

K
−2 gFffiffi

3
p 17.80

gΩ
0
cΞ0

c
K

2gD 47.20

gΞ
þþ
cc Ξc

Ds

�
−

ffiffiffi
3

p
gD þ gFffiffi

3
p
�

8.86

gΞ
þþ
cc Ξ0

c
Ds

−ðgD þ gFÞ 11.16

gΞ
þþ
cc Ωþ

cc
K

ffiffiffi
2

p ðgD − gFÞ 15.46

gΣ
þþ
c p

D

ffiffiffi
2

p ðgD − gFÞ 1.72

gΞ
þþ
cc Λþ

c
D

�
−

ffiffiffi
3

p
gD þ gFffiffi

3
p
�

8.60

gΣ
þþ
c Σ

Ds

ffiffiffi
2

p ðgD − gFÞ 1.85

gΞ
þþ
cc Ξ0

c
Ds

−ðgD þ gFÞ 11.16

gΣ
þþ
c Λþ

c
π

2gFffiffi
3

p 16.33

gΞ
þþ
cc Ξþ

cc
π

ffiffiffi
2

p ðgD − gFÞ 15.31

gΣ
þþ
c Ξc

K
2gFffiffi
3

p 16.96

gΣ
þþ
c Σþþ

c
π

2gD 43.91

gΞ
þþ
cc Ξþþ

cc
π

ðgD − gFÞ 10.82

gΣ
þþ
c Σþþ

c
η

1.55gD 33.98

gΞ
þþ
cc Ξþþ

cc
η

0.77ðgD − gFÞ 8.38

gΣ
þþ
c Σþþ

c
η0

1.27gD 27.81

gΞ
þþ
cc Ξþþ

cc
η0

0.63ðgD − gFÞ 6.86

gΣ
þþ
c Ξ0

c
K

2gD 45.02

gΛ
þ
c pðnÞ

D

� ffiffiffi
3

p
gD þ gFffiffi

3
p
�

7.37

gΣcpðnÞ
D

ð−gD þ gFÞ 1.22

gΞ
þ
ccΣc

D
−

ffiffiffi
2

p ðgD þ gFÞ 15.47

gΛ
þ
c Λ

Ds

ffiffiffi
2

p �
gD þ gF

3

�
6.35

gΞ
þ
ccΣc

Ds

�
−

ffiffiffi
3

p
gD þ gFffiffi

3
p
�

8.87

gΣcΣ
Ds

ffiffiffi
2

p ðgD − gFÞ 1.86

gΛ
þ
c Λþ

c
η

1.55gD − 1.03gF 17.60

gΛ
þ
c Σ

Ds

0 0

gΛ
þ
c Λþ

c
π

0 0

gΣcΛþ
c

η
0 0
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IV. NUMERICAL RESULTS
AND DISCUSSIONS

The preliminary results for the various decay channels
of Ξcc are obtained as a sum of the factorization and the
pole contributions to different PV and PC amplitudes. As
mentioned before, SU(4) symmetry breaking could be
substantially large; thus, the use of exact SU(4) symmetry
could be questioned. Therefore, we include SU(4)-breaking
effects in evaluating strong coupling constants as well weak
transitions. First, we evaluate the factorizable amplitudes
using NRQM- and HQET-based form factors for CKM-
favored, CKM-suppressed, and CKM–doubly suppressed
modes as listed in columns 3 and 4 of Tables III–VII. The
flavor-independent pole amplitudes are calculated by using

SU(4) broken strong coupling constants as shown in
column 5 of Tables III–VII.
Later, we introduce the flavor-dependent effects in weak

transition amplitudes through hyperfine splitting. The
variation of the spatial baryon wave function overlap,
jψð0Þj2, with flavor results in larger pole contributions.
The numerical values’ of flavor-dependent pole amplitudes
for Ξcc decays in CKM-favored, CKM-suppressed, and
CKM–doubly suppressed modes are given in column 6 of
Tables III–VII. It can be clearly seen that the pole
contributions are enhanced by a factor of ∼2 due to
flavor-dependent effects caused by SU(4) breaking.
Moreover, the increment in pole amplitudes could be
viewed as variation of scale (charm to strange) by 2.
We wish to remark that a significant contribution to the

parity-violating amplitudes may come from, 1
2
−, the lowest-

lying negative-parity excited baryons; however, the esti-
mation of such terms is far from simple, as discussed in
Refs. [63–66,71]. In addition, symmetry-based attempts
have also been made to estimate their contributions for
singly charmed baryons. Such attempts required sufficient
experimental information on decays which is not available
at present for doubly heavy Ξcc baryons. Therefore, we
have only considered ground-state 1

2
þ–intermediate baryon

pole terms as a first estimate of pole contributions. It may
be noted that a large theoretical uncertainty in the lifetime
of Ξcc states could be seen as another source of uncertainty
in the results. We use τΞþþ

cc
¼ 300 fs and τΞþ

cc
¼ 100 fs [58]

to obtain the branching ratios in the present work.
After adding factorizable and pole contributions, we

calculate the branching ratios and asymmetry parameters
for two-body weak decays of doubly heavy Ξcc baryons for
the flavor-independent and flavor-dependent cases. To
emphasize the importance of the W-exchange contribution
to Ξcc decays, we present our predictions for the branching
ratios of Ξcc decays receiving contributions only from pole
amplitudes in Tables VIII and IX. The prediction for
branching ratios receiving contributions from both the
factorization and pole or factorization only are given in
Tables X–XII for CKM-favored, CKM-suppressed, and

TABLE III. Decay amplitudes (in units of GFffiffi
2

p VuqV�
cq) for CKM-favored (ΔC ¼ ΔS ¼ −1) mode.

Factorizationa Pole amplitude

Decays Models [72,73] AFac BFac Flavor independent Flavor dependent

Ξþþ
cc → ΣþDþ NRQM 0 0 0.101 0.212

HQET 0 0
Ξþþ
cc → Ξþ

c π
þ NRQM 0.110 −0.250 0.372 0.782

HQET 0.142 −0.290
Ξþþ
cc → Σþþ

c K̄0 NRQM −0.042 0.520 0 0
HQET −0.060 0.730

Ξþþ
cc → Ξ0þ

c πþ NRQM 0.064 −0.800 0 0
HQET 0.076 −0.930

aA and B represent PV and PC amplitudes, respectively.

TABLE II. Ξþþ
cc and Ξþ

cc transition form factors in NRQM [72]
and HQET [73].

Form factors

Transitions Models [72,73] f1 g1

Ξþþ
cc → Λþ

c NRQM −0.35 −0.19
HQET −0.59 −0.27

Ξþþ
cc → Σþþ

c NRQM −0.39 −0.96
HQET −0.54 −1.35

Ξþþ
cc → Σþ

c NRQM −0.27 −0.68
HQET −0.38 −0.95

Ξþþ
cc → Ξþ

c NRQM −0.57 −0.24
HQET −0.74 −0.29

Ξþþ
cc → Ξ0þ

c NRQM −0.37 −0.78
HQET −0.43 −0.91

Ξþ
cc → Λþ

c NRQM 0.35 0.19
HQET 0.59 0.27

Ξþ
cc → Σþ

c NRQM −0.27 −0.68
HQET −0.38 −0.95

Ξþ
cc → Σ0

c NRQM −0.39 −0.96
HQET −0.54 −1.35

Ξþ
cc → Ξ0

c NRQM −0.57 −0.24
HQET −0.74 −0.29

Ξþ
cc → Ξ00

c NRQM −0.37 −0.78
HQET −0.43 −0.91
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TABLE IV. Decay amplitudes (in units of GFffiffi
2

p VuqV�
cq) for the CKM-favored (ΔC ¼ ΔS ¼ −1) mode.

Factorization Pole amplitude

Decays Models [72,73] AFac BFac Flavor independent Flavor dependent

Ξþ
cc → Λ0Dþ NRQM 0 0 0.082 0.172

HQET 0 0
Ξþ
cc → ΣþD0 NRQM 0 0 0.119 0.249

HQET 0 0
Ξþ
cc → Σ0Dþ NRQM 0 0 0.156 0.327

HQET 0 0
Ξþ
cc → Ξ0Ds

þ NRQM 0 0 −0.114 −0.239
HQET 0 0

Ξþ
cc → Λþ

c K̄0 NRQM 0.043 −0.102 −0.407 −0.854
HQET 0.072 −0.144

Ξþ
cc → Ξþ

c π
0 NRQM 0 0 −0.562 −1.179

HQET 0 0
Ξþ
cc → Ξ0þ

c π0 NRQM 0 0 0.211 0.444
HQET 0 0

Ξþ
cc → Ξþ

c η NRQM 0 0 0.240 0.504
HQET 0 0

Ξþ
cc → Ξ0þ

c η NRQM 0 0 0.353 0.741
HQET 0 0

Ξþ
cc → Ξþ

c η
0 NRQM 0 0 −0.349 −0.733

HQET 0 0
Ξþ
cc → Ξ0þ

c η0 NRQM 0 0 −0.097 −0.205
HQET 0 0

Ξþ
cc → Ξ0

cπ
þ NRQM 0.110 −0.250 −0.422 −0.887

HQET 0.143 −0.290
Ξþ
cc → Ξ00

c π
þ NRQM 0.064 −0.802 0.299 0.628

HQET 0.080 −0.940
Ξþ
cc → Σþþ

c K− NRQM 0 0 −0.412 −0.866
HQET 0 0

Ξþ
cc → Σþ

c K̄0 NRQM −0.030 0.370 −0.291 −0.612
HQET −0.042 0.515

Ξþ
cc → Ω0

cKþ NRQM 0 0 0.433 0.909
HQET 0 0

TABLE V. Decay amplitudes (in units of GFffiffi
2

p VuqV�
cq) for the CKM-suppressed (ΔC ¼ −1, ΔS ¼ 0) mode.

Factorization Pole amplitude

Decays Models [72,73] AFac BFac Flavor independent Flavor dependent

Ξþþ
cc → pDþ NRQM 0 0 0.087 0.182

HQET 0 0
Ξþþ
cc → ΣþDs

þ NRQM 0 0 0.099 0.207
HQET 0 0

Ξþþ
cc → Λþ

c π
þ NRQM 0.078 −0.190 0.322 0.676

HQET 0.131 −0.270
Ξþþ
cc → Ξþ

c Kþ NRQM 0.150 −0.320 0.354 0.743
HQET 0.190 −0.380

Ξþþ
cc → Ξ0þ

c Kþ NRQM 0.090 −1.060 0 0
HQET 0.100 −1.230

Ξþþ
cc → Σþþ

c π0 NRQM 0.022 −0.280 0 0
HQET 0.030 −0.400

Ξþþ
cc → Σþþ

c η NRQM 0.042 −0.530 0 0
HQET 0.062 −0.730

Ξþþ
cc → Σþþ

c η0 NRQM −0.017 0.170 0 0
HQET −0.023 0.230

Ξþþ
cc → Σþ

c π
þ NRQM 0.050 −0.690 0 0

HQET 0.080 −0.960
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TABLE VI. Decay amplitudes (in units of GFffiffi
2

p VuqV�
cq) for the CKM-suppressed (ΔC ¼ −1;ΔS ¼ 0) mode.

Factorization Pole amplitude

Decays Models [72,73] AFac BFac Flavor independent Flavor dependent

Ξþ
cc → pD0 NRQM 0 0 −0.111 −0.234

HQET 0 0
Ξþ
cc → nDþ NRQM 0 0 0.198 0.416

HQET 0 0
Ξþ
cc → Λ0Ds

þ NRQM 0 0 0.056 0.117
HQET 0 0

Ξþ
cc → Σ0Ds

þ NRQM 0 0 0.070 0.147
HQET 0 0

Ξþ
cc → Λþ

c π
0 NRQM −0.022 0.054 −0.228 −0.478

HQET −0.037 0.077
Ξþ
cc → Λþ

c η NRQM −0.044 0.010 0.194 0.407
HQET −0.074 0.144

Ξþ
cc → Λþ

c η
0 NRQM −0.018 0.034 −0.159 −0.333

HQET −0.028 0.046
Ξþ
cc → Ξþ

c K0 NRQM 0 0 −0.710 −1.49
HQET 0 0

Ξþ
cc → Ξ0þ

c K0 NRQM 0 0 −0.249 −0.523
HQET 0 0

Ξþ
cc → Ξ0

cKþ NRQM 0.150 −0.330 −0.352 −0.739
HQET 0.190 −0.380

Ξþ
cc → Ξ00

c Kþ NRQM 0.087 −1.060 −0.249 −0.523
HQET 0.103 −1.230

Ξþ
cc → Σþþ

c π− NRQM 0 0 −0.343 −0.721
HQET 0 0

Ξþ
cc → Σþ

c π
0 NRQM 0.015 −0.200 0.343 0.721

HQET 0.022 −0.275
Ξþ
cc → Σþ

c η NRQM 0.030 −0.370 0 0
HQET 0.043 −0.520

Ξþ
cc → Σþ

c η
0 NRQM −0.011 0.122 0 0

HQET −0.016 0.171
Ξþ
cc → Σ0

cπ
þ NRQM 0.076 −0.971 0.343 0.721

HQET 0.110 −1.360

TABLE VII. Decay amplitudes (in units of GFffiffi
2

p VuqV�
cq) for the CKM–doubly suppressed (ΔC ¼ −ΔS ¼ −1)

mode.

Factorization Pole amplitude

Decays Models [72,73] AFac BFac Flavor independent Flavor dependent

Ξþþ
cc → pDs

þ NRQM 0 0 0.085 0.178
HQET 0 0

Ξþþ
cc → Λþ

c Kþ NRQM 0.110 −0.025 0.308 0.647
HQET 0.180 −0.360

Ξþþ
cc → Σþþ

c K0 NRQM −0.042 0.520 0 0
HQET −0.059 0.730

Ξþþ
cc → Σþ

c Kþ NRQM −0.004 0.045 0 0
HQET −0.005 0.063

Ξþ
cc → nDs

þ NRQM 0 0 −0.085 −0.178
HQET 0 0

Ξþ
cc → Λþ

c K0 NRQM 0.043 −0.102 0.308 0.647
HQET 0.072 −0.144

Ξþ
cc → Σþ

c K0 NRQM −0.030 0.370 0 0
HQET −0.042 0.515

Ξþ
cc → Σ0

cKþ NRQM 0.104 −1.283 0 0
HQET 0.150 −1.797
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CKM–doubly suppressed, respectively. We draw the fol-
lowing observations:
(1) As expected, a large number of the Ξcc decay

channels receive contributions from the W-exchange
process. Upon comparison with factorizable contri-
butions, we find that the pole amplitudes are not only
equipollent but also are dominant in several decays.

(2) In the CKM-favored ðΔC ¼ ΔS ¼ −1Þ decay mode,
most of the decays come from the pole diagrams
alone, and only two of the decay channels come
from factorization. The rest of the decays receive
dominant pole contributions except for Ξþ

cc→Ξ00
c π

þ.

The order of the branching ratios for all the decays
range from 10−2 to 10−5 for the flavor-independent
case. While the inclusion of flavor-dependent effects
enhances the pole contributions, consequently the
branching ratios of dominant modes become
Oð10−1Þ ∼Oð10−3Þ.

(3) The pole and factorizable amplitudes can interfere
constructively or destructively in decay modes with
both, factorizable and pole, contributions. The pole
and factorization amplitudes interfere constructively,
in Ξþþ

cc → Ξþ
c π

þ, Ξþ
cc → Ξ00

c π
þ, and Ξþ

cc → Σþ
c K̄0

decay channels; however, these interfere destruc-
tively in Ξþ

cc → Λþ
c K̄0 and Ξþ

cc → Ξ0
cπ

þ decays.

TABLE VIII. Branching ratios for the CKM-favored
(ΔC ¼ ΔS ¼ −1) mode with only pole contributions. The
branching ratios for an arbitrary lifetime can be obtained by

using ðτΞþþ
cc

300
Þ × BðBi → BfPÞ and ðτΞþcc

100
Þ × BðBi → BfPÞ.

Branching ratios

Decays Flavor independent Flavor dependent

Ξþþ
cc → ΣþDþ 2.0 × 10−3 8.9 × 10−3

Ξþ
cc → Λ0Dþ 5.3 × 10−4 2.4 × 10−3

Ξþ
cc → ΣþD0 9.4 × 10−4 4.2 × 10−3

Ξþ
cc → Σ0Dþ 1.6 × 10−3 7.0 × 10−3

Ξþ
cc → Ξ0Ds

þ 4.1 × 10−4 1.8 × 10−3

Ξþ
cc → Ξþ

c π
0 1.1 × 10−2 5.0 × 10−2

Ξþ
cc → Ξ0þ

c π0 1.2 × 10−3 5.4 × 10−3

Ξþ
cc → Ξþ

c η 1.4 × 10−3 6.4 × 10−3

Ξþ
cc → Ξ0þ

c η 2.2 × 10−3 9.5 × 10−3

Ξþ
cc → Ξþ

c η
0 7.9 × 10−4 3.5 × 10−3

Ξþ
cc → Ξ0þ

c η0 1.8 × 10−5 8.1 × 10−5

Ξþ
cc → Σþþ

c K− 4.8 × 10−3 2.1 × 10−2

Ξþ
cc → Ω0

cKþ 2.2 × 10−3 1.0 × 10−2

TABLE IX. Branching ratios for the CKM-suppressed
(ΔC ¼ −1;ΔS ¼ 0) and CKM–doubly suppressed (ΔC ¼
−ΔS ¼ −1) modes with only pole contributions.

Branching ratios

Decays Flavor independent Flavor dependent

(ΔC ¼ −1;ΔS ¼ 0Þ
Ξþþ
cc → pDþ 1.4 × 10−4 6.0 × 10−4

Ξþþ
cc → ΣþDs

þ 7.7 × 10−5 3.4 × 10−4

Ξþ
cc → pD0 7.6 × 10−5 3.4 × 10−4

Ξþ
cc → nDþ 2.4 × 10−4 1.1 × 10−3

Ξþ
cc → Λ0Ds

þ 1.0 × 10−5 4.5 × 10−5

Ξþ
cc → Σ0Ds

þ 1.3 × 10−5 5.6 × 10−5

Ξþ
cc → Ξþ

c K0 7.0 × 10−4 3.1 × 10−3

Ξþ
cc → Ξ0þ

c K0 6.2 × 10−5 2.7 × 10−3

Ξþ
cc → Σþþ

c π− 2.3 × 10−4 1.0 × 10−3

(ΔC ¼ −ΔS ¼ −1Þ
Ξþþ
cc → pDs

þ 5.7 × 10−6 2.5 × 10−5

Ξþ
cc → nDs

þ 1.9 × 10−6 8.4 × 10−6

TABLE X. Branching ratios for the CKM-favored (ΔC ¼ ΔS ¼ −1) mode including factorization and pole contributions.

Branching ratios Asymmetries (α)

Decays Models [72,73] Flavor independent Flavor dependent Flavor independent Flavor dependent

Ξþþ
cc → Ξþ

c π
þ NRQM 7.8 × 10−2 15.1 × 10−2 −0.997 −0.856

HQET 10.9 × 10−2 18.5 × 10−2 −0.991 −0.942
Ξþþ
cc → Σþþ

c K̄0 NRQM 2.8 × 10−2 � � � −0.760 � � �
HQET 5.5 × 10−2 −0.760 � � �

Ξþþ
cc → Ξ0þ

c πþ NRQM 6.4 × 10−2 � � � −0.780 � � �
HQET 8.8 × 10−2 −0.780 � � �

Ξþ
cc → Λþ

c K̄0 NRQM 6.0 × 10−3 2.7 × 10−2 0.927 0.504
HQET 8.3 × 10−3 2.7 × 10−2 0.964 0.785

Ξþ
cc → Ξ0

cπ
þ NRQM 1.3 × 10−2 2.7 × 10−2 0.552 0.996

HQET 2.1 × 10−2 3.3 × 10−2 0.341 0.972
Ξþ
cc → Ξ00

c π
þ NRQM 3.3 × 10−2 5.9 × 10−2 −0.653 −0.502

HQET 4.7 × 10−2 7.2 × 10−2 −0.647 −0.535
Ξþ
cc → Σþ

c K̄0 NRQM 1.3 × 10−2 2.8 × 10−2 −0.483 −0.336
HQET 2.0 × 10−2 3.8 × 10−2 −0.543 −0.404
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TABLE XII. Branching ratios for the CKM–doubly suppressed (ΔC ¼ −ΔS ¼ −1) mode including factorization and pole
contributions.

Branching ratios Asymmetries (α)

Decays Models [72,73] Flavor independent Flavor dependent Flavor independent Flavor dependent

Ξþþ
cc → Λþ

c Kþ NRQM 2.1 × 10−4 3.8 × 10−4 −1.000 −0.860
HQET 4.2 × 10−4 6.2 × 10−4 −0.970 −1.000

Ξþþ
cc → Σþþ

c K0 NRQM 7.6 × 10−5 � � � −0.760 � � �
HQET 1.5 × 10−4 −0.760 � � �

Ξþþ
cc → Σþ

c Kþ NRQM 2.3 × 10−4 � � � −0.760 � � �
HQET 4.6 × 10−4 −0.760 � � �

Ξþ
cc → Λþ

c K0 NRQM 2.5 × 10−5 7.2 × 10−5 −0.802 −0.510
HQET 3.9 × 10−5 8.9 × 10−5 −0.964 −0.731

Ξþ
cc → Σþ

c K0 NRQM 1.3 × 10−5 � � � −0.760 � � �
HQET 2.5 × 10−5 −0.760 � � �

Ξþ
cc → Σ0

cKþ NRQM 1.5 × 10−4 � � � −0.760 � � �
HQET 3.0 × 10−4 −0.760 � � �

TABLE XI. Branching ratios for the CKM-suppressed (ΔC ¼ −1;ΔS ¼ 0) mode including factorization and pole contributions.

Branching ratios Asymmetries (α)

Decays Models [72,73] Flavor independent Flavor dependent Flavor independent Flavor dependent

Ξþþ
cc → Λþ

c π
þ NRQM 3.2 × 10−3 7.4 × 10−2 −0.930 −0.690

HQET 5.8 × 10−3 1.0 × 10−2 −1.000 −0.890
Ξþþ
cc → Ξþ

c Kþ NRQM 5.1 × 10−3 8.0 × 10−3 −0.970 −0.980
HQET 7.6 × 10−3 1.1 × 10−2 −0.920 −1.000

Ξþþ
cc → Ξ0þ

c Kþ NRQM 4.4 × 10−3 � � � −0.850 � � �
HQET 6.0 × 10−3 −0.850 � � �

Ξþþ
cc → Σþþ

c π0 NRQM 5.3 × 10−4 � � � −0.700 � � �
HQET 1.0 × 10−3 −0.690 � � �

Ξþþ
cc → Σþþ

c η NRQM 1.3 × 10−3 � � � −0.780 � � �
HQET 2.7 × 10−3 −0.780 � � �

Ξþþ
cc → Σþþ

c η0 NRQM 5.7 × 10−5 � � � −0.980 � � �
HQET 1.1 × 10−4 −0.980 � � �

Ξþþ
cc → Σþ

c π
þ NRQM 3.2 × 10−3 � � � −0.690 � � �

HQET 6.3 × 10−3 −0.690 � � �
Ξþ
cc → Λþ

c π
0 NRQM 2.5 × 10−4 8.3 × 10−4 −0.625 −0.360

HQET 3.4 × 10−4 9.5 × 10−4 −0.840 −0.548
Ξþ
cc → Λþ

c η NRQM 1.2 × 10−4 3.0 × 10−4 0.734 0.935
HQET 2.8 × 10−4 4.2 × 10−4 0.277 0.960

Ξþ
cc → Λþ

c η
0 NRQM 4.6 × 10−5 1.4 × 10−4 −0.829 −0.517

HQET 7.0 × 10−5 1.7 × 10−4 −0.983 −0.747
Ξþ
cc → Ξ0

cKþ NRQM 1.1 × 10−3 1.3 × 10−3 0.061 0.778
HQET 1.8 × 10−3 2.0 × 10−3 −0.052 0.578

Ξþ
cc → Ξ00

c Kþ NRQM 1.0 × 10−3 6.2 × 10−4 −0.950 −1.000
HQET 1.4 × 10−3 9.7 × 10−4 −0.940 −1.000

Ξþ
cc → Σþ

c π
0 NRQM 5.8 × 10−4 1.7 × 10−3 −0.290 −0.173

HQET 7.7 × 10−4 2.0 × 10−3 −0.351 −0.222
Ξþ
cc → Σþ

c η NRQM 2.3 × 10−4 � � � −0.780 � � �
HQET 4.5 × 10−4 −0.780 � � �

Ξþ
cc → Σþ

c η
0 NRQM 1.0 × 10−5 � � � −0.980 � � �

HQET 1.9 × 10−5 −0.980 � � �
Ξþ
cc → Σ0

cπ
þ NRQM 3.7 × 10−3 5.9 × 10−3 −0.552 −0.443

HQET 6.3 × 10−3 9.1 × 10−3 −0.589 −0.498
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Because of flavor dependence, branching ratios
of the most dominant modes BðΞþþ

cc → Ξþ
c π

þÞ,
BðΞþ

cc → Ξ00
c π

þÞ, and BðΞþ
cc → Ξþ

c π
0Þ are enhanced

by an order of magnitude, and the last decay comes
from W-exchange diagrams only. The large decay
width of Ξþþ

cc → Ξþ
c π

þ decay makes it the best
candidate to look out for in experimental searches.

(4) The factorization contributions obtained from
NRQM and HQET differ, owing to the difference
in form factors. The results based on HQET, in
general, have larger values.

(5) In the CKM-suppressed ðΔC ¼ −1;ΔS ¼ 0Þ decay
mode, most of the dominant decays receive con-
tributions from both pole and decay amplitudes via
their constructive inference. The flavor-dependent
branching ratios of such decay channels are
Oð10−2Þ ∼Oð10−3Þ with a few exceptions. How-
ever, the pole-only decays have branching ratios of
Oð10−3Þ ∼Oð10−5Þ. The most dominant decays in
this mode are Ξþþ

cc → Λþ
c π

þ, Ξþþ
cc → Ξþ

c Kþ, and
Ξþ
cc → Σ0

cπ
þ.

(6) The decays, Ξþ
cc → Ξ0

cKþ and Ξþ
cc → Ξ00

c Kþ, present
an interesting case of destructive interference be-
tween pole and factorization terms. It is worth noting
that in Ξþ

cc → Ξ0
cKþ decay pole and factorization

contributions to PC amplitudes are roughly compa-
rable, while the PC factorization amplitude in Ξþ

cc →
Ξ00
c Kþ is predominant. Experimental searches for

such decays will provide a useful test of the theory.
(7) The decay channels in the CKM–doubly suppressed

ðΔC ¼ ΔS ¼ −1Þ modes have branching ratios
Oð10−4Þ ∼Oð10−6Þ. Only two of the decays attain
contributions from the pole alone. The decays
having both pole and factorization contributions
have larger branching ratios. It is interesting to note
that decays with factorization-only contributions
have branching ratios comparable to the decays
with pole-only contributions.

(8) We wish to point out that the flavor-dependent
results enhance the contribution of pole terms
roughly by a factor of 4, consequently giving larger
branching ratios. Thus, results based on flavor
dependence and flavor-independent analyses pro-
vide a useful domain for experimental searches.

To compare our results with other works, we present
corresponding decay modes in Table XIII. We first com-
pare our results with some of the very recent analyses of
nonleptonic decays Ξcc baryons based on the factorization
scheme [58,59]. Wang et al. [58] have given an analysis of
weak decays of doubly heavy baryons in the quark-diquark
picture using the light front approach. Their branching

ratios for dominant CKM-favored modes BðΞþþ
cc →

Ξð0Þþ
c πþÞ and BðΞþ

cc → Ξð0Þ0
c πþÞ are of the order of a few

percent. The BðΞþþ
cc → Ξ0þ

c πþÞ compares well with our

result with no pole contribution (owing to a zero CG
coefficient of baryon-baryon weak coupling for
W-exchange pole terms1). Despite the inclusion of dom-
inant pole contributions and constructive interference
between PC pole and factorization amplitudes, our result
for the most dominant BðΞþþ

cc → Ξþ
c π

þÞ is comparable to
their result, i.e., 7.24%. Thus, the major difference in
results is due to the different form factors used in both the
works. As mentioned before, Ξþ

cc → Ξ0
cπ

þ and Ξþ
cc →

Ξ00
c π

þ represent peculiar cases of destructive and construc-
tive interference between pole and factorization amplitudes,
respectively. Therefore, the magnitude of the BðΞþ

cc →
Ξ0
cπ

þÞ in our case is smaller as compared to their branching
2.4% and vice versa for BðΞþ

cc → Ξ00
c π

þÞ. Similarly, for
CKM-suppressed and CKM–doubly suppressed modes, the
branching ratios are of the same order when compared with
Ref. [58], i.e., Oð10−3Þ and Oð10−4Þ, respectively. In
general, our results for branching ratios including both
pole and factorization amplitudes are larger than their
values as expected. The decay Ξþþ

cc → Σþþ
c K̄�0 is first

figured as a four-body process in Ref. [60], which is
predicted to be one of the most dominant modes. Gutsche
et al. [59] have analyzed weak decay of Ξþþ

cc as decay
chain Ξþþ

cc → Σþþ
c ð→ Λþ

c π
þÞ þ K̄�0ð→ K−πþÞ, which is

expected to be experimentally favored due to the dominant
branching ratios of the daughter decays. The Ξþþ

cc →
Σþþ
c K̄ð�Þ0 decays are studied using the factorization scheme

in CCQM. The obtained branching ratio, BðΞþþ
cc →

Σþþ
c K̄0Þ ¼ 1.5% at 300 fs, is of the same order when

compared with our result. Other than the factorization
scheme, the nonperturbative long-distance (W-exchange)
contributions to Ξcc decays have been calculated by Yu
et al. [60]. The rescattering mechanism of FSIs, which has
been ignored in the present work, is used to evaluate long-
distance contributions. Authors have used the one-particle
exchange method, where FSI is assumed to be dominated
by the rescattering of intermediate states [81]. Thus, the
amplitude is expressed in terms of strong coupling (of
particles on mass shell) and the form factor (for exchanged
baryons that are off mass shell). Here, also, the branching
ratios in the case of CKM-favored and CKM-suppressed
modes for factorizable decay channels (see Table XIII) are
of the same order as compared to our results. However,
their branching ratios for (pole-only) Ξþ

cc → Σþþ
c K− and

Ξþþ
cc → pDþ decays are smaller by an order of magnitude

as compared to our results for the flavor-independent case.
The difference in results may be attributed mainly to
distinctive approaches. Although all the results compared
here are based on different models/approaches, they agree
at least on the order of magnitude of the doubly charmed

1The weak coupling aΞþ
ccΞ0þ

c
becomes zero following the

operation of ð1 − σi · σjÞ on the wave function using (13); for
details, see Ref. [37].
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baryon decays. These results could be of great importance
for experimentalists for future searches.
In the present work, we have ignored the CP asymme-

tries as they have not yet been established in charmed
baryon decays. However, like heavy-flavor mesons decays,
the heavy-baryon decays are also prone to CP violation.
Even though it is well established that nonfactorizable
diagrams like W-exchange/annihilation have a sizable
impact on baryon decays, it would be a difficult task to
establish CP violation in charmed baryon decays as the CP
asymmetries originating from the Standard Model (SM) are
very small or even zero [82,83]. Moreover, the production
of three-body final states with relatively larger branching
ratios and many CP observables will require a large amount

of experimental data. On the other hand, CP asymmetries
have already been probed in two-body Λb decays [78]. The
theoretical investigation based on the pQCD approach [52]
indicates the dominance of nonfactorizable contributions in
addition to penguin amplitudes. Similar conclusions were
made by theoretical estimates based on generalized fac-
torization and symmetries [47,48,51,84]. Obviously, mea-
surements of the CP asymmetries provide a good tool to
probe interference between the SM and new physics.

V. SUMMARY

The understanding of heavy-baryon decays is a long-
standing problem as there does not exist a reliable approach

TABLE XIII. Comparison of branching ratios with other works.a

Branching ratios

Decays Models [72,73] Flavor independent Flavor dependent Other works

(ΔC ¼ ΔS ¼ −1Þ
Ξþþ
cc → Ξþ

c π
þ NRQM 7.8 × 10−2 15.1 × 10−2 7.24 × 10−2 [58]

HQET 10.9 × 10−2 18.5 × 10−2 3.4 × 10−2 [60]
Ξþþ
cc → Ξ0þ

c πþ NRQM 6.4 × 10−2 � � � 5.08 × 10−2 [58]
HQET 8.8 × 10−2

Ξþ
cc → Ξ0

cπ
þ NRQM 1.3 × 10−2 2.7 × 10−2 2.40 × 10−2[58]

HQET 2.1 × 10−2 3.3 × 10−2 1.2 × 10−2 [60]
Ξþ
cc → Ξ00

c π
þ NRQM 3.3 × 10−2 5.9 × 10−2 1.68 × 10−2 [58]

HQET 4.7 × 10−2 7.2 × 10−2

Ξþ
cc → Σþþ

c K− Pole only 4.8 × 10−3 2.1 × 10−2 4.8 × 10−4[60]
Ξþ
cc → Λ0Dþ Pole only 5.3 × 10−4 2.4 × 10−3 2.4 × 10−4 [60]

(ΔC ¼ −1;ΔS ¼ 0Þ
Ξþþ
cc → Λþ

c π
þ NRQM 3.2 × 10−3 7.4 × 10−2 4.09 × 10−3 [58]

HQET 5.8 × 10−3 1.0 × 10−2 1.2 × 10−3 [60]
Ξþþ
cc → Ξþ

c Kþ NRQM 5.1 × 10−3 8.0 × 10−3 6.06 × 10−3 [58]
HQET 7.6 × 10−3 1.1 × 10−2

Ξþþ
cc → Ξ0þ

c Kþ NRQM 4.4 × 10−3 � � � 3.48 × 10−3 [58]
HQET 6.0 × 10−3

Ξþþ
cc → Σþ

c π
þ NRQM 3.2 × 10−3 7.4 × 10−2 2.66 × 10−3 [58]

HQET 6.0 × 10−3

Ξþ
cc → Ξ0

cKþ NRQM 1.1 × 10−3 1.3 × 10−3 2.00 × 10−3 [58]
HQET 1.8 × 10−3 2.0 × 10−3

Ξþ
cc → Ξ00

c Kþ NRQM 1.0 × 10−3 6.2 × 10−4 1.15 × 10−3 [58]
HQET 1.4 × 10−3 9.7 × 10−4

Ξþ
cc → Σ0

cπ
þ NRQM 3.7 × 10−3 5.9 × 10−3 1.77 × 10−3 [58]

HQET 6.3 × 10−3 9.1 × 10−3

Ξþþ
cc → pDþ Pole only 1.4 × 10−4 6.0 × 10−4 4.8 × 10−5[60]

Ξþ
cc → pD0 Pole only 7.6 × 10−5 3.4 × 10−4 1.2 × 10−4[60]

(ΔC ¼ −ΔS ¼ −1Þ
Ξþþ
cc → Λþ

c Kþ NRQM 2.1 × 10−4 3.8 × 10−4 3.60 × 10−4 [58]
HQET 4.2 × 10−4 6.2 × 10−4

Ξþþ
cc → Σþ

c Kþ NRQM 2.3 × 10−4 � � � 1.95 × 10−4 [58]
HQET 4.6 × 10−4

Ξþ
cc → Σ0

cKþ NRQM 1.5 × 10−4 � � � 1.30 × 10−4 [58]
HQET 3.0 × 10−4

aThe branching ratios are compared for the lifetime
τΞþþ

cc
τΞþcc

¼ 3, and thus, for Ref. [60], we have used Rτ ¼ 0.3.
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for investigating the weak decays of heavy baryons as
of yet. The dynamics of baryon decays, unlike meson
decays, seems to get more complicated once they become
heavier. Motivated by the recent observations, especially by
LHCb, we have analyzed nonleptonic weak decays of
doubly charmed baryons. The branching ratios of Ξcc
decays for CKM-favored and -suppressed modes are
calculated using the factorization and pole model
approaches. In the factorization scheme, we have obtained
the form factors, fi and gi, using the nonrelativistic quark
model [72] and heavy quark effective theory [73]. The
nonfactorizable W-exchange diagrams, involving 1

2
þ–

intermediate states, are calculated using the pole model
approach. In the case of singly charmed baryon decays, it
has been well established that the W-exchange contribu-
tions are comparable to factorization amplitudes.
Therefore, the purpose of the present work is to give first
estimates of W-exchange terms in doubly charmed Ξcc
decays to get a more comprehensive picture. As men-
tioned before, there has been some recent analysis
involving doubly heavy baryons based mostly on factori-
zation contributions only. However, the importance of
W-exchange terms has also been emphasized in such
works. Furthermore, we include SU(4)-breaking effects
in meson-baryon strong couplings as well as in weak
amplitudes. The results for the two scenarios, namely,
flavor independent and flavor dependent, have been
presented. We summarize our observations as follows:
(1) We find that W-exchange amplitude contributes the

majority of the Ξcc decays. In contrast to factoriza-
tion contributions, the W-exchange contributions are
not only comparable but also dominant in many
decay channels. Thus, W-exchange contributions in
Ξcc decays cannot be ignored.

(2) It is interesting to note that most of the CKM-
favored decay channels receive contributions from
W-exchangepole amplitudes only. The overall branch-
ing ratios in this mode range from 10−1∼10−5, The
BðΞþþ

cc → Ξþ
c π

þÞ is as high asOð10−1Þ in the flavor-
dependent case. Several decays in this node have
branching ratios of the order of a few percent, which
could be of experimental interest.

(3) We have shown that the pole and factorization
amplitudes, depending on their signs, can interfere
constructively and destructively. An experimental
search of these decays could prove to be a useful test
of theoretical models.

(4) In CKM-suppressed and CKM–doubly suppressed
modes, the dominant decays receive contributions
from factorization as well as pole amplitudes,
indicating the importance of W-exchange processes.
The branching ratios of dominant decay channels in
the CKM-suppressed mode areOð10−2Þ ∼Oð10−3Þ.

(5) The pole contributions are significantly enhanced
due to the flavor-dependent factor. Thus, our results
based on the NRQM and HQET picture alongside
flavor-dependent W-exchange contributions provide
a useful range to search for experimental evidence.

Experimental searches for heavy-baryon decays could
help theorists understand the underlying dynamics of
W-exchange processes in such decays. The importance
of nonfactorizable contributions in CP asymmetries in
heavy-baryon decays could prove to be a challenge to
the theory as well as experiment. New measurements on of
doubly heavy baryons are in future plans of several ongoing
experiments at Fermilab and CERN. We hope that our
results could prove to be useful in experimental searches for
new modes.
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