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We introduce parametrizations of hadronic three-bodyB andDweak decay amplitudes that can be readily
implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of
Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly
useful in the interpretation of CP asymmetries in the Dalitz plots. They are derived from previous
calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state
interactions are fully taken into account in terms of unitary S- and P-wave ππ, πK, and KK̄ form factors.
These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory
amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by
effective theories of QCD. They are derived from sets of coupled-channel equations using T-matrix elements
constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic
QCD. We provide explicit amplitude expressions for the decays B� → πþπ−π�, B → Kπþπ−,
B� → KþK−K�, Dþ → π−πþπþ, Dþ → K−πþπþ, and D0 → K0

Sπ
þπ−, for which we have shown in

previous studies that this approach is phenomenologically successful; in addition, we provide expressions
for the D0 → K0

SK
þK− decay. Other three-body hadronic channels can be parametrized likewise.

DOI: 10.1103/PhysRevD.96.113003

I. INTRODUCTION

Three-body hadronic decays ofB andDmesons are a rich
field for searches on CP violation, for tests of the Standard
Model and of QCD in particular [1–5]. Furthermore, they
provide an interesting ground to study hadron physics, as
strong interaction effects, through the presence of two-body
resonances and their interferences, have an impact on weak-
decay observables. In order to extract these observables most
reliably, the meson-meson final-state interactions must be
addressed using theoretical constraints such as unitarity,
analyticity and chiral symmetry, as well as constraints from
experimental data from processes other thanB andD decays.
However, in Dalitz-plot analyses, the event distributions are
often studied using the isobar model in which the decay
amplitudes are parametrized by coherent sums of Breit-
Wigner amplitudes with a background contribution, in
disagreement with the fundamental principles listed above.
In this work, we suggest replacing these sums by para-
metrizations in terms of unitary two-meson form factors,
without losing contact with the description of the
weak-interaction dynamics that governs the underlying

flavor-changing process. These parametrizations are con-
structed, in part, from results published previously [6–14] and
are motivated by the forthcoming analyses of high-statistics
data sets for many three-body decay channels of B and D
decays, in particular by the LHCb Collaboration [15].
The theoretical amplitude expressions in Refs. [6–14]

from which we derive the present parametrizations are
based on models of QCD factorization. The factorization
beyond the leading approximation can be expressed as an
expansion in the strong coupling, αs, and inverse powers of
the bottom quark mass, mb, and has been applied with
success to charmless nonleptonic two-body B decays (see,
e.g., Ref. [16]). Parallel analyses of three-body B decays in
the contexts of QCD factorization and perturbative QCD
can be found in Refs. [17,18] and [19,20], respectively. In
D decays, this factorization approach is less predictive
inasmuch as it does not allow for a systematic improvement
owing to the charm quark mass, mc ≃mb=3, which
enhances significant corrections to the factorized results.
It is, therefore, downgraded from an effective theory that
can be systematically improved, in the case of B decays, to
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a phenomenological procedure, in the case of D decays.
Nevertheless, as a purely phenomenological approach,
based on the seminal work by Bauer, Stech and Wirbel
[21], the factorization hypothesis has been applied success-
fully to D decays, provided one treats Wilson coefficients
as phenomenological parameters to account for nonfactor-
izable corrections [22].
Besides a recent extension of the QCD factorization

framework to nonleptonic B decays into three light mesons
[23], no rigorous factorization theorem valid for the entire
three-body phase space and full three light-meson Dalitz
plot exists. On the other hand, three-body decays of B and
D mesons clearly receive important contributions from
intermediate resonances—such as the ρð770Þ, K�ð892Þ,
and ϕð1020Þ—and can therefore be considered as quasi-
two-body decays. One then assumes that two of the three
final-state mesons form a single state originating from a
quark-antiquark pair, which is interpreted as an intermedi-
ate quasi-two-body final state in which case the factoriza-
tion can be applied. Then, the three-body final state is
reconstructed with the use of two-body mesonic form
factors to account for the important hadronic final-state
interactions. For instance, in the D0 → K0

Sπ
−πþ decay, the

three-meson final state K0
Sπ

þπ− is initially preceded by the
quasi-two-body pairs, ½K0

Sπ
þ�Lπ−, ½K0

Sπ
−�Lπþ, and

K0
S½πþπ−�L, where two of the three mesons form a state

in an L ¼ S or P wave. This framework has been
successfully applied to several hadronic three-body B
and D decays [6–14,24,25].
The factorization of a nonleptonic weak B decay into a

quasi-two-body state can be schematically described as
follows. The decays are mediated by local dimension-6
four-quark operators OiðμÞ that form the weak effective
nonrenormalizable Hamiltonian. However, depending on
flavor content, spin, charge, and parity symmetry of the
final states, only specific operators will contribute to a
given decay. The B-decay amplitude into two mesons, M1

and M�
2 with four momenta p1 and p2, respectively, can be

written as

hM1ðp1ÞM�
2ðp2ÞjHeff jBðpBÞi

¼ GFffiffiffi
2

p VCKM

X
i

CiðμÞhM1ðp1ÞM�
2ðp2ÞjOiðμÞjBðpBÞi;

ð1Þ

where pB ¼ p1 þ p2, GF is the Fermi constant, VCKM is a
product of Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, CiðμÞ are Wilson coefficients renormalized at
the scale μ [26], and M�

2ðp2Þ is the resonant quasi-
two-body state which decays into two lighter mesons.
The hadronic amplitude hM1ðp1ÞM�

2ðp2ÞjOiðμÞjBðpBÞi
describes long-distance physics. In the factorization
approach we henceforth employ, this amplitude is the sum
of two matrix-element products,

hM1ðp1ÞM�
2ðp2ÞjOiðμÞjBðpBÞi

¼ ðhM1ðp1ÞjJν1jBðpBÞihM�
2ðp2ÞjJ2νj0i

þ hM1ðp1ÞjJν3j0ihM�
2ðp2ÞjJ4νjBðpBÞiÞ

×

�
1þ

X
n

rnαns ðμÞ þO
�
ΛQCD

mb

��
; ð2Þ

where the strong coupling is evaluated at a scale μ, rn is a
combination of constant strong-interaction factors, and j0i
is the vacuum state. Thus, at leading order, the decay
amplitudes factorize into two matrix elements with either
the weak quark currents J1 and J2 or J3 and J4. Radiative
corrections can be systematically taken into account to a
given order αns ðμÞ, whereas corrections to the heavy-quark
limit are of nonperturbative nature and therefore much less
controlled. This is in particular true for the charm quark,
which is neither a light nor heavy enough quark [27–30].
This fact makes the systematic improvements of Eq. (2),
enclosed in square brackets, less reliable forD decays. One
should keep this limitation in mind, but for lack of a better
theoretical framework, the phenomenological approach to
Eq. (2) remains a good starting point to organize the
description of D decays and can be used to provide a first
step beyond the isobar model.
The weak effective Hamiltonian,Heff , in Eq. (1) is given

by the sum of local operators OiðμÞ multiplied by Wilson
coefficients CiðμÞ which encode the short-distance effects
above the renormalization scale μ. For a ΔB ¼ 1 transition,
for example, the Hamiltonian is given by [31,32]

HΔB¼1
eff ¼ GFffiffiffi

2
p

X
p¼u;c

V�
pqVpb

�
C1ðμÞOp

1 ðμÞ þ C2ðμÞOp
2 ðμÞ

þ
X10
i¼3

CiðμÞOiðμÞ þ C7γðμÞO7γðμÞ

þ C8gðμÞO8gðμÞ
�
þ H:c:; ð3Þ

where the quark flavor can be q ¼ d, s and Vij are CKM
matrix elements. In the decays, the weak-interaction
W-boson exchange diagram gives rise to two current-
current operators with different color structure owing to
QCD corrections and SUð3Þ color algebra:

Op
1 ðμÞ ¼ q̄iγμð1 − γ5Þpip̄jγμð1 − γ5Þbj ð4Þ

Op
2 ðμÞ ¼ q̄iγμð1 − γ5Þpjp̄jγμð1 − γ5Þbi: ð5Þ

In Eqs. (4) and (5), i, j are color indices, and for the corres-
ponding Wilson coefficients, one has C1ðμÞ≃ 1þ
OðαsðμÞ) and C2ðμÞ≃OðαsðμÞ). The operators Oi, i ¼
3–10 stem from QCD and electroweak penguin diagrams,
while O7γ and O8g are electromagnetic and chromomag-
netic dipole operators. The explicit tensor structure of these
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operators as well as their Wilson coefficients at next-to-
leading logarithms can be found, for example, in Ref. [33].
With the use of an appropriate Fierz transformation and the
SUðNcÞ identity,

ðq̄ipjÞðp̄jbiÞ ¼ 2ðq̄iTa
ikpkÞðp̄jTa

jlblÞ þ
1

Nc
ðq̄ipiÞðp̄jbjÞ;

ð6Þ

where Ta
ij are the SUðNcÞ generators, the quark bilinears

can be rearranged to match the flavor and color structure of
the final mesons. In this transformation, the color-octet
contribution in Eq. (6) is commonly neglected. The two
resulting combinations of C1ðμÞ and C2ðμÞ,

a1ðμÞ ¼ C1ðμÞ þ
1

Nc
C2ðμÞ; a2ðμÞ ¼ C2ðμÞ þ

1

Nc
C1ðμÞ;

ð7Þ

lead to “color allowed” and “color suppressed” amplitudes,
respectively, which are topologically different. Typically,
the Wilson coefficients are evaluated at a renormalization
scale of the heavy quark, i.e. μ≃mc;mb.
On the right-hand side of Eq. (2), the two matrix-element

products describe different physical processes. Namely, the
creation of a final two-meson state from a q̄q pair is
described by the form factors hM�

2ðp2ÞjJ2νj0i, whereM�
2 →

M3M4 denotes resonant intermediate states in the different
two-meson coupled channels that lead to the final three-
body state. As mentioned, these form factors can be
constructed so as to preserve two-body unitarity and
reproduce asymptotic QCD and are constrained by chiral
symmetry at low energies. We discuss them in Appendix A.
In Eq. (2), the matrix element hM1ðp1ÞjJν3j0i defines the
weak-decay constant of a scalar, pseudoscalar, or vector
meson, which is either well known from experiment, for
instance, fπ and fK, or has been evaluated with lattice-
regularized QCD and other nonperturbative approaches.
The transition hM�

2ðp2ÞjJ4νjBi of a B meson to a strongly
interacting two-meson pair via a resonance is a complicated
process and the biggest source of uncertainty in our
approach. It could be extracted experimentally from
semileptonic processes such as B0 → Kþπ−μþμ− [34] or
D0 → K−πþμþμ− [35]. It has also been conjectured within
soft-collinear effective theory that the amplitude can be
factorized in terms of a generalized B-to-two-body form
factor and two-hadron light-cone distribution amplitudes
[36]. In the derivation of the amplitude expressions
presented here, we employ a model approximation which
relates this matrix element hM�

2ðp2ÞjJ4νjBi to the two-body
meson form factor hM�

2ðp2Þ½→ M3M4�jJ2νj0i.
Finally, the transition amplitudes hM1ðp1ÞjJν1jBi

(¼ hM1ðp1ÞB̄jJν1j0i) are parametrized by heavy-to-light

transition form factors, which are discussed in
Appendix A 4.
As a definite example of the procedure outlined above,

let us consider the Dþ → ½K−πþ�S;Pπþ decay, where the
K−πþ pairs are in the S- or P-wave state. The matrix
element given by h½K−πþ�S;PπþjHeff jDþi receives contri-
butions from the two amplitudes a1ðμÞ and a2ðμÞ and
factorizes as

h½K−πþ�S;PπþjHeff jDþi

¼ GFffiffiffi
2

p cos2θC½a1h½K−πþ1 �S;Pjs̄γνð1 − γ5ÞcjDþi

× hπþ2 jūγνð1 − γ5Þdj0i
þ a2h½K−πþ1 �S;Pjs̄γνð1 − γ5Þdj0i
× hπþ2 jūγνð1 − γ5ÞcjDþi� þ ðπþ1 ↔ πþ2 Þ; ð8Þ

θC being the Cabbibo angle. The Kπ form factors appear
explicitly in the matrix element h½K−πþ1 �S;Pjs̄γνð1−γ5Þdj0i.
The evaluation of h½K−πþ1 �S;Pjs̄γνð1−γ5ÞcjDþi is less
straightforward. However, assuming this transition to
proceed through the dominant intermediate resonances,
this matrix element can also be written in terms of the Kπ
form factors as shown in Refs. [13,25]. This feature is of
crucial importance to the parametrizations that we propose
in this work. It is interesting to note that the calculation of a
generalized three-body form factor using light-cone sum
rules, in the spirit of Ref. [36], also leads to the appearance
of the two-body meson form factors [37–41]. The other
matrix elements of Eq. (8) can be written in terms of decay
constants or transitions form factors that can be extracted
from semileptonic decays, as outlined above. Strong phases
in the mesonic final-state interactions are accounted for by
the hadronic form factors, which makes this type of
description particularly suitable for the interpretation of
CP asymmetries that have been observed in B decays
[8–11,42]. Amplitude expressions, such as in Eq. (8), are
used throughout this paper as a starting point to build
parametrizations based on unitary two-body hadronic form
factors. Within this approach, explicit forms of paramet-
rizations for Dþ → K−πþπþ and D0 → K0

Sπ
−πþ ampli-

tudes have already been presented in Ref. [15] (see p. 27
therein).
The paper is structured as follows. In Sec. II, we

introduce the parametrizations for three-body hadronic
B-decay amplitudes based on the quasi-two-body factori-
zation approaches of Ref. [9] for B� → πþπ−π�, of
Refs. [6–8] for B → Kπþπ−, and of Ref. [10] for
B� → KþK−K�. Section III applies the same procedure
to D-decay amplitudes, viz. Dþ → πþπ−πþ [12], Dþ →
K−πþπþ [13], D0 → K0

Sπ
þπ− [14], and D0 → K0

SK
þK−

[24]. The meson-meson and heavy-to-light meson form
factors which have been used can be found in the original
papers. Nevertheless, a short reminder about the derivations
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of unitary S- and P-waves ππ-, πK-, and KK̄-meson
form factors entering these parametrizations is given in
Appendix A together with a short review on heavy-to-light
meson form factors. We wrap up with some concluding
remarks about the merits of the proposed parametriza-
tions in Sec. IV. The relations between the free parameters
of the different proposed parametrizations and the theo-
retical decay amplitudes are presented explicitly in
Appendix B.

II. PARAMETRIZATIONS OF THREE-BODY
HADRONIC B-DECAY AMPLITUDES

A. Amplitudes for B� → π�π +π −
The contributions of pion-pion interactions to CP-violat-

ing phases in B� → π�π∓π� decays have been studied [9]
within the quasi-two-body factorization approach discussed
in the Introduction.1 The amplitudes were derived as matrix
elements of theweak effective Hamiltonian given by Eq. (3)
with q≡ d. The ππ effectivemass distributions of theB� →
π�πþπ− data [43] arewell reproduced for an invariant mass,
mπþπ− ≲ 1.64 GeV [9]. To parametrize the amplitudes of
B� → π�½πþπ−�S;P, we label the momenta of the decay as
B�ðpBÞ → π�ðp1Þπþðp2Þπ−ðp3Þ, where pB, theB� meson
momentum, satisfies pB ¼ p1 þ p2 þ p3. The amplitudes
must be symmetrized by exchanging the πþðp2Þπ−ðp3Þ and
π−ðp1Þπþðp2Þ pairs in case of aB− decay or equivalently the
πþðp2Þπ−ðp3Þ and πþðp1Þπ−ðp3Þ pairs in case of a Bþ

decay. Defining the invariants, sij ¼ ðpi þ pjÞ2 (for i ≠ j),
with s12 þ s13 þ s23 ¼ m2

B þ 3m2
π, the interacting pairs of

pions in a relative S or Pwave are described by s12 or s23 in
the case of a B− decay and by s13 and s23 in the case of a
Bþ decay.
The symmetrized amplitude (see also Eq. (21) in

Ref. [9]) for the B− → π−½πþπ−�S;P decay reads

A−
symðs12; s23Þ ¼

1ffiffiffi
2

p ½A−
S ðs12Þ þA−

S ðs23Þ

þ ðs13 − s23ÞA−
Pðs12Þ

þ ðs13 − s12ÞA−
Pðs23Þ�; ð9Þ

and an analogous amplitude holds for theBþ→πþ½π−πþ�S;P
decay. The amplitudes A−

S;PðsijÞ, ij ¼ 12 or 23, given by
Eqs. (22) and (23) of Ref. [9], can be parametrized in terms
of four complex parameters, aS;P1;2 , as

2

A−
S ðsijÞ ¼ ½aS1ðM2

B − sijÞ þ aS2F
Bπ
0 ðsijÞ�Fππ

0nðsijÞ; ð10Þ

A−
PðsijÞ ¼ ½aP1 þ aP2F

Bπ
1 ðsijÞ�Fππ

1 ðsijÞ; ð11Þ

where MB is the charged B-meson mass. As done in the
BABAR Collaboration analysis [43] and in Ref. [9], a
contribution from the f2ð1270Þ resonance can be accounted
for by a Breit-Wigner line shape in a D-wave amplitude of
the πþπ− pair. The B → π scalar and vector transition form
factors FBπ

0;1ðsÞ in Eqs. (10) and (11) are discussed in
Appendix A 4. The ππS-wave amplitude A−

S ðsijÞ includes
via the nonstrange scalar form factor Fππ

0nðsijÞ the contri-
butions of the scalar f0ð500Þ, f0ð980Þ, and f0ð1400Þ
resonances. In a Dalitz-plot analysis, one can use, for
example, the pion scalar form factor derived in
Refs. [9,44]. More details are given in Appendix A 1.
The P-wave amplitude A−

PðsijÞ, proportional to the pion
vector form factor Fππ

1 ðsijÞ, contains the ρð770Þ0, ρð1450Þ,
and ρð1700Þ contributions. In Ref. [9], the ðππÞP form
factor was extracted from the Belle Collaboration analysis
of τ− → π−π0ντ decay data [45]. Alternatively, one can
employ the unitary parametrization of Ref. [46], which fits
simultaneously the ðππÞP-wave phase shifts and inelastic-
ities, the eþe− → πþπ− data, and the τ− → π−π0ντ-decay
data, as done in the D0 → K0

Sπ
þπ− Dalitz-plot fit of

Ref. [14]; see Appendix A 1.
Setting the phase of aP1 inA

−
PðsijÞ to zero yields a total of

seven real parameters to be fitted. The fully symmetrized
CP-conjugate Bþ → πþπ−πþ-decay amplitude is given by
expressions similar to Eqs. (9)–(11) with again seven free
real parameters. The reproduction of the Dalitz-plot data
over the full phase space, in particular for the high
invariant-mass regions, might require some adjustment
of the ππ form factors. The addition of further phenom-
enological amplitudes that represent contributions of higher
ππ-interacting waves and possible three-body rescattering
terms may be necessary.

B. Amplitudes for B → Kπ + π −
The amplitude is based on the weak effective

Hamiltonian in Eq. (3) with q≡ s. The momenta are
labeled as BðpBÞ → Kðp1Þπþðp2Þπ−ðp3Þ, with s12 ¼
ðp1 þ p2Þ2, s13 ¼ ðp1 þ p3Þ2, s23 ¼ ðp2 þ p3Þ2, and
s12 þ s13 þ s23 ¼ m2

B þm2
K þ 2m2

π .

1. Parametrization of the B → K½π�π∓�S;P amplitude

The isoscalar S-wave πþπ− final-state interactions in
B → Kπþπ− decays were studied in Ref. [6] in the quasi-
two-body factorization approach with an extension in
Ref. [7] to include the πþπ− isovector P wave. These
studies reproduce very well the Belle and BABAR data in an
effective ππ mass range up to about 1.2 GeV. Following
Eq. (1) of Ref. [6], the B → K½πþπ−�S decay amplitude can
be parametrized in terms of three complex parameters,
bSi ; i ¼ 1, 2, 3, for the different charges B ¼ B�; K ¼ K�

and B ¼ B0ðB̄0Þ; K ¼ K0ðK̄0Þ or K0
S,

1During the preparation of this manuscript, Ref. [42] appeared.
Their treatment is very similar to the one we describe here.

2In a fit to a Dalitz plot, there is always a global phase that
cannot be observed. Therefore, the phase of one of the complex
parameters can be set to zero. This is also valid for the other
channels discussed in the remainder of this paper.
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ASðs23Þ≡ hK½πþπ−�SjHeff jBi
¼ bS1ðM2

B − s23ÞFππ
0nðs23Þ þ ðbS2FBK

0 ðs23Þ
þ bS3ÞFππ

0s ðs23Þ: ð12Þ

For the scalar-isoscalar strange form factor Fππ
0s ðsÞ in

Eq. (12), one can employ its numerical expression given
in Ref. [9] or that in Ref. [44] (see Appendix A 1 a).
Parametrizations for the B → K scalar transition form
factors FBK

0 ðsÞ in Eq. (12) are reviewed in Appendix A 4.
The amplitude for B → K½πþπ−�P decays can be written

in terms of the complex parameter bP1 as

APðs12; s13; s23Þ≡ hK½πþπ−�PjHeff jBi
¼ bP1 ðs13 − s12ÞFππ

1 ðs23Þ: ð13Þ

In Ref. [7], the pion vector form factor, Fππ
1 ðsÞ, is

approximated by a Breit-Wigner form. However, we
recommend the use of the unitary vector form factor
derived in Ref. [46] described in Appendix A 1 b. We
stress that the bSi in Eq. (12) and bP1 in Eq. (13) represent
different parameters for each charge state.
As in the B� → πþπ−π� case (see Sec. II A), the

addition of the ½πþπ−� D-wave contribution, parametrized
in terms of the f2ð1270Þ resonance, is required; higher
invariant-mass phenomenological amplitudes may also be
necessary.

2. Parametrization of the B → ½Kπ��S;Pπ∓ amplitude

A parametrization of the B → ½Kπ��Sπ∓ channel was
introduced in Ref. [8] [see Eq. (68) therein], where in the
center of mass of the Kπ pair the S-wave amplitude in case
of the B− → ½K−πþ�Sπ− decay can be represented by

ASðs12Þ≡ hπ−½K−πþ�SjHeff jB−i

¼ ðcS1 þ cS2s12Þ
FBπ
0 ðs12ÞFKπ

0 ðs12Þ
s12

; ð14Þ

which follows from Eq. (10) of Ref. [8]. In Eq. (14), s12 is
the invariant mass squared of the interacting K−πþ pair,
whereas for Bþ and B̄0 decays, the kinematic variable is
s13. The complex parameters, cS1 and c

S
2, can be determined

through the Dalitz-plot analysis for each given charge state.
We note that the isolated K�

0ð1430Þ resonance contribution
can be obtained by replacing, once the parameters cS1 and c

S
2

are determined, FKπ
0 ðsÞ by its pole part Fpole

0 ðsÞ given in
Eqs. (45)–(47) of Ref. [8].
Following the momentum conventions of the S-wave

above, the KπP-wave amplitude of the B− → ½K−πþ�Pπ−
decays can be parametrized as

APðs12; s23Þ
≡ hπ−½K−πþ�PjHeff jB−i

¼ cP1

�
s13 − s23 − ðM2

B −m2
πÞ
m2

K −m2
π

s12

�

× FBπ
1 ðs12ÞFKπ

1 ðs12Þ: ð15Þ
The parametrizations for the transition form factors,
FBπ
0ð1ÞðsÞ, are discussed in Appendix A 4, and those for

the Kπ scalar and vector form factors, FKπ
0ð1ÞðsÞ, are

discussed in Appendix A 2.
The then available Belle and BABAR data were well

reproduced in the AS;P amplitude analysis of Ref. [8] in a
mKπ range from threshold up to 1.8 GeV. Within the
factorization approximation, there is no contribution
from ½Kπ� partial waves, l ≥ 2; thus, one expects the
½Kπ� D-wave contribution to be small. However, in order
to analyze the Dalitz-plot data over the full energy ranges,
additional phenomenological amplitudes are required.

C. Amplitudes for B� → K�K +K −
The weak effective Hamiltonian that describes this decay

channel is given by Eq. (3) with q≡ s. Explicit factorized
expressions of B− → K−KþK− amplitudes can be found in
Appendix A of Ref. [47]. The effective invariant KþK−

mass distributions of the decays B� → KþK−K� [48,49]
up to 1.8 GeV were shown to be well reproduced in the
factorization approach of Ref. [10], where the B�ðpBÞ →
K�ðp1ÞKþðp2ÞK−ðp3Þ amplitudes were derived for inter-
acting KþK− pairs in a relative S or P state. The
symmetrized term for a B− decay is obtained by exchange
of the Kþðp2ÞK−ðp3Þ pair with the K−ðp1ÞKþðp2Þ one [or
exchanging the Kþðp2ÞK−ðp3Þ and Kþðp1ÞK−ðp3Þ pairs
in case of a Bþ meson] and is added to the amplitude. The
totally symmetrized amplitude using the Lorentz invariants
sij ¼ ðpi þ pjÞ2 for i ≠ j is given by

A−ðs12; s13; s23Þ ¼
1ffiffiffi
2

p ½A−
S ðs12Þ þA−

S ðs23Þ

þA−
Pðs12Þðs13 − s23Þ

þA−
Pðs23Þðs13 − s12Þ�; ð16Þ

with s12 þ s13 þ s23 ¼ m2
B þ 3m2

K.
Following Eqs. (2) and (3) of Ref. [10], the amplitudes

A−
S;PðsijÞ, ij ¼ 12 or 23, can be also written in terms of six

complex parameters dS1;2 and dP1;2;3;4,

A−
S ðsijÞ ¼ dS1ðM2

B − sijÞFKK
0n ðsijÞ þ dS2F

BK
0 ðsijÞFKK

0s ðsijÞ;
ð17Þ

A−
PðsijÞ ¼ dP1F

KK
1u ðsijÞ þ FBK

1 ðsijÞ½dP2FKK
1u ðsijÞ

þ dP3F
KK
1d ðsijÞ þ dP4F

KK
1s ðsijÞ�; ð18Þ
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where the B → K scalar and vector transition form factors
FBK
0;1 ðsÞ in Eqs. (17) and (18) are discussed in Appendix A 4

and the scalar and vector form factors FKK
0n ; FKK

0s ; FKK
1u ,

FKK
1d , and FKK

1s are introduced in Appendix A 3.
Because of its small branching fraction to KK̄ (4.6%),

the f2ð1270Þ contribution was not introduced in Ref. [10].
However, in their study of the Dalitz-plot dependence of
CP asymmetry, the authors of Ref. [11] have included it,
and an amplitude analysis of the full Dalitz plot should also
add it together with a phenomenological term representing
the high invariant-mass contributions.

III. PARAMETRIZATIONS OF THREE-BODY
HADRONIC D-DECAY AMPLITUDES

A. Amplitudes for D + → π +π −π +

The decay Dþ → π−πþπþ is a Cabibbo suppressed
mode governed by the quark-level transition c → dud̄.
The leading contribution to the amplitude arises from the
current-current operators and is proportional to VcdV�

ud,
which is OðλÞ in Wolfenstein parametrization, with
λ ¼ 0.2257. At next-to-leading order (NLO) in QCD,
penguin operators contribute to the decay amplitude.
However, CKM unitarity implies that those come with a
coefficient VcbV�

ub, which is Oðλ5Þ. It is therefore safe to
neglect the penguin contributions. The dominant contribu-
tions to the effective Hamiltonian therefore are

Heff ¼
GFffiffiffi
2

p VcdV�
ud½C1ðμÞO1 þ C2ðμÞO2� þ H:c:; ð19Þ

where the two four-quark operators read

O1 ¼ ½d̄iγνð1 − γ5Þci�½ūjγνð1 − γ5Þdj�; ð20Þ
O2 ¼ ½ūiγνð1 − γ5Þcj�½d̄jγνð1 − γ5Þdi�: ð21Þ

In the description of D decays, however, because of the
limitations discussed in the Introduction, the Wilson
coefficients depart from their calculated values due to
nonfactorizable corrections. In the spirit of Ref. [22], it
is safe to assume they can be complex numbers and that the
corrections will depend on whether the ππ pair is in the
S- or P-wave state (the same applies to the Kπ pairs in
the next section). Our parametrizations below encompass
this assumption.
The parametrization we propose here is chiefly based

on the work of Ref. [12]. The crucial dynamical ingredient
to describe the two-body hadronic final-state interactions
are the scalar and vector ππ form factors. The description
of the decay proceeds in full analogy to that outlined in
the Introduction for Dþ → K−πþπþ. Within this frame-
work, the main difference between these two decays is
that the relevant two-pion matrix element, namely,
hπ−πþjd̄γνð1 − γ5Þdj0i is proportional to the ππ vector
form factor only—no scalar contribution appears because

the pseudoscalars involved have the same mass. This
implies that the πþπ− S wave in the decay Dþ →
π−πþπþ receives no contribution from the diagram propor-
tional to a2ðμÞ. The decay amplitude for S- and P-wave
πþπ− pairs can be written as

hπþ½π−πþ�S;PjHeff jDþi ¼ Aþ
S þAþ

P ; ð22Þ
whereAþ

S andAþ
P are, respectively, the S- andP-wave πþπ−

amplitudes. The S wave is dominated by the intermediate
scalar-isoscalar resonances f0ð500Þ and f0ð980Þ, while the
P wave is largely dominated by the ρð770Þ0.
We label the four-momenta as DþðpDÞ →

πþðp1Þπ−ðp2Þπþðp3Þ and define the invariant masses
squared s12 ¼ ðp1 þ p2Þ2, s23 ¼ ðp2 þ p3Þ2, and s13 ¼
ðp1 þ p3Þ2, with s12 þ s13 þ s23 ¼ m2

D þ 3m2
π . Reso-

nances occur in the πþπ− states described in terms of
s12 and s23 invariants. With these definitions, the ampli-
tudes Aþ

S;P of Eq. (22) can be parametrized with three
complex parameters, eS1 and eP1;2, as

Aþ
S ðs12;s23Þ¼eS1ðm2

D−s12ÞFππ
0nðs12Þþðs12↔ s23Þ; ð23Þ

Aþ
P ðs12; s13; s23Þ ¼ ½eP1 þ eP2F

Dπ
1 ðs12Þ�ðs23 − s13ÞFππ

1 ðs12Þ
þ ðs12 ↔ s23Þ: ð24Þ

We are implicitly assuming that nonfactorizable corrections
depend on the spin of the πþπ− pair and can be absorbed in
the parameters eLi . In this parametrization, the two-body
πþπ− interactions are fully taken into account by the scalar
and vector ππ form factors, Fππ

0n and Fππ
1 ðsÞ, respectively,

which are detailed in Appendix A 1. The vector D → π
transition form factor, FDπ

1 ðsÞ, in Eq. (24) is discussed in
Appendix A 4. We observe that the D-wave resonance
contribution, arising from the f2ð1270Þ, is sizeable (with fit
fractions of about 20% [50,51]) and could be included in
data analyses through usual isobar model expressions.
Finally, in one of the models employed by the CLEO
Collaboration [52], some evidence for a contribution from
isospin-2 πþπþ interactions is presented, which may have
to be included in a realistic analysis.

B. Amplitudes for D+ → K −π +π +

The Dþ → K−πþπþ decay is Cabibbo allowed, gov-
erned by the quark-level transition c → sud̄. Since four
different quark flavors intervene, the effective Hamiltonian
for this processes does not include penguin-type operators.
At NLO in QCD, there are only two operators to be
considered,

Heff ¼
GFffiffiffi
2

p VcsV�
ud½C1ðμÞO1 þ C2ðμÞO2� þ H:c:; ð25Þ

where the relevant four-quark operators are
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O1 ¼ ½c̄iγνð1 − γ5Þsi�½d̄jγνð1 − γ5Þuj�; ð26Þ

O2 ¼ ½c̄iγνð1 − γ5Þsj�½d̄jγνð1 − γ5Þui�: ð27Þ

In Ref. [13], the Kπ S- and P-wave amplitudes in this
decay werewritten in terms of the scalar and vectorKπ form
factors, FKπ

0;1ðsÞ. We use these results as the basis for our
suggested parametrization. We label the momenta as
DþðpDÞ → πþðp1Þπþðp2ÞK−ðp3Þ and define the following
invariant masses squared of the final state: s13 ¼
ðp1 þ p3Þ2, s23 ¼ ðp2 þ p3Þ2, and s12 ¼ ðp1 þ p2Þ2, with
s12 þ s13 þ s23 ¼ m2

D þm2
K þ 2m2

π . Thus, the S- and
P-wave amplitudes for Dþ → ½K−πþ�S;Pπþ are

h½K−πþ�S;PπþjHeff jDþi ¼ Aþ
S þAþ

P : ð28Þ

Contributions from D-wave resonances are known to be
rather small in this decay [51]. The S- and P-wave
amplitudes can be parametrized with complex parameters,
fS1;2 and fP1;2, as follows,

Aþ
S ðs13; s23Þ ¼

�
fS1ðm2

D − s13Þ þ fS2
FDπ
0 ðs13Þ
s13

�

× FKπ
0 ðs13Þ þ ðs13 ↔ s23Þ; ð29Þ

Aþ
P ðs12; s13; s23Þ ¼

�
fP1Ωðs13; s23Þ þ fP2

�
s23 − s12

Δ2
−

1

s13

�

× FDπ
1 ðs13Þ

�
FKπ
1 ðs13Þ þ ðs13 ↔ s23Þ;

ð30Þ

with Ωðs13; s23Þ ¼ s23 − s12 − Δ2=s13 and Δ2 ¼
ðmK

2 − m2
πÞðm2

Dþ − m2
πÞ. We assume that nonfactorizable

corrections are absorbed in the complex parameters, fS1;2 and
fP1;2, to be fitted to the data.
The parametrization we introduce in Eqs. (29) and (30)

makes the emergence of the scalar and vector Kπ form
factors, FKπ

0;1ðsÞ, explicit. They are discussed in more detail
in Appendix A 2. The scalar and vector Dπ transition form
factors also appear in Eqs. (29) and (30). Their variation
with energy for the physical values of s is not significant,
but they affect the shape of the amplitudes close to the
edges of the Dalitz plot. Possible parametrizations are
discussed in Appendix A 4.
A version of the above description put forward here has

been employed successfully in Ref. [13]. Additional con-
tributions, e.g., with higher angular momentum or the
isospin-2 πþπþ interactions,3 are small in this process. In a

realistic high-statistics Dalitz-plot analysis, however, they
may be required and would have to be included in the
signal function through usual isobar model expressions, for
instance.
A final ingredient that is not present in our parame-

trizations is the genuine three-body hadronic final-state
interactions, which are most often neglected in experimen-
tal analyses. Their treatment is somewhat involved, and
only recently did this problem start to be dealt with.
An approach based on Feynman diagrams from effec-
tive Lagrangians was introduced in Refs. [56,57] precisely
in the case of Dþ → K−πþπþ. Alternatively, a description
based on a dispersive treatment introduced in Ref. [58] for
ðω=ϕÞ → πππ decays has been applied to D → Kππ
decays in Refs. [59,60]. Finally, a coupled-channel descrip-
tion including three-body scattering was performed in
Ref. [61]. These treatments do not allow for a simple
parametrization of the type we advocate here with the goal
of replacing isobar model expressions. These three-body
effects, if important, should show as deviations from our
description and represent a refinement to the amplitudes
discussed here that should be addressed in the future.

C. Amplitudes for D0 → K0
Sπ

+π −

The decay D0 → K0
Sπ

−πþ was treated within the frame-
work of quasi-two-body factorization in Ref. [14]. A good
reproduction of the Belle Dalitz-plot density distributions
[62] was obtained, and so were the distributions produced
by the BABAR model.4 The parametrizations that follow in
the next subsections are based on the quasi-two-body
amplitudes derived in this study. The Hamiltonian that
describes this decay channel is similar to that of Eq. (25),
but besides a Cabibbo favored term proportional to V�

csVud,
there is also a doubly Cabibbo suppressed contribution
proportional to V�

cdVus. The momenta are labeled as
D0ðpDÞ → K0

Sðp1Þπ−ðp2Þπþðp3Þ where the kinematic
configuration is defined by s12 ¼ ðp1 þ p2Þ2, s13 ¼
ðp1 þ p3Þ2, and s23 ¼ ðp2 þ p3Þ2, with s12 þ s13 þ s23 ¼
m2

D0 þm2
K0 þ 2m2

π . We start with the parametrization of the
amplitude for the interactingK0

Sπ
− in an S- or P-wave state.

1. Parametrization of the D0 → ½K0
Sπ

− �S;Pπ + amplitudes

The following parametrizations are derived from
Eqs. (66) and (68) of Ref. [14]. In terms of three complex
parameters gS1;2 and gP1 , the parametrized amplitudes read

A0
S;−ðs12Þ ¼ ðgS1 þ gS2s12ÞFKπ

0 ðs12Þ; ð31Þ

A0
P;−ðs12; s13; s23Þ ¼ gP1

�
s23 − s13 þ

Δ2
0

s12

�
FKπ
1 ðs12Þ; ð32Þ

3Most experimental analyses agree this contribution is negli-
gible [53,54] with the exception of the CLEO Collaboration
analysis where a fit fraction of ∼20% is attributed to the πþπþ
interactions [55].

4The model is built from a fit to the BABAR Dalitz-plot data;
see Ref. [14].
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withΔ0
2 ¼ ðmK0

2 −m2
πÞðm2

D0 −m2
πÞ. The πK S-waveA0

S;−
amplitude includes the contribution of the scalar K�

0ð800Þ−
and K�

0ð1430Þ− resonances, and the P-wave A0
P;− ampli-

tude includes that of the vector K�ð892Þ−. Despite its small
fit fraction, the πK D-wave D0 → ½K0

Sπ
−�Dπþ amplitude

plays an important role through interference. The contri-
bution of the tensor K�−

2 ð1430Þ resonance can be para-
metrized by a relativistic Breit-Wigner formula, with a
magnitude and phase that should be obtained through a fit
to the data, as done successfully in Ref. [14]. This
component should be added to the S- and P-wave ampli-
tudes parametrized above.

2. Parametrization of the D0 → ½K0
Sπ

+ �S;Pπ − amplitudes

Likewise, the decay amplitudes for D0 → ½K0
Sπ

þ�S;Pπ−
are given in Ref. [14] [see Eqs. (84) and (85)] and can be
parametrized as

A0
S;þðs13Þ ¼

�
gS3ðm2

π − s13Þ þ gS4
Δ2

0

s13
FDπ
0 ðs13Þ

�
FKπ
0 ðs13Þ;

ð33Þ

A0
P;þðs12; s13; s23Þ ¼ ½gP2 þ gP3F

Dπ
1 ðs13Þ�

�
s23 − s12 þ

Δ2
0

s13

�

× FKπ
1 ðs13Þ: ð34Þ

The πK S-wave A0
S;þ amplitude includes the contribu-

tion of the scalar K�
0ð800Þþ and K�

0ð1430Þþ resonances,
and the P-wave A0

P;þ amplitude includes that of the vector
K�ð892Þþ. The contribution from the D wave, that stems
mainly from the K�

2ð1430Þþ, could be parametrized by the
usual Breit-Wigner expressions.

3. Parametrization of the D0 → K0
S½π +π − �S;P amplitudes

The weak D0 → K0
S½πþπ−�S;P decay amplitudes, follow-

ing Ref. [14], can be parametrized, using the same
momentum definition as before, as

A0
S;0ðs23Þ ¼ ðgS5 þ gS6s23ÞFππ

0nðs23Þ; ð35Þ

A0
P;0ðs12; s13; s23Þ ¼ ðs12 − s13Þ½gP4Fππ

1 ðs23Þ þ gP5F
ω
1 ðs23Þ�:

ð36Þ

The ππ S-wave A0
S;0 amplitude includes the contributions

of the scalar f0ð500Þ (or σ), f0ð980Þ, and f0ð1400Þ
resonances. The ½πþπ−�P pair can originate from the ω
resonance through isospin violation. This introduces a term
proportional to the vector form factor Fω

1 ðs23Þ in Eq. (36).5

The effects of the vector ρð770Þ0 and ωð782Þ resonances
are included in the P-wave amplitudes, A0

P;0, which also
contain the contribution of the ρð1450Þ0 and ρð1700Þ0; see
the details in Appendix A 1. The D wave is dominated by
the f2ð1270Þ tensor meson and must be included in a
realistic amplitude. In Ref. [14], it was parametrized by the
usual relativistic Breit-Wigner line shape.
The full decay amplitude is thus given by

A0 ¼ A0
S;− þA0

P;− þA0
S;þ þAP;þ þA0

S;0 þA0
P;0 þ � � � ;

ð37Þ
where the ellipsis denotes D- and higher-wave contribu-
tions and possible high invariant-mass contribution.

D. Amplitudes for D0 → K0
SK

+K −

The D0 → K0
SK

þK− decay channel was measured
by the BABAR Collaboration with high statistics [63].
Using the quasi-two-body factorization approach [64],
we parametrize [24] this decay channel with the definitions
of the invariants s12, s13, and s23 similar to those intro-
duced for D0 → K0

Sπ
þπ− in the previous section, re-

placing charged pions by charged kaons, the effective
Hamiltonian being identical (here, the charged kaon
mass is denoted mK). The momenta are thus labeled as
D0ðpDÞ → K0

Sðp1ÞK−ðp2ÞKþðp3Þ with s12 ¼ ðp1 þ p2Þ2,
s13 ¼ ðp1 þ p3Þ2, s23 ¼ ðp2 þ p3Þ2, and s12 þ s13þ
s23 ¼ m2

D0 þm2
K0 þ 2m2

K. The involved three interacting
kaon pairs, ½KþK−�L, ½K0

SK
−�L, and ½K0

SK
þ�L, can be in a

scalar or vector state with L ¼ S or P, respectively. The
isospin of the ½KþK−�L pairs can be either 0 or 1, but that of
the ½K0

SK
∓�L pairs is 1.

1. Parametrization of the D0 → K0
S½K +K − �S amplitudes

The decay amplitude in which the isoscalar ½KþK−�S pair
is associated with the f0ð980Þ and f0ð1370Þ resonances,
and the isovector one is related to the a0ð980Þ0 and
a0ð1450Þ0 resonances, can be parametrized as

A0
S;0ðs23Þ ¼ hS1ðm2

D0 − s23ÞFKK̄
0n ðs23Þ

þ hS2ðm2
K0 − s23ÞFKK̄

0s ðs23Þ
þ hS3ðm2

D0 − s23ÞGKK̄
0 ðs23Þ. ð38Þ

The amplitude with the isovector ½K0K−�S pairs in an
S-wave state, which include the a0ð980Þ− and a0ð1450Þ−
resonances, can be parametrized as

A0
S;−ðs12Þ ¼ ðhS4 þ hS5s12ÞGKK̄

0 ðs12Þ; ð39Þ

and the corresponding amplitude associated with the
a0ð980Þþ and a0ð1450Þþ resonances can be para-
metrized as

5In Eq. (71) of Ref. [14], this term was explicitly written as
Fω
1 ðs23Þ ¼ m2

ω=ðm2
ω − s23 − imωΓωÞ.
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A0
S;þðs13Þ ¼

�
hS6

FD0K−

0 ðs13Þ
s13

þ hS7ðm2
K − s13Þ

�
GKK̄

0 ðs13Þ:

ð40Þ

The scalar-isocalar form factors, FKK̄
0nðsÞðsÞ, in Eq. (38), and

the scalar-isovector ones, GKK̄
0 ðsÞ, in Eqs. (39) and (40) are

detailed in Appendix A 3, while the scalarD to K transition
form factor FDK

0 ðsÞ is defined in Appendix A 4.

2. Parametrization of the D0 → K0
S½K+K − �P amplitudes

We parametrize this decay amplitude, where the isoscalar
and isovector ½KþK−�P pairs contain contributions from
the ωð782Þ, ωð1420Þ, ϕð1020Þ, ρð770Þ0, ρð1450Þ0, and
ρð1700Þ0 resonances, by the expression [24]

A0
P;0ðs12; s13; s23Þ ¼ ðs12 − s13ÞðhP1FKþK−

1u ðs23Þ
þ hP2F

KþK−

1s ðs23ÞÞ: ð41Þ

Likewise, one can express the amplitude in which the
isovector ½K0

SK
−�P pair is associated with the three ρ−

resonances by

A0
P;−ðs12;s13;s23Þ¼hP3

�
s23−s13þðm2

D0 −m2
KÞ

m2
K0 −m2

K

s12

�

×FK−K0

1 ðs12Þ; ð42Þ

while the parametrization of the amplitude associated with
the ρþ resonances reads

A0
P;þðs12;s13;s23Þ¼ ½hP4 þhP5F

D0K−

1 ðs13Þ�

×

�
s23−s12þðm2

D0 −m2
KÞ

m2
K0 −m2

K

s13

�

×FKþK̄0

1 ðs13Þ: ð43Þ

The vector-isoscalar form factor, FKK̄
1uðsÞðsÞ, and the vector-

isovector form factors, FK−K0

1 ðsÞ and FKþK̄0

1 ðsÞ, appearing
in Eqs. (41) to (43) are defined in Appendix A 3. The
parametrization of the vector D to K transition form factor
FDK
1 ðsÞ is discussed in Appendix A 4.
The full decay amplitude is the coherent sum of all the

subamplitudes discussed above,

A0 ¼ A0
S;− þA0

P;− þA0
S;þ þA0

P;þ þA0
S;0 þA0

P;0 þ � � � ;
ð44Þ

where the ellipsis denotes the omission of higher waves that
could be included using Breit-Wigner line shapes.

IV. CONCLUDING REMARKS

We have introduced alternatives to the isobar-model
Dalitz-plot parametrizations of weak D and B decays into
exclusive final states composed of three light mesons,
namely, the various charge states πππ, Kππ, and KKK̄.
Such isobar parametrizations have been frequently
employed in fits, although they do not respect unitarity,
which leads, among other effects, to a sum of branching
fractions that can exceed the total decay width by large
amounts. As a consequence, any strongCP phases that may
be extracted from these fits must be taken with caution.
Our alternative parametrizations, while not fully three-

body unitary, are based on a sound theoretical application
of QCD factorization to a hadronic quasi-two-body decay.
We thus assume that the final three-meson state is preceded
by intermediate resonant states, which is justified by ample
phenomenological and experimental evidence. Analyticity,
unitarity, chiral symmetry, as well as the correct asymptotic
behavior of the two-meson scattering amplitude in S and P
waves are implemented via analytical and unitary S- and
P-wave ππ, πK, and KK̄ form factors which enter the
hadronic final states of our amplitude parametrizations.
These amplitudes can be readily used adjusting the

TABLE I. For each B-decay channel in the first column, the second column refers to the equation of the proposed
amplitude parametrization, and the third column lists the dominant contributing resonances.

Quasi-two-body channel See equation: Dominant resonances

B− → π−½πþπ−�S (10) f0ð500Þ, f0ð980Þ, f0ð1400Þ
B− → π−½πþπ−�P (11) ρð770Þ0, ρð1450Þ0, ρð1700Þ0
B → K½πþπ−�S (12) f0ð500Þ, f0ð980Þ, f0ð1400Þ
B → K½πþπ−�P (13) ρð770Þ0, ρð1450Þ0, ρð1700Þ0
B−ð0Þ → ½K−ð0Þπþ�Sπ− (14) K�

0ð800Þ0ðþÞ, K�
0ð1430Þ0ðþÞ

B−ð0Þ → ½K−ð0Þπþ�Pπ− (15) K�ð892Þ0ðþÞ, K�ð1410Þ0ðþÞ

B− → K−½KþK−�S (17) f0ð980Þ, f0ð1400Þ
B− → K−½KþK−�P (18) ρð770Þ0, ρð1450Þ0, ρð1700Þ0, ωð782Þ,

ωð1420Þ, ωð1650Þ, ϕð1020Þ, ϕð1680Þ
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parameters in a least-square fit to the Dalitz plot—for a
given decay channel—and employing tabulated form
factors as functions of momentum squared or energy.
The different quasi-two-body B- and D-decay channels
for which we provide explicit amplitude expressions are
summarized in Tables I and II, respectively. For each
channel, the relevant equation for the parametrization is
cited, and the dominant contributing resonances are listed.
Let us add a practical remark: in any application of the
parametrized amplitudes to experimental analyses, one can
set to zero one phase of the S or P wave amplitude since the
Dalitz-plot density is not sensitive to its value.
With this “tool kit,” we strongly hope to contribute to

more sophisticated experimental extractions of three-body
decay observables, in particular CP-violating phases.
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APPENDIX A: FORM FACTORS

In quantum field theory, it can be shown, using
dispersion relations [65], that strong-interaction meson-
meson form factors can be in principle calculated exactly
by means of the coupled-channel Muskhelishvili-Omnès
(MO) equations [66], provided one knows the meson-
meson scattering matrices at all energies. In practice, our
knowledge about scattering phases is incomplete, and one
has to resort to simplifications. Eventually, different
approaches to the calculation of these form factors lead
to slightly different results. In the following, we briefly
describe several state-of-the-art descriptions of the various
form factors employed in the decay-amplitude parametri-
zations presented in this work. These form factors can be
obtained from the authors of the original works in the form
of numerical tables and be readily employed in a concrete
Dalitz-plot analysis.

1. ππ form factors

Theparametrizations of the amplitudesB−→π−½πþπ−�S;P
in Eqs. (10) and (11), B → K½π�π∓�S;P in Eqs. (12)
and (13), Dþ → πþ½π−πþ�S;P in Eqs. (23) and (24), and

TABLE II. As in Table I but for hadronic quasi-two-body D decays.

Quasi-two-body channel See equation: Dominant resonances

Dþ → ½πþπ−�Sπþ (23) f0ð500Þ, f0ð980Þ, f0ð1400Þ
Dþ → ½πþπ−�Pπþ (24) ρð770Þ0, ρð1450Þ0
Dþ → ½K−πþ�Sπþ (29) K�

0ð800Þ0, K�
0ð1430Þ0

Dþ → ½K−πþ�Pπþ (30) K�ð892Þ0, K�ð1410Þ0
D0 → ½K0

Sπ
−�Sπþ (31) K�

0ð800Þ−, K�
0ð1430Þ−

D0 → ½K0
Sπ

−�Pπþ (32) K�ð892Þ−, K�ð1410Þ−
D0 → ½K0

Sπ
þ�Sπ− (33) K�

0ð800Þþ, K�
0ð1430Þþ

D0 → ½K0
Sπ

þ�Pπ− (34) K�ð892Þþ, K�ð1410Þþ
D0 → K0

S½πþπ−�S (35) f0ð500Þ, f0ð980Þ, f0ð1400Þ
D0 → K0

S½πþπ−�P (36) ρð770Þ0, ωð782Þ
D0 → K0

S½KþK−�S (38) f0ð980Þ, f0ð1400Þ, a0ð980Þ0, a0ð1450Þ0
D0 → Kþ½K0K−�S (39) a0ð980Þ−, a0ð1450Þ−
D0 → K−½K0Kþ�S (40) a0ð980Þþ, a0ð1450Þþ
D0 → K0

S½KþK−�P (41) ωð782Þ, ωð1420Þ, ϕð1020Þ, ρð770Þ0, ρð1450Þ0
D0 → Kþ½K0K−�P (42) ρð770Þ−, ρð1450Þ−
D0 → K−½K0Kþ�P (43) ρð770Þþ, ρð1450Þþ
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D0 → K0
S½πþπ−�S;P in Eqs. (35) and (36) require the knowl-

edge of the pion nonstrange scalar form factor,Fππ
0nðsijÞ, and

vector form factor, Fπþπ−
1 ðsijÞ. The strange pion scalar form

factor Fππ
0s ðsijÞ enters the parametrization of the B →

K½π�π∓�S amplitude in Eq. (12).

a. Scalar form factors

The scalar form factors Fππ
0nðsÞðsijÞ can be found, for

example, in Refs. [6,9,14,44,67].6 In Ref. [9], the form
factors have been derived using a unitary relativistic
coupled-channel model including ππ, KK̄, and effective
ð2πÞð2πÞ interactions together with chiral symmetry con-
straints (an approach put forward in Ref. [68]). The latest
version of the corresponding nonstrange form factors was
obtained in Ref. [14], with constraints from the high-
statistics Dalitz-plot data of the D0 → K0

Sπ
þπ− from

Refs. [63,69]. In this approach the ππT-matrix is that of
the solution A of the three coupled-channel model of
Ref. [70], where the effective mass is mð2πÞ ¼ 700 MeV.
For an alternative, one can employ the scalar pion form

factors obtained from the numerical solution of a coupled-
channel MO problem, as derived in Ref. [44]. This
approach has been recently revisited in the context of
B0 → J=ψππ decays in Ref. [67]. There, the system of MO
equations is solved with input from chiral symmetry
constrained by recent lattice data. These form factors suffer
from an uncertainty that stems from the kaon form-factor
normalization at zero (which enters through the coupled-
channel equations). This theoretical uncertainty is more
pronounced in the scalar pion form factor at energies above
800 MeV.
The modulus of the pion nonstrange scalar form factor is

characterized by a dip arising from the f0ð980Þ contribu-
tion and by two bumps of which the origins are the f0ð500Þ
and f0ð1400Þ resonances. The strange scalar form factor is
dominated by a peak around the f0ð980Þ contribution. The
form factors are depicted, for instance, in Fig. 1 of Ref. [9]
for the nonstrange scalar form factor and in Fig. 6 of
Ref. [67] for both the strange and nonstrange scalar cases.

b. Vector form factor

The pion vector form factor can be extracted accurately
from experimental data for τ− → π−π0ντ and eþe− →
πþπ−. However, while in the τ− decay the current has
only an isospin-1 component, the eþe− annihilation also
implies an isoscalar component. Recent descriptions can be
found, for example, in Refs. [45,46,71].

A good fit to D0 → K0
Sπ

−πþ decay data is obtained in
Ref. [14] using the vector form-factor parametrization
employed by the Belle Collaboration in their data analysis
of τ− → π−π0ντ decays [45]. It is based on a Gounaris-
Sakurai form, and the parameters used are those of
Table VII of Ref. [45]. The Dalitz plot is also well described
by the unitary parametrization of Ref. [46].
Another recent unitary description that can be useful in

data analysis is the dispersive representation of Ref. [71].
This description of the form factor uses Belle data on the
τ → ππν decays to constrain a three-time subtracted dis-
persive representation.
Finally, care must be exercised to correctly take into

account both the isosvector and isoscalar components. For
instance, inDþ → π−πþπþ decays, the current that couples
to the πþπ− pair in a P wave is d̄γμd, which contains both
isospin 0 and 1. One therefore expects the ω contribution to
be sizeable in high-statistics data sets. The inclusion of the
ω contribution can be done as discussed in detail in
Ref. [67] [see in particular their Eq. (3.7)]. An alternative
is to take into account the contribution of the ω using the
respective isobar model amplitude, described in terms of a
Breit-Wigner parametrization.

2. Kπ form factors

The Kπ scalar form factor, FKπ
0 , and the Kπ vector form

factor, FKπ
1 , enter our parametrizations of the B →

½Kπ��S;Pπ∓, Dþ → ½K−πþ�S;Pπþ, and D0 → ½K0
Sπ

∓�S;Pπ∓
amplitudes. Below, we discuss the determination of these
form factors.

a. Kπ scalar form factor

Sophisticated computations of the scalar FKπ
0 form factor

by means of a coupled-channel dispersive representation
can be found in Refs. [72,73]. The form factor derived in
Ref. [72] from two coupled-channel MO equations depends
on the ratio rKπ ¼ fK=fπ , fK and fπ being the kaon and
pion decay constants, and was used with success in
Refs. [8,14]. It contains the contributions of the K�

0ð800Þ
[or κð800Þ] [74] andK�

0ð1430Þ resonances clearly visible as
bumps. Its modulus is plotted in Fig. 2 of Ref. [8].
The same form factor was derived in a coupled-channel

(Kπ, Kη, and Kη0) dispersive framework imposing con-
straints from Chiral Perturbation Theory at low energies in
Ref. [73]. The form factors are obtained from the numerical
solution of the coupled-channel equations with input from
the T-matrix elements previously calculated in Ref. [75].
This is the form factor that was employed in the description
of Dþ → K−πþπþ decays in Ref. [13].

b. Kπ vector form factor

The Kπ vector form factor can be extracted with
accuracy from the spectrum of τ → Kπν decays. These
decays are largely dominated by the vector contribution,

6In Refs. [6,7,9,12,14], the form factor is defined as Γn�
1 ðsijÞ ¼ffiffiffiffiffiffiffiffi

3=2
p

Fππ
0nðsijÞ with Fππ

0nð0Þ ¼ 1. The relation for the strange case
is ambiguous as Fππ

0s ð0Þ ¼ 0 in the lowest order of chiral
symmetry (see Refs. [44,68] for more details).
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and the present statistics allows for a description with good
precision. The unitary form factor derived in Ref. [72] from
three coupled-channel equations has been used in Ref. [8].
In Refs. [76,77], the form factor is described by a dispersive
relation with three subtractions and constrained by the
Belle data for τ− → KSπ

−ντ [78] and information from Kl3
decays. The K�ð892Þ and K�ð1410Þ resonances contribute
to this vector form factor. The contribution of the K�ð1680Þ
is difficult to assess due to the larger error bars around
1600 GeV in the spectrum of τ− → KSπ

−ντ. This form
factor has been employed with success in the description of
Dþ → K−πþπþ decays of Ref. [13]. It also leads to a good
fit of the present high-statistics D0 → K0

Sπ
þπ− data [14].

3. KK form factors

a. Scalar-isoscalar case

The kaon nonstrange and strange scalar and isoscalar
form factors, FKK̄

0nðsÞðsijÞ,7 enter the B− → K−½KþK−�S
amplitude in Eq. (17) and the D0 → K0

S½KþK−�S amplitude
in Eq. (38). They have been calculated in Ref. [10] with the
three coupled channels ππ; K̄K, and 4π [effective ð2πÞð2πÞ
or σσ or ηη, etc.] in the approach developed in Ref. [9] to
derive the pion scalar form factors (see Appendix A 1 a).
Through their coupling to KK̄, the resonances f0ð980Þ and
f0ð1400Þ contribute to FKK̄

0nðsÞðsijÞ, as can be seen from the
spikes present in Fig. 1 of Ref. [10]. An alternative derivation
of these form factors usingMO equations has been presented
in Ref. [44] and represents a sound alternative.

b. Scalar-isovector case

For an isospin 1 ½KþK−� pair and assuming isospin

symmetry, the scalar-isovector form factor GKK̄
0 ðsÞ ¼

G½KþK−�
0 ðsÞ ¼ GK0K−

0 ðsÞ ¼ GK̄0Kþ
0 ðsÞ is defined as [79]

B0GKK̄
0 ðsÞ ¼ hK̄0ðpK−ÞKþðpKþÞjūdj0i; ðA1Þ

with B0 ¼ m2
π=ðmu þmdÞ. This form factor, entering the

D0 → K0
S½KþK−�S amplitude in Eq. (38), was calculated in

Ref. [79] from coupled MO equations for πη and KK̄
channels. The above form factor includes the contributions
of the a0ð980Þ and a0ð1450Þ seen as bumps in their moduli
(see, for instance, the right panel of Fig. 7 of Ref. [79]).

c. Vector case

For the B− → K−½KþK−�P amplitude in Eq. (18) and for
the D0 → K0

S½KþK−�P amplitude in Eq. (41), the vector
form factors FKþK−

1q ðsÞ with q ¼ u, d and s are defined
through [80]

hKþðpiÞK−ðpjÞjq̄γνqj0i ¼ ðpi − pjÞνFKþK−

1q ðsijÞ: ðA2Þ
They have been calculated using vector dominance, quark
model assumptions, and isospin symmetry in Ref. [80] and
receive contributions from the eight vector mesons: ρð770Þ,
ρð1450Þ, ρð1700Þ, ωð782Þ, ωð1420Þ, ωð1650Þ, ϕð1020Þ,
and ϕð1680Þ. The form factor can be written in closed form
using, for example, Eqs. (23) to (25) of Ref. [10]. The
parameters needed can be obtained from Table 2 of
Ref. [80].
The isovector KK̄ form factors that enter the amplitudes

D0 → K∓½K0
SK

��P are defined:

hKþðpiÞK̄0ðpjÞjūγνdj0i ¼ ðpi − pjÞνFKþK̄0

1 ðsijÞ; ðA3Þ
hK−ðpiÞK0ðpjÞjd̄γνuj0i ¼ðpi − pjÞνFK−K0

1 ðsijÞ: ðA4Þ
Using isospin symmetry, one can obtain the following
relations [80],

FKþK̄0

1 ðsijÞ ¼ −FK−K0

1 ðsijÞ ¼ 2FKþK−

1u;I¼1ðsijÞ; ðA5Þ
where FKþK−

1u;I¼1ðsijÞ is the I ¼ 1 component of the charged
kaon form factor. This form factor is described by Eq. (23)
of Ref. [10] keeping only the ρ meson contributions.

4. Heavy-to-light transition form factors

As discussed in the Introduction, factorization theorems
allow one to perturbatively integrate out energy scales
and yield approximations which are exact in the infinite
heavy-quark limit. To a reasonable extent, the decay
amplitudes factorize in terms of products of hard and soft
matrix elements. Among the latter, heavy-to-light transi-
tions factors have been extensively studied in the past two
decades, though their precise nonperturbative evaluation
remains a challenge. Full ab initio calculations valid in any
momentum-squared region are currently out of reach, and
one is mostly left with modelling the heavy-to-light
amplitudes with as much input from nonperturbative
QCD as possible; in many cases, form factors are only
obtainable for a limited range of momentum squared, q2,
values and then extrapolated to other q2 values.
The transition amplitude of a heavy pseudoscalar meson

H to a lighter pseudoscalar meson P via an electroweak
current, hPðpPÞjJμjHðpHÞi, is described by two dimen-
sionless form factors,

hPðpPÞjl̄γμð1 − γ5ÞhjHðpHÞi
¼ Fþðq2ÞðpH þ pPÞμ þ F−ðq2ÞðpH − pPÞμ; ðA6Þ

where l ¼ u, d, s, h ¼ c, b and where the transferred
momentum is q ¼ pH − pP. It is convenient to rewrite this
amplitude in terms of another pair of form factors, namely,
the scalar and vector form factors, F0ðq2Þ and F1ðq2Þ,
respectively, introducing the momentum K ¼ pH þ pP
[81–83]:

7In Refs. [6,10,11], these form factors are also defined
as Γn�

2 ðsijÞ ¼ FKK
0n ðsijÞ=

ffiffiffi
2

p
and Γs�

2 ðsijÞ ¼ FKK
0s ðsijÞ with

FKK
0n ð0Þ¼FKK

0s ð0Þ¼1 (see Refs. [44,68] for more details).
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hPðpPÞjl̄γμð1 − γ5ÞhjHðpHÞi

¼ F1ðq2Þ
�
Kμ −

K · q
q2

qμ

�
þ F0ðq2Þ

K · q
q2

qμ: ðA7Þ

The relation between the two sets of form factors is
given by

F1ðq2Þ ¼ Fþðq2Þ; ðA8Þ

F0ðq2Þ ¼ Fþðq2Þ þ F−ðq2Þ
q2

K · q
; ðA9Þ

where at q2 ¼ 0 the identity, F1ð0Þ ¼ F0ð0Þ ¼ Fþð0Þ,
holds. Notice that the above definitions are identical for
the hSðpSÞjJμjHðpHÞi transitions, e.g., when the final state
S is a scalar meson.
The advantage of the Lorentz decomposition in Eq. (A7)

lies in the simplification of the decay amplitudes: if the
meson, emitted via an electroweak gauge boson, is a
pseudoscalar (or scalar), then only F0ðq2Þ enters the decay
amplitude. Analogously, if the emitted meson is a vector (or
axial-vector) meson, the decay amplitude only depends
on F1ðq2Þ.
The weak transition of a heavy pseudoscalar mesonH to

a lighter vector meson V can be decomposed into Lorentz
invariants as [31]

hVðpV; ϵVÞjl̄γμð1 − γ5ÞbjHðpHÞi

¼ −2V
mH þmV

εμναβϵ
�ν
V pα

Hp
β
V − 2imVA0ðq2Þ

ϵ�V · q
q2

qμ

− iðmH þmVÞA1ðq2Þ
�
ϵ�Vμ −

ϵ�V · q
q2

qμ

�

þ iA2ðq2Þ
ϵ�V · q

mH þmV

�
ðpH þ pVÞμ −

m2
H −m2

V

q2
qμ

�
;

ðA10Þ
where ϵV is the polarization of the final-state vector meson,
q ¼ pH − pV , p2

V ¼ m2
V , and p2

H ¼ m2
H. Other, related

decompositions are possible; see, e.g., Refs. [81–87].
Their relations with the form factor decomposition in
Eq. (A10) are detailed in Ref. [83] where algebraic inter-
polations for the transition form factors can also be found.
A variety of theoretical approaches have been applied to

the transition form factors in Eqs. (A7) and (A10), among
which are analyses using light-front and relativistic con-
stituent quark models, light-cone sum rules, continuum
functional QCD approaches, and lattice-QCD simulations.
An experimental extraction of the transition form factors
from semileptonic decays for a range of q2 momenta is
possible and has been obtained, for instance, in the case of
D0 → π−eþνe decays [88]. These decays are considerably
easier to analyze than nonleptonic decays characterized by
complicated final-state interactions. For a brief summary of
the theoretical approaches, we refer to Ref. [89], where a

numerical comparison of the theoretical transition form
factor, FB→πþ ðq2Þ, predictions for various q2 values is pro-
vided in Table I and which highlights pronounced varia-
tions among the approaches. A comparison of numerical
results for the B → K� form factors obtained in lattice-
QCD, light-cone sum rules, and Dyson-Schwinger equa-
tion approaches is presented in Fig. 2 of Ref. [87].

APPENDIX B: RELATIONS BETWEEN THE
PARAMETRIZED AND ORIGINAL AMPLITUDES

The aim of this Appendix is to relate the amplitudes
introduced in Secs. II and III to those derived in quasi-two-
body QCD factorizations [6–10,12–14], which represents
the original motivation of the present parametrizations. The
main purpose of this section is to make contact with the
original works and make explicit the physical meaning
behind the different parameters of the amplitudes we
discussed here. The relations are presented following the
order of appearance of the three-body decay amplitudes in
Secs. II and III. Explanations of and details about constants
and form factors that occur in the amplitudes below can be
found in the original references we quote.

1. B-decay amplitudes

In the parameters below, when necessary, the super-
scripts −; 0̄;þ, and 0 refer to the B−; B̄0; Bþ, and B0

mesons, respectively.

a. B� → π�π +π −

Comparing the parametrized B− → π−½πþπ−�S;P S and P
amplitudes, Eqs. (10) and (11), to the corresponding
amplitudes, Eqs. (22) and (23), in Ref. [9] yields

aS1 ¼ −
GFffiffiffi
2

p χSfπF
BRS
0 ðm2

πÞuðRSπ
−Þ; ðB1Þ

aS2 ¼
GFffiffiffi
2

p B0

M2
B −m2

π

mb −md
vðπ−RSÞ; ðB2Þ

aP1 ¼ GFffiffiffi
2

p NP
fπ
fRP

ABRP
0 ðm2

πÞuðRPπ
−Þ; ðB3Þ

aP2 ¼ GFffiffiffi
2

p wðπ−RPÞ: ðB4Þ

The definitions and numerical values of all the quantities in
Eqs. (B1) to (B4) can be found in Ref. [9]. The functions
uðRPπ

−Þ, vðπ−RSÞ, and wðπ−RPÞ, corresponding to the
short-distance contributions, are proportional to the CKM
matrix elements and to the effective Wilson coefficients.
The dominant meson resonances are RS ≡ f0ð980Þ and
RP ≡ ρð770Þ0 (see Ref. [9]). Applying CP conjugation
to the right-hand side of Eqs. (B1) to (B4) yields the
relations between the ai coefficients of the parametrized
Bþ → πþ½π−πþ�S;P amplitudes to the original amplitude
parameters.
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b. B → Kπ +π −

Comparison of the B− → K−½πþπ−�S amplitude given in
Eq. (1) of Ref. [6] with the parametrized form (12) leads to

b−S1 ¼ GFffiffiffi
2

p ½χfKFB→ðππÞS
0 ðm2

KÞU − ~C�; ðB5Þ

b−S2 ¼ GFffiffiffi
2

p 2
ffiffiffi
2

p
B0

mb −ms
ðM2

B −m2
KÞV; ðB6Þ

b−S3 ¼ −
GFffiffiffi
2

p χðM2
B −m2

KÞ ~C; ðB7Þ

where ~C ¼ fπFπðλuPGIM
1 þ λtP1Þ with λu ¼ VubV�

us and
λt ¼ VtbV�

ts. Furthermore, for i ¼ 1, 2, 3,

b0̄Si ¼ b−Si ffiffiffi
2

p ; ðB8Þ

bþð0ÞS
i ¼ b−ð0̄ÞSi ðλ�u; λ�t Þ: ðB9Þ

The quantities entering Eqs. (B5) to (B7) are defined in
Ref. [6], where their numerical values are also given.
The parameter b−P1 of the B− → K−½πþπ−�P amplitude

(13) is related to the parameters described in Ref. [7] in the
following way,

b�P
1 ¼ A�ffiffiffi

2
p

mρfρ
; ðB10Þ

b0ð0̄ÞP1 ¼ A0ðA0̄Þffiffiffi
2

p
mρfρ

; ðB11Þ

with

A− ¼ GFmρ½fKAB→ρ
0 ðM2

KÞðU− − CPÞ þ fρFB→K
1 ðm2

ρÞW−�;
ðB12Þ

A0̄ ¼ GFmρ½fKAB→ρ
0 ðM2

KÞðU0̄ þ CPÞ þ fρFB→K
1 ðm2

ρÞW0̄�;
ðB13Þ

AþðA0Þ ¼ −A−ðA0̄Þðλ�u; λ�t Þ: ðB14Þ

Definitions and values of the parameters appearing in
Eqs. (B12) to (B14) can be found in Ref. [7].
In Eqs. (B5), (B6), (B12), and (B13), the short-distance

contribution functions U, V, U−ð0̄Þ, and W−ð0̄Þ are products
of CKM quark-mixing matrix elements with effective
Wilson coefficients.
Comparing the B− → ½K−πþ�Sπ− and B̄0 → ½K̄0π−�Sπþ

amplitudes given by Eqs. (10) and (14) of Ref. [8] with
their parametrized forms (14) leads to

c−S1 ¼ GFffiffiffi
2

p ðM2
B −m2

πÞðm2
K −m2

πÞ
�
λu

�
au4ðSÞ −

au10ðSÞ
2

þ cu4

�
þ λc

�
ac4ðSÞ −

ac10ðSÞ
2

þ cc4

��
; ðB15Þ

c−S2 ¼ −
ffiffiffi
2

p
GF

ðM2
B −m2

πÞðm2
K −m2

πÞ
ðmb −mdÞðms −mdÞ

�
λu

�
au6ðSÞ −

au8ðSÞ
2

þ cu6

�
þ λc

�
ac6ðSÞ −

ac8ðSÞ
2

þ cc6

��
; ðB16Þ

c0̄S1 ¼ GFffiffiffi
2

p ðM2
B̄0 −m2

πÞðm2
K̄0 −m2

πÞ½λuða1 þ au4ðSÞ þ au10ðSÞ þ cu4Þ þ λcðac4ðSÞ þ ac10ðSÞ þ cc4Þ�; ðB17Þ

c0̄S2 ¼ −
ffiffiffi
2

p
GF

ðM2
B̄0 −m2

πÞðm2
K̄0 −m2

πÞ
ðmb −mdÞðms −mdÞ

½λuðau6ðSÞ þ au8ðSÞ þ cu6Þ þ λcðac6ðSÞ þ ac8ðSÞ þ cc6Þ�; ðB18Þ

cþð0ÞS
1;2 ¼ c−ð0̄ÞS1;2 ðλu → λ�u; λc → λ�cÞ; ðB19Þ

where λc ¼ VcbV�
cs.

Comparison of the parametrized Kπ P-wave amplitude (15) to the original one in Eqs. (11) and (15) of Ref. [8] gives

c−P1 ¼ GFffiffiffi
2

p
�
λu

�
au4ðPÞ −

au10ðPÞ
2

þ cu4

�
þ λc

�
ac4ðPÞ −

ac10ðPÞ
2

þ cc4

�

þ 2
mK�

mb

f⊥V ðμÞ
fV

�
λu

�
au6ðPÞ −

au8ðPÞ
2

þ cu6

�
þ λc

�
ac6ðPÞ −

ac8ðPÞ
2

þ cc6

���
; ðB20Þ

c0̄P1 ¼ GFffiffiffi
2

p
�
λuða1 þ au4ðPÞ þ au10ðPÞ þ cu4Þ þ λcðac4ðPÞ þ ac10ðPÞ þ cc4Þ

þ 2
mK�

mb

f⊥V
fV

½λuðau6ðPÞ þ au8ðPÞ þ cu6Þ þ λcðac6ðPÞ þ ac8ðPÞ þ cc6Þ�
�
; ðB21Þ
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cþð0ÞP
1 ¼ c−ð0̄ÞP1 ðλu → λ�u; λc → λ�cÞ: ðB22Þ

The values and the definitions of the different short range
parameters entering Eqs. (B15) to (B21) can be found in

Ref. [8]. Let us just mention that the a1, a
uðcÞ
i ðS=PÞ, i ¼ 4,

6, 8, 10, are leading order factorization (effective Wilson)
coefficients to which vertex and penguin corrections are

added. The cuðcÞi , i ¼ 4, 6 are free fitted parameters
representing nonperturbative and higher order contribu-
tions to the penguin diagrams [8].

c. B� → K +K −K�

Comparison of the original B− → K−½KþK−�S;P ampli-
tudes (see Eqs. (2) and (3) of Ref. [10]) with the para-
metrized forms of Eqs. (17) and (18) leads to

d−S1 ¼ −
GFffiffiffi
2

p χfKF
B→½KþK−�S
0 ðm2

KÞy; ðB23Þ

d−S2 ¼ 2B0GF

mb −ms
ðM2

B −m2
KÞv; ðB24Þ

d−P1 ¼ GFffiffiffi
2

p fK
fρ

ABρ
0 ðm2

KÞy; ðB25Þ

d−P2 ¼ −
GFffiffiffi
2

p wu; ðB26Þ

d−P3 ¼ −
GFffiffiffi
2

p wd; ðB27Þ

d−P4 ¼ −
GFffiffiffi
2

p ws: ðB28Þ

The definition and numerical values of the different
parameters entering Eqs. (B23) to (B28) can be found in
Ref. [10]. The parameters y, v, wu, wd, and ws represent the
contribution of the short range weak-decay amplitudes. For
the Bþ → Kþ½KþK−�S;P amplitudes, one has

dþSðPÞ
i ¼ d−SðPÞi ðλu → λ�u; λc → λ�cÞ: ðB29Þ

2. D-decay amplitudes

a. D + → π +π − π +

The parameters of the Dþ → π−πþπþ amplitudes given
in Eq. (23) can be related to the underlying description of
Ref. [12] as follows:

eS1 ¼
GFffiffiffi
2

p VcdV�
uda1fπχ

eff
S ; ðB30Þ

eP1 ¼ GFffiffiffi
2

p VcdV�
uda1fπχ

eff
P ; ðB31Þ

eP2 ¼ GFffiffiffi
2

p VcdV�
uda2: ðB32Þ

The parameters χeffS;P are related to the contribution of
intermediate resonances in the matrix element of the a1
type [12]. We use fπ ¼

ffiffiffi
2

p
Fπ ≃ 130.5 MeV.

b. D+ → K −π +π +

The complex parameters of the Dþ → K−πþπþ ampli-
tude given in Eq. (29) can be related to the description of
Ref. [13] as

fS1 ¼
GFffiffiffi
2

p VcsV�
udfπχ

eff
S a1; ðB33Þ

fP1 ¼ GFffiffiffi
2

p VcsV�
udfπχ

eff
V a1; ðB34Þ

fS2 ¼
GFffiffiffi
2

p VcsV�
udΔ2þa2; ðB35Þ

fP2 ¼ GFffiffiffi
2

p VcsV�
udΔ2þa2: ðB36Þ

The notation and definitions are analogous to the Dþ→
π−πþπþ case. We use again Δ2þ¼ðm2

K− −m2
πÞðm2

Dþ−m2
πÞ.

The parameters χeffV;S are related to the contribution of
intermediate resonances in the a1-type amplitude. We refer
to Ref. [13] for their precise definition.
As a final comment, experiments found an offset of

about −65° between the S- and P-wave phases [53–55] that
is crucial to reproduce the Dalitz plot [13]. This offset in the
phases is described, in the parametrization proposed here,
by the phases of the fL1;2 parameters. We should point out,
however, that the dynamical origin of the phase difference
between the S and P waves may be related to hadronic
three-body rescattering that is beyond our description [56],
although some controversy persists (see Ref. [61]).

c. D0 → K0
Sπ

+π −
Comparison between the different ASðPÞ amplitudes,

Eqs. (31) to (36), and the Mi amplitudes, Eqs. (66)–
(69), (71), (84), and (85) of Ref. [14] yields the following
relations.
For the D0 → ½K0

Sπ
−�S;Pπþ amplitudes, one has

gS1 ¼ α1m2
D0 þ β1m2

π; ðB37Þ

gS2 ¼ −ðα1 þ β1Þ; ðB38Þ

α1 ¼ −
GF

2
a1Λ1χ1fπF

D0RS½K̄0π−�
0 ðm2

πÞ; ðB39Þ

β1 ¼ −
GF

2
a2Λ1χ1fD0FRS½K̄0π−�πþ

0 ðm2
D0Þ; ðB40Þ
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gP1 ¼ GF

2
Λ1

�
a1

fπ
fK�−

AD0RP½K̄0π−�
0 ðm2

πÞ

− a2
fD0

fK�−
AπþRP½K̄0π−�
0 ðm2

D0Þ
�
: ðB41Þ

The relations for the D0 → ½K0
Sπ

þ�S;Pπ− amplitudes are

gS3 ¼ −
GF

2
Λ2z8a2χ1fD0 Fπ−RS½K0πþ�

0 ðm2
D0Þ; ðB42Þ

gS4 ¼
GF

2
Λ2z8a1; ðB43Þ

gP2 ¼ −
GF

2
Λ2z9a2

fD0

fK�þ
ARP½K0πþ�π−
0 ðm2

D0Þ; ðB44Þ

gP3 ¼ −
GF

2
Λ2z9a1: ðB45Þ

And for the D0 → K0
S½πþπ−�S;P amplitudes, it reads

gS5 ¼ α2m2
D0 þ β2m2

K0 ; ðB46Þ

gS6 ¼ −ðα2 þ β2Þ; ðB47Þ

α2 ¼ −
GF

2
a2ðΛ1 þ Λ2Þχ2fK0FD0RS½πþπ−�

0 ðm2
K0Þ; ðB48Þ

β2 ¼ −
GF

2
a2ðΛ1 þ Λ2Þχ2fD0FK̄0RS½πþπ−�

0 ðm2
D0Þ; ðB49Þ

gP4 ¼ GF

2
a2ðΛ1 þ Λ2Þ

1

fρ
½fK0AD0RP½πþπ−�

0 ðm2
K0Þ

þ fD0AK̄0RP½πþπ−�
0 ðm2

D0Þ�; ðB50Þ

gP5 ¼ GF

2
ðΛ1 þ Λ2Þ

a2ffiffiffi
2

p
�
fK0AD0ω

0 ðm2
K0Þ

− fD0AK̄0½πþπ−�ω
0 ðm2

D0Þ
�
gωππ
mω

: ðB51Þ

For the definitions and numerical values of all param-
eters entering Eqs. (B37) to (B51), see Ref. [14].

d. D0 → K0
SK

+K −
Comparison between the parametrizedASðPÞ amplitudes,

Eqs. (38) to (43), and the corresponding amplitudes of
Ref. [24] yields for the kaon pairs in scalar states

hS1 ¼ −
GF

4
ffiffiffi
2

p ðΛ1 þ Λ2Þa2χnfK0FD0f0
0 ðm2

K0Þ; ðB52Þ

hS2 ¼ −
GF

2
ffiffiffi
2

p ðΛ1 þ Λ2Þa2χsfD0FK0f0
0 ðm2

D0Þ; ðB53Þ

hS3 ¼ −
GF

4
ðΛ1 þ Λ2Þa2χð1ÞfK0F

D0a0
0

0 ðm2
K0Þ; ðB54Þ

hS4 ¼ −
GF

2
Λ2χ

ð1Þ½a1fKþm2
D0F

D0a−
0

0 ðm2
KÞ

þ a2fD0m2
KF

Kþa−
0

0 ðm2
D0Þ�; ðB55Þ

hS5 ¼
GF

2
Λ2χ

ð1Þ½a1fKþF
D0a−

0

0 ðm2
KÞ þ a2fD0F

Kþa−
0

0 ðm2
D0Þ�;
ðB56Þ

hS6 ¼ −
GF

2
Λ1a1ðm2

D0 −m2
KÞðm2

K −m2
K0Þ; ðB57Þ

hS7 ¼ −
GF

2
Λ1a2χð1ÞfD0F

K−aþ
0

0 ðm2
D0Þ: ðB58Þ

For the kaon pairs in vector states, one has

hP1 ¼ GF

2
ðΛ1 þ Λ2Þa2

fK0

fρ0
AD0ρ0

0 ðm2
K0Þ; ðB59Þ

hP2 ¼ GF

2
ðΛ1 þ Λ2Þa2

fD0

fϕ
AK0ϕ
0 ðm2

D0ÞÞ; ðB60Þ

hP3 ¼ GF

2
Λ2

�
a1

fKþ

fρ
AD0ρ−

0 ðm2
KÞ − a2

fD0

fρ
AKþρ−
0 ðm2

D0Þ
�
;

ðB61Þ

hP4 ¼ −
GF

2
Λ1a2

fD0

fρ
AK−ρþ
0 ðm2

D0Þ; ðB62Þ

hP5 ¼ −
GF

2
Λ1a1: ðB63Þ
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