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We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily
implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of
Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly
useful in the interpretation of CP asymmetries in the Dalitz plots. They are derived from previous
calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state
interactions are fully taken into account in terms of unitary S- and P-wave zz, 7K, and K K form factors.
These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory
amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by
effective theories of QCD. They are derived from sets of coupled-channel equations using 7-matrix elements
constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic
QCD. We provide explicit amplitude expressions for the decays B* — ztz~z*, B — Krntn~,
B* > K"K"K*, D™ - n~nta", D" - K~ n"z", and D —» K3z*z~, for which we have shown in

previous studies that this approach is phenomenologically successful; in addition, we provide expressions

for the D° - KKK~ decay. Other three-body hadronic channels can be parametrized likewise.
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I. INTRODUCTION

Three-body hadronic decays of B and D mesons are a rich
field for searches on CP violation, for tests of the Standard
Model and of QCD in particular [1-5]. Furthermore, they
provide an interesting ground to study hadron physics, as
strong interaction effects, through the presence of two-body
resonances and their interferences, have an impact on weak-
decay observables. In order to extract these observables most
reliably, the meson-meson final-state interactions must be
addressed using theoretical constraints such as unitarity,
analyticity and chiral symmetry, as well as constraints from
experimental data from processes other than B and D decays.
However, in Dalitz-plot analyses, the event distributions are
often studied using the isobar model in which the decay
amplitudes are parametrized by coherent sums of Breit-
Wigner amplitudes with a background contribution, in
disagreement with the fundamental principles listed above.
In this work, we suggest replacing these sums by para-
metrizations in terms of unitary two-meson form factors,
without losing contact with the description of the
weak-interaction dynamics that governs the underlying
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flavor-changing process. These parametrizations are con-
structed, in part, from results published previously [6—14] and
are motivated by the forthcoming analyses of high-statistics
data sets for many three-body decay channels of B and D
decays, in particular by the LHCb Collaboration [15].

The theoretical amplitude expressions in Refs. [6—14]
from which we derive the present parametrizations are
based on models of QCD factorization. The factorization
beyond the leading approximation can be expressed as an
expansion in the strong coupling, «,, and inverse powers of
the bottom quark mass, m;, and has been applied with
success to charmless nonleptonic two-body B decays (see,
e.g., Ref. [16]). Parallel analyses of three-body B decays in
the contexts of QCD factorization and perturbative QCD
can be found in Refs. [17,18] and [19,20], respectively. In
D decays, this factorization approach is less predictive
inasmuch as it does not allow for a systematic improvement
owing to the charm quark mass, m, = m;/3, which
enhances significant corrections to the factorized results.
It is, therefore, downgraded from an effective theory that
can be systematically improved, in the case of B decays, to

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.113003
https://doi.org/10.1103/PhysRevD.96.113003
https://doi.org/10.1103/PhysRevD.96.113003
https://doi.org/10.1103/PhysRevD.96.113003

D. BOITO et al.

a phenomenological procedure, in the case of D decays.
Nevertheless, as a purely phenomenological approach,
based on the seminal work by Bauer, Stech and Wirbel
[21], the factorization hypothesis has been applied success-
fully to D decays, provided one treats Wilson coefficients
as phenomenological parameters to account for nonfactor-
izable corrections [22].

Besides a recent extension of the QCD factorization
framework to nonleptonic B decays into three light mesons
[23], no rigorous factorization theorem valid for the entire
three-body phase space and full three light-meson Dalitz
plot exists. On the other hand, three-body decays of B and
D mesons clearly receive important contributions from
intermediate resonances—such as the p(770), K*(892),
and ¢(1020)—and can therefore be considered as quasi-
two-body decays. One then assumes that two of the three
final-state mesons form a single state originating from a
quark-antiquark pair, which is interpreted as an intermedi-
ate quasi-two-body final state in which case the factoriza-
tion can be applied. Then, the three-body final state is
reconstructed with the use of two-body mesonic form
factors to account for the important hadronic final-state
interactions. For instance, in the D° — Kgﬂ_ﬂ+ decay, the
three-meson final state K ngrﬂ‘ is initially preceded by the
quasi-two-body pairs, [K3z'], 77, [K%z7],z*, and
KS[zt7"],, where two of the three mesons form a state
in an L=S or P wave. This framework has been
successfully applied to several hadronic three-body B
and D decays [6-14,24,25].

The factorization of a nonleptonic weak B decay into a
quasi-two-body state can be schematically described as
follows. The decays are mediated by local dimension-6
four-quark operators O;(u) that form the weak effective
nonrenormalizable Hamiltonian. However, depending on
flavor content, spin, charge, and parity symmetry of the
final states, only specific operators will contribute to a
given decay. The B-decay amplitude into two mesons, M
and M3 with four momenta p; and p,, respectively, can be
written as

(M, (Pl)Mz(P2)|Heff|B(PB)>

VCKMZC (My(p1)M5(p2)|0;(1)|B(pg)).

(1)

where pp = p; + p,, G is the Fermi constant, Vg is a
product of Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, C;(u) are Wilson coefficients renormalized at
the scale u [26], and M}(p,) is the resonant quasi-
two-body state which decays into two lighter mesons.
The hadronic amplitude (M;(p;)M3(p>)|0:(1)|B(pp))
describes long-distance physics. In the factorization
approach we henceforth employ, this amplitude is the sum
of two matrix-element products,
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(M, (P1>M§<P2)|Oi(ﬂ)|B(PB)>
= ((M,(p)J51B(ps)){(M5(p2)|J2,10)
+ (M (p1)7510){M5(p2)| 4| B(PB)))

{1 + Zr () + O(A’Sli‘)ﬂ, 2)

where the strong coupling is evaluated at a scale y, r, is a
combination of constant strong-interaction factors, and |0)
is the vacuum state. Thus, at leading order, the decay
amplitudes factorize into two matrix elements with either
the weak quark currents J; and J, or J; and J,. Radiative
corrections can be systematically taken into account to a
given order o (u), whereas corrections to the heavy-quark
limit are of nonperturbative nature and therefore much less
controlled. This is in particular true for the charm quark,
which is neither a light nor heavy enough quark [27-30].
This fact makes the systematic improvements of Eq. (2),
enclosed in square brackets, less reliable for D decays. One
should keep this limitation in mind, but for lack of a better
theoretical framework, the phenomenological approach to
Eq. (2) remains a good starting point to organize the
description of D decays and can be used to provide a first
step beyond the isobar model.

The weak effective Hamiltonian, H.g, in Eq. (1) is given
by the sum of local operators O;(x) multiplied by Wilson
coefficients C;(x) which encode the short-distance effects
above the renormalization scale y. Fora AB = 1 transition,
for example, the Hamiltonian is given by [31,32]

papt = 9E X Vi pb[c1u>o () + (1) 0L ()

+ZC +C7}'( )07;/(#)
+CMM%Nﬂ+Ha, G)

where the quark flavor can be g = d, s and V;; are CKM
matrix elements. In the decays, the weak-interaction
W-boson exchange diagram gives rise to two current-
current operators with different color structure owing to
QCD corrections and SU(3) color algebra:

OF(u) = qir*(1 = ys)p:ip7,(1 —5)b; (4)
0% (u) = qir"(1 —75)b;. (5)

In Egs. (4) and (5), i, j are color indices, and for the corres-
ponding Wilson coefficients, one has C;(u)=1+
O(ay(u)) and C,(u) = O(a,(u)). The operators O;, i =
3-10 stem from QCD and electroweak penguin diagrams,
while 07, and Oy, are electromagnetic and chromomag-
netic dipole operators. The explicit tensor structure of these

—75)P;Pra(l
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operators as well as their Wilson coefficients at next-to-
leading logarithms can be found, for example, in Ref. [33].
With the use of an appropriate Fierz transformation and the
SU(N.) identity,

(Gipi)(P;b;),

(6)

1
(@ip;)(pjb;) = 2(f_IiT?kPk)(l_7jT?1b1) + N

c

where T, are the SU(N..) generators, the quark bilinears

can be rearranged to match the flavor and color structure of
the final mesons. In this transformation, the color-octet
contribution in Eq. (6) is commonly neglected. The two
resulting combinations of C;(u) and C,(p),

1
—C ,
N, 1 (ﬂ)

(7)

(1) = Co(w) + o). as(u) = Calu) +

N,

lead to ““color allowed” and ““color suppressed” amplitudes,
respectively, which are topologically different. Typically,
the Wilson coefficients are evaluated at a renormalization
scale of the heavy quark, i.e. u = m,, my,.

On the right-hand side of Eq. (2), the two matrix-element
products describe different physical processes. Namely, the
creation of a final two-meson state from a gqg pair is
described by the form factors (M5 (p,)|J5,|0), where M5 —
M ;M denotes resonant intermediate states in the different
two-meson coupled channels that lead to the final three-
body state. As mentioned, these form factors can be
constructed so as to preserve two-body unitarity and
reproduce asymptotic QCD and are constrained by chiral
symmetry at low energies. We discuss them in Appendix A.
In Eq. (2), the matrix element (M;(p;)|J4|0) defines the
weak-decay constant of a scalar, pseudoscalar, or vector
meson, which is either well known from experiment, for
instance, f, and fx, or has been evaluated with lattice-
regularized QCD and other nonperturbative approaches.
The transition (M3(p,)|J4,|B) of a B meson to a strongly
interacting two-meson pair via a resonance is a complicated
process and the biggest source of uncertainty in our
approach. It could be extracted experimentally from
semileptonic processes such as B® — K™z~ u*u~ [34] or
D° — K~ ntutu~ [35]. It has also been conjectured within
soft-collinear effective theory that the amplitude can be
factorized in terms of a generalized B-to-two-body form
factor and two-hadron light-cone distribution amplitudes
[36]. In the derivation of the amplitude expressions
presented here, we employ a model approximation which
relates this matrix element (M} (p,)|J4,|B) to the two-body
meson form factor (M} (p,)[— M3M,4]|J5,]0).

Finally, the transition amplitudes (M,(p;)|J%|B)
(= (M,(p;)B|J%|0)) are parametrized by heavy-to-light
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transition form factors, which are discussed in
Appendix A 4.

As a definite example of the procedure outlined above,
let us consider the D™ — [K~7"]g p7n" decay, where the
K~z pairs are in the S- or P-wave state. The matrix
element given by ([K~7"|g pn™|H.|DT) receives contri-
butions from the two amplitudes a;(x) and a,(u) and

factorizes as
([K=7"]s pmt [Hege| DT)

G _
= JCOS296[01 ([K=n{]s.pl57*(1 = ys)c|DT)

V2

x (3 |y, (1 = y5)d|0)

+ ax([K™ 7 5. p|57 (1 = 75)d]|0)

x (my |y, (1 = ys)c| D) + (2] < 7). (8)

0 being the Cabbibo angle. The Kz form factors appear
explicitly in the matrix element ([K~ 7|5 p|57*(1—y5)d|0).
The evaluation of ([K~7z{]gp[5y*(1—=ys)c|D") is less
straightforward. However, assuming this transition to
proceed through the dominant intermediate resonances,
this matrix element can also be written in terms of the Kz
form factors as shown in Refs. [13,25]. This feature is of
crucial importance to the parametrizations that we propose
in this work. It is interesting to note that the calculation of a
generalized three-body form factor using light-cone sum
rules, in the spirit of Ref. [36], also leads to the appearance
of the two-body meson form factors [37-41]. The other
matrix elements of Eq. (8) can be written in terms of decay
constants or transitions form factors that can be extracted
from semileptonic decays, as outlined above. Strong phases
in the mesonic final-state interactions are accounted for by
the hadronic form factors, which makes this type of
description particularly suitable for the interpretation of
CP asymmetries that have been observed in B decays
[8-11,42]. Amplitude expressions, such as in Eq. (8), are
used throughout this paper as a starting point to build
parametrizations based on unitary two-body hadronic form
factors. Within this approach, explicit forms of paramet-
rizations for D* — K="zt and D° — K%z=z" ampli-
tudes have already been presented in Ref. [15] (see p. 27
therein).

The paper is structured as follows. In Sec. II, we
introduce the parametrizations for three-body hadronic
B-decay amplitudes based on the quasi-two-body factori-
zation approaches of Ref. [9] for B — ztz~n*, of
Refs. [6-8] for B— Kzx"n~, and of Ref. [10] for
B* — KTK~K*. Section III applies the same procedure
to D-decay amplitudes, viz. D* — ztz~x" [12], DT —
K=ztz* [13], D° —» K%z*7~ [14], and D° — K3K* K~
[24]. The meson-meson and heavy-to-light meson form
factors which have been used can be found in the original
papers. Nevertheless, a short reminder about the derivations
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of unitary S- and P-waves zn-, 7K-, and KK-meson
form factors entering these parametrizations is given in
Appendix A together with a short review on heavy-to-light
meson form factors. We wrap up with some concluding
remarks about the merits of the proposed parametriza-
tions in Sec. IV. The relations between the free parameters
of the different proposed parametrizations and the theo-
retical decay amplitudes are presented explicitly in
Appendix B.

II. PARAMETRIZATIONS OF THREE-BODY
HADRONIC B-DECAY AMPLITUDES

A. Amplitudes for B* - n*x*n-

The contributions of pion-pion interactions to CP-violat-
ing phases in B* — 7tz¥z* decays have been studied [9]
within the quasi-two-body factorization approach discussed
in the Introduction.' The amplitudes were derived as matrix
elements of the weak effective Hamiltonian given by Eq. (3)
with ¢ = d. The nz effective mass distributions of the B* —
™ data [43] are well reproduced for an invariant mass,
My~ < 1.64 GeV [9]. To parametrize the amplitudes of
B* > n*[n" 7] p, we label the momenta of the decay as
BE(pp) = 7z (p1)nt (p,)n(p3), where pg, the B meson
momentum, satisfies pgp = p; + p, + p3. The amplitudes
must be symmetrized by exchanging the z (p,)z~ (p3) and
7~ (p1)7" (p,) pairsin case of a B~ decay or equivalently the
at(py)x~(p3) and z*(p;)n~(p3) pairs in case of a B
decay. Defining the invariants, s;; = (p; + p j)z (for i # j),
with s, + 813 + Sp3 = m% + 3m2, the interacting pairs of
pions in a relative S or P wave are described by s, or §,3 in
the case of a B~ decay and by 53 and s,3 in the case of a
BT decay.

The symmetrized amplitude (see also Eq. (21) in
Ref. [9]) for the B~ — 7~ [n* 7|5 p decay reads

1

Agm(s12,523) = NG [A5 (s12) + A5 (s23)
+ (513 = $23) Ap(s12)
+ (513 = 512) Ap(523)], )

and an analogous amplitude holds for the B — 7" [z 7" | p
decay. The amplitudes A5 »(s;;), ij = 12 or 23, given by

Egs. (22) and (23) of Ref. [9], can be parametrized in terms

2
of four complex parameters, a}, as

A5 (s4j) = [af (MG = s;5) + a3 F§™ (53] Fn(s;),  (10)

'During the preparation of this manuscript, Ref. [42] appeared.
Their treatment is very similar to the one we describe here.

’In a fit to a Dalitz plot, there is always a global phase that
cannot be observed. Therefore, the phase of one of the complex
parameters can be set to zero. This is also valid for the other
channels discussed in the remainder of this paper.
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Ap(sij) = [af + a5 FP7(si)|Fi (si), (11)

where Mp is the charged B-meson mass. As done in the
BABAR Collaboration analysis [43] and in Ref. [9], a
contribution from the f,(1270) resonance can be accounted
for by a Breit-Wigner line shape in a D-wave amplitude of
the #tz~ pair. The B — x scalar and vector transition form
factors F{7(s) in Egs. (10) and (11) are discussed in
Appendix A 4. The zzS-wave amplitude Aj (s;;) includes
via the nonstrange scalar form factor F§(s;;) the contri-
butions of the scalar f((500), f((980), and f,(1400)
resonances. In a Dalitz-plot analysis, one can use, for
example, the pion scalar form factor derived in
Refs. [9,44]. More details are given in Appendix A 1.

The P-wave amplitude A7 (s;;), proportional to the pion
vector form factor F7*(s;;), contains the p(770)°, p(1450),
and p(1700) contributions. In Ref. [9], the (z7z), form
factor was extracted from the Belle Collaboration analysis
of 7 — 7277, decay data [45]. Alternatively, one can
employ the unitary parametrization of Ref. [46], which fits
simultaneously the (z7)p,-wave phase shifts and inelastic-
ities, the eTe™ — n7x~ data, and the 7~ — 7~ 7'v,-decay
data, as done in the D° — KYz*z~ Dalitz-plot fit of
Ref. [14]; see Appendix A 1.

Setting the phase of af in Ay (s;;) to zero yields a total of
seven real parameters to be fitted. The fully symmetrized
CP-conjugate BT — ztn~n"-decay amplitude is given by
expressions similar to Egs. (9)—(11) with again seven free
real parameters. The reproduction of the Dalitz-plot data
over the full phase space, in particular for the high
invariant-mass regions, might require some adjustment
of the zz form factors. The addition of further phenom-
enological amplitudes that represent contributions of higher
zr-interacting waves and possible three-body rescattering
terms may be necessary.

B. Amplitudes for B - Kx*x~

The amplitude is based on the weak effective
Hamiltonian in Eq. (3) with ¢ =s. The momenta are
labeled as B(pp) — K(pi)n"(p2)a~(p3), with sp =
(p1+p2)% si3=(p1+p3)’ s =(p+ps) and
Sta + 13 + So3 = my + my + 2my.

1. Parametrization of the B — K|n*x*|g p amplitude

The isoscalar S-wave n*z~ final-state interactions in
B — Kn"z~ decays were studied in Ref. [6] in the quasi-
two-body factorization approach with an extension in
Ref. [7] to include the n"n~ isovector P wave. These
studies reproduce very well the Belle and BABAR data in an
effective zzz mass range up to about 1.2 GeV. Following
Eq. (1) of Ref. [6], the B — K[z 7z~ ] decay amplitude can
be parametrized in terms of three complex parameters,
b¥,i =1, 2, 3, for the different charges B = B*, K = K*
and B = B°(B°), K = K°(K") or K9,
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As(s23) = (K[n" 77| 5| Hegt| B)
= b} (M} — 523)Fin (523) + (B3 F(" (s23)

+ b3)FGi (523)- (12)

For the scalar-isoscalar strange form factor F7(s) in
Eq. (12), one can employ its numerical expression given
in Ref. [9] or that in Ref. [44] (see Appendix A1 a).
Parametrizations for the B — K scalar transition form
factors F§X(s) in Eq. (12) are reviewed in Appendix A 4.

The amplitude for B — K[n"n~|, decays can be written
in terms of the complex parameter bf as

Ap (512, 813, 523) = (K[ 77| p| Hege | B)

= bf(sw - Slz)F’f”(SB)-

(13)

In Ref. [7], the pion vector form factor, F7"(s), is
approximated by a Breit-Wigner form. However, we
recommend the use of the unitary vector form factor
derived in Ref. [46] described in Appendix A 1lb. We
stress that the b7 in Eq. (12) and b% in Eq. (13) represent
different parameters for each charge state.

As in the B —» 7z~ zT case (see Sec. IIA), the
addition of the [z z~] D-wave contribution, parametrized
in terms of the f,(1270) resonance, is required; higher
invariant-mass phenomenological amplitudes may also be
necessary.

2. Parametrization of the B — [Kn*|g pn™ amplitude

A parametrization of the B — [Kz*]¢n® channel was
introduced in Ref. [8] [see Eq. (68) therein], where in the
center of mass of the Kz pair the S-wave amplitude in case
of the B~ — [K~xt]¢z~ decay can be represented by

As(s12) = (a7 [K~ 7" || Hee| B™)
= (ef + efiny) D067,
12

(14)

which follows from Eq. (10) of Ref. [8]. In Eq. (14), s, is
the invariant mass squared of the interacting K~z pair,
whereas for BT and B° decays, the kinematic variable is
s13. The complex parameters, ¢} and c3, can be determined
through the Dalitz-plot analysis for each given charge state.
We note that the isolated K(1430) resonance contribution
can be obtained by replacing, once the parameters cf and c*;
are determined, FX*(s) by its pole part FI™°(s) given in
Eqgs. (45)—(47) of Ref. [8].

Following the momentum conventions of the S-wave
above, the KzP-wave amplitude of the B~ — [K~z"|pn~
decays can be parametrized as

PHYSICAL REVIEW D 96, 113003 (2017)
-AP(SIZa S23)
= (27 [K~ 7" ] p|Hest|B™)

2 2

My —m

_ P 2 2 K 4

= <513—S23—(M3—mn)—s )
12

X FP7(s12) F™(s12). (15)

The parametrizations for the transition form factors,
Fg(”l)(s), are discussed in Appendix A4, and those for
the Kz scalar and vector form factors, F(If(’i)(s) are
discussed in Appendix A 2.

The then available Belle and BABAR data were well
reproduced in the Ag p amplitude analysis of Ref. [8] in a
mg, range from threshold up to 1.8 GeV. Within the
factorization approximation, there is no contribution
from [Kz] partial waves, [ > 2; thus, one expects the
[Kz] D-wave contribution to be small. However, in order
to analyze the Dalitz-plot data over the full energy ranges,
additional phenomenological amplitudes are required.

C. Amplitudes for B* - K*K*K~

The weak effective Hamiltonian that describes this decay
channel is given by Eq. (3) with ¢ = s. Explicit factorized
expressions of B~ — K~ KK~ amplitudes can be found in
Appendix A of Ref. [47]. The effective invariant KK~
mass distributions of the decays B* — KTK~K* [48,49]
up to 1.8 GeV were shown to be well reproduced in the
factorization approach of Ref. [10], where the B*(pg) —
K*(p,)K*(p,)K~(p3) amplitudes were derived for inter-
acting K"K~ pairs in a relative S or P state. The
symmetrized term for a B~ decay is obtained by exchange
of the K*(p,)K~(p3) pair with the K~ (p;)K*(p,) one [or
exchanging the K*(p,)K~(p3) and K*(p;)K~(p3) pairs
in case of a BT meson] and is added to the amplitude. The
totally symmetrized amplitude using the Lorentz invariants

si; = (p; + p;)? for i # j is given by

1
A7 (512,813, 523) = ﬁ [A5 (512) + A5 (523)

+ Ap(s12) (513 — 523)

+ Ap(523) (513 = s12)], (16)

with S12 + S13 + Sy3 = m% + 3m%<
Following Eqgs. (2) and (3) of Ref. [10], the amplitudes
A5 p(sij), ij = 12 or 23, can be also written in terms of six

S P
complex parameters d7, and dj, 3 4,

A5 (sij) = di (MG = s;)) F§ K (si) + dSFG (si) F§X (547,

(17)
Ap(siz) = dUFYS (sij) + FYR(sip) [dh FRS (si5)
+ dgF{(dK(Sij) + dfFﬁK(sij)]’ (18)

113003-5



D. BOITO et al.

where the B — K scalar and vector transition form factors
FBX(s) in Egs. (17) and (18) are discussed in Appendix A 4
and the scalar and vector form factors FXK FKK pKK
F&X, and FXK are introduced in Appendix A 3.

Because of its small branching fraction to KK (4.6%),
the f,(1270) contribution was not introduced in Ref. [10].
However, in their study of the Dalitz-plot dependence of
CP asymmetry, the authors of Ref. [11] have included it,
and an amplitude analysis of the full Dalitz plot should also
add it together with a phenomenological term representing
the high invariant-mass contributions.

ITII. PARAMETRIZATIONS OF THREE-BODY
HADRONIC D-DECAY AMPLITUDES

A. Amplitudes for D* —» z*zx~x*

The decay D™ — z~ztz" is a Cabibbo suppressed
mode governed by the quark-level transition ¢ — dud.
The leading contribution to the amplitude arises from the
current-current operators and is proportional to V .,V}
which is O(4) in Wolfenstein parametrization, with
A =0.2257. At next-to-leading order (NLO) in QCD,
penguin operators contribute to the decay amplitude.
However, CKM unitarity implies that those come with a
coefficient V., V?,, which is O(2°). It is therefore safe to
neglect the penguin contributions. The dominant contribu-
tions to the effective Hamiltonian therefore are

Gr

Her = —=VeaVualC1(#) 01 + Co(u) 0y +Hee., (19)
V2
where the two four-quark operators read
0, = [aiyy(l = 7s5)ci] [ﬁj}’u(l - Ys)dj]» (20)
0y = [y (1 = ys)elldjr, (1 = rs)d;). (21)

In the description of D decays, however, because of the
limitations discussed in the Introduction, the Wilson
coefficients depart from their calculated values due to
nonfactorizable corrections. In the spirit of Ref. [22], it
is safe to assume they can be complex numbers and that the
corrections will depend on whether the zz pair is in the
S- or P-wave state (the same applies to the Kz pairs in
the next section). Our parametrizations below encompass
this assumption.

The parametrization we propose here is chiefly based
on the work of Ref. [12]. The crucial dynamical ingredient
to describe the two-body hadronic final-state interactions
are the scalar and vector zz form factors. The description
of the decay proceeds in full analogy to that outlined in
the Introduction for D* — K~ztz". Within this frame-
work, the main difference between these two decays is
that the relevant two-pion matrix element, namely,
(m=x"|dy*(1 — y5)d|0) is proportional to the zz vector
form factor only—no scalar contribution appears because
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the pseudoscalars involved have the same mass. This
implies that the n*z~ S wave in the decay D' —
- n" " receives no contribution from the diagram propor-
tional to a,(u). The decay amplitude for S- and P-wave
't~ pairs can be written as

(rt [~ x "] p[Het D¥) = Ag + Ap. (22)

where A§ and A} are, respectively, the S- and P-wave 77~
amplitudes. The S wave is dominated by the intermediate
scalar-isoscalar resonances f(500) and f,(980), while the
P wave is largely dominated by the p(770)°.

We label the four-momenta as D' (pp)—
at(p)x~(py)nt(p3) and define the invariant masses
squared s, = (py + p2)% 23 = (P2 + p3)*, and sj3 =
(pl + P3)2, with S12 + S13 + So3 = m% + 3m% Reso-
nances occur in the z"z~ states described in terms of
s1o and s,3 invariants. With these definitions, the ampli-
tudes A¢{, of Eq. (22) can be parametrized with three

complex parameters, ef and ef 5, as

AL (s12.503) = ef(mp—s10) Fgn(s1n) + (510 < 523),  (23)

Ab(s12. 513, 523) = [ef + €5 FP7(512)] (523 — 513) F1"(512)
+ (s12 < 523). (24)

We are implicitly assuming that nonfactorizable corrections
depend on the spin of the z" 7z~ pair and can be absorbed in
the parameters ek. In this parametrization, the two-body
# 7~ interactions are fully taken into account by the scalar
and vector 7z form factors, F§7 and F7"(s), respectively,
which are detailed in Appendix A 1. The vector D —» =
transition form factor, FP*(s), in Eq. (24) is discussed in
Appendix A 4. We observe that the D-wave resonance
contribution, arising from the f,(1270), is sizeable (with fit
fractions of about 20% [50,51]) and could be included in
data analyses through usual isobar model expressions.
Finally, in one of the models employed by the CLEO
Collaboration [52], some evidence for a contribution from
isospin-2 z " interactions is presented, which may have
to be included in a realistic analysis.

B. Amplitudes for D* - K- z*x*

The D™ — K~z*tz" decay is Cabibbo allowed, gov-
erned by the quark-level transition ¢ — sud. Since four
different quark flavors intervene, the effective Hamiltonian
for this processes does not include penguin-type operators.
At NLO in QCD, there are only two operators to be
considered,

Gr

Hegr = ﬁvcsvfm’[cl ()01 + Cy(u)O,] +Hec., (25)

where the relevant four-quark operators are
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(26)

0y = [ear* (1 —ys)silldjy, (1 = ys)uy,

0, = [e;7"(1 —ys)si|[d;r,(1 —ys)uj].

In Ref. [13], the Kz S- and P-wave amplitudes in this
decay were written in terms of the scalar and vector Kz form
factors, F{7(s). We use these results as the basis for our
suggested parametrization. We label the momenta as
Dt (pp) = n(p1)n" (p2) K™ (p3) and define the following
invariant masses squared of the final state: s3 =
(P1+ p3)% 523 = (P2 + p3)? and 515 = (py + po)?, with
S12 + S13 + Sz = sz + m%( =+ 21"’!,2r Thus, the S- and
P-wave amplitudes for D" — [K~ 7" |g pn" are

(27)

([K=n*]spr’ [He|D) = Ag + Ap. (28)

Contributions from D-wave resonances are known to be

rather small in this decay [51]. The S- and P-wave

amplitudes can be parametrized with complex parameters,
1, and f7,, as follows,

Dr
A (513, 523) = [ff(m% - 513) +f§w]

X F§(s13) + (513 <> 523),

S13

Sy3 — § 1
A;(s12,s13,s23) = |:fo($13,s23) +f§ (u__>

A2 S13
x F?”(Sls)] FEo(s13) + (515 <> 523).
(30)

with Q(S]3, S23) = Sp3 — S| — AZ/SB and AZ =

(mg? — mz)(m3. — m3). We assume that nonfactorizable

corrections are absorbed in the complex parameters, f f,z and
¥, to be fitted to the data.

The parametrization we introduce in Egs. (29) and (30)
makes the emergence of the scalar and vector Kz form
factors, F (I{’f(s), explicit. They are discussed in more detail
in Appendix A 2. The scalar and vector Dz transition form
factors also appear in Egs. (29) and (30). Their variation
with energy for the physical values of s is not significant,
but they affect the shape of the amplitudes close to the
edges of the Dalitz plot. Possible parametrizations are
discussed in Appendix A 4.

A version of the above description put forward here has
been employed successfully in Ref. [13]. Additional con-
tributions, e.g., with higher angular momentum or the
isospin-2 7tz interactions,” are small in this process. In a

Most experimental analyses agree this contribution is negli-
gible [53,54] with the exception of the CLEO Collaboration
analysis where a fit fraction of ~20% is attributed to the zz"

interactions [55].
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realistic high-statistics Dalitz-plot analysis, however, they
may be required and would have to be included in the
signal function through usual isobar model expressions, for
instance.

A final ingredient that is not present in our parame-
trizations is the genuine three-body hadronic final-state
interactions, which are most often neglected in experimen-
tal analyses. Their treatment is somewhat involved, and
only recently did this problem start to be dealt with.
An approach based on Feynman diagrams from effec-
tive Lagrangians was introduced in Refs. [56,57] precisely
in the case of D™ — K~z z". Alternatively, a description
based on a dispersive treatment introduced in Ref. [58] for
(w/¢) - nrrn decays has been applied to D — Kzrx
decays in Refs. [59,60]. Finally, a coupled-channel descrip-
tion including three-body scattering was performed in
Ref. [61]. These treatments do not allow for a simple
parametrization of the type we advocate here with the goal
of replacing isobar model expressions. These three-body
effects, if important, should show as deviations from our
description and represent a refinement to the amplitudes
discussed here that should be addressed in the future.

C. Amplitudes for D — K%z * 7~

The decay D° — K%z~ n" was treated within the frame-
work of quasi-two-body factorization in Ref. [14]. A good
reproduction of the Belle Dalitz-plot density distributions
[62] was obtained, and so were the distributions produced
by the BABAR model.” The parametrizations that follow in
the next subsections are based on the quasi-two-body
amplitudes derived in this study. The Hamiltonian that
describes this decay channel is similar to that of Eq. (25),
but besides a Cabibbo favored term proportional to Vi, V4,
there is also a doubly Cabibbo suppressed contribution
proportional to V7,V . The momenta are labeled as
D% pp) = K%(p1)n~(p2)x*(p3) where the kinematic
configuration is defined by s, = (p; + p2)% s13 =
(p1 + p3)? and sy3 = (py + p3)?, with 515 + 513 + 503 =
mén + mio + 2m2. We start with the parametrization of the
amplitude for the interacting K%z~ in an S- or P-wave state.

1. Parametrization of the D" — [K}n~|s pr* amplitudes

The following parametrizations are derived from
Egs. (66) and (68) of Ref. [14]. In terms of three complex
parameters g} , and g7, the parametrized amplitudes read

A(_S)",—(SIZ) = (g1 + Bs12)F§" (512). (31)

A2
-A%,—(Suysm’szs) = 9110 <523 — 513 +i> F{(ﬂ(slz), (32)

*The model is built from a fit to the BABAR Dalitz-plot data;
see Ref. [14].
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with Ag? = (mgo? — m2)(m2, — mZ). The 7K S-wave A _
amplitude includes the contribution of the scalar K§(800)~
and K;j(1430)™ resonances, and the P-wave A9 _ ampli-
tude includes that of the vector K*(892)~. Despite its small
fit fraction, the 7K D-wave D° — [K9x~],z" amplitude
plays an important role through interference. The contri-
bution of the tensor K3~ (1430) resonance can be para-
metrized by a relativistic Breit-Wigner formula, with a
magnitude and phase that should be obtained through a fit
to the data, as done successfully in Ref. [14]. This
component should be added to the S- and P-wave ampli-
tudes parametrized above.

2. Parametrization of the D* — [K3n*|g pn~ amplitudes

Likewise, the decay amplitudes for D° — [K%n"|g pn~
are given in Ref. [14] [see Egs. (84) and (85)] and can be
parametrized as

A2
AS (s13) = |g3(mz = s513) +g§1—0F(l))”(Sl3)] F§7(s13),

S13
(33)
A2
Ap i (12,513, 523) = 95 + G5 FP" (s13)] <s23 — St ﬁ>
X Fi7(s13). (34)

The 7K S-wave A} , amplitude includes the contribu-
tion of the scalar Kjj(800)" and Kj;(1430)* resonances,
and the P-wave A‘},’ . amplitude includes that of the vector
K*(892)*. The contribution from the D wave, that stems
mainly from the K3(1430)", could be parametrized by the
usual Breit-Wigner expressions.

3. Parametrization of the D" — K3|zx* ™ |5 p amplitudes

The weak D° — K§[z "7~ |g » decay amplitudes, follow-
ing Ref. [14], can be parametrized, using the same
momentum definition as before, as

Ag,0(523) = (g3 + ges23)Fin(s3). (35)

AP o (512:513.523) = (512 = 513) [95 F" (523) + gL F{ (523)]-
(36)

The zz S-wave A%, amplitude includes the contributions
of the scalar fy(500) (or o), f¢(980), and f(1400)
resonances. The [z77z7], pair can originate from the @
resonance through isospin violation. This introduces a term
proportional to the vector form factor F?(s,3) in Eq. (36).

’In Eq. (71) of Ref. [14], this term was explicitly written as
F(IU(SZ3) = m%}/(mg) — 83— immrm)'
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The effects of the vector p(770)° and w(782) resonances
are included in the P-wave amplitudes, A9, which also
contain the contribution of the p(1450)° and p(1700)°; see
the details in Appendix A 1. The D wave is dominated by
the f,(1270) tensor meson and must be included in a
realistic amplitude. In Ref. [14], it was parametrized by the
usual relativistic Breit-Wigner line shape.
The full decay amplitude is thus given by

A =AY+ A+ A+ A+ A+ AD
(37)

where the ellipsis denotes D- and higher-wave contribu-
tions and possible high invariant-mass contribution.

D. Amplitudes for D* — KKK~

The D° — KgK*K‘ decay channel was measured
by the BABAR Collaboration with high statistics [63].
Using the quasi-two-body factorization approach [64],
we parametrize [24] this decay channel with the definitions
of the invariants s,, 513, and s,3 similar to those intro-
duced for DY — ngﬁzr‘ in the previous section, re-
placing charged pions by charged kaons, the effective
Hamiltonian being identical (here, the charged kaon
mass is denoted mg). The momenta are thus labeled as
D%(pp) = K§(p1)K™(p2)K*(p3) with 515 = (p1 + pa)*,
siz=(p1+p3)’ s =(pp+ps)’ and s+ szt
Sp3 = my, + m2, + 2mg. The involved three interacting
kaon pairs, [K*K~],, [K3K~],, and [KOK*],, can be in a
scalar or vector state with L = S or P, respectively. The
isospin of the [K™ K], pairs can be either O or 1, but that of
the [K3K™], pairs is 1.

1. Parametrization of the D° — K}[K*K ~ | amplitudes

The decay amplitude in which the isoscalar [K K~ | pair
is associated with the f((980) and f((1370) resonances,
and the isovector one is related to the ay(980)° and
ay(1450)° resonances, can be parametrized as

A (523) = hf(m2, — 523) FEK (523)
+ h3(m2, — 523) FEK (533)
+ hi(m3, — 523)GKK (523). (38)
The amplitude with the isovector [K°K~]g pairs in an

S-wave state, which include the a((980)~ and ay(1450)~
resonances, can be parametrized as

A _(s12) = (h§ + hgslz)G(l)(k(Slz), (39)
and the corresponding amplitude associated with the

ap(980)" and ay(1450)" resonances can be para-
metrized as
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0 ngoKi(Sm) S( 12 KK
-AS,+(S13): h6T+h7(mK—S13) Gy (813)-

(40)

The scalar-isocalar form factors, F’ gnlfs) (s), in Eq. (38), and

the scalar-isovector ones, G{fk (s), in Egs. (39) and (40) are
detailed in Appendix A 3, while the scalar D to K transition
form factor F{X(s) is defined in Appendix A 4.

2. Parametrization of the D° — K$[K* K~ amplitudes

We parametrize this decay amplitude, where the isoscalar
and isovector [KTK~]p pairs contain contributions from
the (782), w(1420), ¢(1020), p(770)°, p(1450)°, and
p(1700)° resonances, by the expression [24]

AOP,O(SIZa 513, 523) = ($12 — 513)(hfF{{;K_(523)

+ P (523)). (41)
Likewise, one can express the amplitude in which the
isovector [KYK~]p pair is associated with the three p~
resonances by

0 P 2 N
Ap _(512,513,823) = h} S23_S13+(mD°_mK)T
X FE 8 (s1), (42)

while the parametrization of the amplitude associated with
the p™ resonances reads

Ag,+(S12,S13,S23) = [h4P +h§F?OK_ (513)]

2 2
m2,—m

2 2\ Mo — Mg

x 323—S12+(mDo—mK)T

1

xF{ﬁkU(sB). (43)

TABLE L

PHYSICAL REVIEW D 96, 113003 (2017)

The vector-isoscalar form factor, F fffs) (s), and the vector-

isovector form factors, FXX(s) and FX'K’(s), appearing
in Egs. (41) to (43) are defined in Appendix A 3. The
parametrization of the vector D to K transition form factor
FPK(s) is discussed in Appendix A 4.

The full decay amplitude is the coherent sum of all the
subamplitudes discussed above,

A=A +Ap A A A A+ ARt
(44)

where the ellipsis denotes the omission of higher waves that
could be included using Breit-Wigner line shapes.

IV. CONCLUDING REMARKS

We have introduced alternatives to the isobar-model
Dalitz-plot parametrizations of weak D and B decays into
exclusive final states composed of three light mesons,
namely, the various charge states zzz, Kzz, and KKK.
Such isobar parametrizations have been frequently
employed in fits, although they do not respect unitarity,
which leads, among other effects, to a sum of branching
fractions that can exceed the total decay width by large
amounts. As a consequence, any strong CP phases that may
be extracted from these fits must be taken with caution.

Our alternative parametrizations, while not fully three-
body unitary, are based on a sound theoretical application
of QCD factorization to a hadronic quasi-two-body decay.
We thus assume that the final three-meson state is preceded
by intermediate resonant states, which is justified by ample
phenomenological and experimental evidence. Analyticity,
unitarity, chiral symmetry, as well as the correct asymptotic
behavior of the two-meson scattering amplitude in S and P
waves are implemented via analytical and unitary S- and
P-wave zz, nK, and KK form factors which enter the
hadronic final states of our amplitude parametrizations.
These amplitudes can be readily used adjusting the

For each B-decay channel in the first column, the second column refers to the equation of the proposed

amplitude parametrization, and the third column lists the dominant contributing resonances.

Quasi-two-body channel See equation:

Dominant resonances

+

(10)
(I
(12)
(13)
(14)

B~ - n[ntn
mlp
B - K[ztx7]g
B — K[z"z7|p

B_(O) — [K_(0)7T+}Sﬂ_
v

B~ - [x"

B~ — [K-OzH]pz~ (15)
B~ — K [K*K ], (17)
B~ - K [K*K], (18)

J0(500), f0(980), fo(1400)
p(770)°, p(1450)°, p(1700)°
f0(500), f0(980), fo(1400)
p(770)°, p(1450)°, p(1700)°
K;5(800)°0H), K5(1430)0+)
K*(892)°), K*(1410)°+)
f0(980), fo(1400)

p(770)°, p(1450)°, p(1700)°, w(782),
w(1420), »(1650), $(1020), ¢(1680)
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TABLE II.
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As in Table I but for hadronic quasi-two-body D decays.

Quasi-two-body channel See equation:

Dominant resonances

Dt = [zta7)gn™ (23)
Dt = [zta7)pr" (24)
Dt - [K nt]gnt (29)
Dt - [K nt)pn™ (30)
- K7 )gnt (3D

- [K§z~]pn* (32)

O > [K%xt)gn™ (33)
D — [K%nt]pn~ (34)
D — K[zt z g (35)
D° - K[zt z7], (36)
D® - K§[KTK g (38)
D® —» K*[K°K~ | (39)
DY — K-[K°K*]g (40)
D° - KS[KTK]p (41)
D’ — K*[KOK Ip (42)
D® —» K-[K°K*], 43)

f0(500), f5(980), fo(1400)
p(770)°, p(1450)°

f0(500), f0(980), fo(1400)

p(770)°, w(782)

£0(980), fo(1400), ay(980)°,

a0(980)", ay(1450)

a0 (980)*, ag(1450)*

»(1420), $(1020), p(770)°,
p(770), p(1450)
p(770)*, p(1450)*

ap(1450)°

»(782), p(1450)°

parameters in a least-square fit to the Dalitz plot—for a
given decay channel—and employing tabulated form
factors as functions of momentum squared or energy.
The different quasi-two-body B- and D-decay channels
for which we provide explicit amplitude expressions are
summarized in Tables I and II, respectively. For each
channel, the relevant equation for the parametrization is
cited, and the dominant contributing resonances are listed.
Let us add a practical remark: in any application of the
parametrized amplitudes to experimental analyses, one can
set to zero one phase of the S or P wave amplitude since the
Dalitz-plot density is not sensitive to its value.

With this “tool kit,” we strongly hope to contribute to
more sophisticated experimental extractions of three-body
decay observables, in particular CP-violating phases.
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APPENDIX A: FORM FACTORS

In quantum field theory, it can be shown, using
dispersion relations [65], that strong-interaction meson-
meson form factors can be in principle calculated exactly
by means of the coupled-channel Muskhelishvili-Omnes
(MO) equations [66], provided one knows the meson-
meson scattering matrices at all energies. In practice, our
knowledge about scattering phases is incomplete, and one
has to resort to simplifications. Eventually, different
approaches to the calculation of these form factors lead
to slightly different results. In the following, we briefly
describe several state-of-the-art descriptions of the various
form factors employed in the decay-amplitude parametri-
zations presented in this work. These form factors can be
obtained from the authors of the original works in the form
of numerical tables and be readily employed in a concrete
Dalitz-plot analysis.

1. zz form factors
The parametrizations of the amplitudes B~ -z~ [z7 77 |5 p
in Egs. (10) and (11), B — K[ﬂiﬂﬂ”, in Egs. (12)
and (13), D* — a [z 7"]sp in Egs. (23) and (24), and
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D° — K[z " x5 p in Egs. (35) and (36) require the knowl-
edge of the pion nonstrange scalar form factor, F§7 (s;;), and
vector form factor, F7' 7 (s ;7). The strange pion scalar form
factor F{7(s;;) enters the parametrization of the B —
K[z*7¥]; amplitude in Eq. (12).

a. Scalar form factors

The scalar form factors F; g:(s)(sij) can be found, for

example, in Refs. [6,9,14,44,67].6 In Ref. [9], the form
factors have been derived using a unitary relativistic
coupled-channel model including 77, KK, and effective
(27)(2x) interactions together with chiral symmetry con-
straints (an approach put forward in Ref. [68]). The latest
version of the corresponding nonstrange form factors was
obtained in Ref. [14], with constraints from the high-
statistics Dalitz-plot data of the D° — Kg;ﬁﬂ‘ from
Refs. [63,69]. In this approach the zz7-matrix is that of
the solution A of the three coupled-channel model of
Ref. [70], where the effective mass is my,) = 700 MeV.

For an alternative, one can employ the scalar pion form
factors obtained from the numerical solution of a coupled-
channel MO problem, as derived in Ref. [44]. This
approach has been recently revisited in the context of
B — J/ynr decays in Ref. [67]. There, the system of MO
equations is solved with input from chiral symmetry
constrained by recent lattice data. These form factors suffer
from an uncertainty that stems from the kaon form-factor
normalization at zero (which enters through the coupled-
channel equations). This theoretical uncertainty is more
pronounced in the scalar pion form factor at energies above
800 MeV.

The modulus of the pion nonstrange scalar form factor is
characterized by a dip arising from the f((980) contribu-
tion and by two bumps of which the origins are the f,(500)
and f((1400) resonances. The strange scalar form factor is
dominated by a peak around the f(980) contribution. The
form factors are depicted, for instance, in Fig. 1 of Ref. [9]
for the nonstrange scalar form factor and in Fig. 6 of
Ref. [67] for both the strange and nonstrange scalar cases.

b. Vector form factor

The pion vector form factor can be extracted accurately
from experimental data for 7= — 77 7%, and ete” —
#tn~. However, while in the 7= decay the current has
only an isospin-1 component, the eTe™ annihilation also
implies an isoscalar component. Recent descriptions can be
found, for example, in Refs. [45,46,71].

®In Refs. [6,7,9,12,14], the form factor is defined as I'}* (sij) =
3/2F§r(s;;) with F§r(0) = 1. The relation for the strange case
is ambiguous as F7(0) =0 in the lowest order of chiral

symmetry (see Refs. [44,68] for more details).
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A good fit to D° — Kz~ z* decay data is obtained in
Ref. [14] using the vector form-factor parametrization
employed by the Belle Collaboration in their data analysis
of 77 = 77 7%, decays [45]. It is based on a Gounaris-
Sakurai form, and the parameters used are those of
Table VII of Ref. [45]. The Dalitz plot is also well described
by the unitary parametrization of Ref. [46].

Another recent unitary description that can be useful in
data analysis is the dispersive representation of Ref. [71].
This description of the form factor uses Belle data on the
7 — zav decays to constrain a three-time subtracted dis-
persive representation.

Finally, care must be exercised to correctly take into
account both the isosvector and isoscalar components. For
instance, in D™ — z~ 2"zt decays, the current that couples
to the 7z~ pair in a P wave is c_lyﬂd, which contains both
isospin 0 and 1. One therefore expects the @ contribution to
be sizeable in high-statistics data sets. The inclusion of the
@ contribution can be done as discussed in detail in
Ref. [67] [see in particular their Eq. (3.7)]. An alternative
is to take into account the contribution of the @ using the
respective isobar model amplitude, described in terms of a
Breit-Wigner parametrization.

2. Kr form factors

The Kr scalar form factor, F (’f”, and the Kz vector form
factor, F f”, enter our parametrizations of the B —
[Kn*)gpr*, DT — [K~n"]gpn", and D° — [K$x7¥|s pr™
amplitudes. Below, we discuss the determination of these
form factors.

a. Kz scalar form factor

Sophisticated computations of the scalar F5” form factor
by means of a coupled-channel dispersive representation
can be found in Refs. [72,73]. The form factor derived in
Ref. [72] from two coupled-channel MO equations depends
on the ratio rg, = fx/fz fx and f, being the kaon and
pion decay constants, and was used with success in
Refs. [8,14]. It contains the contributions of the K(800)
[or k(800)] [74] and K(1430) resonances clearly visible as
bumps. Its modulus is plotted in Fig. 2 of Ref. [8].

The same form factor was derived in a coupled-channel
(Kz, K, and Kn') dispersive framework imposing con-
straints from Chiral Perturbation Theory at low energies in
Ref. [73]. The form factors are obtained from the numerical
solution of the coupled-channel equations with input from
the T-matrix elements previously calculated in Ref. [75].
This is the form factor that was employed in the description
of D™ - K~z z" decays in Ref. [13].

b. Kz vector form factor

The Kz vector form factor can be extracted with
accuracy from the spectrum of 7 — Kzv decays. These
decays are largely dominated by the vector contribution,
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and the present statistics allows for a description with good
precision. The unitary form factor derived in Ref. [72] from
three coupled-channel equations has been used in Ref. [8].
In Refs. [76,77], the form factor is described by a dispersive
relation with three subtractions and constrained by the
Belle data for = — K¢z~ v, [78] and information from K3
decays. The K*(892) and K*(1410) resonances contribute
to this vector form factor. The contribution of the K*(1680)
is difficult to assess due to the larger error bars around
1600 GeV in the spectrum of v~ — K¢n v,. This form
factor has been employed with success in the description of
DT — K~ztz" decays of Ref. [13]. It also leads to a good
fit of the present high-statistics D° — K%z "z~ data [14].

3. KK form factors
a. Scalar-isoscalar case

The kaon nonstrange and strange scalar and isoscalar
form factors, F(’)(n_(‘v)(si‘,-),7 enter the B~ — K~ [K*K™|g
amplitude in Eq. (17) and the D° — K%[K* K~]; amplitude
in Eq. (38). They have been calculated in Ref. [10] with the
three coupled channels 7z, KK, and 47 [effective (27)(27)
or oo or yy, etc.] in the approach developed in Ref. [9] to
derive the pion scalar form factors (see Appendix A 1 a).
Through their coupling to KK, the resonances f,(980) and

f0(1400) contribute to F (’fn@) (5;7), as can be seen from the
spikes present in Fig. 1 of Ref. [10]. An alternative derivation
of these form factors using MO equations has been presented
in Ref. [44] and represents a sound alternative.

b. Scalar-isovector case
For an isospin 1 [KTK~| pair and assuming isospin
symmetry, the scalar-isovector form factor GXX(s) =

Gy ¥ (s) = GE'¥ (5) = GE'¥" (s) is defined as [79]

B'G*(s) = (K*(px-)K* (px+)|ad|0). (A1)

with B® = m2/(m, + my). This form factor, entering the
D — KY[K*K~]g amplitude in Eq. (38), was calculated in
Ref. [79] from coupled MO equations for 7z and KK
channels. The above form factor includes the contributions
of the a((980) and a(1450) seen as bumps in their moduli
(see, for instance, the right panel of Fig. 7 of Ref. [79]).

c. Vector case
For the B~ — K~ [K" K], amplitude in Eq. (18) and for
the D° — K9[K"K~], amplitude in Eq. (41), the vector
form factors Ff % (s) with ¢ = u, d and s are defined
through [80]

"In Refs. [6,10,11], these form factors are also defined
as T4 (sy) = F(’)(nK(sij)/\/z and T¥(s;;) = F§K(s;;)  with
FKK(0)=FKK(0)=1 (see Refs. [44,68] for more details).
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(K*(p)K=(p))]ar.ql0) = (p; — p;),F¥ X (sij).  (A2)

They have been calculated using vector dominance, quark
model assumptions, and isospin symmetry in Ref. [80] and
receive contributions from the eight vector mesons: p(770),
p(1450), p(1700), w(782), w(1420), w(1650), ¢(1020),
and ¢(1680). The form factor can be written in closed form
using, for example, Eqs. (23) to (25) of Ref. [10]. The
parameters needed can be obtained from Table 2 of
Ref. [80].

The isovector KK form factors that enter the amplitudes
D° — KF[KYK*], are defined:

(K" (p)KO(p))liy,d|0) = (pi = pj), F¥ K(siy),  (A3)
(K=(pi)K°(p)dr,ul0) =(p; = pj), F ¥ (si7).  (A4)

Using isospin symmetry, one can obtain the following
relations [80],

F{ﬁko(sij) = _F{(KO(sij) = ZFﬁI;; (sij).  (AS)
where Ff & (s;;) is the I = 1 component of the charged
kaon form factor. This form factor is described by Eq. (23)
of Ref. [10] keeping only the p meson contributions.

4. Heavy-to-light transition form factors

As discussed in the Introduction, factorization theorems
allow one to perturbatively integrate out energy scales
and yield approximations which are exact in the infinite
heavy-quark limit. To a reasonable extent, the decay
amplitudes factorize in terms of products of hard and soft
matrix elements. Among the latter, heavy-to-light transi-
tions factors have been extensively studied in the past two
decades, though their precise nonperturbative evaluation
remains a challenge. Full ab initio calculations valid in any
momentum-squared region are currently out of reach, and
one is mostly left with modelling the heavy-to-light
amplitudes with as much input from nonperturbative
QCD as possible; in many cases, form factors are only
obtainable for a limited range of momentum squared, ¢,
values and then extrapolated to other g> values.

The transition amplitude of a heavy pseudoscalar meson
H to a lighter pseudoscalar meson P via an electroweak
current, (P(pp)|J,|H(ppy)), is described by two dimen-
sionless form factors,

<P(PP)|77’/4(1 —vs5)h|H(py))
=F.(¢*)(pu +pp)y + F-(¢*) (Pt — PPy

where | = u, d, s, h =c, b and where the transferred
momentum is ¢ = py — pp. It is convenient to rewrite this
amplitude in terms of another pair of form factors, namely,
the scalar and vector form factors, Fy(g?) and F,(g?),
respectively, introducing the momentum K = py + pp
[81-83]:

(A6)
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<P(PP)|ZV/4<1 —vs)h|H(py))

~ @)K,

K-q ] K
——5 4| + Folq”)
2 W e

14, (A7)

The relation between the two sets of form factors is
given by

Fl(q2) = F+(612)’ (A8)

2
Fo(@?) = FL (@) +F- (@) g—.  (A9)

g
where at ¢> =0 the identity, F;(0) = F,(0) = F,(0),
holds. Notice that the above definitions are identical for
the (S(ps)|J,|H(py)) transitions, e.g., when the final state
S is a scalar meson.

The advantage of the Lorentz decomposition in Eq. (A7)
lies in the simplification of the decay amplitudes: if the
meson, emitted via an electroweak gauge boson, is a
pseudoscalar (or scalar), then only Fy(g?) enters the decay
amplitude. Analogously, if the emitted meson is a vector (or
axial-vector) meson, the decay amplitude only depends
on Fy(q?).

The weak transition of a heavy pseudoscalar meson H to
a lighter vector meson V can be decomposed into Lorentz
invariants as [31]

(V(py.ev)|ly,(1 —y5)b|H(py))
=2V €y q

B mewa/se?”p%p@ —2imyAy(q?) 7%

. . €vq
—i(my + mv)Al(qz) [evu - ‘;—2%}

) €y q
+iAs(q?) L

2 2
my — my
u|»
mH~|—mV

|:(pH + pV)ﬂ - 612

(A10)

where €y is the polarization of the final-state vector meson,
q=py—Dpy, py=mi, and p} = m3. Other, related
decompositions are possible; see, e.g., Refs. [81-87].
Their relations with the form factor decomposition in
Eq. (A10) are detailed in Ref. [83] where algebraic inter-
polations for the transition form factors can also be found.

A variety of theoretical approaches have been applied to
the transition form factors in Eqs. (A7) and (A10), among
which are analyses using light-front and relativistic con-
stituent quark models, light-cone sum rules, continuum
functional QCD approaches, and lattice-QCD simulations.
An experimental extraction of the transition form factors
from semileptonic decays for a range of g> momenta is
possible and has been obtained, for instance, in the case of
D° — z~e*v, decays [88]. These decays are considerably
easier to analyze than nonleptonic decays characterized by
complicated final-state interactions. For a brief summary of
the theoretical approaches, we refer to Ref. [89], where a
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numerical comparison of the theoretical transition form
factor, F8~7(4?), predictions for various ¢* values is pro-
vided in Table I and which highlights pronounced varia-
tions among the approaches. A comparison of numerical
results for the B — K* form factors obtained in lattice-
QCD, light-cone sum rules, and Dyson-Schwinger equa-
tion approaches is presented in Fig. 2 of Ref. [87].

APPENDIX B: RELATIONS BETWEEN THE
PARAMETRIZED AND ORIGINAL AMPLITUDES

The aim of this Appendix is to relate the amplitudes
introduced in Secs. II and III to those derived in quasi-two-
body QCD factorizations [6—10,12—14], which represents
the original motivation of the present parametrizations. The
main purpose of this section is to make contact with the
original works and make explicit the physical meaning
behind the different parameters of the amplitudes we
discussed here. The relations are presented following the
order of appearance of the three-body decay amplitudes in
Secs. II and III. Explanations of and details about constants
and form factors that occur in the amplitudes below can be
found in the original references we quote.

1. B-decay amplitudes

In the parameters below, when necessary, the super-
scripts —,0,+, and O refer to the B~,B°, B*, and B°
mesons, respectively.

a.B* > rtxtn-
Comparing the parametrized B~ — 7~ [z*7"|g p S and P

amplitudes, Eqs. (10) and (11), to the corresponding
amplitudes, Eqgs. (22) and (23), in Ref. [9] yields

G
af = = s/ R )u(Rsa). (B
G M3 — m?
S F B T —
=—By,——= R B2
) /2 omb_mdv(” 5)s (B2)
G f
P F n ABRp 2 —
a; =—=Np—A myz)u(Rpz™), B3
(= AN A R uRe), (B3)
G
af = “Lw(z Rp). (B4)

V2

The definitions and numerical values of all the quantities in
Egs. (B1) to (B4) can be found in Ref. [9]. The functions
u(Rpn~), v(z~Rg), and w(z~Rp), corresponding to the
short-distance contributions, are proportional to the CKM
matrix elements and to the effective Wilson coefficients.
The dominant meson resonances are Rg = f(980) and
Rp = p(770)° (see Ref. [9]). Applying CP conjugation
to the right-hand side of Eqgs. (B1) to (B4) yields the
relations between the a; coefficients of the parametrized
B* — n[x~n"]sp amplitudes to the original amplitude
parameters.
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b.B - Krx*n~

Comparison of the B~ — K~ [z 7~ ] amplitude given in
Eq. (1) of Ref. [6] with the parametrized form (12) leads to

B—(n7)g

by¥ = f =lfeFy " (mi)U-Cl, (BY)
Gr 2V2B
byS = —L£ O (M3 —m3)V, B6
2= Bmy—m, ( B — mx) (B6)
pes — — CGF L (M3 —m3)C, (B7)
3 \/E K
where C = f,F,(4,P$™ 4 2,P,) with 1, = V,, Vi, and
A, =V, V5. Furthermore, for i =1, 2, 3,
_ bS
poS =~ BS
"= (B8)
b0 = b S ). (B9)

The quantities entering Eqs. (B5) to (B7) are defined in
Ref. [6], where their numerical values are also given.

The parameter b7” of the B~ — K~ [z x~]p amplitude
(13) is related to the parameters described in Ref. [7] in the
following way,
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op _ AYA°)
: \/zmﬂf P ’

(B11)

with
A™ = Gpm,[fxAy " (M%)(U™ = CP) + f,F3~K(m2)W-,
(B12)

A® = Gpm,[fAd ™" (M%) (U + CP) + f,F3=K(m2) W),
(B13)

AT(A%) = —A~(A%) (25, 27). (B14)

Definitions and values of the parameters appearing in
Egs. (B12) to (B14) can be found in Ref. [7].

In Egs. (B5), (B6), (B12), and (B13) the short-distance
contribution functions U, V, U~ and W~ are products
of CKM quark-mixing matrix elements with effective
Wilson coefficients.

A Comparing the B~ — [K~z*]gz~ and B® — [K'7~ gzt
bt = , (B10)  amplitudes given by Egs. (10) and (14) of Ref. [8] with
\/zmﬂf P their parametrized forms (14) leads to
|
s G ‘ afo(S) . ajo(S) | .
ci® = S5 =) =) 2 (at(9) - B 1 o)+ a () - )| @19
M% — m2)(m% —m2) ”(S) ag(s)
L —) ( B z K i 8 u 2 c _ 8 ¢ B16
ot =6 e [ (0= er) i - a) | @i
5 G
o’ = 7% (Mo — m3)(mzo — m3)[A,(ar + af(S) + afy(S) + cf) + A(a5(S) + afo(S) + c5)]. (B17)
(M%O m%z)(mz_ﬂ B mz) u u u c c c
%S = —V2Gy (”fb — md)(mK— m) [2u(ag () + ag(S) + cg) + A.(ag(S) + ag(S) + cg)]. (B18)
TS = OGS g - ), (B19)

where A, =V, V.

Comparison of the parametrized Kz P-wave amplitude (15) to the original one in Egs. (11) and (15) of Ref. [8] gives

7= 3% {/lu (az(P) _ a‘foz(P) n CZ’) + A <a5(P) - agOZ(P) + ci)

m, [y

Lo IV(K) [,1”<ag(P)—ag(P)

2

(B20)

+ cg) + <ag(P) - agéP) + cgﬂ }

(B21)
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cfOP = OGS a5 ). (B22)
The values and the definitions of the different short range
parameters entering Eqs. (B15) to (BZl) can be found in
Ref. [8]. Let us just mention that the a;, a (S /P),i=4,
6, 8, 10, are leading order factorization (effectlve Wilson)
coefficients to which vertex and penguin corrections are
added. The c?(c), i=4, 6 are free fitted parameters
representing nonperturbative and higher order contribu-
tions to the penguin diagrams [8].

¢. B* > K*K-K*
Comparison of the original B~ — K~ [KTK ™| p ampli-

tudes (see Eqgs. (2) and (3) of Ref. [10]) with the para-
metrized forms of Egs. (17) and (18) leads to

SRt
d1-5=—7 2fcFy K S (my)y, (B23)
2B
i =220 4 _wdye,  (B24)
my, s
Grf
—P FJK ,Bp 2
—LK , B25
1 \/Ef/) 0 ( K) ( )
Gp
d;? =—-—Ew,, (B26)
V2
Gr
d;P = —ZLw,, (B27)
V2
Gr
d;P = ——Lw,. (B28)
\/E 3

The definition and numerical values of the different
parameters entering Eqs. (B23) to (B28) can be found in
Ref. [10]. The parameters y, v, w,, wy, and w, represent the
contribution of the short range weak-decay amplitudes. For
the BY — K*[K*K~|g p amplitudes, one has

d*" = a0, > dpae > 2. (B29)

2. D-decay amplitudes
a.DY >atnrx*
The parameters of the D* — 7=zt 2" amplitudes given

in Eq. (23) can be related to the underlying description of
Ref. [12] as follows:

G

elg = évch;dalfﬂngf’ (B3O)
G

el ==L (B31)

VedVigarfoxs
ﬂ d dlf)(P
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egfjf
2

eff

VCquch (B32)

The parameters xS are related to the contribution of
intermediate resonances in the matrix element of the a
type [12]. We use f, = v2F, = 130.5 MeV.

b.D* - K~ n*x*
The complex parameters of the D* — K~z z" ampli-

tude given in Eq. (29) can be related to the description of
Ref. [13] as

Gr

f]g = \/ivcs‘/*dfﬂxs ay, (B33)
P __ G *
f] \/EV(,\V dflt)(V ay, (B34)
Gr y
fZ = ﬁVcsVudA+a2, (B35)
p_ Gr V. Vi A2 (B36)

1= \/E ud2+92-

The notation and definitions are analogous to the D —
m~rata’ case. We use again A2 =(m%-—m32)(m%, —m%).
The parameters ;(eff are related to the contribution of
intermediate resonances in the a,-type amplitude. We refer
to Ref. [13] for their precise definition.

As a final comment, experiments found an offset of
about —65° between the S- and P-wave phases [53-55] that
is crucial to reproduce the Dalitz plot [13]. This offset in the
phases is described, in the parametrization proposed here,
by the phases of the ff’z parameters. We should point out,
however, that the dynamical origin of the phase difference
between the S and P waves may be related to hadronic
three-body rescattering that is beyond our description [56],
although some controversy persists (see Ref. [61]).

c.D’ — Kgn'*ﬂ:‘

Comparison between the different Agp) amplitudes,
Egs. (31) to (36), and the M; amplitudes, Eqs. (66)—
(69), (71), (84), and (85) of Ref. [14] yields the following
relations.

For the D° — [K97~]g pn" amplitudes, one has
g} = aymy, + pimz, (B37)
9 = —(a1 +p), (B38)
ay = —TFal 1S =Fo Fy Rk ](mfzz)’ (B39)
b= —iazAlxlfDOFo Kol (m%o), (B40)

2
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gf=@/\1 Jo_ fDRAR] (2
Y-
—a, P AT R G2 )| (B41)
fK*‘

The relations for the D — [K97"]g pz~ amplitudes are

==L hzamfp F ). (B42)
g = %A2ZS‘11’ (B43)

@ =- %Angaz j{:i ASP[KU;ﬁ]n- ngO)’ (B44)
&= /\229611 (B45)

And for the D° — K%[z*77]; p amplitudes, it reads

g3 = aym?, + prm>,, (B46)
g = —(a + ), (B47)
G DRzt 7]
a = —7612(/\1 + M)y f ko F (m%). (B48)
G KORg[ztn™], o
pr = —702(1\1 + Ma)xaf poFy (m70), (B49)
G ORpnt 7
o =Sl +A) ¢ 1Al )
+ FooAy T 2], (B50)
p_Gr Dlw
95 = ) (Al +A2)\/— S koAg ( Ko)
Oztz~ Yorr
—fDOAK Jo (mf)o)] Sot, (B51)

For the definitions and numerical values of all param-
eters entering Eqs. (B37) to (B51), see Ref. [14].

PHYSICAL REVIEW D 96, 113003 (2017)
d. D’ > K}K*K~
Comparison between the parametrized Agp) amplitudes,

Eqgs. (38) to (43), and the corresponding amplitudes of
Ref. [24] yields for the kaon pairs in scalar states

G
hf = 4\;5 (Al + Az)aM"fKUFD fo( Ko), (B52)
s Gr 5 Kfor, 2
l’l2 = _ﬁ(l\l + A2)Clz}( fDOFO (mDo), (B53)
DO 0
hi = (Al + As)ary!! fKOF (m KO)’ (B54)
G Da;
hi = —7/\2)( [alfk+mDoF 0(’"%)
+arfpomiFy (), (B5S)
s _Gr oy Dlag . o Kray .
hs = 7/\2)( [a1fK+Fo (mx) + a)fpoF (mDO)L
(B56)
1S = —SF A yay (my — m) (mdy — m? B57
6= "5 1a(m Mo _mk)(mk_mKO)v ( )
1S = =95 Ny fip FX (m2 B58
1T, 1ax " fpoFy (mDo). ( )
For the kaon pairs in vector states, one has
G 0 0
=G+ A A (k). (B59)
P
G fpo K%
=+ A AT ). (B0
G © D0y Kp
By = S LA ) LA ).
P P
(B61)
G o+
i = =N AT i) (Be2)
P
G
hE = 7”/\161l (B63)
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