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Recursive jigsaw reconstruction: HEP event analysis in the presence
of kinematic and combinatoric ambiguities
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We introduce recursive jigsaw reconstruction, a technique for analyzing reconstructed particle
interactions in the presence of kinematic and combinatoric unknowns associated with unmeasured and
indistinguishable particles, respectively. By factorizing missing information according to decays and rest
frames of intermediate particles, an interchangeable and configurable set of jigsaw rules, algorithms for
resolving these unknowns, are applied to approximately reconstruct decays with arbitrarily many particles,
in their entirety. That the recursive jigsaw reconstruction approach can be used to analyze any event
topology of interest, with any number of ambiguities, is demonstrated through twelve different simulated
LHC physics examples. These include the production and decay of W, Z, Higgs bosons, and
supersymmetric particles including gluinos, stop quarks, charginos, and neutralinos.
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I. INTRODUCTION

Using a growing data set of high energy collisions,
experimentalists have many choices in strategy for search-
ing for evidence of phenomena beyond the Standard Model
(SM) of particle physics. Motivated by a lack of explan-
ation in the SM for anomalies like the masses of neutrinos,
matter/antimatter asymmetry, and the identity of dark
matter, they are looking for signs of new subatomic particle
states appearing in the debris of collisions, whose presence
is inferred kinematically from the particles reconstructed in
dedicated detectors.

Extensions to the SM, like supersymmetry (SUSY)
[1-10], introduce many additional, undiscovered particles,
including dark matter candidates like the lightest weak-
scale SUSY particle. Massive dark matter particles are
often prevented from decaying to lighter SM particles by a
conserved symmetry, such as R-parity in SUSY, which
results in them being stable and having a low probability of
interacting with particle detectors if they are produced in
collisions.

The key to observing the production and decay of new
particles in HEP experiments, and performing precision
studies of existing ones to infer deviations from SM
predictions, is being able to precisely resolve their presence
in collision events through the identification and measure-
ment of their decay products in particle detectors. If the four
vectors of all the final state particles are measured accu-
rately, they can be combined to estimate the properties of
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any intermediate particles appearing in these events.
Unfortunately, there are complications in studying many
processes of interest beyond how well these particles are
measured. If there are neutrinos, or dark matter particles,
produced in collisions, they will escape undetected, taking
with them crucial information about not only their proper-
ties, but also those of any intermediate particles which
appeared in their production. Similarly, many of the
reconstructed final state particles appearing in detectors
can be indistinguishable, with a loss of information as to
how they should be correctly combined into the actual
intermediate resonances that realized them.

These challenges are examples of kinematic and combi-
natoric ambiguities appearing in the analysis of particle
interactions. In this paper we introduce recursive jigsaw
reconstruction (RJR), a technique that can be applied to
resolve such unknowns in any production or decay top-
ology of interest, irrespective of their number. The RJR
approach analyzes events by factorizing any unknowns
according to the different decay steps of intermediate
particles expected to appear in an event, making choices
for the those associated with each particle decay using a
combination of one or more jigsaw rules (JR’s), inter-
changeable and configurable algorithms for resolving
individual decays. Each event is then analyzed recursively,
iteratively moving from the laboratory frame, where
particle four vectors are measured, through each expected
intermediate decay frame.

An overview of the RJR approach is provided in Sec. II,
where it is compared to existing HEP event reconstruction
strategies. What sets apart the RJR technique is its general
applicability achieved through its comprehensive library of
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JR’s, which includes algorithms for resolving any combi-
nation of unknowns that can be encountered. Each of these
JR’s are motivated and described in this paper through a
series of increasingly complex examples involving a
collection of SM and new physics processes at a hadron
collider. The notation used throughout this paper is defined
in Sec. III, while the event generator used for simulating the
physics processes discussed in each example is described
in Sec. IV.

Twelve different physics examples are considered,
organized according to the types of JR’s that are being
studied. Section V introduces JR’s for final states with a
single invisible particle, including examples with the
production and decay of W bosons, top quarks, and charged
Higgs bosons, as may appear in some extensions of the SM.
JR’s for decays with two invisible particles are described in
Sec. VI, with their use demonstrated in examples involving
Higgs bosons decaying to W’s, and both stop quark and
neutralino pair production in SUSY scenarios, with decays
through top quarks, Higgs, and Z bosons. To demonstrate
how the RJR approach can independently measure the
masses of many particles in a single event, examples of
resonant and nonresonant top pair production are described
in Sec. VII, with final states containing b-quarks, leptons
and neutrinos with intermediate W bosons. The SUSY
analogue of this process, 17 — by*(£0)byT(£7), is also
discussed.

JR’s for decays to an arbitrary number of invisible
particles are described through the example of nonresonant
N >2W(¢v) production in Sec. VIII, followed by a
demonstration of how many JR’s can be combined,
recursively, to analyze events with both many kinematic
and combinatoric unknowns through the examples H —
hh — 4W(¢v) and §g — bby)bbj".

II. RECURSIVE JIGSAW RECONSTRUCTION

The RJR approach constitutes both a methodology for
analyzing reconstructed particle interactions, and a collec-
tion of techniques to resolve combinatorial and kinematic
ambiguities, event-by-event, for a given sample.

As used in this paper, event refers to a collection of
measurements corresponding to a particle collision, includ-
ing the three momenta of reconstructed particles and,
potentially, additional measurements associated with their
masses, missing momentum in one or more directions, or
the center-of-mass energy of the interaction. In the RJR
approach, a “particle” view of the event is used—in the
form of a decay tree diagram—where intermediate heavy
states are introduced, decaying to the indivisible “visible”
objects, whose four vectors follow from detector particle
reconstruction and identification, and “invisible” objects,
which correspond to weakly interacting particles hypoth-
esized to have escaped detection.

Each decay tree not only describes how different
intermediate states decay to the final state particles in an
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event, but also implicitly introduces a kinematic basis for
analyzing the event; just as the collection of four vectors of
all the individual final state particles fully describes an
event, so too does the set of all of the masses and decay
angles of the particles appearing in a decay tree. The latter
is a natural kinematic basis for studying an event, in that the
masses of intermediate particles of interest are included,
along with decay angles sensitive to their spin and quantum
numbers, while other uninformative degrees of freedom
(e.g. rotational symmetry of an entire event) are clearly
isolated.

The number of degrees of freedom associated with a
decay tree need not be restricted to just the number of
kinematic measurements made in the reconstruction of each
event. If there are invisible particles appearing in a decay
tree, one or more elements of their kinematic description
may be underconstrained. Similarly, some reconstructed
particles may be indistinguishable, leading to combinatoric
ambiguities related to where each should appear in a decay
tree. The masses and decay angles of a decay tree can be
thought of as functions of these unknowns, such that the
choice of how to analyze an event amounts to specifying
how to resolve these underconstrained degrees of freedom.

There have been many strategies proposed for how to
resolve kinematic ambiguities on an event-by-event basis.
For combinatoric ambiguities, one generally chooses a
particular metric to minimize, considering all possible
combinatoric assignments, such as intermediate masses,
distance metrics like AR, and those used in jet clustering.
The RIJR algorithm uses many of the same concepts,
with JR’s designed to make combinatoric assignments
which can be combined recursively to treat any number
of unknowns.

For kinematic ambiguities associated with invisible or
undetected particles, there is a large literature of strategies
for measuring the properties of event kinematics despite
missing information [11-39]. In these cases, the momen-
tum and masses of invisible particles are unmeasured, and
the functional dependence of kinematic quantities of
interest on these unknowns must be mitigated.

Some approaches advocate imposing mass constraints
on events, solving the associated system of equations for
any kinematic unknowns [40—-42]. While potentially useful,
such approaches generally involve high-order polynomials,
implying many solutions, sometimes with none guaranteed
to be real [43]. Aside from the practical difficulties involved
in analyzing data when there is an ensemble of (potentially
complex) solutions for each event, there is the additional
complication of using such an approach in the context of
searches for new particle states, where it can be difficult to
guess the masses to include in constraints, or impractical to
include interpretations for many “test” constraints.

Alternatively, underconstrained degrees of freedom that
are expected to be small can be ignored, constraining
multiple unknowns simultaneously. The efficacy of observ-
ables obtained from such an approach depends on the
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accuracy of the approximation and, as for mass constraints,
the existence of real solutions is not guaranteed [44].

A collection of approaches involve expressing masses
of interest as a function of kinematic unknowns, choosing
them to minimize or maximize those masses, subject to
desired constraints. Examples are My, [45,46], Mcr
[47,48], and a whole collection of similarly constructed
“singularity variables” for estimating masses in final
states with two invisible particles [49]. The key property
of these observables is that, if the applied constraints
hold, their distribution should bound the true mass from
above or below (depending on the minimization or
maximization being imposed). Many of the JR’s in the
RJR approach use this same strategy, with the important
distinction that only a subset of unknowns are considered
in each minimization/maximization, with potentially more
than one used in a self-consistent reconstruction of a
single event.

The observation that motivates the RJIR technique is that
there is not necessarily only one quantity of interest in each
event, but rather, potentially many observables which are
useful in concert, and depend on many of the same
underconstrained degrees of freedom. This means that in
order to ensure that the resulting basis of observables are
maximally uncorrelated, care must be taken with how
multiple unknowns are parametrized and resolved. In the
RIJR approach, this is achieved by considering how under-
constrained degrees of freedom affect our determination of
the velocities relating the different reference frames corre-
sponding to the rest frames of the intermediate states in a
given decay tree. We exploit the fact that the measured
quantities in an event correspond to a known reference
frame, the laboratory frame, and identify the subset of
unknowns necessary only for determining the velocity
relating it to the next reference frame appearing in the
decay tree of interest. Any additional unknowns related to
the velocities of subsequent decay frames are considered
separately, with the factorization of unknowns repeated
recursively through the entirety of a decay tree.

In the RJR framework, an algorithm for resolving the
unknowns in a single decay step is called a JR, or jigsaw.
Each event is analyzed through the recursive application of
a series of JR’s, moving through a decay tree from the lab
frame to the rest frame of each intermediate particle
appearing in the event. The factorized approach to their
use means JR’s are also interchangeable; different JR’s can
be chosen to resolve the same unknowns, resulting in
different behavior of the derived observables. By consid-
ering a subset of unknowns at a time, each JR isolates their
effects to only a few observables. The RJR algorithm can be
summarized as the application of the following steps:

(1) Choose a decay tree to impose on the event,
including any intermediate particle states of interest,
with measured and invisible particles appearing in
the final decay steps.

PHYSICAL REVIEW D 96, 112007 (2017)

(2) Express the velocity relating the current reference
frame to the next one(s) in the decay tree as a function
of unknown and measured quantities and choose a JR
to resolve these this missing information.

(3) Proceed to the subsequent reference frame(s) in the
decay tree and repeat (2) until the ends of the tree are
reached.

The applied algorithm for analyzing an event is determined
by the JR’s that are chosen. Each is based only on an
abstraction of the event evaluated in a single reference
frame, with at least one JR for each type of decay topology
and set of unknowns that can be encountered. The recursive
application of JR’s ensures that observables corresponding
to different reference frames (masses and decay angles) are
maximally uncorrelated from those associated with the
frames that precede and follow in the tree.

The RJR framework is simply a library of JR’s which,
like puzzle pieces, can be assembled to analyze events
according to a chosen decay tree. Each JR resolves
unknowns using different constraints and assumptions,
with a customizable combination available for studying
any process of interest.

III. NOTATION

Throughout this paper, four vectors are denoted in bold,
with subscripts indicating the object, or group of objects, to
which the four vector corresponds, and superscripts the
reference frame the four vector is being evaluated in, such
that p,” represents the four vector of object a, evaluated in
reference frame b. The energy and momentum components
of this four vector are denoted by p,? = {E,”. p,"}, with
individual momentum components written pQ..

For readers viewing this paper through a color-sensitive
medium, the type of different objects, or collections of
objects, is indicated in color: Blue, for objects like a,
implies that they are “visible”, with measurements of their
four vectors in the lab frame assumed to come from the
detector reconstruction. “Invisible” particles, correspond-
ing to those that escape detection, are green, while
intermediate particle states are shown in red. These labels
may also indicate groups of particles. If a represents many
individual particles (a = {a;, ..., a,}) then it can be used
interchangeably to indicate the set of elements in the group
or their four vector sum, with pg’ =>2 pg. Similarly, the
label of an intermediate particle state is used to represent
both the set of invisible and visible particles which follow
from the decay of this particle and its four vector. If an
intermediate particle b decays to a visible particle a, and
invisible particle ¢, “b” may be used like b = {a,c} or
prd = p.? + p.¢. Additionally, b can also refer to the rest
frame of the object b, with py® = {my,,0}.

Velocities representing the relative motion of different
references frames are expressed as ﬁdb, indicating the
velocity, in units ¢, of reference frame b in the rest frame
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of d. A" = |Ba" and 74" = [1 — (B4")*)7"/2. The asso-
ciated Lorentz transformation is A4" or Ai),‘db, with
Ad"Pp? = Ppa".

Kinematic observables corresponding to physical quan-
tities, like particle masses or decay angles, always refer to
those calculated in the RJR approximate event reconstruc-
tion, unless otherwise noted. The “true” values of particles’
masses, on an event-by-event basis (not pole masses), are
written in lower case (m,), while masses calculated to
approximate these correct masses are expressed in capital
letters (M ). Until the relevant JR’s are defined, some obser-
vables may depend on unknown quantities which have yet to
be specified. These dependencies may be shown explicitly,
like My,(plaP), or omitted and discussed in the text. Once
JR’s have been chosen and applied, and all unknowns
associated with a decay tree have been resolved, these
observables represent those calculated with these choices.

Throughout, particle notation is often simplified by
referring to particles and antiparticles using the same
symbol, or by omitting the charge of particles.

IV. EVENT GENERATION

Each of the examples described in Secs. V=VIII corre-
sponds to a specific production and decay tree, and the
RestFrames [50] code package is used to generate and
analyze Monte Carlo events for each process. Specific code
for reproducing each of the examples described in this
paper, including all of the figures, is included in the
software distribution.

The RestFrames package provides the ability to
define fully configurable decay trees to both generate
and analyze reconstructed particle interactions. The event
generator includes flat (isotropic) decay kinematics, with
options for including phase-space effects from parton
distribution functions and particle propagators. All reso-
nances are simulated with widths as reported by the
Particle Data Group [51]. This is accomplished through
a Markov chain Monte Carlo (MCMC) scheme, with
interchangeable modules available for different types of
decays in the tree. No effects from hadronization or
imperfect detector resolution are considered; in general,
these shortcomings have small effects on the distributions
of kinematic observables, as their resolution in correspon-
dence to “true” quantities most strongly depends on the
effects of kinematic unknowns. Of greater importance are
realistic acceptance requirements on the final state particles
assumed to have come from detector reconstruction, which
can have large effects on kinematic distributions. These are
included in the event generation. The examples in this
paper are simulated assuming a ¢g initial state at the
13 TeV LHC, using numerical parametrizations of parton
distribution functions [52].

Analysis of these events is done using the implementa-
tion of the RJR algorithm and JR’s within RestFrames.
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A configurable decay tree is defined for each view of the
event, with corresponding JR’s chosen to resolve any
unknowns. RestFrames automates the process of deter-
mining whether a decay tree is valid, whether a sufficient
number and type of JR’s are specified to resolve all the
included unknowns, and the order in which each of the JR’s
should be applied to the event. Each particle appearing at
any stage in a decay tree is associated with a RestFrames
object which, after an event has been analyzed, can be
queried about the value of its mass, decay angles, and
momentum, evaluated in any reference frame in the
reconstructed event.

V. JIGSAWS FOR AN INVISIBLE PARTICLE

Whenever a weakly interacting particle is produced in a
collider event and escapes undetected, it carries with it
irrecoverable kinematic information. In collider experi-
ments, the masses of escaping particles are not directly
measured, and their momenta can only be inferred in
dimensions where the total momentum is constrained. In
this section, we introduce the RJR algorithm through
simple examples of event topologies containing a single
invisible particle in the final state. The application of JR’s
to resolve missing information associated with this particle
allows for the accurate extraction of a number of other
useful pieces of information from these events.

A. W — #v at a hadron collider

A simple case involving a single invisible particle is the
production of a W boson with decay W — £, with the
decay tree for this process shown in Fig. 1.

We assume that the lepton is identified and reconstructed
by a detector, and that its four vector, p,'2", is measured in
the lab frame. The neutrino escapes undetected, preventing
a direct measurement of its energy and momentum.
Exploiting conservation of momentum in the plane trans-
verse to the beam axis, we interpret the measurement of the

O Lab State
O Decay States

@ visible States
O Invisible States

FIG. 1. A decay tree diagram for single W production and
decay. The W boson is moving in the lab frame and decays to a
lepton and neutrino.
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event missing transverse momentum, E7"°, as the trans-

verse momentum of the neutrino, with p3P = E‘;“Ss_

The decay tree shown in Fig. 1 not only describes the
event, but also implicitly defines a kinematic basis of useful
observables based on this view of the event: the mass,
decay angles and lab frame momentum of the W boson.
Unfortunately, we are unable to calculate any of these
quantities from our measurements p,'** and 53", as they
all also require knowledge of the momentum of the
neutrino along the beam axis, p/2, and its mass, m,,
information which is carried with the exiting neutrino.

The shortcomings in our knowledge of the neutrino’s
kinematics leave two options: we can either abandon our
desired observable basis and restrict our analysis to the
quantities we have measured or attempt to resolve, or guess,
these unknown quantities using additional constraints. One
could, for example, assume that there was an on shell W
boson in the event, and require that the invariant mass of the
lepton and neutrino be equal to its pole mass. Assuming the
neutrino mass is zero, this approach will always result in
two solutions for p}2, with both potentially complex.
Apart from the inconvenience of dealing with multiple and
complex solutions, such an approach effectively trades any
information about the mass of the W boson for its
momentum and decay kinematics, and is certainly only
appropriate as far as its assumptions are valid. The RJR
approach also resolves these same unknowns, but does so
without any prior assumptions about the masses or decay
kinematics of the event, instead using the decay tree to
decompose each event into a basis of observables closely
approximating those we are interested in.

This is accomplished by considering the undercon-
strained energy/momentum components of the neutrino
instead as unknown components ¢ of the velocity relating the
lab frame to the W rest frame, ﬂW Specifying this three
vector is equivalent to choosing values p!2? and m,, and
sufficient for calculating an approximation of any quantity
of interest in the event: It can be used to boost the measured
lepton to the W frame, and to calculate the W decay angle
(cos Oy = B - p,V), compare the azimuthal orientation
of the W decay plane to the W momentum and beam axis

plane (Agy, = p,V x [J’ lab / j x )% and measure the

M2—m +m, .
W mass (E," = WTW')' This is true in general, where

the measured four vectors of visible particles and the
velocities relating adjacent reference frames fully specify
the kinematics of a decay tree.

When choosing the unknown components of ﬁw we

decompose this velocity into two pieces: ﬁ‘l/{}"j, the longi-

tudinal boost to a reference frame, lab, z, where p; lab =0

and Sy piab. 7°, the transverse velocity relating that 1ntermediate
frame to the W rest frame. For the first of these velocities,
rather than trying to make the most accurate guess (by, for
example, using likelihoods sensitive to parton distribution
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functions) we choose a value that ensures that any
quantities we calculate using our guess are independent
of the true value. This is ensured by choosing 2" to satisfy

aE lab,z (,B la.l;)

aﬂlab =0, (1)
such that gi2b = pJ2P/E, 1 This choice also sets p.2",
with plabs — p}azb ‘= p‘]f,’lzz =0, and is equivalent to

setting the rapidity of the neutrino equal to that of the
lepton. This algorithmic determination of AJ2® is an
example of a JR where a guess for an unknown quantity
is made based on the four momenta of visible particles,
evaluated in a particular reference frame:

Jigsaw RULE V.1 (invisible rapidity) If the momentum of
an invisible particle, I, in a reference frame, F, is unknown
along an axis 7, it can be chosen such that the rapidity of I
along 71 is set equal to that of a visible system of particles
V according to

A/ |ﬁFL|2 + m12

F _ F
PLy =PV = 5 . 5
Pyl +my

where “1” indicates the plane normal to 7. This choice is
equivalent to minimizing Myy with respect to pf I

That the application of JR V.1 ensures that all observ-
ables depending on ﬁ'ab are independent of its true value
(or, alternatively, that they are invariant under longitudinal
boosts in the lab frame) can be understood intuitively by
noting that our definition of the lab, z reference frame is
itself longitudinally boost invariant, in that we will always
arrive at the same lab, z irrespective of the W boson’s
velocity along the beam axis. As all subsequent estimators
(and choices for other unknowns) follow from the choices
made in this frame, in a sense observables associated with
reference frames appearing below lab, z in the decay tree
inherit this invariance property.

With 2P specified, we need to guess the remaining

(2)

velocity /}vlf}'bT whose magnitude depends on m,. We could
attempt to specify this unknown using a similar approach
to 2P, for example choosing By3° to minimize My.
Unfortunately, this can result in unphysical values of M,
with a tachyonic reconstructed neutrino. This is true in
general for the individual masses of invisible particles, in
that partial derivatives of derived quantities with respect to
these masses are never guaranteed to be physically viable.
In this case, we set M, = 0 both because the neutrino mass
is negligible on the scale of this event and because it is the
smallest Lorentz invariant choice which guarantees a viable
interpretation of the event. The importance of this latter
distinction will become clear in later examples with
multiple invisible particles in the final state.
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(@ (b) ©
FIG. 2. (a) Distribution of My, for simulated W — £v events at both generator level and after reconstruction. Each distribution is

normalized to unit area. Distributions of (b) azimuthal component of the W decay angle, ¢y, and (c) Agy, relative to their true values,
compared with the reconstructed W mass. Angles are shown in units radian.

Once values for the unknowns associated with the
neutrino have been specified, we can calculate any observ-
able of interest in our approximate view of the event. Our
estimator for the W mass can be expressed in terms of
measurable quantities in the lab frame,

—’lab|2

2 > lab
my + |7

M, = m? +2(|ple — Bl B,

(3)

where we note that we have rederived the transverse mass.
The distribution of My, is shown in Fig. 2(a), where we
observe My, < My, due to our implicit minimization in our
choice of plab.

In addition to My, we can also calculate estimators of
other quantities of interest in the event. Distributions for the
azimuthal component of the W decay angle, ¢y, and Agy,
are shown in Figs. 2(b) and 2(c), where the differences
between the reconstructed and true quantities for these
observables are examined as a function of My,. We observe
that both ¢ and A¢y, can be reconstructed with excellent
resolution and largely independently of My, despite the
missing information associated with the neutrino.

Not only are these estimators nearly entirely independent
from each other, but they are almost entirely insensitive to
the true momentum of the W boson in the lab frame. In
addition to being manifestly invariant under longitudinal
boosts, the reconstructed quantities My, ¢y, and Agy
have almost no dependence on the W transverse momen-
tum, as demonstrated in Fig. 3. The RJR analysis pre-
scription for these events results in a basis of observables,
each with a strong correspondence to the true value of the
quantity it is estimating and little correlation between them
introduced by the reconstruction algorithm.

B. Single-top production with t > bW (¢v)

We expand on the previous example by considering the
case of single-top production at a hadron collider, with
subsequent decay to a b-quark, lepton, and neutrino, via an
intermediate W boson. The decay tree for analysis of this
final state is shown in Fig. 4. As in Sec. VA, we assume
that the lepton four vector, p}a", and transverse momentum
of the neutrino, %P, are measured in the lab frame, with
an additional b-tagged jet associated with the final state
b-quark also reconstructed, with a four vector p,'2P.

RestFrames Event Generation Wiy RestFrames Event Generation Wiy RestFrames Event Generation Wolv
e —~
B —_ z
0.9 ~ 10° EB H
0.8 107 E; = 10° B x
0.7 = A =
3 z 10 - <
Z 0.6 o = =
E Z = g = 4z
Z o5 ;33 =2 Slez
EXS 107 1~ s |EF - S
o 04 = 10 E=4 10 <
03 S ' '
E - & &
02 i s |=
10 -z < <
0.1 —|Z s 1T
—lz

-0.2 0

-0.4

0
30 40 50 60 70 80 90 100 110 120
My, [GeV]

(a)

FIG. 3.
lab

o, - "
()

0.2 0.4

-0.2 0 0.2 0.4
true
A 4)W -A ¢W

©

Distributions of (a) the reconstructed W mass, Myy, (b) the azimuthal component of the W decay angle, ¢y, and (c) Agy,

shown as a function of py}./my,, for simulated W — #v events. Angles are shown in units radian.
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O Lab State

O Decay States
@ visible States
@ mvisible States

FIG. 4. A decay tree diagram for a single top quark decaying
to a b-quark, lepton, and neutrino, through an intermediate
W boson.

We are unable to calculate the masses and decay angles
of the intermediate particles in the event due to missing
information associated with the neutrino. With M, = 0, we
can set the neutrino’s longitudinal momentum through an
application of the invisible rapidity JR V.1 except now, with
two visible particles in the final state, we have a choice as to
which combination to use in the JR. Setting the neutrino’s
rapidity equal to the lepton’s implicitly chooses paP to
minimize My, an approach which we will denote “min My,
reconstruction”. Alternatively, the set of both visible
objects, V.= {Z,b}, can be used in the JR, effectively
minimizing M, according to “min M, reconstruction”. The
distributions of the top and W mass estimators, M, and My,
respectively, are shown in Figs. 5(a) and 5(b) for these two
reconstruction schemes.

In both reconstruction approaches, the mass estimator
which is effectively minimized through the application of
the invisible rapidity jigsaw corresponds to a transverse
mass, with the characteristic Jacobian edges appearing at
the true masses in the distributions of Figs. 5(a) and 5(b).
The distribution of the observable M,, when calculated in
the min My, scheme, exhibits a more pronounced tail at
high values, an undesirable feature in the context of
searches looking for new particles, with potentially larger
masses than their SM counterparts, and similar decays.

RestFrames Event Generation pp—>t—W(@v)b  RestFrames Event Generation PPt WIV)b
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Other observables calculated using each approach exhibit
noticeable differences in behavior, such as the top and W
boson decay angles, as seen in Figs. 5(c) and 5(d). While
the resolution of the reconstructed 6, is similar between the
two schemes, the 6, resolution is better for the min M,
approach, albeit with a larger bias. The improved resolution
indicates that using both visible particles yields a generally
more accurate estimation of plaP.

When using the min M, strategy, the resulting M,
estimator takes the form of the transverse mass of the
neutrino and visible particles,

M2 =m+2(y/m + [BERPIBP| - Bl - plp).
4)

Since we have not chosen to minimize My, with respect to
lab

D%, the expression for its estimator takes a different form,
lab 17 lab lab , lab ki
v,
2(E/PEYT = p/pVY) P
my + | by'7|

M}, =

2 —lab | 33 lab
+m;=2pSP-p7T

(5)
This expression is longitudinally boost invariant despite
using information about the lepton and b-jet’s longitudinal
momentum in the lab frame. The advantage to using a
single choice for p 3P when calculating M, and My, rather
than simply using the My, transverse mass estimator of
Eq. (3), is that we can estimate the two masses with only
small correlation, as demonstrated in Fig. 6(a). This is
despite their common dependence on p 2P, the source of
residual correlation between the observables.

While the invariance to longitudinal boosts of the M, and
My, observables is exact, they also exhibit little sensitivity
to transverse boosts, as can be seen in Figs. 6(b) and 6(c).
This behavior is indicative of the fact that observables
calculated in reference frames below the lab frame in the
decay tree (intermediate particle masses, decay angles) are
almost entirely insensitive to the top’s velocity in the lab

RestFrames Event Generation pp—t—>W(v)b  RestFrames Event Generation PP Lo WiV b
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FIG. 5. Distributions of reconstructed (a) top quark mass, M,, (b) W boson mass, My, (c) top quark decay angle, 6,, and (d) W boson

decay angle, 6y, for simulated t — bW (£v) events. Each mass is reconstructed in both the min My, and min M, schemes and compared
with the true, generated values of these masses. Decay angles are shown relative to their true values in units radian.
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FIG. 6. Distributions of (a) the W boson mass estimator, My, as a function of the top mass estimator, M,, (b) M,, and (c) My as a
function of p,‘f’Tb /my,, for simulated  — bW (£v) events. The min M, reconstruction scheme is used for all observables.

frame. Furthermore, the observables calculated in a par-
ticular frame are largely independent of those calculated in
all other reference frames. This property makes the
variables calculated in the RJR approach an excellent basis
for studying processes, as it not only allows for relatively
accurate estimations of many quantities of interest, but also
independently.

C. Heavy charged Higgs production
with H* — W* (£v)h° (yy)

Finally, we conclude our discussion of events with a
single invisible particle by adding a small embellishment to
the previous example. In this case, we consider the
production of a heavy, charged Higgs boson (H") at a
hadron collider, with the charged Higgs decaying to a
neutral, SM-like Higgs (h°) and a W boson. The neutral
Higgs decays to two photons, whose four vectors py'f'b and
pylj‘b are assumed to have been measured in the detector,
while the W decays to a lepton, with four vector p 2P, and a
neutrino, whose transverse momentum is estimated from

O Lab State

O Decay States
‘ Visible States
. Invisible States

FIG. 7. A decay tree diagram of a heavy charged Higgs boson,
H™, decaying to a neutral, SM-like Higgs boson, K, and a W
boson. The neutral Higgs decays to two photons while the W
decays to a lepton and neutrino.

the EM. The decay tree for interpreting this final state is
shown in Fig. 7.

As the missing information associated with the neutrino
is identical to the previous two examples, we can resolve it
by choosing the neutrino mass, M, = 0, and applying the
invisible rapidity JR V. 1 using the collection of all the
visible particles, V= {Z,7,,7,}. With these choices, we
are able to calculate estimators of each of the intermediate
particle masses in each event, along with their decay angles.
While the reconstructed neutral Higgs mass has no
dependence on the neutrino kinematics, its decay angle
does, as its calculation requires knowledge of the H™ rest
frame. The RJR approach not only allows for an accurate
estimation of quantities related to invisible particles, but
also angles like this. Figure 8 demonstrates the resolution
that can be achieved in the estimation of this angle for
simulated events, comparing the RJR observable with a
calculation of cos 0 using the lab frame as an approxi-
mation to the h° production frame. The improvement in
resolution when using the RJR approximations is dramatic.

RestFrames Event Generation pp>H" - ho(y Y)W V)
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FIG. 8. The decay angle of the neutral Higgs, cos@, in
simulated H* — W*(£v)h°(yy) events. Two different ap-
proaches to reconstructing cos 8,0 are used, with one using the
RIR approximation of the h° production frame and the other
treating the lab frame as that frame. Angles are shown in
units radian and the mass of the charged Higgs is chosen
my+ = 750 GeV.
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VI. JIGSAWS FOR TWO INVISIBLE PARTICLES

To this point, we have only considered cases with a
single invisible particle in the final state, and only two
relevant missing pieces of information associated with its
momentum and mass. When there are two invisible
particles, the amount of information lost with their escape
from the detector increases, as we must now guess how
momentum is shared between these particles in order to
approximately reconstruct events. As for Sec. V, we
introduce new JR’s for these cases through three examples,
each with increasing complexity.

A. H* - W* (fv)W~ (¢v) at a hadron collider

We consider an example with the production of a single,
neutral Higgs boson (H°) at a hadron collider, with decays
to two W bosons which, in-turn, each decay to a lepton and
neutrino. The decay tree imposed on this final state is

shown in Fig. 9. The two lepton four vectors, p }jb and p }i‘b,

are assumed to have been measured and, working at a

hadron collider, the measured EI" is interpreted as the sum

transverse momentum of the two neutrinos, such that
=lab _ 7 lab —=lab __ pmiss
Pir = Pu,T + Pu, T = Er, (6)

where I = {v,,v,} is the set of all invisible particles in
the event.

In the previous examples with only one invisible particle
in the final state we were only missing two associated
pieces of information: its momentum along the beam axis
and its mass. Now, with two missing particles there are only
two measured constraints on the eight degrees of freedom
associated with the two neutrinos’ four vectors. The total
longitudinal momentum of the dineutrino system, p{2°, can
be chosen using the invisible rapidity JR V.1 with the set of
visible particles in the event, V = {#,,¢,}, leaving only
the mass of the neutrino system and how it is shared

Q Lab State

O Decay States
. Visible States
. Invisible States

FIG. 9. The decay tree for analyzing H® — W (£v)W~=(£v)
events. The two sides of the event are labeled “a” and “b”, each
including a lepton and neutrino from their respective W decay.
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between the momentum of the two neutrinos to specify. We
would like the JR which resolves these quantities to result
in observables which, as much as possible, are independent
of those we can already calculate related to the Higgs
momentum in the lab frame. This is achieved by basing the
determination of these additional neutrino unknowns on the
four vectors of the visible leptons evaluated in the hypo-
thetical, and yet-to-be determined, H rest frame.
Working in this reference frame, the momentum of the I
system must be equal and opposite to that of the V system,
as it is the center-of-mass frame of all the final state objects.
Similarly, the momentum of the W bosons must also be
equal and opposite. With only these constraints, there are
many different ways to choose the unknown individual
momenta of the two neutrinos. The RJR approach is to
consider these unknowns as the components of the veloc-

ities relating the two W rest frames to this H frame, ,B{;’a and

B‘;’h. Ideally, we would like our derived estimators to be
independent of the true values of these velocities, in a
manner similar to longitudinal boost invariance through the
invisible rapidity JR V.1. To achieve this, we introduce the
additional constraint that the two W bosons have the same
mass. While this assumption may not be unreasonable in
this particular case (although not when my < 2My, and
one of the W’s will likely be forced off shell) this choice is
primarily motivated by it allowing the two W’s velocities to
be written in terms of a single vector,

pe = bBv, = —Pw, (7)

In order to ensure that our common W mass estimator, My,

is independent of ﬁc, we minimize it with respect to this
unknown quantity. Neglecting the mass of the leptons and

neutrinos, the dependence of My, on BC can be expressed
through the relation

W, W = -
My =E,"+E;" = yc(EZ +E2 =P (PZ —PZ»-

We choose Ec to satisfy
W, W
OE; +E;')

=0, 9
7 ©)

which results in

SH _ 3H
j Lo P, (10)
¢~ TH -
Efa - Efb
With this choice, a quantity that appears in expressions
for derived estimators is the contraboost invariant, or
Euclidean mass,
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M/ p/) =2(E[Ef + p/ - pf). (1)

M?, the inner product of two four vectors with a Euclidean
metric, is unchanged under the application of any contra-

boost ,ﬁc such that M?(p,,p,) = M%(A/;_pa,A_E p,) for
any two four vectors. The energy of each of the leptons,

evaluated in their respective W production frames, can be
expressed as

mZ +3M:(pf.pf)

£V _
I3 - ’
\/m?, +mZ + MLl

i

(12)

which is manifestly contraboost invariant, as desired.
After choosing f,., there is still one unspecified degree

of freedom associated with the individual neutrino and

dineutrino, masses. Expressing this remaining parameter as

¢, We can write

M2 = (c—1)*m} +c*m2 + (c = 1)eMi(p/ . p/!)

M;, = (c=1)m} +c*mZ + (c = 1)eMz(p7,.P7,)

M} = (2c = 1)*(EY)* = |y . (13)

where different values of ¢ are seen to increase and
decrease each of the neutrino-related masses coherently.
Neglecting the individual lepton masses, a choice of
¢ =1 sets the neutrino masses to zero, and also implies
My = my. From Eq. (13) we also observe that a smaller
choice for ¢ (or, alternatively, smaller choice for M) could
lead to tachyonic individual neutrinos. This means that
while a choice of M7 larger than my would be consistent
with the above prescription, smaller choices are not
sufficiently large to use this approach. As the calculation
of the velocity relating the lab frame to the H rest frame
depends on My, in the RJR scheme this choice must be
made appealing only to the four vectors of visible particles
in the lab frame. Fortunately, the minimum value necessary
to ensure our ultimate neutrino approximations are physi-
cally viable, my, is a Lorentz-invariant function of these
four vectors, meaning we can make this assignment only
knowing our prescription for analyzing the event in the H
rest frame, but not necessarily having enough information
to evaluate any visible four vectors there. This choice
corresponds to a JR:
Jigsaw RULE VL1 (invisible mass) If the mass of an
invisible particle, I, is unknown it can be chosen to be
the smallest Lorentz invariant function of visible four
vectors that is sufficiently large to accommodate any other
applied JR’s which correspond to dividing I into other
invisible particles. R
Similarly, the above prescription for choosing . can be
generalized as another JR:
Jigsaw RULE VL2 (contraboost invariant) If the internal
degrees of freedom specifying how an invisible particle,

PHYSICAL REVIEW D 96, 112007 (2017)

I ={I,,1,}, should split into two particles are unknown,
they can be specified by choosing a corresponding pair of
visible particles, V={V,,V,}, and applying the con-
straint My 1 = My, y,. It is assumed that the four vectors
of the visible particles are known in the center-of-mass
frame, F = {V, I}, as is the four vector of the total I
system, p¥. The four vectors of the invisible particles can
be chosen in the F frame as

pi, = (c = )by, —cpy,
pt, = (c = 1)py, — chy,
Ef =(c—1)Ey + cEy
Ef = (c—1)Ey +cEy (14)

where

(15)

If the visible particles V, and V, are massless, the
minimum value of Mj required to guarantee that the
individual invisible particles will not be tachyonic is my.

With these JR’s defined, we can summarize the RJR
approach for analyzing H® — W*(£tv)W~(£7v) events:

(1) Apply the invisible mass JR VI.1, choosing

M 1 — My.
(2) Apply the invisible rapidity JR V.1, choosing p}
using the leptons V.
(3) Apply the contraboost invariant JR V1.2, specifying
the neutrino four vectors using the constraint
M W, — M Wp,+
After the application of these JR’s, values for all of the
unknowns in the event are specified and any kinematic
quantity of interest can be estimated.

One natural quantity of interest is the mass of the heavy,
neutral Higgs, shown in Fig. 10 for different values of mp.
The relative resolution of the Higgs mass estimator, My, is
approximately the same for my > 2my,, with the peak of
each distribution scaling with the true value, and a slight

RestFrames Event Generation H > W(I V)W V)
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FIG. 10. Distribution of My for simulated H® —
WT(£v)W~(¢v) events with various values for my.
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FIG. 11. Distribution of My, as a function of My, for simulated
H° - WH(£v)W=(¢v) events with my = 500 GeV. Each mass
estimator is normalized by the true value.

underestimation visible due to the implicit minimization in
the invisible rapidity JR.

Like My, the W mass estimator, My, also provides
sensitivity to the true value, exhibiting a kinematic edge as
can be observed in Fig. 11. The shape of the My
distribution is largely independent of the value of my,
and event-by-event it is estimated largely independently of
My, with the resolution of My correlated with how close
My, is to its approximate kinematic boundary. This lack of
correlation is a result of the JR rules applied. The contra-
boost invariant JR ensures that My is largely insensitive to
the W boson velocity in its production frame, which is
roughly proportional to the mass of H.

Other observables can be estimated with some accuracy,
like the Higgs and W decay angles, shown in Fig. 12. The
resolution of 8y improves with increasing mp, as it is easier
to resolve the Higgs decay axis as pfl /My, grows larger,
while the resolution of 6 is insensitive to the Higgs mass.
The poorer accuracy of the 6y, estimator is to be expected;
with the constraints from the applied JR’s the W decay angle
estimators are set equal and opposite (cos Oy, = — cos Oy, ),
so the single estimator corresponds to a combination of the
two. Regardless, it is still sensitive to these quantities and the
information about spin correlations they represent.

In addition to being estimated accurately, it is noteworthy
that these observables are measured largely independently
of each other, as demonstrated in Figs. 12(c) and 12(d)
when comparing the reconstructed decay angles with their
corresponding mass estimators. While the resolution of the
decay angles can vary with estimated mass, no significant
biases are observed.

The kinematic observables resulting from the RJR
approximate reconstruction of these events are also known
as super-razor variables, with a thorough discussion of
their phenomenology in the corresponding reference [53].

B. t — (tx})(t¢?) at a hadron collider

To further generalize the JR’s for final states with two
invisible particles, we consider the example process of stop

PHYSICAL REVIEW D 96, 112007 (2017)
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FIG. 12. Distributions of (a) Higgs decay angle, 8y, and (b) W
decay angle, 6y, estimated using the RJR scheme for simulated
H® — W+ (£v)W~(£v) events and various values for my. Figures
(¢c) and(d) show these estimators as a function of their corre-
sponding mass estimators, My and My, respectively. Each
observable is normalized appropriately by the true value of the
quantity it is estimating, with angles in units radian.

quark pair production at a hadron collider, with each stop
decaying to a top quark and undetected neutralino. We
assume that the top quarks decay hadronically, and that
each is identified and reconstructed in the detector, with
measured four vectors p,*? and p/?. In a real experiment,
there can be significant kinematic dependencies on the
efficiency for reconstructing and identifying hadronically
decaying top quarks, along with imperfect resolution in
estimating the top’s momentum and mass. We neglect these
effects in this example, focusing only on shortcomings in
event reconstruction due to missing information associated
with the escaping neutralinos. Similarly, we assume that the
EMS provides a reliable estimate of the transverse mass of
the dineutralino system, I = {},.%,}, with p{%p = Emiss,
The decay tree used in analyzing this final state is shown
in Fig. 13.

This decay topology is nearly identical to the H® —
W (£v)W~(¢v) process studied in Sec. VI A, with the two
intermediate stop quarks playing the role of the W bosons.
and the distop system the neutral Higgs boson. One
important difference is that the stop quarks are produced
nonresonantly, with m;; having a much larger variance than
my. But this distinction does nothing to prohibit the use of
the same event analysis approach described in the previous
example. The more pernicious complications follow from
the masses of the individual visible tops and neutralinos,
which now can have non-negligible values relative to the
scale of the process.
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FIG. 13. The decay tree for analyzing 77 — (t¢})(1x}) events.
The two sides of the event are labeled “a” and “b”, each including
a hadronic top and neutralino from their respective stop decays.

These masses have notable implications for the appli-
cation of a contraboost invariant JR, like that described in
Sec. VI A. Taking the same approach, we constrain M; =
M;, and use the visible particle four vectors, evaluated in
the putative distop rest frame, to make guesses for the
momentum and energy of the two neutralinos. In the
application of the contraboost invariant JR VI.2 we estimate
the velocities relating the distop rest frame to the two stop
rest frames as

il =y =D (16)

This choice constrains the estimators for the neutralino and
dineutralino masses, which can be expressed by an addi-
tional free parameter, c, in equations analogous to Eq. (13),

M)?za = (c=1’m? +*mi + (c - l)cM%(pZI;,pfj)
M)?Zb = (c=1’m +c*m? + (c - l)cM%(pEi,pfj)
M} = (2¢ = 1)(EY)? = |/, (17)

where V = {1, 1,} is the collection of all visible particles
resulting from the interaction of interest. While appropriate
in the previous example, the simple choice M| = my
would result in each of the neutralinos taking nonzero
masses, with M » = my,,,. For the moment, we assume
that m, = m, = M, to simplify the discussion, general-
izing later. If we instead attempt to constrain this
final degree of freedom by requiring M; = M; =0,
for lack of a better choice, this implies an expression for
M 1 of

4P PIpE P~ (5L - BL))

2m ? +M3(p,,, ,pth)

MIZ‘M =0 =

(18)
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Unfortunately, this is not a viable choice for My, as its
expression in Eq. (18) is not a Lorentz invariant function of
the visible four vectors, which violates one of the require-
ments of the invisible mass JR VI.1 we must apply in order
to calculate the velocity relating the lab frame to the distop
rest frame, ﬁ,‘f P One could imagine trying to remedy this
situation through a brute-force approach, writing Eq. (18)
as a function of this unknown velocity by boosting the top
four vectors from the lab frame to the distop rest frame, and

further constraining My and q;l? b through the relation

7 lab
~lab Dii
= - =lab (19)
Elab+ \/| lab|2+M2(ﬂ )

Although numerically viable, solving Eq. (19) for ,B,l ?b,

high order polynomial equation, will lead to multiple
solutions, none of which are guaranteed to be real.

We choose to take a different approach, effectively
factorizing the JR’s applied at different stages in the decay
tree by choosing My as the smallest Lorentz invariant
expression that is strictly greater or equal to that in Eq. (18),

M} = m —4m? = M|y . (20)

That this expression is Lorentz invariant means it can be

evaluated using only the four vectors of visible particles

measured in the lab frame, and does not require knowledge

of any approximate reference frames in the event. But this

choice also requires a concession, in that our estimators for

the neutrinalino masses, M; and M, , which we previously

tried to constrain to zero, will now take nonzero values,
with

o |ﬁ zll - pz,,

Xa) - °

b Ettat + Ettb t

(21)

A portion of the “extra” mass we assigned to M in Eq. (20)
in order to make it Lorentz invariant has been absorbed by
M; . The expression does not contain new information, in
the sense that it is a combination of M, and the estimator for

ﬁ;”/b from Eq. (16), and is not sensitive to the true values

my, .. We also note that our estimators for the top energies

in their respective production frames, E,ﬂ“ and E,b, do not
depend on this choice of My, with

\2m? + M2(pll )

;a/b .
E/’ = 5 (22)
Recalling that E, “/b (m~2 - m}zﬂ/ + my /,,)/2”‘:,1/,7 we

Tafp
are reminded that we are ‘only sensitive to the mass
difference between stops and neutralinos in these events,

a/h

Ly > Can be extracted

and our estimator of this quantity, E,
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with contraboost invariance independent of our choices for
the individual neutralino masses. In practice, allowing our
estimators M o to acquire mass in our approximate view
of each event is a bookkeeping device to account for the

lack of commutation between the boosts (ﬁ,‘ 5 P) and contra-
boosts (ﬁ;[ujb) which describe the visible tops’ path from

their production frames to the lab frame. While providing
no information about the true mass values of the invisible
particles, this approach minimizes the effect this lack of
knowledge has on our ability to extract other information
from the event, like the mass splittings of sparticles. It also
allows for the JR’s applied in analyzing the event to be
factorized and, as we will see in later examples, inter-
changed, further decoupling the observables measured in
each approximate reference frame.

In service of this last consideration, we imagine a case
where one may want to ensure that the estimators M; Fas®
and the corresponding quantities in our reconstructed view
of each event, are greater than or equal to some nontrivial
value, with M L 2 H- This need may occur if there is prior
knowledge, outside of quantities measured in the event,
about these masses, or if one wants to examine the
dependence of observables in different test masses M ;.
Allowing for a minimum mass also permits this contraboost
invariant JR to accommodate future invisible JR’s appear-
ing later in the decay tree, where y, and y, may be
subdivided into more invisible particles.

Returning to Eq. (17), requiring M, s =H implies that
My can be expressed as

A —m?)
2m? + M2(p/’.pl")

M |ym = my + (B> (23)

As was the case for the expression for M| M=o from
Eq. (18), MI|M,;:/4
instead choose M to correspond to the smallest Lorentz

invariant expression that is guaranteed to be greater than or
equal to My| M,

is not a Lorentz invariant function, so we

=u>

my + 4w —mp) p<M,
M} = 22 (24)
m—tzmv H > M[.
These choices result in the mass estimators M " taking
values larger than u, with
2 2 Py =PI
H +(mt —H )(E”JrE”) /’t—Ml‘
2 _
;= (25)
afo 2 | Pom) By Y,
/’t 2 (Erat+Erbt) /’l r

An important feature of the mass expressions in Eq. (24)
and Eq. (25) is that they are divergent for m; — 0 when
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u > 0. When either of two visible particles used in a
contraboost invariant JR are massless, there is no finite,
Lorentz invariant expression for the total invisible system
mass that can guarantee the masses of the individual
neutralinos will remain larger than any nonzero value. In
these cases, alternative JR’s can be used, as described in
later examples.

Returning to the more general case where m, # m,, , we
can generalize the contraboost invariant JR VI.2 to cases
with nontrivial visible and invisible particle masses:
Jigsaw RULE VI.3 (contraboost invariant) If the internal
degrees of freedom specifying how an invisible particle,
I={I,,1,}, should split into two particles are un-
known, they can be specified by choosing a correspond-
ing pair of visible particles, V= {V,, V,}, and applying
the constraint My 1 = My, y,. It is assumed that the four
vectors of the visible particles are known in the center-of-
mass frame, F = {V, I}, as is the four vector of the total
I system, pf. The four vectors of the invisible particles
can be chosen in the F frame as

pr, = (c=1)py, = cpy,
PI,, (c— I)va CPV
Ef =(c—1)Ey + cEy
EI,, (c—1)EY cE‘lfa, (26)
where
=z |1+ VB ;Vé"% M (27)

Assuming my > my,, in order for the individual
invisible particle masses to be guaranteed to be greater
than some known value, MIW > u >0, the mass esti-

mator M; must be chosen to be at least as large as

i my + 4@ —my) p<my,
M: > 28
1=« mi H> my,. 28)

m
Vi

The RJR approach to analyzing 77 — (¢}) (1Y) events at a
hadron collider can be summarized as:
(1) Apply the invisible mass JR VI.1, choosing My as
the smallest possible quantity consistent with JR
V1.3 and nontachyonic neutralinos.
(2) Apply the invisible rapidity JR V.1, choosing p;*
using the tops V.
(3) Apply the contraboost invariant JR V1.3, specifying
the neutralino four vectors using the constraint
M, =M,
With these choices for resolving the neutralino-related
unknowns in the event, the phenomenology of the resulting
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FIG. 14. The distribution of the reconstructed top momentum in
the approximation of its production frame, normalized by the true
value, in simulated 77 — (£y?)(t¢9) events with varying choices
of my.

estimators is studied in simulated 77 — (1) (z¢}) events,
for various values of my. The distribution of the recon-
structed top’s momentum in the approximation of its

production frame, p[;’, is shown in Fig. 14 for simulated

events. The estimator for p,’: exhibits no visible depend-
ence on my, reliably providing sensitivity to the true value
with a kinematic edge. While the estimators for the
individual neutralino masses may take nonzero values, it
has a negligible effect on the determination of the velocities
relating the reconstructed reference frames.

As was the case for the W mass estimator in the

previous example, p,’j (which is effectively an estimator
of the stop/neutralino mass difference) can be estimated
independently of Mj;;, as demonstrated in Fig. 15(a).
Similarly, the decay angles of the intermediate particle
states can be measured, with their distributions for
reconstructed events shown in Fig. 15(b). In particular,
the decay angle of the distop system can be measured
with excellent resolution.

RestFrames Event Generation Tt 7t 1 _ RestFrames Event Generation Tt 1t 7
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FIG. 15. (a) Distribution of the reconstructed top momentum in

the approximation of its production frame as a function of the
estimated distop invariant mass. (b) Distribution of the distop
decay angle, 0;;, as a function of the stop decay angle, 0; . All
observables are normalized appropriately by the true values of the
quantities they are estimating, with angles in units radian.
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C. X508 = Z(€0)x h(yy)x! at a hadron collider

We conclude our discussion of decay topologies with
two visible and two invisible particles in the final state by
considering the example of neutralino, 79, pair production
at a hadron collider, where the second neutralino mass
eigenstates each decay to a lighter neutralino, ;?‘l), and a
boson, either a Z or Higgs (with m, ~ 125 GeV). The two
final state bosons each decay to a pair of visible particles
which we assume have been identified and reconstructed in
the detector, with Z — £7¢~ and h — yy. The decay tree
for analyzing this final state is shown in Fig. 16.

The similarity of this decay topology to the previous two
examples (Figs. 9 and 13) is clear; a pair of massive
particles, produced resonantly or nonresonantly, each decay
to a visible system of particles and an invisible system. The
fact that our two visible particles, the Higgs and Z bosons,
themselves decay to a pair of measured particles is
immaterial to the strategy for choosing missing information
associated with the invisible particles in the event, as we
can analyze the event as a function of the measured four
vectors, plab = p}?b + p}?" and pp® =p)® +p)eb,
using the same JR’s as in the previous example from
Sec. VIB.

The important distinction in this example is that not
only are our visible states, Z and h, massive, but their
masses are distinctly different by a non-negligible amount,
adding an asymmetry to the kinematics of the event.
Defining I = {}¥,., 71, } to be the collection of the invisible
final state particles in the event, we interpret the measured
E‘%“SS as the transverse momentum of the I system, and
further define V.= {#,, £5,71,7»} to be the collection of all
the visible particles in the final state. Choosing the
unknown degrees of freedom describing how the total I

O Lab State

O Decay States
. Visible States
. Invisible States

FIG. 16. The decay tree for analyzing 7579 — Z(¢* ¢~ )i )h(—
yy)f(‘l’ events. The two x3’s are expected to be produced non-
resonantly and each proceeds through two intermediate
resonances of differing mass with different decay products.
The two final state 7 particles are potentially massive.
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system momentum is shared between the two neutralinos
using the contraboost invariant JR VI.3, we find that our
estimators for M are nonzero, even if we prefer they are
always zero. If we choose the parameters of the JR to make
these masses as small as possible, while ensuring they

remain non-negative, we find that

4m2
M;?l M;]b + (ml%_m%) 1_ CIIIZZ
(Ey™)
|-’cm ->cm|2
2 _ 2Pz TPy I
X1b (E _|_E}fm>
1 4m2
+§(m,$—m3)l1— 1-@ . (29)

where em = {V, I} denotes the center-of-mass frame of
the interaction and we have assumed m;, > m . Compared

to Eq. (25) in the previous example, the expression for P

in Eq. (29) has an additional term proportional to m? — m2,

implying that differences in the visible particle masses are
additionally absorbed into the invisible particle masses.
More concerning is that M, is systematically larger than

M;, ,, where Eq. (29) 1mphes

M2 = M2 > (my, —my)i(m, +3my)s  (30)

Xla X1b
The constraint M5, = M, associated with the contraboost
invariant JR has caused our M., estimators to develop a
large systematic difference, a kinematic feature that is not
present in the process we are hoping to study. In our case,
the two lightest neutralinos have the same mass, meaning
that the one associated with the Z decay should system-
atically receive more momentum from its parent’s decay
rather than increase in mass itself. More generally, for lack
of a better choice, a practical application would desire that
both the mass estimators M, " take values as close to zero
as possible. To achieve this behavior, we reconsider how
the contraboost invariant JR we apply is constructed.
With the assumption My, = M, , we can again relate
the velocities of these two particles in their mutual center-
of-mass frame by a single contraboost, ﬁc, and choose its
value to constrain the momentum of the invisible neutra-

linos. Instead of setting EC according to an explicit
minimization as we did in previous examples, we consider
an ad hoc generalization that maintains the contraboost
invariance of the choice,

2 cm 2 cm
% _7em . pem _ CaPz o —CpPy 31
ﬂC—'Bf(z«z__ﬁf(zh_ E cm’ ( )
C, + cpEy
where ¢, and ¢, are unspecified functions of the visible
four vectors in the interaction center-of-mass frame, cm.
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With this choice, the reconstructed energies of the visible
particles in their respective production frames can be
expressed as

Ela — camy + (cp/2)Mz (P " pi")
S =
\/camz +epmi + c M (pS™, pE™)
Ehb . Cbmh ( a/z)MZ( Py ) (32)
Yo =

\ Gim3 + cmi + coc,ME(PS™. pE™)

As there are only contraboost invariant quantities appearing
in Eq. (32) this means that, as long as there are also only
contraboost invariant quantities appearing in c, and c;,, our

estimators EZ* and E/* will exhibit this property.

Hence, there is a famlly of contraboost invariant choices
for p., defined by the different contraboost invariant
choices for the factors ¢, and ¢;,, which can be constructed
from factors like m2, m?, and M?(p£™, pf™) which have
this invariance property. We would like to use the additional
degree of freedom associated with this choice to mitigate
the large values of the estimators of invisible particle
masses seen in Eq. (29).

Defining

(1 + kky), (33)

the mass-squared difference of our estimators Mj 59

using the more general contraboost of Eq. (31), can be
expressed as

2 — 2 2
AM; =M; —-M;,

= Kl(ky = k) M2(p5™. ™) /2 = (kym3 — kym?)].

(34)

We use our choice for the factors k, and k; to minimize

AM )-(21 , in particular ensuring that limy2_,,,AM )-(2] =0, with
k,=m2—m? + M2(ps™, pf™) — 2mim}?
ky =m7 —mZ + M2(ps™, pf™) — 2mim}, (35)
which results in
AM2 = k(my, + my)(my, — my)>. (36)

X1

The factor k effectively normalizes k, and k, to be
dimensionless, and with ]imM%_,oolA(_l = M2(pS™, p™)
the invisible particle mass difference will approach zero
when the mass splitting between parent 79 and invisible 79
is large, relative to the Z and Higgs boson masses.
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To see that our ultimate choice for k has the expected
asymptotic behavior, we choose its value by setting
M;, = 0 and solving for k,
kymp — kym3 + 55 M2 Rl Syt — dmZm?
kim2 + kZm? + kk,M?

k=

(37)

where M7 =MZ(pg™.ps™). As limy_  k, =limye k=
M2, our choices for k,, kj,, and k ensure that AM 2, and the

individual neutralino masses, are reconstructed to be as
small as possible.

As was the case in the previous example, our expression
for My with these choices is not Lorentz invariant, which
means we must identify the smallest Lorentz invariant
function of the visible particles’ four vectors which is at
least as large as this current estimator, which ensures that
the invisible particle mass estimators remain non-negative.
In this case, we find

which is smaller than the value M — 4m2 which would be
required when using the previous contraboost JR VL.3.
The details of how the invisible neutralino four vectors
are chosen with this approach can be summarized as a more
general contraboost JR:
Jigsaw RULE VL4 (contraboost invariant) If the internal
degrees of freedom specifying how an invisible particle,
I ={I,,1,}, should split into two particles are unknown,
they can be specified by choosing a corresponding pair of
visible particles, V={V,,V,}, and applying the con-
straint My y = My, y,. It is assumed that the four vectors
of the visible particles are known in the center-of-mass
frame, F = {V, I}, as is the four vector of the total I
system, pF. The four vectors of the invisible particles can
be chosen in the F frame as

1_51F = (ec, — 1)1_5\1; — Ceppy,
PL, = (¢c, = 1)py, — ecaPy,
Ef = (éc,—1)Ey + ec,Ey;
EF = (éc, - 1)EE + ec,E¥ (39)

where ¢, c,, and ¢, are factors whose functional forms
depend on the masses of the individual visible and invisible
particles. We assume, without loss of generality, that
my my > my, and that the masses of the individual
invisible particles are required to satisfy My, > u, and
MI,, > Hb> with H = max(/’tanub)'

JR case VI.4.1 (u < my,) The factors ¢, and c,, are defined
in terms of parameters lAc, k., and k;,, with

PHYSICAL REVIEW D 96, 112007 (2017)

~

(1 + kk,). (1+ kky),  (40)

| =

Cq = Cp =

with k, k,, and k;,, chosen as
— 2 2 2 2 2
ky =my —my + M:—2my my,

2p
k = (m3 —m3,) <_ - 1) M2~ 2m md,

mvb
.k
k=22 with,
ka
k= kgmg + kyms, + kok, M2
. k, — k
kn = kam%,a - kbm%h +TaM%

1 -
3 U kP (ME = dmd )+ 162k, (41)

where M7 = MZ(py . py,)- ¢ is given by

o [ ET

2 c By 4 cpEy,

In order to guarantee that My, > My, > pu, My must be
chosen to be at least as large as

My > mg +4(u +my, ) (4 = my,). (43)

JR case VI4.2 (u > my,) The factors ¢, c, and ¢, are
defined as

c,=cp =1
1 EF2 MZ_ 2

L PRRAL2 Sk Ul el
2 Ey

In order to guarantee that My, > u, and My, > u;,, My
must be chosen to be at least as large as

max(u2 — ma , u* —ma
(Ha v, Hp V,,)m%‘ (45)

2
M > - %h
The RIR steps to analyzing 7575 — Z(£€)7h(yy)"
events at a hadron collider can be summarized as:

(1) Apply the invisible mass JR VI.1, choosing My as
the smallest possible quantity consistent with JR
VI1.4.1 and nontachyonic neutralinos.

(2) Apply the invisible rapidity JR V.1, choosing p;*
using all the visible particles V.

(3) Apply the contraboost invariant JR VL.4.1, specify-
ing the neutralino four vectors using the con-
straint M; = M;,

Despite the complications involved with the nontrivial Z

and Higgs masses, the contraboost invariant jigsaw allows
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FIG. 17. The distribution of the reconstructed Z boson
momentum in the approximation of its production frame,
as a function of the estimator M,,, for simulated ;}gf(g —
Z(¢ ) h(yy)y® events. Each of the estimated quantities is
normalized by the true value event-by-event.

the kinematics of these visible systems in their production
frames to be estimated with little bias. The reconstructed Z
boson momentum in the approximation of its production
frame, p?“, is shown in Fig. 17, where the similarities to
Figs. 11 and 15 showing analogous observables from
previous examples is striking. p%*, which is sensitive to
the mass splitting between the two neutralino states, is
estimated nearly independently of the total di- mass,
M ., With a kinematic endpoint reliably falling at the true

value. Relative to the previous examples, no additional

distortion in the p%* distribution due to the Z and Higgs
masses is visible.

That the approximations of the neutralino rest frames,
Jq and J,;, have a strong correspondence to the true ones
can be seen by considering the reconstructed decay angles
of the Z and Higgs bosons, which require knowledge of
these reference frames as they are where the bosons are
produced. The estimators 6, and 6, can resolve the true
quantities quite well, as demonstrated in Fig. 18, and are

~0 ~0

LR ZADT by Y,

RestFrames Event Generation

)

mo= 800 GeV, m_=400 GeV
2 %,

true

Z

Ndce, -6™)d(e,-0

-1 -0.5 0 0.5 1
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FIG. 18. The distribution of the reconstructed Z decay angle,
67, as a function of the Higgs decay angle, 6,, for simulated
7599 = Z(¢T ) 0h(yy)7? events. Both observables are shown
relative to the true decay angles they are estimating, with angles
in units radian.
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insensitive to the momentum of the center-of-mass system
in the lab frame and the masses of the sparticles in the
event. This is possible because the approximate y,, and y»,,
rest frames have effectively inherited the invariance
properties of the reference frames that proceed them in
the decay tree, with longitudinal and contraboost invariant
definitions. As was the case for the & — yy decays in
Sec. VC, the approximate reconstruction of the inter-
mediate decay frames in the event allows the decay angles
of these visible systems to be estimated with excellent
precision.

VII. MORE JIGSAWS FOR TWO
INVISIBLE PARTICLES

In this section, we expand the library of JR’s designed to
study final states with two invisible particles by considering
a series of examples motivated by top pair production.
In fully leptonic ¢ events, two top quarks each decay to a
b-quark and a leptonically decaying W boson, resulting in a
final state with four visible, reconstructable particles, and
two neutrinos. The additional two visible particles relative
to the examples of Sec. VI provide both new challenges and
opportunities. While a combinatoric ambiguity must be
resolved as to which b-tagged jet to associate with each
lepton, more visible particles allow for better resolution of
the underconstrained neutrino kinematics.

We consider three examples with this same final state,
including nonresonant top pair-production (Sec. VII A),
resonant {7 production through a heavy Higgs boson
(Sec. VIIB), and stop quark pair-production with decays
through charginos and sneutrinos (Sec. VII C). Additional
JR’s for studying this final state are described in Sec. VII A
with several approaches compared throughout the
examples.

A. tt > bW(Zv)bW (¢v) at a hadron collider

The first case we consider with four visible and two
invisible particles in the final state is top pair production at
a hadron collider, with subsequent decays to b-quarks,
leptons, and neutrinos via intermediate W bosons. We
assume in these events that two b-tagged jets are identified
and reconstructed in the detector, with measured four

vectors py** and p,*", along with two leptons, with four
vectors p#** and p**. The measured EM is interpreted as

the transverse momentum of the dineutrino system, ﬁ}a}’,

with I = {v,,v;}. The decay tree used for analyzing this
final state is shown in Fig. 19.

In addition to unknowns associated with invisible
particles in the event, there is a combinatoric ambiguity
in deciding which reconstructed b-tagged jet should be
associated with each lepton. We assume that we are unable
to reliably distinguish between b-tagged jets initiated by b-
quarks and those from antiparticles, so we make this choice
solely relying on the kinematics of each event. Defining
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O Lab State

O Decay States
. Visible States
. Invisible States

FIG. 19. The decay tree for analyzing t - bW(£v)bW(£v)

events. Four visible particles are reconstructed in the final state,

along with two invisible particles which are constrained by the
miss

measured ET . There are several masses of interest in the event,
with two intermediate top quarks and two W bosons appearing in
the decays.

V,=1{b,,¢,} and V,={b,,¢,} as the two sets of
visible particles associated with each top decay, we define
a JR to choose the b/¢ pairing which minimizes the
function My + Mg . This is a simple, and generally
correct, prescription as it chooses combinations where
the sum of four vector inner products is smallest, effectively
pairing particles flying closest together as expected from a
common decay source. More generally, we can define this
combinatoric JR as follows:

Jigsaw RULE VIIL.I (combinatoric ~minimization) If
there is a set of n visible particles, V={V,,...,V,},
we can choose a partition of V into m < n subsets,
Py = {Sy,..... Sy, }, by minimizing a chosen metric over
the space of all valid partitions, Py € Py.

A partition, Py, is valid if it satisfies the conditions

(@ U Sv=V

SyePy
(b) V Sy,.Sy, € Py,

Sy, #Sy, = Sy, N Sy, =&
(¢) |Sy|=or=n;>1 foranyrequirementsn;,

(d) Q(Sy,) =gq; foranychargerequirementsq;. (46)

We assume there is at least one valid partition in each event,
5|Py| > 1, and choose a partition, Py, from this set by
minimizing a function of the event’s kinematics, f(Py),
that is sensitive to this choice, with

N

f(Py) = min f(Py). (47)

Py€ePy

If the function f(Py) depends on other unknown
kinematic or combinatoric information that depends on
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the application of other JR’s which, in-turn, depend on the
choice Py, then these JR’s are evaluated independently for
each value Py in Eq. (47).

Jigsaw caseVII. 1.1 (minimize masses squared) A conven-
ient choice for f(Py) is the sum of four vector inner
products of the elements of the m sets in a partition,
potentially including other particles in the event. With O =
{0, ...,0,,} the set of other particles associated with
each combinatoric subset in a partition Py, we can define
f(Py) as O,

f(Py) = ZMéV,-Oi = Z(Psvi +Po)>  (48)
i—1 i—1

The appeal of this functional form is that it can be linearly
factorized, in the sense that if P, = {S’VI, .8y tisa
partition of V where Py is its refinement, such that |Py| <
|Py| and V Sy € Py,3Sy € Py with Sy C Sy, then f(Py)
can be expressed as

FPy)= D F(Sy) =D > f(Sv). (49)

SyEPY, SyEPy, SyeSy,

This implies one can use recursive applications of this JR
corresponding to a sequence of progressively fine partitions
of V, effectively minimizing the same function as a single
application, but in factorized steps, potentially improving
the resolution of intermediate particle structure in an event
if chosen correspondingly.

With this choice for the b/¢ pairing in each event, the
remaining unknowns associated with the neutrinos are the
same as in each of the examples of Sec. VI and can be
represented as the mass of the total invisible system, My, its
momentum along the beam axis, the orientation of the
“decay” of I into two neutrinos, and the two individual
neutrino masses. The increased number of visible particles
means that there are choices in strategy when applying the
contraboost invariant JR VI.4 to resolve these unknowns.
For example, the two leptons could be paired with the two
neutrinos, and a contraboost invariant JR imposing My, =
My, applied. Alternatively, the two b/Z pairs, V, and V,,
can be used, imposing the constraint M, = M, . While
both approaches are perfectly applicable to this final state,
there are cases where these mass equality constraints may
not be appropriate. Furthermore, there may be cases where
insisting on contraboost invariance at the cost of the
estimators of invisible particle masses acquiring additional
mass (as described thoroughly in Sec. VI) may not be
desirable. To address these cases, we introduce additional
JR’s for choosing the degrees of freedom associated with
splitting apart a di-invisible system.

We take the same approach as Sec. VI, imagining that we
are able to evaluate each of the visible four vectors in the
event in the total center-of-mass frame, em = 17 = {V, I},
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and the four vector associated with the total invisible
system, pr™. Additionally, we now impose exact con-
straints on the individual neutrino masses, with M, =
M,, = 0. The remaining unknowns are associated with
how the momentum of these two individual neutrinos are
chosen in this reference frame, subject to the constraints,
R R

(pS™ +p5")* = M, (50)
corresponding to two underconstrained degrees of freedom.

As the individual neutrino masses are fixed, and the
masses my_and my, will assume unequal, nontrivial values
in these events, we are unable set our approximations of the
two top masses exactly equal, as such a constraint could
lead to tachyonic approximations of the neutrino four
vectors. If we want to effectively minimize these masses
with respect to our choices for the neutrino momentum, we
must choose a new mass-sensitive metric.

A suitable choice for this metric can be seen more clearly
if we instead work in the rest frame of the dineutrino
system, I. With our assumed knowledge of pf™, we can
calculate the velocity relating cm to I as

ﬁcm o ﬁ lcm
| E Icm ’

(51)

and, as we are in the dineutrino rest frame, the two
neutrinos must have equal and opposite momentum, with
magnitude determined by M,

i, = =PJ, = DJ,- (52)

We see that choosing the remaining degrees of freedom
associated with the neutrinos amounts to choosing i),,la. The
momentum of the two visible systems of particles in this
reference frame, ﬁ\l, and f)\l,b, define a plane, with normal
vector ty o py X Py, . As there is no visible momentum
along the 7y direction, there is little information for
choosing j)yla - fiy. In fact, any mass estimators that depend
only on these visible four vectors (without resolving
the individual b-tagged jets and leptons) are completely
insensitive to the sign of this inner product, indicating
that a minimization of any of these masses will yield
i),}a - iy = 0. We adopt this choice, leaving only one angle,
describing the direction of f?}a in the plane defined by 7y,
to choose.

There are many ways to determine this final angle. We
consider two different approaches, corresponding to two
different JR’s, each resulting in observables with distinc-
tively different behavior. The first follows by considering
the sum of top mass estimators squared, evaluated in the I
frame,
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Fi(pl) =M2 + M7,
=my +my +2Ey E) +2Ey E}
=2p}, - Py, = 2Py, - DV,
=my +my +M(Ey +Ey)
—Myp), - (By, = Pv,)- (53)
where only the final term, =M p,), - (py. — Py, ), depends

on the unknown p,!. Choosing p,} to minimize f/(p.})
from Eq. (53), we find

PJ, < By, = by, (54)

This choice effectively minimizes the two top mass
estimators simultaneously, even if they have different
values.

Alternatively, we can make a different choice for f),}a by
considering another metric to minimize. Even though the
two top mass estimators cannot be guaranteed to be equal,
we can attempt to make them as similar as possible using
this degree of freedom, by defining

fz(l%{,) = |Mt(, _Mt,,

. (55)

and choosing p,) to minimize f,(p, ). As this function
has units mass, this approach minimizes the two top
masses while also minimizing their difference. Unlike
the other JR prescriptions described to this point, this
minimization does not have an analytic solution and is
performed numerically.

We can define these JR’s more generally as follows:
Jigsaw RULE VIIL.2 (invisible minimize masses®) If the
internal degrees of freedom specifying how an invisible
particle, I = {I,, I,}, should split into two particles are
unknown, they can be specified by choosing a correspond-
ing pair of visible particles, V.= {V,, V, }, and minimizing
the quantity M%ﬂln + M\zl,,l,,- It is assumed that the four
vectors of the visible particles are known in the center-of-
mass frame F = {V, I}, as is the four vector of the total I
system, plF . Furthermore, we assume that the individual
invisible particle masses, My, and My,, are specified. The
four vectors of the invisible particles can be chosen in the
di-invisible rest frame, I, as

S1 o
o Pv, — Dy

1 | a b
p :p =T ST

T Plepd = py |

S =]

R Pv, = Pv

1 1 b a
P, =PL =T =1 (56)
b P By — byl

with
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pi =ri,
\JMF = (M, + M) (MF - (My, - My, )
B 2M;

Ef =\/M{ +(p{ )

Ef, = /M, + (pi,)> (57)

The mass M1 must be chosen to be at least as large as the
sum of individual particle masses.

Jigsaw RULE VIL3 (invisible minimize A masses) If the
internal degrees of freedom specifying how an invisible
particle, I = {I,, I,}, should split into two particles are
unknown, they can be specified by choosing a corres-
ponding pair of visible particles, V={V,,V,}, and
minimizing the quantity [My y — My,;,|, subject to
constraints. It is assumed that the four vectors of the
visible particles are known in the center-of-mass frame,
F = {V, 1}, as is the four vector of the total I system, pf.
Furthermore, we assume that the individual invisible
particle masses, MI,, and Mlb, are specified. The four
vectors of the invisible particles can be chosen in the
di-invisible rest frame, I, as

ﬁIIa = pllaﬁ
Pi, = =i, (58)
with
pi =ri,
V(MR = (M + My, ) (M7 = (My, = My, )?)
B 2M;
E{ =\/M{ +(pi)’
Ef =\/M{ +(pi)% (59)

and 71 chosen to correspond to the minimum

min 70|MV,11,1 =My, (60)

ﬁj"(!’va vab>

The mass M must be chosen to be at least as large as the
sum of individual particle masses.

With these additional JR’s, we now have several choices
in how to analyze events in the 17 - bW (£v)bW(£v) final
state at a hadron collider. We consider four different
strategies, described below, in order to compare the relative
merits of the approaches:

(1) “Mg, = M{Lp reconstruction”

(a) Apply the combinatoric JR VII.1.1, choosing the
b/¢ pairing which minimizes my_+ my .

PHYSICAL REVIEW D 96, 112007 (2017)

(b) Apply the invisible mass JR VIL.1, choosing
M} =mi - dmy my, .

(c) Apply the invisible rapidity JR V.1, choosing
P12 using all the visible particles V.

(d) Apply the contraboost invariant JR V1.4, speci-
fying the neutrino four vectors using the con-
straint M, = M,, .

(2) “M¢, = MY, reconstruction”

(a) Apply the combinatoric JR VII.1.1, choosing the
b/¢ pairing which minimizes m%,a + m\z,b.

(b) Apply the invisible mass JR VL1, choosing
M{ =mg , —4my my,.

(c) Apply the invisible rapidity JR V.1, choosing
P12 using all the visible particles V.

(d) Apply the contraboost invariant JR V1.4, speci-
fying the neutrino four vectors using the con-
straint My, = My, .

(3) “min Mg, reconstruction”

(a) Apply the combinatoric JR VII.1.1, choosing the
b/¢ pairing which minimizes my + my .

(b) Apply the invisible mass JR VI.1, choosing
My =2[p//,|. M,,, =0.

(c) Apply the invisible rapidity JR V.1, choosing
p1® using all the visible particles V.

(d) Apply the JR VIIL.2, specifying the neutrino four
vectors by minimizing Y, M?.

(4) “min AMZ,, reconstruction”

(a) Apply the combinatoric JR VII.1.1, choosing the
b/¢ pairing which minimizes m%a + m%b.
(b) Apply the invisible mass JR VL1, choosing
My = 2|ﬁ§5b|, M, =0.
(c) Apply the invisible rapidity JR V.1, choosing
P12 using all the visible particles V.
(d) Apply the JR VIL.3, specifying the neutrino four
vectors by minimizing AM 7.
The factorization and interchangeability of the different
JR’s appearing in the four different approaches is clear in
their descriptions, and extends to the resulting estimators
each produces. The invisible rapidity JR V.1 ensures that all
of the observables in each approach are invariant under
longitudinal boosts, while they are approximately indepen-
dent of the lab frame momentum of the center-of-mass
ditop system.

As the Mg, = Mfop approach will result in non-
trivial neutrino mass estimators, biasing any quantity that
directly depends on them, we consider the energies of the
different visible particles in their respective production
frames, quantities sensitive to the mass splittings of the
intermediate particle states. The estimators E ;Z and E ;}r “ are
shown in Fig. 20 for simulated events reconstructed in
each of the four different ways. The M{, = M{,, and min
AM,,, approaches yield the most accurate estimates for

E ,ﬁ with small biases relative to the true value due to the
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FIG. 20. Distributions of (a) the energy of a reconstructed
b-tagged jet in its approximate production frame, E,; and
(b) EZ“ in simulated 7 — bW (£v)bW(£v) events at a hadron

collider. These estimators are compared in four different
reconstruction schemes. Each observable is normalized by the
true value of the quantity it is estimating.

minimizations in their application. While the M§, = M’;V
approach introduces a smaller bias in E ,; , it exhibits much
worse resolution, similar to min ZMZ,.

In Fig. 20(b), the different £ ;‘: “ observables exhibit quite
different behavior, with the M, = Mf’op approach provid-
ing the most accurate, unbiased, estimate. Using min AM
results in similar behavior, with a slightly larger bias. The
E;av « distribution exhibits a kinematic edge at the true value
in the M{, = MY, approach, as was the case for two W(¢v)

)
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FIG. 21. Distributions of (a) reconstructed top decay angle, 0, ,

and (b) Ay, in simulated 17 — bW (£v)bW(£v) events at a hadron
collider. These estimators are compared in four different
reconstruction schemes. The decay angles are normalized by
their true values and shown in units radian.

final states in Sec. VI A. The worst estimate is provided by
min ZM%OP reconstruction, where the minimization of a sum
of masses squared allows for longer tails in individual
estimators’ distributions.

Other observables of interest include the decay angles of
the top and W bosons, with their estimators in the different
reconstruction schemes shown in Fig. 21. Similarly to the
E IZ observable, the M{,, = Mﬁ)p approach yields the best
estimate of ¢, , with min AM,, resulting in the next best.
For 6y , the relative accuracy of the approaches is quite

)
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FIG.22. Distributions of (a) E,* vs E;*, (b) E; “ vs E;", (c) E; vs E;*, (d) 0, vs 0, (€) Oy, vs Oy, and (f) 6, vs Oy, in simulated
1t — bW(£v)bW(£v) events at a hadron collider, calculated using the min AM,,, approach. Each observable is normalized
appropriately by the true value of the quantity it is estimating, with angles shown in units radian.
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different, with M{,, = Mtop resulting in a systematic bias.
The approach results in the most accurate 6y, , with quite
impressive resolution, similar to that of ¢, in the scheme.
We see that, in general, the M, = Mﬁ)p approach yields
the best mass-sensitive estimators, with the exception of the
total ditop invariant mass, which is biased by nonzero
neutrino masses. The min AM,,, scheme provides a
compromise between accuracy in these observables, and
significant improvements in resolving decay angles and
other quantities. As we will see in the following example,
the ability to fix the neutrino masses at zero in the min
AM,,, approach allows for an unbiased estimate of m;.
Another advantage to using the energies of visible
particles evaluated in approximate reference frames, rather
than explicit mass estimators, is that these quantities exhibit
significantly smaller correlations between the two top
quarks, even if the event was reconstructed with explicit
constraints relating their masses. An event-by-event com-
parison of the E and E Z estimators using the min AM,,
scheme, as seen in Fig. 22(a), indicates only modest

correlation between the two quantities, with E) ¢ and

b

E;bv , shown in Fig. 22(b) exhibiting similar behavior. It
is seen in Fig. 22(c) that E;;’; and E;: /b/b can also be
estimated largely independently, indicating that not only
are the observables in each hemisphere largely decoupled,
but so are those appearing at different stages of the decay
chain. This is a consequence of the factorization of
unknowns into different JR’s, each describing how to
choose only the information necessary to determine the
kinematics in a particular reference frame.
Corresponding distributions of the correlations between
the top and W decay angles for each half of the event,
shown in Fig. 22, confirm the near independence of the
observables corresponding to different reference frames,
with each estimating their respective true values accurately.
In addition to the observables describing the mass and
decay of the ditop system, which are studied in the
following example, the total set of derived estimators in
an RJR scheme like min AM,, constitute an excellent basis
for studying these events, with only small correlations and
uniformly good resolution of a collection of quantities,
including masses and spin-sensitive decay angles.

B. H® — tf - bW (£v)bW (¢v)

We continue our discussion of dileptonic #7 final states
by considering resonant top pair production, through a
heavy, neutral Higgs boson, H°. The kinematics of the
decay tree describing this final state, shown in Fig. 23, is
identical to that of the previous example, with four visible
particles accompanied by two neutrinos. We will adopt the
notation of Sec. VII A throughout this example.

While for nonresonant top pair production we focused on
the reconstruction of the top and W rest frames, along with
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O Lab State

O Decay States
. Visible States
. Invisible States

FIG. 23. A decay tree for a heavy, neutral Higgs boson
decaying to a tf pair, each of which decays to a b-quark and
W(¢v).

their associated estimators, here we are primarily interested
in the approximation of the Higgs rest frame, its mass, and
decay angles. In order to minimize any bias in the Higgs
mass estimator, Mo, we adopt the min AM,, scheme,
described in Sec. VII A, for analyzing events in this
example, which allows us to fix the individual neutrino
masses to zero. This approach applies the Lorentz invariant
choice for the total mass of the dineutrino system
My = 2|ﬁf ? |, exploiting the symmetry of the neutrinos

and leptons in their production.

The distribution of M o, for varying Higgs boson mass,
is shown for simulated H° — 7 — bW (£v)bW (£v) events
in Fig. 24, where the observable peaks at the true value of
the mass it is estimating with roughly constant relative
resolution. This is indicative that, on average, our guess for
the neutrino system’s contribution to the Higgs mass is
unbiased and not wholly inaccurate.

M o estimates the Higgs boson mass with ~17%-20%
resolution for those considered in this study, degrading with
increasing mass, as demonstrated in Fig. 25(a). With this

RestFrames Event Generation H’>ti>b W v)bW( v)

0.08 F™ .
0.07F — my,0= 500 GeV.
006k I — my;0=750 GeV
— F II — my 0= 1000 GeV
% 0.05F
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5 E
5 00 ll |l Illrn\ll — my 0= 2000 GeV
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MHO[GBV]

FIG. 24. Distribution of the Higgs boson mass estimator, My,
in simulated H° — ¢ — bW (£v)bW(£v) events with varying
Higgs mass.
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FIG. 25. Distributions of (a) the Higgs boson mass estimator,
Mo, and (b) Oy in simulated H® — {7 — bW (£v)bW(£v)
events with varying Higgs mass. Each observable is appropriately
normalized by the true value of the quantity it is estimating, with
angles in units radian.

accuracy, the reconstructed M o has a width comparable to
that in fully hadronic 7 final states, with contributions from
jet momentum and mass uncertainty resulting in a sim-
ilar value.

Conversely, the resolution of the Higgs decay angle
estimator, @0, improves with increasing Higgs mass, as
can be seen in Fig. 25(b). This is indicative of the fact that
as the velocity of the top quarks increases in the Higgs rest
frame, the estimate of the magnitude of that velocity
(related to M ) becomes more uncertain while its direction
(related to Gpp) is better resolved

This mild dependency of the ﬁt estimate on the Higgs
mass also has implications for the Teconstruction of the top
and W rest frames. The distributions of the b-tagged jet and
lepton energies in the approximations of their respective
production frames are shown in Fig. 26. As the velocity
relating the Higgs rest frame to the tops’ respective rest
frames becomes more uncertain, the resolution of these
reference frames degrades, with corresponding effects on
the observables associated with them. These higher order
reconstruction effects, resulting from mismeasurements of
the velocities relating different reference frames in a decay
tree, introduce many of the small correlations observed
between estimators in the RJR approach.
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FIG. 26. Distributions of (a) the reconstructed energy of a
b-tagged jet in the approximation of its production frame, E ,5‘:,
and (b) E;V in simulated H° — {7 — bW (£v)bW(£v) events
with varying Higgs mass. Each observable is appropriately
normalized by the true value of the quantity it is estimating.
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FIG. 27. Distributions of (a) E/ bos and (b) Ef , as a function of
M yp, and (c) 0, , and (d) Oy, as a function of 0y, in simulated
H® - 11 — bW(£v)bW (£v) events. The true Higgs mass is set to
myo = 1 TeV. Each observable is normalized by the true value,
with angles in units radian.

The magnitude of these residual correlations on the
estimates of the visible particle energies in their production
frames can be observed when considering their dependence
on the reconstructed Higgs boson mass, as can be seen
in Figs. 27(a) and 27(b) for simulated events with
mgo = 1 TeV. The observables have small correlations,
comparable to those between the visible energy estimators
themselves as seen previously in Sec. VII A.

A similar conclusion holds when considering the
dependence of the top and W decay angle estimators on
the analogous quantity for the Higgs, as demonstrated in
Figs. 27(c) and 27(d), where the observables exhibit
negligible correlation. Taken with the conclusions from
the previous example, it is clear that the estimators
calculated in the RJR approach for this final state, in a
particular reference frame, are almost entirely independent
of those associated with different frames, with the accuracy
of each of the estimators remaining stable—a crucial
property of this basis of observables.

C. 1t — byi (€v)by7 (¢V) at a hadron collider

The final permutation of final states with two leptons,
two b-tagged jets, and two invisible particles we consider is
the case of stop quark pair production at a hadron collider,
where each stop decays to a b-quark and chargino which, in
turn, decays to a lepton and a sneutrino. We assume that the
sneutrino is either the lightest supersymmetric particle or
that it decays via v — u)}?, such that it behaves as an
individual invisible particle. The decay tree diagram for this
final state, shown in Fig. 28, is identical to that for fully
leptonic top pair production, with the intermediate particle
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FIG. 28. Decay tree for stop pair production with decays to
b-quarks, leptons, and sneutrinos, via a chargino. While the stop
quarks and sneutrinos are assumed to have the same mass in each
half of the event, the charginos may correspond to different mass
eigenstates.

states and invisible particles replaced by their supersym-
metric counterparts.

The appeal of the RJR approach for studying events like
these is that one can estimate the mass splittings of these
particles and, in cases with many intermediate masses, do
so largely independently of each other. The same strategy
can be used whether the chargino appearing in these events
has a mass degenerate with the stop, nearly as small as the
sneutrino, or anywhere in between. In the context of a
search for evidence of this phenomenon, this mass sensi-
tivity is essential for distinguishing this process from a
likely large f7f background, where one or more mass
splittings may be similar their SM counterparts, and
difficult to distinguish from them.

If one were attempting to study the spin correlations of
these stop decays, unbiased estimations of the total distop
invariant mass and decay angles would be valuable, such
that the min AM,,, analysis scheme described in Sec. VIL A
would be appropriate. In a discovery search, these observ-
ables are less relevant, with estimation of the intermediate
particle mass splittings a higher priority. Recalling that the
Mg, = Mf’op approach of Sec. VII A provided the most
accurate, and least biased, estimators of the relevant mass

~ st
splittings, E;Z// ’ and E;://:, we adopt that strategy for the
analysis of 77 — by (£0)by [ (¢D).

While the absolute values of the mass differences
between the stop, chargino, and sneutrino may differ
from their SM analogues, the behavior of the RJR observ-
ables, when compared with the true quantities we are
attempting to estimate in these events, depends primarily on
the ratio of the mass splittings in each decay step. We
imagine in this example that each stop quark has
m; = 800 GeV, and each sneutrino m; = 100 GeV. A
range of intermediate chargino masses are considered,
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parametrized by the ratio of chargino/sneutrino and stop/
sneutrino mass differences, R

m;(i9
my+ — nmy
I a—y (61)
“ my — my

The distributions of the visible particle energy estima-
tors, £ ,jn and Eiﬁ , and the reconstructed stop decay angle
are shown, as a function of R,, ,, for simulated events in

X

Figs. 29(a), 29(b), and 29(c), where the true values of the

chargino masses my: = my: are varied between their

kinematically allowed values. As R, . — 0, the phase-

space in the production of the lepton becomes negligible,
meaning these events appear as if the stop quarks are
decaying as 77 — bvby. This results in the E ga distribution
exhibiting a kinematic edge at the true value, similar to the
analogous quantity shown in Fig. 15 for 77 — fyaq7) thaal)
events. Conversely, as R’";f . — 1 the events appear as if the

stops are decaying 7 — £U£D, with the E)f distribution in

Fig. 29(b) taking a similar shape as for E}‘: “in H—

W(¢v)W(¢v) events from Fig. 11. As R,, . approaches the
x

opposite extremum for both energy estimators their dis-
tributions peak at the correct values, with increasingly
degraded resolution as the associated decay phase-space
shrinks. Similarly, the accuracy of the 6; estimator
becomes worse as the stop and chargino become degenerate
in mass, developing a growing bias as this limit approaches,
as can be seen in Fig. 29(c).

The RIR M{,, = Mf’op approach is able to retain sensi-
tivity to the true mass splittings between the sparticles in
these events over a broad phase space of decays, even in the
limit of degeneracy between masses. But the most remark-
able property of the derived estimators is the level of
independence observables sensitive to the different stop
kinematics exhibit. If we imagine a case where there are
two chargino mass eigenstates in between the stop and
sneutrino masses, a single event could contain one of each
of these charginos. To study what happens to the RJR
estimators when these masses are different, we fix one

chargino mass, with Mye = 450 GeV, while varying the

other over the allowable on shell phase-space between the

. . ~ >+
stop and sneutrino. The same estimators, E; , E%* and G;H,
are shown as a function of R,, , for this differing chargino
X

mass scenario in Figs. 29(d), 29(e), and 29(f). The
similarities between the these distributions and those for
Mys = M+ in Figs. 29(a), 29(b), and 29(c) are striking.
With only small deformations, the estimators retain nearly

identical dependence on R,, , in the two cases, irrespective
X

of the mass splittings of sparticles in the opposite half of the
event. This independence between the two stops’ kinemat-
ics is a result of the application of the contraboost invariant
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FIG. 29. Distributions of (a),(d) b,7,, (b),(e) El‘l‘ , and (¢),(f) ¢; , as a function of R,,, " for simulated 77 — b)(] (¢v)by

F(¢D) events.

All observables are appropriately normalized by the true values they are estimating, with decay angles in units radian. The 51mulated stop
and sneutrino masses are chosen as m; = 800 GeV and m; = 100 GeV, respectively. Figures (a), (b), and (c) have my: = my, while

Figs. (d), (e), and (f) have one chargino mass fixed at Mye = 450 GeV, and My varying with R, .

JR V1.4 when analyzing the event, making the observables
associated with each stop insensitive to the true velocity
relating its rest frame to its production frame and, hence,
also the other stop. This means that one can effectively
analyze each part of the event in approximate isolation,
allowing for the recursive application of even more JR’s in
events with additional kinematic structure, as is described
in the following examples.

VIII. RECURSIVE JIGSAWS FOR MORE
PARTICLES—INTERMEDIATE,
INVISIBLE, AND IDENTICAL

The previous examples have introduced a large collec-
tion of configurable and interchangeable JR’s, which can be
chosen to analyze a variety of events. As the decays we
hope to study grow further in complexity, with additional
invisible particles in the final state and higher degrees
of combinatoric ambiguity, there are two treatments
available. We can introduce further generalizations of
existing JR’s to simultaneously choose more undercon-
strained degrees of freedom, an approach we discuss in
Sec. VIIT A for N > 2 x W(£v) final states. Alternatively,
we can combine existing JR’s, recursively, into logical
trees, iteratively subdividing each event kinematically
while choosing the appropriate degrees of freedom. The

Xy

examples in Secs. VIII B and VIII C demonstrate this latter
approach, considering the processes H — hh — 4W(¢v)
and gg — bb)(lbb)(? The additional JR’s defined in this
section, combined with those described throughout this
paper, constitute a sufficient collection for analyzing any
final state, with an arbitrary degree of complexity and
number unknowns.

A.pp > N >2xW(¢v)

As the number of invisible particles appearing in a final
state increases, the number of unmeasured degrees of
freedom grows quickly. If this increase is accompanied
by additional mass constraints, for example between
intermediate particles appearing in a decay, the additional
unknowns can be mitigated with the recursive application
of corresponding JR’s, exploiting the expected structure in
each event to better resolve quantities of interest.

In some cases, additional complexity is not accompanied
by a more intermediate structure, with the number of
unknowns growing much larger than the number of
appropriate constraints. Such a case is the nonresonant
production of N > 2 W bosons at a hadron collider, with
each W decaying to a lepton and a neutrino. The N = 2
case corresponds to the example of H — W(£v)W(¢v)
production, described in Sec. VI A. There, we used the
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FIG. 30. Decay trees for pp - N > 2 x W(£v) final states with (a) N = 2, (b) N = 3, and (c) N = 4. The W bosons are assumed to
be produced nonresonantly, such that there is no phase-space structure beyond the flat N-body phase space of the cm decay and
subsequent W decays. While they tend to have similar values in the RJR reconstruction of these events, the W bosons are not explicitly

constrained to have equal mass.

constraint My, = My, and the contraboost invariant JR
V1.4 to determine how to split the invisible system into two
separate neutrinos, corresponding to the cm frame decay in
the tree shown in Fig. 30(a). As we see for the N > 2 decay
trees in Fig. 30, the corresponding decay has an increasing
number of legs, or velocities relating the cm frame to its
daughter W, systems’ rest frames, and hence a correspond-
ingly larger number of unknowns, with additional neutrino
four vectors to choose in the associated JR.

We assume that the N leptons in the final state of each

event are identified and reconstructed, with four vectors

lab
Ps,

be interpreted as the sum transverse momentum of the total

invisible system of neutrinos, I = {v;}, with p{%p = EPS,
With N neutrino four vectors to resolve and only two
7-miss

, and that the measurement of E7"° in each event can

constraints from the E;° measurement, there are 4N — 2
values left to choose.

As the W bosons are expected to have different velocities
in the cm frame when N > 3, we are unable to introduce a
generalization of contraboost invariance for arbitrary N.
Applying direct mass constraints between the W bosons
can lead to multiple and/or complex solutions for kinematic
quantities in events, and cannot be generalized to cases
when the intermediate particle masses may be different.
The shortcoming of simply choosing an inspired metric and
minimizing it with respect to each of these unknowns
simultaneously is that, with so many d.o.f., the minimiza-
tion will be able to find small, trivial solutions. In order to
resolve the fact that these events have intermediate structure
in the form of massive W bosons, we must either factorize
the minimization of these unknowns (i.e. a binary decay
tree) or perform the minimization with carefully con-
structed constraints to retain the structure. The algorithmic
approach must also be tractable, in that the mass of the I
system must be chosen as a Lorentz invariant function of
the visible lepton four vectors, while the neutrinos’ masses
must also obey any predetermined constraints and remain
nontachyonic throughout the space of the minimization.

We adopt an ad hoc approach inspired by the expected
symmetry between the lepton and neutrino pairs’ four
vectors due to their common provenance. In the derivation
of JR VII.2, working in the rest frame of two invisible
particles greatly simplified the problem, as their momentum
was constrained to be equal and opposite, with a Lorentz
invariant value, and only the orientation of this di-neutrino
axis left to determine. Generalizing this concept, we choose
the relative momentum of the neutrinos in the cm frame
to correspond to that of the leptons in their respective
V = {¢;} center-of-mass frame, such that

= |

Py, (62)

=R(a.p.7)p;,
where R(a,f,7) is a 3 x 3 dimensional rotation matrix
described by the three Euler angles «, f, and y. With this
constraint, we have reduced a potentially 3N —3 d.o.f.
minimization (assuming individual neutrino mass con-
straints) to 3, and are able to express our choice for My
as a compatible Lorentz invariant expression,

N
My=>_|p}
i

where we have constrained each M, = 0.
To determine the rotation R = R(a, 3, 7), we choose a
metric with a linear dependence on the orientation of the

neutrinos, m2
1

(63)

N
R)=> M§,

i

N
=" (m +2ELEL - P} -Bl))

i

N N

=> (m} +2E}|pY|) 22 LoRpBY. (64)

i
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with only the last term depending on R and no additional
unknowns. The problem of finding R which minimizes
f(R) in Eq. (64) is equivalent to the orthogonal Procrustes
problem1 in linear algebra. We use the original approach
proposed by Schénemann [54], to find R using a closed-
formed solution based on the singular value decomposition
of the matrix H = UAV’, with H defined as

N
H=3"5Y(FL), (65)

where (ﬁf!,-)’ is the transpose of the lepton’s column three
vector. In the singular value decomposition of H, the
matrices U and V are 3 x 3 orthonormal matrices, while
A is a 3 x 3 diagonal matrix with non-negative elements.
The matrix R which minimizes f(R) can be expressed as
R = VU (66)
These choices effectively minimize the sum of inter-
mediate W masses squared, subject to constraints inspired
to minimize this same quantity, anticipating the form of
Eq. (64). The approach can be generalized as a JR:
Jigsaw RULE VIIL.1 (Invisible minimize masses®) If the
internal degrees of freedom specifying how an invisible
particle, I = {I,}, should split into N particles are un-
known, they can be specified by choosing N corresponding
visible particles, V = {V,}, and minimizing the quantity
M \27,-I,~’ subject to specific constraints. It is assumed that
the four vectors of the visible particles are known in the
center-of-mass frame, F = {V, I}, as is the four vector of
the total I system, pIF . Furthermore, we assume that the
individual invisible particle masses, My, are specified.
The momentum of the invisible particles can be chosen
in the di-invisible rest frame, I, as
Pi, = P(RpY). (67)
where p > 0 is a factor and R a rotation matrix, scaling and
rotating, respectively, the momentum of the visible particles
evaluated in the visible center-of-mass frame. The factor p
is chosen by numerically solving the equation

N
My =3B+ M2 (68)
i

such that My must be chosen to satisfy

N
My>> My, (69)

'"Procrustes was a bandit smith in Greek mythology that
adjusted victims to fit his iron bed by stretching or cutting them,
similar to the JR VIILI.

PHYSICAL REVIEW D 96, 112007 (2017)

in order to ensure that the invisible particle momenta
remain real. Defining the matrix H as

N
H=Y (L) (70)

we calculate its singular value decomposition, H = UAV’,
and choose R as

R = VU". (71)

We can summarize the analysis strategy for studying
nonresonant N x W(£v) events as:

(1) Apply the invisible mass JR VLI,

My =3PV
(2) Apply the invisible rapidity JR V.1, choosing p{*
using the collection of leptons, V.

(3) Apply the JR VIIL1, specifying the neutrino four

vectors in the invisible center-of-mass frame.

Despite the sparse amount of information available in
each event, relative to the number of unknowns, the JR
VIIL.1 still allows information about the masses of the
individual W bosons, and total event invariant mass, to be
inferred. The sum of W mass estimators squared, which is
the quantity we effectively minimized in our analysis of the
event, is shown in Fig. 31, as a function of M ,, for N = 2,
3,4 W boson events. Normalized by the true quantity, the
distribution of this sum exhibits a kinematic edge at one,
with resolution slightly degraded for increasing N. The
total invariant mass of all the W bosons, M.,, is estimated
with little bias and improving resolution for increasing N.
This is a result of the guess for M| becoming increasingly
accurate as the number of visible leptons grows.

The lack of correlation between the W boson mass
and M, estimators recalls Fig. 11 for H — W W~ events,
Fig. 15 for 71 = tya¥ ), and Fig. 17 for 7575 —
Z(€€)i h(yy)y". The JR VIIL1 has recovers sensitivity
to the mass of the W’s, independently of M.,,.

This JR is an important part of the RJR library, as it
allows for the analysis of final states with an arbitrary
number of invisible particles, with the quality of extracted
information dependent on how well they can be paired
with visible partners. While it is encouraging that useful
information can still be measured in these highly nonreso-
nant cases, additional structure in events can yield much
more information, as we see in the following example.

choosing

B. H — hh - W(€v)W*(€v)W (€v)W*(¢v)
When analyzing events with many invisible particles in
the final state, expected symmetries and relations between
the intermediate particles possibly appearing in them can be
used in the choice of JR’s. In this example, we consider the
production of a heavy, neutral Higgs boson at a hadron
collider, which decays to two, SM-like, Higgs bosons. Each
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FIG. 31. Distributions of the sum of reconstructed W mass estimators squared, ,/(>-;M2 )/(>_;m% ), as a function of the estimated
i i

invariant mass of the total event, M .p,,, for simulated nonresonant N x W (#v) events. Both observables are normalized by the true values
of the quantities they are estimating. Distributions are shown for (a) N =2, (b) N =3, and (c) N = 4.

of these lighter Higgs bosons then decays to two W bosons
which, in turn, decay to a lepton and neutrino. This leads to
four leptons in the final state, V.= {2, ., C0p.Cp.a-Cop}s

and likely nonzero measured EF'* associated with four
escaping neutrinos, I = {v,,,v,p.Vp4 Vpp}- The decay
tree describing this final state is shown in Fig. 32.

As for the nonresonant 4W(£v) example discussed in
Sec. VIII A, in order to reconstruct this event we must make
choices for all the components of the neutrinos’ momentum
that we are unable to measure directly. Applying the

constraints p2p = EMSS and M, =0, there are still ten
underconstrained d.o.f. in each event. While the same JR
VIIL.1 can be used to resolve many of these unknowns
simultaneously, in this case the expected symmetry
between masses and decays of each lighter Higgs boson

motivates a different strategy.

O Lab State
O Decay States
‘ Visible States

FIG. 32. A decay tree diagram for heavy, neutral Higgs
production decaying to two lighter, neutral Higgs bosons. Each
of the lighter Higgs’s is assumed to be SM-like and have a mass
of m;, = 125 GeV, further decaying to W(£v)W*(£v). The heavy
Higgs mass is chosen as my = 750 GeV. The final state has four
visible leptons, with total charge zero.

In the RJR approach we attempt to factorize the
information we hope to extract about each decay step
by considering it independently, choosing JR’s corre-
sponding to its specific details, and desired constraints.
For the decay of the heavy, neutral Higgs boson, H,
there are several pieces of information we must choose.
Firstly, we assume that the total charge of the four
leptons in the event is zero, such that there are two
lepton/antilepton pairs, although not necessarily the same
flavor. Defining the two opposite-sign pairs of leptons as
V,={¢44.Cap} and V,={¢,,.¢p,}, we choose the
assignment which minimizes the quantity my +my,
according to JR VIL.1.1.

When choosing the unknowns describing how the four
neutrino system kinematically splits into two pairs in
this decay, the expected similarity between the two
SM-like Higgs masses can be exploited in the context of
a contraboost invariant JR VL4, imposing the constraint
M, = M, . The application of this JR only describes the
momentum of the two neutrino pairs in the approximation
of the H rest frame and uses only information about the
total momentum of the pairs V, and V,,, without resolving
that they are each made up of two separate particles. This is
a crucial distinction, in that it ensures that the estimators
describing each decay are maximally uncorrelated, as they
are largely based on different information.

As explained in Sec. VIC, the use of the contraboost
invariant JR VL4 imposes specific constraints on the
estimated masses of the individual invisible particles after
the pair is split, in this case the two systems of neutrino
pairs, I, = {v,4,v,p} and I, = {v, .. vp,}. As the JR
forces the two Higgs masses to be equal, any difference
between the masses of the two lepton pairs will result in a
difference between My, and My, . Since the lepton pairs are
coming from the same decays as the neutrinos, the lepton
pair masses are good indicators of the corresponding
neutrino masses. To prevent any biases in the kinematics
of the neutrino system from being introduced by the JR, we
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choose My = 2|ﬁ2’fa/b| ~my, and My, = 2|1—5;(’;/b|' This
corresponds to a choice My = my.

In the subsequent decays of the Higgs bosons, #, and #,,,
the same decay topology is encountered, with visible and
invisible particle pairs splitting in two. As m;, < 2My,, one
of the W bosons is generally produced off shell in each
decay, meaning that constraining the two W masses in these
decays to be equal would be inaccurate. Instead, a more
generic jigsaw minimizing the sum of W masses in each
decay, JR VIIL.1, is used, allowing the individual neutrino
mass estimators to be fixed to zero.

With these choices of JR’s, the strategy for analyzing
H — hh —» W(Cv)W* (€)W (Cv)W*(fv) events at a
hadron collider can be summarized as:

(1) Apply the combinatoric JR VIL.1.1, choosing the

lepton pairing that minimizes my + my, .

(2) Apply the invisible mass JR VLI, choos-

ing My = my.

(3) Apply the invisible rapidity JR V.1, choosing p{?

using the collection of leptons, V.
(4) Apply the contraboost invariant JR VL4, using the
constraint M, = M, .

(5) Apply the JR VIIL1 for each h,/, decay, minimiz-

ing M%Va/b.a + M‘%Va/b.b'

RestFrames Event Generation
2F

H—>hh—>4W(lv) RestFrames Event Generation

PHYSICAL REVIEW D 96, 112007 (2017)

In the context of searching for evidence of this
phenomenon, the masses and decay angles of the three
Higgs bosons are of primary interest. Even though
the two SM-like Higgs masses have been constrained
to be the same by the contraboost invariant JR, we can
recover independent information about them by using
alternative quantities as estimators. The Higgs mass
equality required that we set the dineutrino pair masses
equal to that of the dileptons of the opposite half of the
event, a guess that was made for the convenience of the
JR. To make the effective mass estimators more inde-
pendent of this choice, we instead adopt the convention:

h . . .
M, =2E,"", where this equivalence is used only for
a/b Va/b

purposes of data analysis, and does not change the
reconstruction of the event.

The distributions of the mass estimators and recon-
structed decay angles of the three Higgs bosons are
shown in Fig. 33 for simulated events with
my = 750 GeV. The SM-like Higgs masses are almost
completely uncorrelated, with both masses showing a
slight downward bias relative to the true value and a
resolution of ~20%. Here, the choice of estimators is
contradictory to the reconstructed interpretation of the
event resulting from the application of JR’s, a strategy

H — hh >4 W( v) RestFrames Event Generation H—>hh =>4 W(lv)
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FIG. 33. Distributions of (a) one SM Higgs mass estimator, as a function of the other, and (b) one SM Higgs mass estimator, as a

function of the heavy Higgs mass, (c) the on shell W mass estimator, max(My, , My , ), as a function of its associated Higgs mass,
(d) the reconstructed decay angle of one SM Higgs boson, as a function of the other, and (e) one SM Higgs boson decay angle, as a
function of the reconstructed heavy Higgs decay angle, and (f) the on shell W decay angle, as a function of the corresponding SM Higgs
boson decay angle, for simulated H — hh — 4W(£v) events. Each observable is normalized appropriately by the true value of the

quantity it is estimating, with angles expressed in units radian.
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which is discussed in more detail in the following
example.

The SM-like Higgs mass observables are also indepen-
dent of the heavy Higgs mass, as seen in Fig. 33(b),
demonstrating that all three masses can be extracted
separately, with similar resolution. Similarly, each of the
Higgs’ reconstructed decay angles can be estimated with
excellent precision, independently of each other, with not
even small correlations observed in their distributions, as
seen in Figs. 33(d) and 33(e).

There is even more information contained in the approx-
imations of the W rest frames, including masses and
decay angles, as can be seen in the distributions of these
quantities for the on shell W in Figs. 33(c) and 33(f). As
was the case for the SM-like Higgs decays, these estimators
are almost completely uncorrelated with the previous ones,
with the distribution of the W mass estimator exhibiting a
kinematic edge at the true value, almost identically to
W(¢v) pair production in Fig. 31 from the previous
example. The observables from each decay step behave
as if that was the entire decay tree, with little sensitivity to
the details of other decays in the event. As additional
decays are added, the resolution of some observables
degrade, but the accuracy of estimators further up the
decay tree improve, as integrating over more degrees of
freedom in the event further smooths the kinematics and the
applied approximations become better.

While the ability to accurately measure these quantities
is important for studying this type of process, it is equally
useful when searching for evidence of it, as SM back-
grounds in this final state would have to mimic the targeted
process independently in many observable dimensions. The
recursive application of JR’s at each step in the decay,
effectively analyzing each reference frame independently
of the others, can be used to derive an appropriate basis of
observables for either purpose.

PHYSICAL REVIEW D 96, 112007 (2017)
C. g2 — bby)bby" at a hadron collider

All the previous examples have primarily focused on
JR’s for resolving the kinematics of invisible particles,
with a variety of choices for nearly every decay possibility.
In order to be able to analyze every imaginable decay
topology with the RJR approach, additional treatments
for combinatoric ambiguities, resulting from indistin-
guishable reconstructed particles appearing in events, are
introduced.

Like the invisible JR VIII.1 which minimizes the
masses squared of potentially many composite particles
simultaneously, the combinatoric analogue JR VIL1.1
can be generalized to an arbitrarily large number of
particles and partitions. But simultaneously choosing many
unknowns in a single decay step, rather than factorizing the
unknowns into several steps, results in a degradation in
resolution of kinematic estimators, as seen in the compari-
son of analysis strategies for 4W(£v) final states between
Secs. VIIT A and VIII B. Just as for invisible particle JR’s,
using combinatoric jigsaws in recursive steps can help
resolve intermediate structure in decays.

To demonstrate this idea, we consider the example of
gluino and sbottom quark production at a hadron collider,
with decays to b-quarks and neutralinos. While different
b-quarks may appear in different places in a decay tree, the
reconstructed b-tagged jets are indistinguishable, with no
direct indication which one is which. We consider four
different combinations of gluino and sbottom production
and decay, with the processes summarized in Fig. 34. The
sbottom quarks in these events each decay to a b-quark and
a neutralino, while two different gluino decays are con-
sidered. When the gluino is heavier than the sbottom, it can
decay g — bb, resulting in two b-quarks and a neutralino
after the sbottom quarks decay. Alternatively, if the squarks
are much heavier than the gluino, it can undergo a three-
body decay through a virtual sbottom quark to the same

O Lab State O Lab State O Lab State O Lab State

O Decay States O Decay States O Decay States O Decay States
. Visible States . Visible States . Visible States . Visible States
. Invisible States . Invisible States .Invisible States . Invisible States

(a) (b) (© (d)

FIG. 34. Decay tree diagrams for the pair production of strongly interacting sparticles decaying to final states with b-quarks and
neutralinos. (a) Two sbottom quarks are produced, each decaying to a b-quark and neutralino. (b) Pair produced gluinos each undergo a
three-body decay to two b-quarks and a neutralino. (c) Two gluinos are produced, each decaying to a b-quark and a sbottom quark
which, in turn, decays to a b-quark and a neutralino. (d) Pair produced gluinos each decay in a different way, one corresponding to the
decays in (b), the other the decays in (c). In each of these four scenarios, the mass of the initially produced parent sparticles is 1 TeV,
while m; = 100 GeV. When appearing in the decays of gluinos, sbottoms are chosen to have a mass of mj; = 900 GeV in this example.
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final state. The production and decays illustrated in
Fig. 34(d) contain two gluinos, each decaying in a
different way. While kinematically disfavored, this process
is included to demonstrate the independent sensitivity of
the reconstruction scheme to the two separate decays.

All of the processes appearing in Fig. 34 can be analxzed
with a single decay tree, shown in Fig. 35. The objects P,
represent the initially produced sparticles, either sbottom
quarks or gluinos, while the C, /» are any additional
sparticles which might appear in the decays. Neutralinos
are represented by the invisible states I,/,, with the
reconstructed b-tagged jets corresponding to the visible
states V;;. While the largest number of b-tagged jets in the
final state is four in the processes explicitly considered in
this example, the reconstruction approach adopted here
allows for an arbitrarily high number. If, instead, the
sbottoms in this example were squarks associated with
the light quarks, the visible jets in the final state would be
initiated by quarks and gluons, and indistinguishable from
any other jets from the underlying event or misidentified
pileup interactions. To account for larger multiplicities of
identical visible particles in the final state, each V;; is
interpreted as a set of b-tagged jets that can contain a
variable number, subject to defined constraints. We require
that each V,,/, contain at least one element in each event,
while V,,/, V., are permitted to have none.

Defining V = {b;} to be the set of all b-tagged jets
reconstructed in the event, the combinatoric unknowns are
those associated with partitioning this set into these four
subsets. Matching the decay tree in Fig. 35, the partitioning
is done in two steps with separate JR’s, the first splitting V
into two sets, V, ={V,,,Vy,} and V, ={V,,,V,,}.
While the combinatoric JR VII.1.1, which chooses this
partition by minimizing the combination mg + myg , can

O Lab State

O Decay States
‘ Visible States
. Invisible States

FIG. 35. Decay tree for analyzing strong sparticle pair pro-
duction, with the decays described in Fig. 34. The intermediate
decay states, P; and C;, represent the sparticles that may appear
in the event, while the visible states, V;;, represent a set of
b-tagged jets.

ijs>
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be used, there is a practical limitation in cases where
ny = |V| is large. Asymptotically, this algorithm scales as
2=y log ny, which is computationally taxing. When
computational time is limited, it is potentially prohibitive.
To overcome this shortcoming, we introduce an additional
combinatoric JR for partitioning a set into two groups
which scales as n3, with a natural choice of minimized
metric. The JR can be defined as follows [55]:
Jigsaw RULE VIIL.2 (combinatoric minimization) If there is
a set of n > 2 visible particles, V= {V, ..., V,}, we can
choose a partition of V into two subsets, Py = {Sy . Sy, }
by effectively minimizing the masses of the two subsets
over the space of all valid partitions Py € Py. This rule is
applicable when the only requirement on Sy_and Sy, is that
they each contain at least one element.

The partition is chosen by evaluating the four vectors of
the visible particles in their mutual center-of-mass frame,
and noting that pg o =-b M - irrespective of chosen

partition. As my is also independent of Py, the relation

my = \/‘Psv |2—|—mV + \/|Psv

implies that maximizing the momentum |p Y
Sva/b

2tmg,  (72)

| is equiv-

alent to simultaneously minimizing my_and my,. This is
accomplished by choosing Py which maximizes the
function,

f(Py) =13, | + 153, | (73)

which can be done through the determination of the thrust
axis in this reference frame with order 4|V|® operations.
The JR VIIL.2 is used to partition V into V, and V,
which, if they contain more than one element, are recur-
sively partitioned into V,,/, and V,,/, using the same JR.
In combination with the JR’s for resolving the kinematics
of the invisible particles in these events, the complete
strategy for analyzing these gluino and sbottom quark
processes can be summarized as:
(1) Apply the combinatoric JR VIII.2 to partition V in
V,and V,.
(2) If either V, or V,, contain more than one element,
further partition them into V,,/,, and V,,/, using
JR VIIL.2.
(3) Apply the invisible mass
ing M} = mi — dmy my,.
(4) Apply the invisible rapldlty JR V.1, choosing p*®
using the collection of visible particles, V.
(5) Apply the contraboost invariant JR V1.4, using the
constraint M = Mp,
The recursive partitioning of visible particles into four
subsets factorizes the combinatoric uncertainties according
to the different decays of Fig. 35. As the JR’s for the
invisible particles have done the same for their associated

JR VI.1, choos-
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unknowns, the resulting kinematic estimators can be
calculated in each decay frame almost independently. A
source of residual correlation between the energies of the
visible sets evaluated in each frame is their individual
masses. In a sense, the mass of the partitions V, , include
information about the following decays, giving an indica-
tion of the number of elements in the sets. Similarly, the
individual masses of the smallest sets V;; are sensitive to
the composition and number of elements each contains,
with very different behavior expected if a set contains one,
or more than one, object.

While the factorization of many uncertainties is ensured
by the application of the RJR method, to ensure minimal
correlations between observables calculated in different
frames we further introduce a family of heuristic variables,
HF,,, defined as

n

m
HE = 3 1BE I+ Y 1B

Sv,€Py Sy,€Py

(74)

where n and m are the number of sets in partitions of all the
visible and invisible particles in the event, Py = {Sy, } and
Py = {8y, }, respectively. The scalar sum of the momentum
of these sets is evaluated in a particular reference frame, F,
making each HF,, an estimate of the mass scale of that
frame, at a level of resolution dictated by the sizes of the
partitions, which purposefully obfuscate finer event
structure.

For example, an estimator sensitive to the total invariant
mass of each of these events, mj 3, can be constructed as
H; Y, using the finest partitions of visible and invisible
particles in these events considered. The distribution of
H{} is shown in Fig. 36(a) for simulated events of the
processes described in Fig. 34. For this example, we have
chosen to set the masses of the initially produced sparticles,
P, to 1 TeV, and the masses of the neutralinos to 100 GeV.
When they appear in decays of gluinos, the sbottom quark

masses are set to 900 GeV. The H f 2’3 distribution for each
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FIG. 36. Distributions of (a) the estimator H;;" and (b) H{{’
for simulated events corresponding to the processes described in
Fig. 34. Each observable is appropriately normalized by true
quantities.
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of the processes including a sbottom quark scales closely to
mpp, with a slight bias due to the missing masses of the
neutralinos themselves, ~200 GeV. For symmetric three-
body decays of the gluino, H;;" is biased to larger values.
This is a result of the three-body decay phase-space
sometimes giving the neutralinos very little momentum,
and the contraboost invariant JR V1.4 overcompensating in
its momentum assignments.

The estimator H1P P can be used to examine the same
event at a coarser level of resolution, with distributions
shown in Fig. 36(b). Using a subset of the information

going into H‘{? ZP , Hf IP is sensitive to the difference in
invisible particle kinematics between the processes, reflect-
ing the fraction of decay phase-space given to the neu-
tralinos, with a kinematic limit at 2yM,, where
y=mpp/2mp and My = (m3 —m; 2)/mp. When the
gluinos decay through an 1ntermed1ate sbottom quark,
the distribution of H{ becomes indistinguishable from

direct sbottom productlon in the limit mp = mg.

While the estimators H 7 2P and H{’ IP are constructed
from momenta in the same reference frame, the information
they contain is largely independent, as demonstrated in
Figs. 37(a), 37(b), and 37(c). The residual correlations
between the observables are sensitive to the differences in
gluino decays, with distinctive behavior for each.

To better resolve the kinematics of the individual

sparticles, the estimators H2 and H2 1 can be used, which
use partitions of only the visible and invisible particles

associated with the hemispheres “a” and “b”, respectively.
These observables are sensitive to the masses of these

sparticles and, when compared to H}" 4 J, reveal the presence

of the P resonances, as can be seen in Figs. 37(d), 37(e),
and 37(f) When these H/, variables are applied in ratio,

like H, ;/ v/ HP 4 2 , they indicate whether there is a resonant
structure between the two different pairs of partitions
considered. In the case of the center-of-mass system,
P P, “decaying” to the individual sparticles, this structure
is clearly visible in Fig. 37 and is estimated with little
correlation to the total mass scale, Hj, PP Only small
differences in the distributions of these ratios are observed
between the different gluino decays considered.

As multiple decays of the gluinos are being considered
simultaneously, we take an agnostic approach to the para-
metrization of observables describing their decays, defining

additional estimators H f { and H f i- These correspond to

partial abstractions of the gluino decays, where each visible
system V,, is treated as only one particle, such that, taken

in ratio with their respective H, ;/ ’, they are sensitive to

the gluino decay structure. The distributions of these ratios
are shown in Fig. 38 for each gluino decay, and for each
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FIG. 37. Distributions of the estimators (a),(b),(c) H f 1’3 and (d),(e),(f) H i/ HP 42 , each as a function of H f 2‘5 /mp p, for simulated
gluino pair production events corresponding to the decays described in Fig. 34. The figures correspond to (a),(d) gluino three-body
decays, (b),(e) gluinos decaying through an intermediate, on shell sbottom quark, and (c),(f) mixed gluino decays. Each observable is

normalized, when appropriate, by true quantities.

reconstructed hemisphere of the event. We adopt the
convention that the hemisphere assigned the highest trans-
verse momentum jet coming from the true gluino “a” decay
in reconstruction is also assigned the label “a” which, in the
mixed decay case, corresponds to a decay through an on
shell sbottom quark. The distributions of the ratio

”/ "/H,] P«" have a distinct shape indicative of the type
of decay, with the observables corresponding to the differ-
ent gluino decays in the mixed case each adopting shapes
closely resembling those of the symmetric cases.
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FIG. 38 Distributions of (a) the estimator Hli_) i /Hzi? i, and

(b) H /H21, for simulated gluino pair production events
correspondlng to the decays described in Fig. 34. In the
case of events with mixed gluino decays, “a” is associated with
the intermediate sbottom quark while “b” corresponds to the
three-body decay.

The partitioning of information throughout the event
reconstruction and observable definition allows for the

ratios H, “/ "/H, "/ * to be estimated independently for each
half of the event, as shown in Fig. 39. The small
asymmetries in these distributions for the symmetric decays
is a result of the convention for assigning the labels “a” and
“b” to the two halves of the event and appears when the
combinatoric assignment of the b—tagged jets is incorrect in

the reconstruction. Otherwise, the H “/ "/H, “/ * distribution

for the g — bb decay in the mixed case resembles that of
the symmetric decay case, as it independently does for the
three-body decay in the opposite event hemisphere.

The basis of observables produced when partitioning the
information contained in each reconstructed event into
approximately uncorrelated variables through the RJR
approach is useful for not just studying these types of
decay topologies, but searching for evidence of these
phenomena in experimental data. By independently main-
taining sensitivity to each decay in the event, background
processes must simultaneously fake many different kin-
ematic features in order to be confused with signal. This
includes not only the total mass scale of the event, but how
energy is shared between the products of each subsequent
decay. That these observables are able to distinguish
between the different decays of similar sparticles indicates
that they are also sensitive to expected differences in SM
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shell sbottom quark, and (c) mixed gluino decays. In this case of events with mixed gluino decays,

113 ”

is associated with the intermediate

sbottom quark while “b” corresponds to the three-body decay. The small lack of symmetry between otherwise symmetric decays
observed in the distributions (a),(b) is a result of the convention that the true b,, is always associated with the reconstructed “a”

hemisphere and incorrect combinatoric assignments.

backgrounds, where the absence of the same resonance
structure in the events can be exploited.

IX. SUMMARY

As evidenced by the examples discussed in this paper,
many of the final state topologies of interest at particle
colliders contain both kinematic and combinatoric ambi-
guities, with missing information resulting from invisible or
indistinguishable particles. Recursive jigsaw reconstruction
is a systematic prescription for overcoming these unknowns,
and approximately reconstructing each event in its entirety,
resulting in a basis of kinematic estimators sensitive to the
masses and decay angles of all the particles appearing
in them.

This is accomplished by factorizing all of the unknowns
appearing in an event according to which intermediate
decays they are related to, and using the library of jigsaw
rules, interchangeable and configurable algorithms for
determining these unknowns, to resolve them while recur-
sively moving through the decay tree describing the event.
The JR’s for analyzing events with one invisible particle, like
W — ¢vin Sec. VA, t —» bW (¢v) in Sec. VB, and H* —
h(yy)W*(£v) in Sec. VC, can be combined with more
complicated ones in events with multiple invisible particle.

In events with two invisible particles coming from
symmetrically similar decays, an array of different con-
traboost invariant JR’s can be used to analyze processes
like H - W(fv)W(¢v) in Sec. VIA, 17— %) in
Sec. VIB, and 7975 — h(yy)iVZ(¢£)}!) in Sec. VIC. In
these cases, both the mass of the total interaction and
pair-produced massive particles can be independently
determined with the RJR approach. When there are even
more intermediate particles appearing in the final state,
like 17 — bW(£v)bW(£v) in Secs. VIIA and VIIB, or

11— by*(¢0)byT(¢7) in Sec. VIIC, estimators sensitive
to the masses and decays of these additional particles are
also determined.

There are JR’s for arbitrarily complex decays, like
nonresonant N x W(¢v) production in Sec. VIII A. But
the real strength of the RJR algorithm is that each of the
JR’s is designed to only use the momentum of abstrac-
tions of the particles in each decay step, where multiple
particles that are resolved in later decays are treated as
indivisible single particles. This means that many JR’s can
be combined, recursively, to analyze complicated events
like H - hh — 4W(¢v) in Sec. VIII B with many invisible
particles, or gg — bby?bby) in Sec. VIIIC with many
indistinguishable particles.

The recursive, factorized, application of JR’s when
analyzing events yields a complete basis of kinematic
observables, each corresponding to quantities of interest
in the event and largely independent of the others. With
the library of JR’s described in this paper, the RJR
algorithm can be used to provide such a basis for
any decay topology imaginable, with the effective
resolution of the corresponding estimators limited only
by the measurements made in the detector and the
imagination of analysts in choosing and assembling the
JR pieces.
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