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Using a sample of 1.31 × 109 J=ψ events collected with the BESIII detector at the BEPCII collider, we
study the decays of J=ψ → KSKL and KSKS. The branching fraction of J=ψ → KSKL is determined to be
BðJ=ψ → KSKLÞ ¼ ð1.93� 0.01ðstatÞ � 0.05ðsystÞÞ × 10−4, which significantly improves on previous
measurements. No clear signal is observed for the J=ψ → KSKS process, and the upper limit at the
95% confidence level for its branching fraction is determined to be BðJ=ψ → KSKSÞ < 1.4 × 10−8, which
improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-
Rosen expectation.

DOI: 10.1103/PhysRevD.96.112001

I. INTRODUCTION

The charmonium state J=ψ with a mass below the open
charm threshold decays to light hadrons through the
annihilation of cc̄ into one virtual photon, three gluons
or one photon and two gluons. The J=ψ decaying to KSKL
proceeds via the first two processes, thereby providing
valuable information to understand the nature of J=ψ
decays. The available measurements of its branching
fraction, BðJ=ψ → KSKLÞ, based on 57.7 million J=ψ
events collected at BESII [1] and 24.5 million ψð3686Þ
events at CLEO [2], are given by ð1.82� 0.04� 0.13Þ ×
10−4 and ð2.62� 0.15� 0.14Þ × 10−4, respectively. Due to
the discrepancy between these two measurements, the
world average value in the particle data group (PDG) [3]
has quoted a relative precision of 19%, which limits the
precise understanding of J=ψ decay mechanisms.
In the CP-violating decay of J=ψ to KSKS, the two

identical bosons from the decay would need to form an
antisymmetric state, and the process would be ruled out

according to Bose-Einstein statistics. However, according to
the Einstein-Podolsky-Rosen (EPR) [4] paradox, the quan-
tum state of a two-particle system cannot always be decom-
posed into the joint state of the two particles. Thus the
spacelike separated coherent quantum system may also yield
a sizable decay branching fraction of J=ψ → KSKS at the
10−8 level [5]. In thisway, theKSKS systemcanbeused to test
the EPR paradox versus quantum theory. There also might be
a small possibility to have a KSKS final state due to CP
violation. In the K0-K̄0 oscillation model [6], the CP-
violating branching fraction of J=ψ → KSKS is calculated
to be ð1.94� 0.20Þ × 10−9. The MARKIII experiment
searched for the decay J=ψ → KSKS with 2.7 million events,
and theupper limitwas determined to beBðJ=ψ → KSKSÞ <
5.2 × 10−6 at the 90% confidence level (C.L.) [7]. Based on
57.7 million J=ψ events collected at the BESII detector, the
upper limit on the branching fraction was improved to be
1.0 × 10−6 at the 95% C.L. [8], which is still far from the
expectations from EPR and K0-K̄0 oscillation.
The world’s largest J=ψ sample with 1.31 × 109 events

was accumulated at BESIII during 2009 and 2012 [9].
In this paper, we measure the branching fraction of
J=ψ → KSKL, and also search for the CP-violating decay
J=ψ → KSKS.

II. APPARATUS AND MONTE CARLO
SIMULATION

The Beijing Spectrometer III (BESIII), located at the
double-ring eþe− Beijing Electron Positron Collider
(BEPCII), is a general purpose detector as described in
Ref. [10]. It covers 93% of 4π in geometrical acceptance
and consists of four main detectors. A 43-layer small-cell,
helium gas based drift chamber, operating in a 1.0 (0.9) T
solenoidal magnetic field in 2009 (2012), provides an
average single-hit resolution of 135 μm. A time-of-flight
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system, composed of 5 cm thick plastic scintillators with
176 bars of 2.4 m length, arranged in two layers in the
barrel and 96 fan-shaped counters in the end caps, has a
time resolution of 80 ps (100 ps) in the barrel (end caps)
region providing 2σ K=π separation for momenta up to
1.0 GeV=c. An electromagnetic calorimeter, which con-
sists of 5280 CsI(Tl) crystals arranged in a cylindrical
structure in the barrel and 480 crystals in each of the two
end caps, provides an energy resolution for a 1.0 GeV=c
photon of 2.5% in the barrel region and 5% in the end caps.
The position resolution is 6 mm (9 mm) in the barrel (end
caps). A muon counter system, which consists of resistive
plate chambers arranged in nine barrel and eight end-cap
layers, provides 2.0 cm position resolution.
The optimization of event selection criteria, the deter-

mination of detection efficiencies, and the estimation of
background are performed by means of Monte Carlo (MC)
simulations. The KKMC [11] generator is used to simulate
the J=ψ → K0K̄0 process. The angular distribution of the
K0 or K̄0 is generated to be proportional to sin2 θ, where θ
is the polar angle in the laboratory system. In the MC
simulation, the interference between the J=ψ resonance
decay and the continuum process is ignored. A GEANT4-
based [12,13] detector simulation software, which includes
the geometric and material description of the BESIII
spectrometer, and the detector response, is used to generate
the MC samples. The background is studied with a MC
sample of 1.23 × 109 inclusive J=ψ decays, in which the
known decays are generated with the EvtGen [14,15]
generator by setting the branching fraction to the values
in the PDG [3] and the remaining unknown decays are
generated with the LUNDCHARM [16].

III. BRANCHING FRACTION MEASUREMENT
OF J=ψ → KSKL

The KS candidate is reconstructed from its charged πþπ−
final state, while the KL is assumed not to decay in the
detector leaving only the signature of missing energy. The
KS candidates are reconstructed with vertex-constrained
fits to pairs of oppositely charged tracks, assumed to be
pions, whose polar angles satisfy the condition
j cos θj < 0.93. Only one KS candidate is accepted in each
event. The KS candidates are required to satisfy L > 1 cm
and L=σL > 2, where L is the distance between the
common vertex of the πþπ− pair and the interaction point
and σL is its uncertainty. The invariant mass of the πþπ−
pair, Mπþπ− , shown in Fig. 1, is required to satisfy
jMπþπ− −MKS

j < 18 MeV=c2, whereMKS
is the KS nomi-

nal mass [3]. There should be no extra tracks satisfying
j cos θj < 0.93, within 1 cm of the interaction point in the
transverse direction to the beam line and 10 cm of the
interaction point along the beam axis. In order to suppress γ
conversion background, the angle between the two charged
tracks, θch, is required to satisfy θch > 15°.

The same event selection criteria are applied to the
inclusive MC sample. The major potential backgrounds are
J=ψ → π0KSKL and J=ψ → γKSKS events, but the leak-
age of their KS momentum (PKS

) spectra into the signal
region is smooth and tiny.
The J=ψ → KSKL signal yield is determined from a

maximum likelihood fit to the PKS
distribution, as shown in

Fig. 2. In the fit, the signal shape is described by a double
Gaussian function with a common mean value and two
different widths. The background shape is represented by a
second-order Chebychev polynomial function.
The continuum process eþe− → KSKL is studied with a

data set of 30.0 pb−1 taken at 3.080 GeV. The same
selection criteria are applied. The result of the maximum
likelihood fit to the PKS

distribution is shown in Fig. 3. In
the fit, the signal function is the same as that used in the fit
of J=ψ data. The background shape is represented by a
first-order Chebychev polynomial function.
The event selection efficiencies are assumed to be the

same at 3.080 GeVand the J=ψ resonance. The continuum
contribution to the J=ψ resonance region is estimated from
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FIG. 1. The distribution ofMπþπ− . The (black) crosses are from
data, and the (red) histogram represents the signal MC sample.
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FIG. 2. The momentum distribution of KS in the eþe− rest
frame. The (black) crosses are from data, and the (blue) solid line
is the fit result. The (red) dash-dotted line is the signal, and the
(green) dashed line is background.
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NJ=ψ
cont ¼ N3.080

obs ·
L · s03

L0 · s3
; ð1Þ

where N3.080
obs is the signal yield at 3.080 GeV, L and L0 are

the luminosities collected at the J=ψ and at 3.080 GeV,
determined with eþe− → γγ events [9], while s and s0
correspond to the squares of center-of-mass energies of
J=ψ and 3.080 GeV. The power law of the center-of-mass
energy follows the KþK− cross section slope measured by
BABAR [17].
Assuming no interference between the J=ψ decay and

the continuum process, the branching fraction is deter-
mined from

BðJ=ψ → KSKLÞ ¼
NJ=ψ

obs − NJ=ψ
cont

ϵ · NJ=ψ · BðKS → πþπ−Þ ; ð2Þ

where NJ=ψ
obs is the number of signal events obtained in

the J=ψ sample, ϵ is the event selection efficiency, NJ=ψ is
the number of J=ψ events [9] and BðKS → πþπ−Þ is the
branching fraction of KS → πþπ−. Table I summarizes the
values used in the calculation, and BðJ=ψ → KSKLÞ is
determined to be ð1.93� 0.01Þ × 10−4, where the quoted
uncertainty is purely statistical.
The systematic uncertainties for the BðJ=ψ → KSKLÞ

measurement include those due to KS reconstruction, the
requirement on θch, the fit to the PKS

spectrum, the

branching fraction of the KS decay, and the number of
J=ψ events.
The KS reconstruction involves the charged track

reconstruction of the πþπ− pair, the vertex fit and the
KS mass window requirement. The corresponding system-
atic uncertainty is estimated using a control sample of
J=ψ → K��ð892ÞK∓ events, where K��ð892Þ → KSπ

�.
The momentum of the KS, PKS

in J=ψ → KSKL decay
is around 1.46 GeV=c; thus only KS candidates with
momentum larger than 1 GeV=c in the control sample
are considered. The ratio of the reconstruction efficiency of
the data over that in the MC is taken as a correction factor to
the KSKL selection efficiency, while the uncertainty of the
ratio, 1.4%, is taken as the systematic uncertainty.
The uncertainty from the θch requirement is estimated by

varying the selection range. The range is expanded and
contracted by 5°, and the largest change in the branching
fraction with respect to the nominal value is taken as the
systematic uncertainty.
The systematic uncertainty related to the fit method is

estimated by varying the fit range and the background shape
simultaneously. The fit range is expanded and contracted by
8 MeV=c. For the J=ψ data sample, the background shape is
varied from a second-order Chebyshev polynomial function
to a third-order Chebyshev polynomial function and an
exponential function. For the continuum data sample, the
background is replaced by a second-order Chebychev
polynomial function. The largest change in the branching
fraction is treated as the systematic uncertainty.
The branching fraction of KS → πþπ− is taken from the

PDG [3] and its uncertainty is 0.1%. The number of J=ψ
events and its uncertainty are determined with J=ψ inclu-
sive decays [9].
The summary of all individual systematic uncertainties is

shown in Table II, where the total uncertainty is obtained by
adding the individual contributions in quadrature.

IV. SEARCH FOR J=ψ → KSKS

For J=ψ → KSKS with KS → πþπ−, the final state is
πþπ−πþπ−. The candidate events are required to have at
least four charged tracks whose polar angles satisfy
j cos θj < 0.93. The KS candidates are reconstructed by
secondary vertex fits to all oppositely charged track pairs
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FIG. 3. The KS momentum distribution for data taken at
ffiffiffi

s
p ¼ 3.080 GeV. The (black) crosses are data, and the (blue)
solid line is the fitting result. The (red) dash-dotted line
corresponds to the signal, and the (green) dashed line represents
the background.

TABLE I. Numbers used in the branching fraction calculation
for the KSKL channel, where the uncertainties are statistical only.

3.097 GeV (J=ψ) 3.080 GeV

Nobs 110203� 504 13� 5
ϵð%Þ 62.9 62.9
L (pb−1) 394.7 30.9
BðKS → πþπ−Þ [3] 0.692 0.692

TABLE II. Systematic uncertainties for the measurement of
branching fraction of the KSKL channel.

Source Uncertainty (%)

KS reconstruction 1.4
θch 1.0
Fit to PKS

1.9
BðKS → πþπ−Þ 0.1
NJ=ψ 0.6
Total 2.6
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assuming them to be pions, and the πþπ− invariant mass
must be within 18 MeV=c2 from the KS nominal mass. The
KS candidates must have a momentum within the range of
½1.40; 1.60� GeV=c. In order to suppress the non-KS back-
grounds, the decay length over its uncertainty (L=σL) has to
be larger than 2.0. Each event must have at least two KS
candidates. If there are more than two KS candidates, the
combination with the smallest sum of χ2 of the secondary
vertex fits is selected.
The KSKS candidates are then combined in a 4C

kinematic fit, where the constraints are provided by energy
and momentum conservation. Only events with χ2 < 40 are
retained. The distribution of the KS momentum in the J=ψ
rest frame is shown in Fig. 4. The KS momentum resolution
is determined from the signal MC sample as σw ¼
1.3 MeV=c, which is the weighted average of the standard
deviations of two Gaussians with common mean. The
number of signal events is obtained by counting the
remaining events within 5 × σw of the expected momen-
tum. After all requirements have been imposed, two events
remain in this region.
The same selection criteria are applied to the inclusive

MC sample, which shows that the background mainly
comes from the processes J=ψ → πþπ−πþπ− and
J=ψ → KSKL. Their contributions are estimated from
the corresponding MC samples using

NX
exp ¼ NJ=ψ · BðJ=ψ → XÞ · ϵXKSKS

; ð3Þ

where X represents the corresponding channels J=ψ →
πþπ−πþπ− or J=ψ → KSKL (KS → πþπ−), and NX

exp is the
expected number of events from channel X. BðJ=ψ → XÞ is

the product branching fractions of the cascade decay, where
BðJ=ψ → πþπ−πþπ−Þ is taken from the PDG [3],
BðJ=ψ → KSKLÞ is set to the value obtained in this paper,
and ϵXKSKS

is theKSKS selection efficiency for a sample of X
events. The efficiencies of J=ψ → πþπ−πþπ− and KSKL

channels are ð1.9� 0.6Þ × 10−7 and ð8.5� 3.4Þ × 10−6,
respectively. The expected background numbers are calcu-
lated to be Nπþπ−πþπ−

exp ¼ 0.9� 0.3 and NKSKL
exp ¼ 1.5� 0.6,

where the uncertainties are from propagation of the items
in Eq. (3). Some other exclusive processes, such as
J=ψ → γKSKS, are also studied with high statistics MC
samples, but none of them survive the event selection.
Table III summarizes the systematic uncertainties in the

search for J=ψ → KSKS. Common uncertainties including
those from the number of J=ψ decays and the KS → πþπ−
branching fraction are the same as described in Sec. III. The
uncertainty from KS reconstruction is evaluated according
to the KS selection criteria used in this channel, with a
method similar to that in Sec. III, and is determined to be
1.5% per KS. The uncertainty from the 4C kinematic fit is
investigated using the control sample of J=ψ → γKSKS,
and the difference of the efficiency between the data and
MC samples is taken as the systematic uncertainty asso-
ciated with the kinematic fit.
Since we have not observed a significant signal, an upper

limit for BðJ=ψ → KSKSÞ is set at the 95% C.L. The upper
limit is calculated using the relation

BðJ=ψ → KSKSÞ <
NUL

ϵMC · NJ=ψ
; ð4Þ

whereNUL is the upper limit on the number of signal events
estimated with Nobs and Nbkg using a frequentist approach
with the profile likelihood method, as implemented in the
ROOT framework [18], and ϵMC is the detection efficiency.
The calculation includes statistical fluctuations and sys-
tematic uncertainties. The signal and background fluctua-
tions are assumed to follow Poisson distributions, while the
systematic uncertainty is taken to be a Gaussian distribu-
tion. The branching fraction of KS → πþπ− is included in
the event selection efficiency ϵMC. The values of variables
used to calculate the upper limit on the branching fraction
and the final result are summarized in Table IV, where the
Nbkg is the sum of Nπþπ−πþπ−

exp and NKSKL
exp .
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FIG. 4. The distribution of KS momentum in the J=ψ rest
frame. The (black) crosses are from data, and the (red) solid line
is from the signal MC sample. The arrows indicate the 5 × σw
selection region.

TABLE III. The systematic uncertainties related to the search
for J=ψ → KSKS.

Source Uncertainty (%)

KS reconstruction 3.0
4C kinematic fit 1.1
BðKS → πþπ−Þ 0.2
NJ=ψ 0.6
Total 3.2
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V. SUMMARY

Based on a data sample of 1.31 × 109 J=ψ events
collected with the BESIII detector, the measurements of
J=ψ → KSKL and KSKS have been performed. The
branching fraction of J=ψ → KSKL is determined to be
BðJ=ψ→KSKLÞ¼ ð1.93�0.01ðstatÞ�0.05ðsystÞÞ×10−4,
which agrees with the BESII measurement [1] while
discrepancy with the CLEO data [2] persists. Compared
with the world average value listed in the PDG [3], the
relative precision is greatly improved, while the central
value is consistent. With regard to the search for the CP and
Bose-Einstein statistics violating process J=ψ → KSKS, an
upper limit on its branching fraction is set at the 95% C.L.
to be BðJ=ψ → KSKSÞ < 1.4 × 10−8, which is an improve-
ment by 2 orders in magnitude compared to the best
previous searches [7,8]. The upper limit reaches the order
of the EPR expectations [5].
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