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A noncommutative extension of an ideal (Hamiltonian) fluid model in 3þ 1 dimensions is proposed. The
model enjoys several interesting features: it allows a multiparameter central extension in Galilean boost
algebra (which is significant being contrary to the existing belief that a similar feature can appear only in2þ 1-
dimensions); noncommutativity generates vorticity in a canonically irrotational fluid; it induces a non-
barotropic pressure leading to a nonisentropic system. (Barotropic fluids are entropypreserving as the pressure
depends only on the matter density.) Our fluid model is termed “exotic” since it has a close resemblance with
the extensively studied planar (2þ 1 dimensions) exotic models and exotic (noncommutative) field theories.
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I. INTRODUCTION

The stage for nonrelativistic particles and their wave
equations was set much earlier by Levy-Leblond [1] when
he put through the case of Galilean invariant theories being
independent entities and not just as nonrelativistic limits of
relativistic Poincaré invariant theories.His equation for a spin
1=2 particle (same as the Pauli equation but in which, unlike
the latter, the spinor features were inherent) clearly showed
that the spin (as well as a correct Lande g factor) was not an
offshoot of the relativistic effect, whereas the spin-orbit
interaction and Thomas precession were. Nonrelativistic
equations for arbitrary spin particles were also derived in
[1], and the role of the mass parameter leading to the
superselection rule ofBargemann [2]was revealed explicitly.
The present work deals with a generalized form of non-
relativistic fluid dynamics and is connected toworks of Levy.
In this paper, we propose a generalization of nonrela-

tivistic fluid theory in 3þ 1 dimensions, where spatial
noncommutativity (NC) gives rise to a number of striking
features: (i) the NC model admits a multiparameter central
extension (CE) in Galilean boost algebra. (ii) NC induces
vorticity in an otherwise irrotational fluid. (iii) NC gen-
erates nonbarotropy in the fluid effective pressure that can
lead to nonisentropic dynamics. In a barotropic fluid, the
pressure depends on matter density alone and is associated
with entropy preserving dynamics. Let us elaborate briefly
on the significance of each of the above themes.
(i) In classical physics, CEs naturally arise in Hamiltonian

classical mechanics [2,3] from the nonunique nature of
canonical generators for a given (Hamiltonian) phase space
vector field. In quantum physics, a CE can appear from
singularities related to operator ordering anomaly terms [4].
CEs commute with all the generators and can consist of
purely c numbers (in general, nonremovable) or canonical
variables asCasimir operators (that can be shifted or removed

by redefining generators). We will comment later on the
nontriviality of a CE in the latter case.
It was argued long ago and accepted till date [5] that only

2þ 1-dimensional Galilean algebra allows a two-parameter
central extension (in boost algebra), the reason being the
abelian nature of planar rotations. The present NC fluid
model goes against the common lore. The second (set of)
parameter appears in noncommuting Galilean boost gen-
erators, a hallmark of “exotic” physics. We have borrowed
the term exotic from the series of works by Duval and
Horvathy [6] and Horvathy et al. [7], who first constructed
exotic planar nonrelativistic particle and field theorymodels.
It was further put in firm footing by Jackiw and Nair, who
identified the exotic parameter with a particle spin in a
nonrelativistic limit of their relativistic spinning particle
model [8] (for an alternative point of view, see [9]). The topic
generated excitement as these planar models are directly
connected to anyons [8,10], planar excitations of arbitrary
spin and statistics. We have termed our 3þ 1 dimensions
NC fluid as an exotic fluid since it has a lot of similarities
with the 2þ 1-dimensions exotic models [6,7].
CEs can impact both theoretical as well as experimental

physics. Thus, Bargmann’s research (see also [1,4]) on
projective representations of continuous groups [specifi-
cally, the Galilean group in (3þ 1) dimensions] showed
how the concept of mass and its related superselection rule
appears through the central extension of a Galilean group.
On the experimental side, this is evident from the recent
works: the CE in Ward identities in 2þ 1 dimensions
momentum algebra leads to a direct relation between
thermal Hall conductivity and topological charge density;
a gapped insulating phase, the so-called Haldane insulator,
appears between the Mott and density wave phases where
phase boundaries were determined from the central charge;
in black hole physics (see, e.g. [11] for relevant works).
(ii) and (iii) In conventional fluid dynamics, a frictionless

barotropic fluid is an extremely common and useful
approximation of a realistic fluid. Here, Kelvin’s theorem
that circulation along a closed fluid line stays constant for all
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times (or equivalently Lagrange’s statement that an irrota-
tional fluid particle will stay irrotational) is valid [12].
Although it is applicable in a variety of physical situations,
a barotropic fluid can not explain topical areas of interest, e.g.
high velocity aerodynamics, supersonic phenomena giving
rise to shock waves [13], among others. Furthermore, a
change of circulation (appearance or disappearance of
vortices) is due to viscosity or a nonbarotropic equation of
state [14]. An interesting astrophysical example of non-
barotropy is given in modeling nonbarotropic multifluid
neutron stars [15]. A barotropic nature leads to isentropy
whereas nonbarotropy, i.e., dependence of the pressure on
density and other variables signals nonisentropic behavior.
Further theoretical works in these contexts are [16].
After the generalities, let us discuss our NC fluid model

and its connection to exotic systems more closely. Anyonic
excitations emerge as charged vortex solutions in planar
Chern-Simons quantum gauge field theories [17] where
boost generators commute. However, the second extension
is recovered in its generalization to NC theory via a Moyal
star product [7]. Wewill see that in our NC fluid, the second
central extension is structurally identical to the above form
[7], although our NC approach is totally different from (and
does not introduce) a Moyal star product framework [18].
An intriguing but well-known property of Galilean boosts

for massive nonrelativistic quantum systems is that their
action is characterized up to a phase [2,5], leading to a one-
parameter CE. CEs are associated with nontrivial Lie algebra
cohomology [19], and Bargmann [2] has proved that in three
or higher spatial dimensions there can exist only one CE
proportional to the mass parameter. However, the important
question whether there can exist other CEs was settled in [5],
who recognized that the abelian nature of planar rotations
admits a second central extension, the new exotic parameter
being spin. In fact, the planar Poincaré group reduces to the
exotic Galilei group following the Jackiw-Nair prescription
[8]. Explicit physical models pertaining to this feature
appeared in [6,7,20], which were endowed with NC planar
coordinates.We comment later that in 3þ 1 dimensions, NC
in fluid generates a vorticity similar to exotic parameter-spin
mapping in 2þ 1 dimensions.
Another area of recent excitement is a generalization of

quantum mechanics in NC space to include a coordinate-
coordinate NC algebra together with the conventional
coordinate-momentum(Heisenberg)NCalgebra unchanged.
Generally, the purelymomentum sector is kept commutative.
NC spacetime, although introduced long ago by Snyder [21]
to weaken the short distance singularity in quantum field
theory (which incidentally did not meet success), has
captured recent interest after the work of Seiberg and
Witten [18]. It was shown [18,22] that in certain low energy
limits, an open string ending onD-branes can be represented
by the NC generalization of conventional field theory.
Different aspects of NC quantum mechanics and quantum
field theories have been studied extensively [23]. The NC
extension of quantum mechanics has a natural echo in
classical mechanics since Poisson brackets in the latter are

elevated to quantum commutators in the former. The perfect
setting to generate classical noncanonical brackets is the
symplectic framework [24] or equivalently Hamiltonian
(Dirac) constraint analysis [25]. In the present work, we
follow the Dirac formalism, where the NC generalized
brackets are naturally identified with Dirac brackets.
Finally, we note that hydrodynamics [12], one of the

earliest developed disciplines in applied sciences, provides
a universal description of long wavelength physics that
deals with low energy effective excitations of a classical or
quantum field theory. It is applicable both at microscopic
and macroscopic scales, from liquid drop model (nuclear
physics), quark-gluon-plasma produced at RHIC/LHC to
generic fluid models in cosmology. Quite interestingly, in
recent times, fluid dynamics is enjoying a renewed interest
from theoretical high energy physics perspective [26] (for
an exhaustive review, see [27]).

II. CANONICAL FLUID DYNAMICS

In the present work, we extend the conventional baro-
tropic fluid dynamics [27] to NC space. We work in the
Hamiltonian field theoretic framework known as the Euler
fluid model. In a previous work [28], we constructed the
NC fluid system from a Lagrangian (fluid) approach with
NC coordinates in the latter (see, e.g. [29] for connection
between the Lagrange and Euler approach of fluid dynam-
ics). The canonical model consists of density ρðxÞ and
velocity fields vi ¼ ∂iθðxÞ, endowed with a Poisson
algebra and a Hamiltonian, fθðxÞ; θðyÞg ¼ fρðxÞ; ρðyÞg¼
0; fρðxÞ; θðyÞg ¼ δðx − yÞ; H ¼ R

d3x½1=2ðρð∂iθÞ2Þ þ
UðρÞ�. The continuity and Euler equations for fluid are
recovered as Hamiltonian equations of motion _ρ¼
fρ;Hg¼−∂iðρviÞ; _vi¼−∂iðv22 þU0Þ, where U0 ¼ dU=dρ.
The fluid is irrotational with no vorticity and barotropic
pressure P ¼ ρU −U0 depends only on density ρ. An
action formulation for the conventional model also exists
[30] (reviewed in [27]).
The NC fluid model was initiated in [31] (see also [27]

for the Lagrangian fluid point of view). This was pursued
further to completion in [28]. An NC generalization of the
above canonical fluid algebra is derived in these works, and
it is seen that the same NC density-density bracket,

fρðxÞ; ρðyÞg ¼ −θij∂iρðxÞ∂x
jδðx − yÞ; ð1Þ

with θij ¼ −θji being the NC parameter, is reproduced by
introducing NC Lagrangian particle coordinates [28].
However, the rest of the NC fluid algebra appears to be
model dependent. This new NC structure will alter the fluid
dynamics in a nontrivial way.
In this paper, for the first time, we propose a field

theoretic NC extended action from which the NC fluid
algebra is derived as Dirac brackets. Indeed, the NC
extension of the action is not unique. The present con-
struction reproduces the NC density bracket (1) but there is
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a mismatch with [28] for the rest of the algebra. Quite
obviously, the action formulation has many advantages:
spacetime symmetry generators and conserved quantities
can be derived. In previous studies, validity of the Jacobi
identity for the NC brackets was an issue, whereas in the
Dirac bracket formalism, it is guaranteed since Dirac
brackets preserve Jacobi identity.

III. NONCOMMUTATIVE FLUID DYNAMICS

We posit a candidate for the NC generalization of a fluid
Lagrangian (which is also our primary result)

L ¼ −_θ

�
ρ −

1

2
θij∂iρ∂jθ

�
−
�
1

2
ρð∂iθÞ2 þ UðρÞ

�
: ð2Þ

Indeed, as mentioned above, this is not a unique choice. We
have based our model on the correct form of fρðxÞ; ρðyÞg
bracket [27,28,31], which this Lagrangian reproduces as
Dirac brackets (to be explained later). Other inequivalent
forms of NC fluid models can be found in [32].
Let us first derive the equations of motion by varying ρ

and θ in the action,

_ρ ¼ −∂iððρ∂iθÞ þ
θij

2
½∂jθ∂kðρ∂kθÞ þ ρ∂jð∂kθÞ2�Þ; ð3Þ

_θ ¼ −
��ð∂θÞ2

2
þU0

�
−
θjk

2
∂kθ∂j

�ð∂θÞ2
2

þ U0
��

: ð4Þ

Clearly the mass conservation in (3) is not violated since
the new NC θij term is a total divergence.
Noether prescription yields the canonical energy

momentum tensor,

Tμν ¼ ∂L
∂ð∂μθÞ

∂νθ þ ∂L
∂ð∂μρÞ

∂νρ − ημνL; ð5Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the flat metric.
Explicit expressions for energy and momentum densities
are T00 ¼ 1

2
ρð∂iθÞ2 þ UðρÞ; T0i ¼ ρ∂iθ − 1

2
θjk∂jρ∂kθ∂iθ.

Notice that T00 does not receive any NC correction but
Tij ≠ Tji; T0i ≠ Ti0 indicating that rotational and Lorentz
symmetries are lost due to a constant θij parameter.
However, to demonstrate that T00, T0i properly generate
time and space translations, respectively, we need the full
NC brackets which we now provide.

IV. NONCOMMUTATIVE BRACKETS

It is clear from the Lagrangian (2), being first order in the
time derivative, θ and the combination ρ − 1

2
θij∂iρ∂jθ are a

canonical pair but it is problematic to isolate the NC
brackets between the basic variables θ and ρ. Instead, we
exploit the Dirac bracket formalism to obtain, to a first
nontrivial order in θij, the NC fluid algebra

fθðxÞ; θðyÞg ¼ 0; fρðxÞ; ρðyÞg ¼ −θij∂iρðxÞ∂x
jδðx − yÞ;

fρðxÞ; θðyÞg ¼ δðx − yÞ þ 1

2
θij∂jθðxÞ∂x

i δðx − yÞ: ð6Þ

We point out that the NC model of [32] will not generate
any NC extended fluid algebra.
With the Hamiltonian H ¼ R

d3xT00 and the NC algebra

(6), we compute _ρ ¼ fρ; Hg; _vi ¼ fvi; Hg and ensure that
these equations are identical to the previously derived
(Lagrangian) dynamical equations [(3), (4)]. From
the expression of momentum Pi ¼ R

d3xT0i, we find
fθðxÞ; Pig ¼ −∂iθ; fρðxÞ; Pig ¼ −∂iρ, showing that Pi is
the correct momentum since it generates spatial translations
for ρ and θ. Just before, we have demonstrated that H
provides the correct time translation for ρ and θ. Note that the
total mass operator M ¼ R

d3xρðxÞ satisfies fM; ρðxÞg ¼
fM; ∂iθðxÞg ¼ 0 indicating thatMwill lie at the center of the
Galilean algebra and will act as the central extension.

V. ENERGY AND MOMENTUM
CONSERVATION LAWS

We start by noting that the total mass M ¼ R
d3xρ is

conserved, fM;Hg ¼ 0. Let us now discuss the energy-
momentum conservation, ∂μTμν ¼ 0 which in a component
form gives rise to energy and momentum conservation
laws, ∂0T00 þ ∂iTi0 ¼ 0; ∂0T0i þ ∂jTji ¼ 0.
Using (3) and (4) we find that the above local energy

conservation law is satisfied identically, thus ensuring
energy conservation. On the other hand, the total momen-
tum Pi ¼ R

d3xT0i is conserved but the local conservation
law receives NC corrections.

VI. EXOTIC CENTRAL EXTENSION IN
GALILEAN BOOST ALGEBRA

Defining Galilean boost generators as, Bi ¼ tPi−R
d3xρxi, we find θ and ρ transform under boost as,

fθðxÞ; Big ¼ −t∂iθ þ xi − 1
2
θij∂jθ; fρðxÞ; Big ¼ −t∂iρ−

θij∂jρ. Notice that both θ and ρ behave in a non-canonical
way, indicating the possibility that Galilean invariance is
lost due to noncommutativity. From the behavior of θ and ρ
under boost, we can compute the following relations:

fBi; Pjg ¼ −δij
Z

d3xρ ¼ −δijM; ð7Þ

fBi; Bjg ¼ θij
Z

d3xρ ¼ θijM: ð8Þ

This is the cherished form of multiparameter CE in 3þ 1-
dimensional Galilean algebra and constitutes one of our
major results. In three space dimensions, θij introduce three
additional CE parameters. The first one (7) is the well-
known Bargman CE [2]. A structure, similar to the second
one in (8) depending on the NC parameter θij was
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discovered only in (2þ 1-dimensional) planar models
having exotic symmetry [6,7]. Naming our model as exotic
fluid is thus justified.
A comment regarding this novel form of (multiply)

centrally extended Galilean algebra is in order. Notice that
in the exotic models [6,20] in the plane θij, being antisym-
metric, yields one parameter, whereas in three space θij

consists of three independent parameters. In fact, from a
purely algebraic point of view, after the work of Bargmann
[2] on projective or ray representations of theGalilei group, it
was established in [33] that, contrary to the wave functions
transforming as true representations of the Galilei group,
only the projective representations provide localized particle
states. The works [5] showed that although in 3þ 1
dimensions only one parameter CE are allowed, in 2þ 1
dimensions, due to the simple structure of the planar rotation
group, this restriction is relaxed, and a three parameter CE
[20] is possible that reduces to two parameter (the mass and
the single exotic or NC parameter) on physical grounds
(since planar states classified by three CE parameters do not
support nontrivial dynamics). Returning to the three (space)
dimensional field theory studied here, any deformation in the
algebra of the fluid variable ½ρðxÞ; θðxÞ� from the canonical
one to NC one (6) is very restrictive (due to the symmetry of
the algebra, Jacobi identity satisfaction among others).
However, the derivative of delta function ∂iðxÞδðx − yÞ,
odd under the interchange of x⇌y, provides an additional
freedom (which is not enjoyed by discrete mechanical
systems) that allows nontrivial modifications in the algebra.
Notice that ∂iðxÞδðx − yÞ is present in all the NC-extension
terms in the NC algebra (6). Indeed, this is not a proof but a
possible explanation of this novel phenomenon—a multi-
parameter CE in three space dimensions.
For compactness, we use vector notation for angular

momentum J ¼ R
d3xðx × TÞ and with σk ¼ ð1=2Þϵkijθij,

we derive rest of the NC generalized Galilean algebra,

fJi; Jjg ¼ ϵijkJk; fJi; Pjg ¼ ϵijkPk; ð9Þ

fJi; Bjg ¼ ϵijkBk þ 1

2
ðσ:Pδij − σjPiÞ; ð10Þ

fB; Hg ¼ −Pþ
Z

d3x

�
1

2
σ:

�
∇
1

ρ
× T

�
T

þ 1

4

�
σ × ∇

�
1

ρ

���
; ð11Þ

fJ; Hg ¼ 1

4

Z
d3xT2

�
ðσ:TÞ∇ 1

ρ2
−
�
σ:∇

1

ρ2

�
T

�
: ð12Þ

A few comments are in order. From (9), we find that Pi

transforms canonically, which is expected since (as shown
before) it correctly translates both θ, ρ but the fact that
J − J angular momentum algebra is also canonical is

quite unexpected, although the probable reason is again the
behaviorofT. The rest of the algebra receivesNCcorrections.
Thus, NC generalization leads to nonconservation of

boost and angular momentum which is expected and agrees
with earlier results [34] (in different NC field theory
models). However, notice that the NC terms in the rhs
of (11), (12) are higher order in T and can be ignored for
low kinetic energy, thus recovering a weaker form of
boost and angular momentum conservation along with
the cherished exotic central extension that is independent
of T and survives the low energy limit.

VI. DARBOUX MAP, NONCOMMUTATIVITY
INDUCED VORTICITY, AND NONISENTROPY

Darboux’s theorem, a fundamental property of symplec-
tic geometry, states that any symplectic manifold is locally
isomorphic to someR2nwith its standard symplectic form or
in physics language, the NC variables ρ, θ can be expressed
(at least locally) in terms of a canonical set ρc, θc obeying
canonical algebra fρcðxÞ;ρcðyÞg¼ fθcðxÞ;θcðyÞg ¼ 0;
fρcðxÞ;θcðyÞg¼δðx−yÞ. The explicit form of a Darboux
map to OðθÞ [that can be read off from the comments
above (6)] is given by ρ ¼ ρc − 1

2
θij∂jρc∂iθc; θ ¼ θc.

Notice that exploiting the Darboux map, B̄i ¼ tPi
c −R

d3xρcxi which, as expected, is just the canonical form
that will satisfy fB̄i; B̄jg ¼ 0 so that the exotic central
extension can be removed [without affecting the (non)
conservation of Boost]. An identical situation prevails in
earlier planar exotic models as well [7]. However, as pointed
out by Brihaye et al. in [20], this does not render the CE
trivial, and the models with and without CE are not
physically equivalent since the Darboux map is not a
canonical transformation, and also it changes the interpre-
tation of basic degrees of freedom.
Fromnowon,wewillworkwithρc,θc butkeep theoriginal

notation ρ, θ. The Hamiltonian, to OðθÞ and to Oðv2Þ is,

H ¼
Z

dr

�
Tc −

1

2
θij

∂jρvi
ρ

�
Tc þ Pc

��
ð13Þ

where vi ¼ ∂iθ and Tc ¼ 1
2
ρv2 þUðρÞ; Pc ¼ ρU0 −U are

canonical energy density and pressure. The continuity
equation to Oðv2Þ,

_ρ ¼ fρ; Hg ¼ ∂l

�
−ρ

�
vl −

1

2
θlj∂jρ

1

ρ

�
1

2
v2 þU0

�

−
1

2
θij

ð∂jρÞ
ρ

vivl
��

; ð14Þ

is written in a suggestive form _ρ ¼ −∂lð−ρv̄lÞ, where to

Oðv2Þ; v̄l¼vl−1
2
θlj∂jρ

1
ρð12v2þU0Þ−1

2
θij

ð∂jρÞ
ρ vivl, so that v̄l

is naturally identified as the NC corrected velocity. Clearly
v̄l is no longer irrotational yielding the induced vorticity
to Oðv2Þ:
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fv̄lðxÞ; v̄kðyÞg ¼ 1

2

�
θlm∂y

k

�
1

ρðyÞU
0ðyÞ∂y

mδðx− yÞ
�

− θkm∂x
l

�
1

ρðxÞU
0ðxÞ∂x

mδðx− yÞ
��

: ð15Þ

Note that the NC induced vorticity is structurally totally
different from the conventional form of vorticity (∼∇ × v),
and furthermore, the leading term (written here) is
independent of v̄ and will survive the low energy limit.
Let us consider an explicit form of a conventional
barotropic fluid having UðρÞ ¼ Kρλ with K, λ numerical
constants, for which Pc ¼ ðλ − 1ÞU. For the special case of
pressureless dust, (λ ¼ 1; Pc ¼ 0), induced NC vorticity is
given by (15), fv̄lðxÞ; v̄kðyÞg ¼ K

2
½θlm∂mð1ρ ∂kδðx − yÞÞ −

θkm∂lð1ρ ∂mδðx − yÞÞ� where all arguments of fields and
derivatives are on x. One immediately notices a nonabelian
like feature, reminiscent of NC field theories [10,18], since
fvkðxÞ; v̄kðyÞg even for same k is nonzero: fvkðxÞ; v̄kðyÞg ¼
θkm=ρ2ð∂kρ∂mδðx − yÞ − ∂mρ∂kδðx − yÞÞ (no sum on k).
To consider the effective pressure, we have to derive the

Euler equation for v̄i,

_̄vl ¼ −∂l

�
v̄2

2

�
−
1

ρ
∂lPc þ

1

2ρ
θij∂lðv̄i∂jUÞ

−
1

2
θijU0∂l

�
1

ρ
v̄i∂jρ

�

þ 1

2
θlj

�
U0∂j

�∂kðρv̄kÞ
ρ

�
þ v̄k∂jρ∂kU0

ρ

�
: ð16Þ

Notice that the effective pressure depends explicitly on v̄i

(apart from ρ) that signals a nonbarotropy in the fluid
that can yield subsequent nonisentropic dynamics. Again
for pressureless dust, we find an NC generated

effective pressure, ρ
_̄vl ¼ −∂lðv̄22 Þ þ K

2
ð 1
ρ2
θkjv̄k∂jρ∂lρ þ

θlj∂jð∂kðρv̄kÞ
ρ ÞÞ. (15) and (16) constitute our other major

results, where NC induces a vorticity and nonbarotropy
(with possible entropy generation), respectively, in the
simplest of ideal fluid, irrotational pressureless dust.
Apart from introducing anisotropy, the signature of the

NC pressure can be both positive or negative (depending on
θ and the fields), which might lead to a Chaplygin fluid like
behavior of negative pressure [35] that is interesting in a
cosmological scenario as a dark energy candidate [36].

VIII. CONCLUSION

To summarize, we have provided, for the first time, an
action for a noncommutative fluid that enjoys several
interesting features: the only example till date of a multiple
parameter centrally extended Galilean algebra in 3þ 1-
dimensions, generation of vorticity, and nonbarotropy in
the fluid. All these effects vanish in the commutative limit,
θij ¼ 0. Explicit expressions of the above NC phenomena
are provided for a canonical irrotational, and a barotropic
fluid are derived. This “exotic” fluid has a close resem-
blance with popular “exotic” models studied earlier exclu-
sively in 3þ 1-dimensions.
For future work, we briefly outline a possible NC effect

in the cosmological context. As we have shown earlier [37],
the NC can directly modify the Friedmann equation,
thereby producing an NC corrected effective curvature.
Furthermore, NC necessarily generates anisotropy and
inhomogeneity that can lead to structure formation effects
via cosmological perturbations. (Work is in progress in
these directions.) Other open problems, apart from the
obvious one of extending the present work to fluids that are
canonically not irrotational, are that it would be worthwhile
to consider the Madelung framework to interpret the NC
correction as a spin effect in the quantum fluid [38]. Also,
since the NC fluid exhibits exotic features, it might be
relevant in a semiclassical Bloch electron theory with a
potential application in anomalous or spin Hall effects
[7,39] with a novel effect for the exotic (second) central
extension. Finally, it would be worthwhile to look for other
nonrelativistic field theories in three (space) dimensions
with multiple central extension parameters.

ACKNOWLEDGMENTS

The work of P. D. is supported by INSPIRE, DST (Grant
No. DST/INSPIRE/03/2014/004052), India.

[1] J.-M. Levy-Leblond, J. Math. Phys. 4, 776 (1963);
Commun. Math. Phys. 6, 286 (1967).

[2] V. Bargmann, Ann. Math. 59, 1 (1954).
[3] V. I. Arnold,Mathematical Methods of Classical Mechanics

(Springer, New York, 1978).
[4] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104,

207 (1986).
[5] J.-M. Souriau, Structure des Systemes Dynamiques (Paris,

Dunod, 1969); Structure of Dynamical Systems, a Symplec-

tic View of Physics (Birkauser, 1997); J.-M. Levy-Leblond
in Group Theory and Applications, edited by E. M. Loebl
(Academic Press, New York, 1972), Vol. II, p. 222;
D. R. Grigore, J. Math. Phys. (N.Y.) 37, 460 (1996);
S. K. Bose, Commun. Math. Phys. 169, 385 (1995); C.
Duval, Exotic Galilei group, IQHE and ChernSimons
electrodynamics (unpublished).

[6] C. Duval and P. A. Horvathy, Phys. Lett. B 479, 284 (2000);
J. Phys. A 34, 10097 (2001); Phys. Lett. B 547, 306 (2002);

GALILEI GROUP WITH MULTIPLE CENTRAL … PHYSICAL REVIEW D 96, 111901(R) (2017)

111901-5

RAPID COMMUNICATIONS

https://doi.org/10.1063/1.1724319
https://doi.org/10.1007/BF01646020
https://doi.org/10.2307/1969831
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://doi.org/10.1063/1.531402
https://doi.org/10.1007/BF02099478
https://doi.org/10.1016/S0370-2693(00)00341-5
https://doi.org/10.1088/0305-4470/34/47/314
https://doi.org/10.1016/S0370-2693(02)02783-1


P. A. Horvathy, Ann. Phys. (Amsterdam) 299, 128 (2002);
Nucl. Phys. B673, 301 (2003); for review, see P. A.
Horvathy, L. Martina, and P. C. Stichel, SIGMA 6, 060 (2010).

[7] P. A. Horvathy, L. Martina, and P. C. Stichel, Phys. Lett. B
564, 149 (2003); Nucl. Phys. B673, 301 (2003).

[8] R. Jackiw and V. P. Nair, Phys. Rev. D 43, 1933 (1991);
Phys. Lett. B 480, 237 (2000).

[9] C. R. Hagen, Phys. Lett. B 539, 168 (2002).
[10] C. Chou, V. P. Nair, and A. P. Polychronakos, Phys. Lett. B

304, 105 (1993); M. Chaichian, R. G. Felipe, and
D. L. Martinez, Phys. Rev. Lett. 71, 3405 (1993); 73, 2009
(E) (1994); R. Jackiw andV. P.Nair, Phys. Rev. Lett. 73, 2007
(1994); S.Ghosh, Phys. Lett. B 338, 235 (1994); Phys.Rev.D
51, 5827 (1995); P. A. Horvathy andM. S. Plyushchay, Phys.
Lett. B 595, 547 (2004); C. Duval and P. A. Horvathy, Phys.
Lett. B 594, 402 (2004); for review, see F. Wilczek,
Fractional Statistics and Anyon Superconductivity (World
Scientific Publishing Company, Singapore, 1990).

[11] J. Cardy, J. Stat. Mech. (2010) P10004; B. S. Kim and A. D.
Shapere, Phys. Rev. Lett. 117, 116805 (2016); S. Ejima and
H. Fehske, J. Phys. Conf. Ser. 592, 012134 (2015); C.
Troessaert, J. High Energy Phys. 08 (2013) 044; K.
Ropotenko, Mod. Phys. Lett. A 31, 1650018 (2016).

[12] L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed.
(Pergamon, Oxford, UK, 1987); H. Lamb, Hydrodynamics
(Cambridge University Press, Cambridge, England, 1932).

[13] A. Vazsonyi, Q. Appl. Math. 3, 29 (1945).
[14] L. Brekhokikh and V. Goncharov, Springer Series on Wave

Phenomena 1 (Springer-Verlag, Berlin, 1985), ISBN 3-540-
13765-3.

[15] K. Glampedakis, N. Andersson, and S. K. Lander, Mon.
Not. R. Astron. Soc. 420, 1263 (2012).

[16] R. Prix, Phys. Rev. D 69, 043001 (2004); A. Reisenegger
and P. Goldreich, Astrophys. J. 395, 240 (1992); G
Ballesteros, Phys. Rev. D 94, 025034 (2016); C. A. Stephen
and A. Dar, Proc. R. Soc. A 466, 2605 (2010).

[17] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev.
Lett. 62, 82 (1989); S. C. Zhang, Int. J. Mod. Phys. B 06, 25
(1992).

[18] N. Seiberg and E. Witten, J. High Energy Phys. 09
(1999) 032; For reviews, see M. R. Douglas and N. A.
Nekrasov, Rev. Mod. Phys. 73, 977 (2001); R. J. Szabo,
Phys. Rep. 378, 207 (2003); R. Banerjee, B. Chakraborty, S.
Ghosh, P. Mukherjee, and S. Samanta, Found. Phys. 39,
1297 (2009).

[19] D. Simms, Lectures given at Centre de Physique Theorique,
CNRS, Marseille, 1969 (unpublished); V. Aldaya and J. A.
de Azcarraga, Int. J. Theor. Phys. 24, 141 (1985); G. M.
Tuynman and W. A. J. J. Wiegerinck, J. Geom. Phys. 4, 207
(1987); G. Marmo, G. Morandi, A. Simoni, and E. C. G.
Sudarshan, Phys. Rev. D 37, 2196 (1988).

[20] Y. Brihaye, C. Gonera, S. Giller, and P. Kosinski, arXiv:
hep-th/9503046; J. Lukierski, P. C. Stichel, and W. J.
Zakrzewski, Ann. Phys. (N.Y.) 260, 224 (1997); P. A. Horva-
thyandM. S.Plyushchay J.HighEnergyPhys. 06 (2002)033.

[21] H. S. Snyder, Phys. Rev. 71, 38 (1947); 72, 68 (1947); See
also C. N. Yang, Phys. Rev. 72, 874 (1947).

[22] M.M. Sheikh-Jabbari, Phys. Lett. B 455, 129 (1999); P. M.
Ho andY. S.Wu, Phys. Lett. B 398, 52 (1997); R.Banerjee, B.
Chakraborty, and S. Ghosh, Phys. Lett. B 537, 340 (2002).

[23] J. Gamboa, M. Loewe, and J. C. Rojas, Phys. Rev. D 64,
067901 (2001); V. P. Nair and A. P. Polychronakos, Phys.
Lett. B 505, 267 (2001); H. O. Girotti, Am. J. Phys. 72, 608
(2004); S. Ghosh and P. Roy, Phys. Lett. B 711, 423 (2012);
O. Bertolami and P. Leal, Phys. Lett. B 750, 6 (2015); R.
Banerjee, B. D. Roy, and S. Samanta, Phys. Rev. D 74,
045015 (2006).

[24] L. D. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692
(1988).

[25] P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva
University Press, New York, 1964).

[26] V. P. Nair, arXiv:1606.06407; D. Capasso, V. P. Nair, and J.
Tekel, Phys. Rev. D 88, 085025 (2013); D. Karabali and V.
P. Nair, Phys. Rev. D 90, 105018 (2014); R. Banerjee, S.
Dey, B. R. Majhi, and A. K. Mitra, Phys. Rev. D 89, 104013
(2014); G. M. Monteiro, A. G. Abanov, and V. P. Nair, Phys.
Rev. D 91, 125033 (2015); R. Banerjee, S. Ghosh, and A. K.
Mitra, Eur. Phys. J. C 75, 207 (2015); arXiv:1604.06544.

[27] R. Jackiw, V. P. Nair, S. Y. Pi, and A. P. Polychronakos, J.
Phys. A 37, R327 (2004).

[28] P. Das and S. Ghosh, Eur. Phys. J. C 76, 627 (2016); 77, 64
(2017).

[29] R. Salmon, Annu. Rev. Fluid Mech. 20, 225 (1988).
[30] A. Clebsch and J. Reine, Angew. Math. 56, 1 (1859); C.

Eckart, Phys. Rev. 54, 920 (1938); C. C. Lin, in
International School of Physics E. Fermi (XXI), edited by
G. Careri (Academic Press, New York, 1963).

[31] R. Jackiw, Nucl. Phys. B, Proc. Suppl. 108, 30 (2002); Phys.
Part. Nucl. 33, S6 (2002); Lect. Notes Phys. 616, 294
(2003); arXiv:physics/0209108; Z. Guralnik, R. Jackiw, S.
Y. Pi, and A. Polychronakos, Phys. Lett. B 517, 450 (2001).

[32] M. C. B. Abdalla, L. Holender, M. A. Santos, and I. V.
Vancea, Phys. Rev. D 86, 045019 (2012); L. Holender,
M. A. Santos, M. T. D. Orlando, and I. V. Vancea, Phys.
Rev. D 84, 105024 (2011).

[33] E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705
(1952); M. Hammermesh, Ann. Phys. (N.Y.) 9, 518 (1960).

[34] For NC nonconserved boosts, see B. Chakraborty, S.
Gangopadhyay, and A. Saha, Phys. Rev. D 70, 107707
(2004); B. Chakraborty and A. S. Majumdar, Ann. Phys.
(N.Y.) 250, 112 (1996); R. Banerjee and P. Mukherjee, Ann.
Phys. (N.Y.) 264, 30 (1998).

[35] S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1
(1904).

[36] A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett.
B 511, 265 (2001); U. Alam, V. Sahni, T. D. Saini, and A. A.
Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003);
M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66,
043507 (2002); U. Debnath, A. Banerjee, and S. Chakra-
borty, Classical Quantum Gravity 21, 5609 (2004); R.
Banerjee, S. Ghosh, and S. Kulkarni, Phys. Rev. D 75,
025008 (2007).

[37] Note that the NC fρðxÞ; ρðyÞg is the same in both here and
in [28] but fρðxÞ; θðyÞg is different (model dependence),
which in the present case yields a nonzero contribution in
the effective curvature.

[38] G. Salesi, Mod. Phys. Lett. A 11, 1815 (1996).
[39] L. Goldenberg and L. Vaidman, Phys. Rev. Lett. 75, 1239

(1995); D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys.
82, 1959 (2010).

PRALOY DAS and SUBIR GHOSH PHYSICAL REVIEW D 96, 111901(R) (2017)

111901-6

RAPID COMMUNICATIONS

https://doi.org/10.1006/aphy.2002.6271
https://doi.org/10.1016/j.nuclphysb.2003.09.027
https://doi.org/10.3842/SIGMA.2010.060
https://doi.org/10.1016/S0370-2693(03)00704-4
https://doi.org/10.1016/S0370-2693(03)00704-4
https://doi.org/10.1016/j.nuclphysb.2003.09.027
https://doi.org/10.1103/PhysRevD.43.1933
https://doi.org/10.1016/S0370-2693(00)00379-8
https://doi.org/10.1016/S0370-2693(02)02032-4
https://doi.org/10.1016/0370-2693(93)91407-E
https://doi.org/10.1016/0370-2693(93)91407-E
https://doi.org/10.1103/PhysRevLett.71.3405
https://doi.org/10.1103/PhysRevLett.73.2009
https://doi.org/10.1103/PhysRevLett.73.2009
https://doi.org/10.1103/PhysRevLett.73.2007
https://doi.org/10.1103/PhysRevLett.73.2007
https://doi.org/10.1016/0370-2693(94)91371-4
https://doi.org/10.1103/PhysRevD.51.5827
https://doi.org/10.1103/PhysRevD.51.5827
https://doi.org/10.1016/j.physletb.2004.05.043
https://doi.org/10.1016/j.physletb.2004.05.043
https://doi.org/10.1016/j.physletb.2004.05.049
https://doi.org/10.1016/j.physletb.2004.05.049
https://doi.org/10.1088/1742-5468/2010/10/P10004
https://doi.org/10.1103/PhysRevLett.117.116805
https://doi.org/10.1088/1742-6596/592/1/012134
https://doi.org/10.1007/JHEP08(2013)044
https://doi.org/10.1142/S0217732316500188
https://doi.org/10.1090/qam/13986
https://doi.org/10.1111/j.1365-2966.2011.20112.x
https://doi.org/10.1111/j.1365-2966.2011.20112.x
https://doi.org/10.1103/PhysRevD.69.043001
https://doi.org/10.1086/171645
https://doi.org/10.1103/PhysRevD.94.025034
https://doi.org/10.1098/rspa.2009.0579
https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1142/S0217979292000037
https://doi.org/10.1142/S0217979292000037
https://doi.org/10.1088/1126-6708/1999/09/032
https://doi.org/10.1088/1126-6708/1999/09/032
https://doi.org/10.1103/RevModPhys.73.977
https://doi.org/10.1016/S0370-1573(03)00059-0
https://doi.org/10.1007/s10701-009-9349-y
https://doi.org/10.1007/s10701-009-9349-y
https://doi.org/10.1007/BF00672649
https://doi.org/10.1016/0393-0440(87)90027-1
https://doi.org/10.1016/0393-0440(87)90027-1
https://doi.org/10.1103/PhysRevD.37.2196
http://arXiv.org/abs/hep-th/9503046
http://arXiv.org/abs/hep-th/9503046
https://doi.org/10.1006/aphy.1997.5729
https://doi.org/10.1088/1126-6708/2002/06/033
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/10.1103/PhysRev.72.68
https://doi.org/10.1103/PhysRev.72.874
https://doi.org/10.1016/S0370-2693(99)00462-1
https://doi.org/10.1016/S0370-2693(97)00202-5
https://doi.org/10.1016/S0370-2693(02)01944-5
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1119/1.1624116
https://doi.org/10.1119/1.1624116
https://doi.org/10.1016/j.physletb.2012.04.033
https://doi.org/10.1016/j.physletb.2015.08.024
https://doi.org/10.1103/PhysRevD.74.045015
https://doi.org/10.1103/PhysRevD.74.045015
https://doi.org/10.1103/PhysRevLett.60.1692
https://doi.org/10.1103/PhysRevLett.60.1692
http://arXiv.org/abs/1606.06407
https://doi.org/10.1103/PhysRevD.88.085025
https://doi.org/10.1103/PhysRevD.90.105018
https://doi.org/10.1103/PhysRevD.89.104013
https://doi.org/10.1103/PhysRevD.89.104013
https://doi.org/10.1103/PhysRevD.91.125033
https://doi.org/10.1103/PhysRevD.91.125033
https://doi.org/10.1140/epjc/s10052-015-3412-y
http://arXiv.org/abs/1604.06544
https://doi.org/10.1088/0305-4470/37/42/R01
https://doi.org/10.1088/0305-4470/37/42/R01
https://doi.org/10.1140/epjc/s10052-016-4488-8
https://doi.org/10.1140/epjc/s10052-017-4654-7
https://doi.org/10.1140/epjc/s10052-017-4654-7
https://doi.org/10.1146/annurev.fl.20.010188.001301
https://doi.org/10.1103/PhysRev.54.920
https://doi.org/10.1016/S0920-5632(02)01302-6
https://doi.org/10.1007/3-540-36539-7
https://doi.org/10.1007/3-540-36539-7
http://arXiv.org/abs/physics/0209108
https://doi.org/10.1016/S0370-2693(01)00986-8
https://doi.org/10.1103/PhysRevD.86.045019
https://doi.org/10.1103/PhysRevD.84.105024
https://doi.org/10.1103/PhysRevD.84.105024
https://doi.org/10.1007/BF02782239
https://doi.org/10.1007/BF02782239
https://doi.org/10.1016/0003-4916(60)90106-8
https://doi.org/10.1103/PhysRevD.70.107707
https://doi.org/10.1103/PhysRevD.70.107707
https://doi.org/10.1006/aphy.1996.0090
https://doi.org/10.1006/aphy.1996.0090
https://doi.org/10.1006/aphy.1997.5760
https://doi.org/10.1006/aphy.1997.5760
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1016/S0370-2693(01)00571-8
https://doi.org/10.1046/j.1365-8711.2003.06871.x
https://doi.org/10.1103/PhysRevD.66.043507
https://doi.org/10.1103/PhysRevD.66.043507
https://doi.org/10.1088/0264-9381/21/23/019
https://doi.org/10.1103/PhysRevD.75.025008
https://doi.org/10.1103/PhysRevD.75.025008
https://doi.org/10.1142/S0217732396001806
https://doi.org/10.1103/PhysRevLett.75.1239
https://doi.org/10.1103/PhysRevLett.75.1239
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959

