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Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the
lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat
obtained from the two-point correlators are shown to be in good agreement with those from the one-point
functions of EMT. These results constitute a first step toward the first principle simulations of the transport
coefficients with the gradient flow.
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Various thermal and transport properties of quantum
field theories are encoded in the correlations of energy-
momentum tensor (EMT) at finite temperature (T). In
particular, fluctuation and transport properties of hot
QCD (quantum chromodynamics) matter at finite T have
attracted a lot of attention in relation to the phenomeno-
logical studies on relativistic heavy-ion collisions [1,2].
Although the nonperturbative investigations of the EMT

at finite T using lattice QCD simulations have been very
difficult owing to the lack of translational and rotational
symmetry [3,4], a novel method to construct the EMT on
the lattice [5] on the basis of the gradient flow [6–8] was
recently proposed and was successfully applied to the
equation of states in pure gauge theory [9–11].1 This study
shows that the thermodynamical observables such as the
energy density and pressure extracted from the expectation
values of the EMT (the one-point functions) agree
extremely well with previous high-precision results using
the integral method [14–16]. Also, the statistics required in
the new method is substantially smaller than that in the
previous method. The method is now extended to full QCD
simulations at finite T [17,18].
In the present paper, we report our exploratory studies to

extend the previous results of the one-point functions to the
two-point EMT correlators in SU(3) lattice gauge theory
[19]. The advantages of such extension are threefold. First
of all, the method allows direct access to the specific heat
cV and entropy density s from the EMT correlations.
Second, one could explicitly check the conservation law
of EMT obtained by the gradient flow. Third, the method
will open the new door to the study of important transport
coefficients such as the shear and bulk viscosities [20–24].
We will focus on the first two aspects in this paper.

Let us here summarize the properties of the correlators of
the EMT, T μνðxÞ, in the Euclidean and continuum space-
time, where xμ¼1;2;3;4 ¼ ðx⃗; τÞwith 0 ≤ τ < 1=T. We define
a dimensionless temporal correlator of T μνðxÞ at finite T
and at finite volume V as

Cμν;ρσðτÞ≡ 1

T5

Z
V
d3xhδT μνðxÞδT ρσð0Þi; ð1Þ

where h·i denotes the thermal average and we defined
δT μνðxÞ≡ T μνðxÞ − hT μνðxÞi [5]. Note that Cμν;ρσðτÞ con-
tains only connected contribution. Owing to the conserva-
tion of the EMT in the Euclidean space-time (∂μT μν ¼ 0),
we have d

dτ T̄ 4ν ¼ 0 with T̄ μν ≡
R
V d

3xT μνðxÞ. For τ ≠ 0,
this leads to

d
dτ

C4ν;ρσðτÞ ¼ 0: ð2Þ

Since the energy density of the system is represented as
ε ¼ −hT̄ 44i=V, the specific heat per unit volume cV is
given by [2]

cV
T3

¼ 1

T3

dε
dT

¼ hðδT̄ 44Þ2i
VT5

¼ C44;44ðτÞ; ð3Þ

where Eq. (2) is used in the last equality. Note that τ can be
taken anywhere in the range 0 < τ < 1=T owing to the
EMT conservation.
Similarly, from the thermodynamic relation for entropy

density s ¼ dp=dT ¼ ð1=VÞdhT̄ 11i=dT [25], one obtains

s
T3

¼ 1

T3

dp
dT

¼ hδT̄ 44δT̄ 11i
VT5

¼ −C44;11ðτÞ: ð4Þ

Again, τ can be taken arbitrarily in 0 < τ < 1=T.
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Finally, the momentum fluctuation is related to the
enthalpy density h [12,26],

h
T4

¼ hðδT̄41Þ2i
VT5

¼ −C41;41ðτÞ: ð5Þ

At zero chemical potential, h ¼ εþ p ¼ sT.
The gradient flow for Yang-Mills gauge field is defined

by the differential equation with respect to the hypothetical
5th coordinate t [7]

dAμðt; xÞ
dt

¼ −g20
δSYMðtÞ
δAμðt; xÞ

¼ DνGνμðt; xÞ; ð6Þ

with the Yang-Mills action SYMðtÞ and the field strength
Gμνðt; xÞ composed of the transformed field Aμðt; xÞ. The
flow time t has a dimension of inverse mass squared.
The initial condition at t ¼ 0 is taken for the field in the
conventional gauge theory; Aμð0; xÞ ¼ AμðxÞ. The gradient
flow for positive t acts as the smearing of the gauge field.
Since the mean square radius of the flow in D dimensional
Euclidean space is

ffiffiffiffiffiffiffiffi
2Dt

p
, this length is employed as the

smearing radius of the gradient flow in Ref. [7]. On the
other hand, when the smearing along one direction is
concerned, the smearing radius is given by

ffiffiffiffi
2t

p
irrespective

of the space dimension.
The renormalized EMT operator is then obtained as

T R
μνðxÞ ¼ lim

t→0
T μνðt; xÞ; ð7Þ

T μνðt; xÞ ¼
Uμνðt; xÞ
αUðtÞ

þ δμν
4αEðtÞ

½Eðt; xÞ − hEðt; xÞi0�; ð8Þ

where the dimension-four gauge-invariant operators on the
right-hand side are given by [5]

Eðt; xÞ ¼ 1

4
Ga

μνðt; xÞGa
μνðt; xÞ; ð9Þ

Uμνðt; xÞ ¼ Ga
μρðt; xÞGa

νρðt; xÞ − δμνEðt; xÞ; ð10Þ

while hEðt; xÞi0 in Eq. (8) is the vacuum expectation value
of Eðt; xÞ, so that hT R

μνðxÞi vanishes in the vacuum. The
coefficients αUðtÞ and αEðtÞ have been calculated pertur-
batively in Ref. [5] for small t: Their explicit forms in the
MS scheme are given in Ref. [11].
Although Eqs. (7) and (8) are exact in the continuum

spacetime, special care is required in lattice gauge theory
with finite lattice spacing a: The flow time should satisfy
2

ffiffiffiffi
2t

p ≳ a to suppress the lattice discretization effects. It has
been shown for the thermal average of the EMT that there
exists indeed a range of t for sufficiently small a, so that the
lattice data allow reliable extrapolation to t ¼ 0 to obtain ε
and p [9–11]. Moreover, it is shown in Ref. [11] that results

agree with those obtained by the integral method [16]
within a few percent level. This shows that the use of
perturbative coefficients in Eq. (8) is enough to define the
EMTwithin this accuracy as long as the proper double limit
(t → 0 after a → 0) is taken.
To analyze the two-point EMT correlations with Eq. (8),

we have an extra condition that the distance between the
two smeared operators τ in temporal direction is well
separated (with the temporal periodicity) to avoid their
overlap. Then the necessary conditions read

a≲ 2
ffiffiffiffi
2t

p ≲ τ ≤ τm; ð11Þ

with τm ≡ 1=ð2TÞ, or equivalently, in terms of the dimen-
sionless quantities, 1=Nτ ≲ 2

ffiffiffiffiffiffiffiffiffi
2tT2

p ≲ τT ≤ 1=2, with
Nτ ¼ ðaTÞ−1 being the temporal lattice size.
In our numerical studies, we consider SU(3) Yang-Mills

theory on four-dimensional Euclidean lattice and employ
the Wilson gauge action under the periodic boundary
condition. Gauge configurations are generated by the same
procedure as in Ref. [11], but each measurement is
separated by 50 sweeps. Statistical errors are estimated
by the jackknife method with 100 jackknife samples. On
the right-hand side of the flow equation Eq. (6), the Wilson
gauge action is used for SYMðtÞ, while the operators in
Eqs. (9) and (10) are constructed from Ga

μνðt; xÞ defined by
the clover-type representation.
We study two cases above the deconfinement transition,

T=Tc ¼ 1.68 and 2.24, with three different lattice volumes
N3

s × Nτ with a fixed aspect ratioNs=Nτ ¼ 4. The values of
β ¼ 6=g20 corresponding to each set of T=Tc and Nτ are
obtained from Refs. [11,27]. The resultant simulation
parameters are summarized in Table I.
Shown in Fig. 1 are the τ dependences of C44;44ðτÞ,

C44;11ðτÞ, andC41;41ðτÞ for T=Tc ¼ 1.68 (upper panels) and

TABLE I. Simulation parameters on the lattice: Ns, Nτ,
β ¼ 6=g20, and Nconf are spatial lattice size, temporal lattice size,
the bare coupling constant, and the total number of gauge
configurations, respectively.

T=Tc ¼ 1.68

Ns Nτ β Nconf

96 24 7.265 200 000
64 16 6.941 180 000
48 12 6.719 180 000

T=Tc ¼ 2.24

Ns Nτ β Nconf

96 24 7.500 200 000
64 16 7.170 180 000
48 12 6.943 180 000
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T=Tc ¼ 2.24 (lower panels) for Nτ ¼ 24 with typical
values of tT2 between the upper and lower bounds in
Eq. (11). From the overall behavior of the lattice data in
these figures, one finds two key features: (i) As t decreases,

the data start to show the plateau structure for τT ≳ 0.3.
(ii) As t decreases, the statistical errors become larger. The
feature (i) is a signature of the EMT conservation Eq. (2) for
large τ, where the smeared EMT operators do not overlap

FIG. 1. Correlators C44;44ðτÞ (left), C44;11ðτÞ (middle), and C41;41ðτÞ (right) for several values of flow time t for Nτ ¼ 24. The red
dashed lines show s=T3 ¼ ðεþ pÞ=T4 obtained from the one-point function of the EMT with the same gauge configurations.

FIG. 2. t dependences of the midpoint correlators C44;44ðτmÞ (left), C44;11ðτmÞ (middle), and C41;41ðτmÞ (right) for T=Tc ¼ 1.68 and
2.24. The black lines show the results of continuum extrapolation, where the dark and light error bands represent the results with three
and two lattice spacings, respectively (see text).

CORRELATIONS OF THE ENERGY-MOMENTUM TENSOR … PHYSICAL REVIEW D 96, 111502(R) (2017)

111502-3

RAPID COMMUNICATIONS



with each other. The feature (ii) is due to the fact that the
gauge fields are rough (smooth) for small (large) t.
Shown by the red dashed lines in Fig. 1 together with

C44;11ðτÞ and C41;41ðτÞ are s=T3 ¼ ðεþ pÞ=T4 obtained by
the one-point function of EMT (hT̄ 44i and hT̄ 11i) using the
method in Ref. [11] with the same configurations. This
agreement of the results of s=T3 between the one-point
function and the two-point functions, as it should be for
Eqs. (4) and (5), at large τ and small t indicates an internal
consistency of the present method.
To take the continuum limit a → 0 followed by an

extrapolation t → 0, we show, in Fig. 2, the t dependence
of the correlators for different lattice spacings,
a ¼ 1=ðNτTÞ. Here we choose the maximum possible
separation, τ ¼ τm, to minimize the overlap of the EMT
operators. The continuum extrapolation is carried out by
using the data at Nτ ¼ 12, 16, and 24 for each t ∈
½tmin; tmax� with an ansatz Cμν;ρσðτmÞjlat ¼ Cμν;ρσðτmÞjcont þ
Oða2Þ expected from perturbation theory. Here we select
the data to be used for the continuum extrapolation as
follows. First of all, we consider the data only in the region
2

ffiffiffiffi
2t

p
< τm=2 to avoid oversmearing. This is a conservative

condition which is more stringent than Eq. (11) by
a factor of two. (Note that we chose τ ¼ τm.) Second,
we impose a condition that the conservation law,
C4ν;ρσðτmÞ=C4ν;ρσðτm − aÞ ¼ 1, is satisfied within 5% accu-
racy. These two requirements not only determine the
window tmin < t < tmax but also select the data points to
be used for Nτ ¼ 12, 16, and 24 given t. Accordingly, the
continuum extrapolation is taken either by using data for
Nτ ¼ 12, 16, and 24 or by those for Nτ ¼ 16 and 24.
This procedure excludes the small t region where large
lattice discretization errors arise, as well as the large t
region where the systematic errors from the overlap
of EMT operators and the contribution of higher dimen-
sional operators other than Eqs. (9) and (10) are not
negligible [11].
The results of the continuum extrapolation are shown by

the black lines with the error represented by the gray band
in Fig. 2. The continuum extrapolated results with three
(two) lattice spacings are shown by dark (light) error band.
At the level of error bars in the present exploratory study,
we do not have enough resolution to reliably extract the
OðtÞ contribution in Cμν;ρσðτmÞ [11], so that we take the
t → 0 extrapolation by a constant fit in the interval
½tmin; tmax�, which is called Range-1. The final results after
the double extrapolation (t → 0 after a → 0) are shown by
the filled squares in Fig. 2. To estimate the systematic errors
from this constant fit, we choose the Range-2 (the first half
of Range-1) and Range-3 (the latter half of Range-1); the
results are shown by open circles and open triangles,
respectively. The red dashed lines in the middle and right
panels in Fig. 2 are s=T3 obtained from the one-point
function of EMT.

Shown in Table II are the numerical results of s=T3

obtained in the present analysis of EMT correlators. Within
the statistical and systematic error bars, the results of the
two different correlators agree with each other, and they
agree to the results of the one-point function of EMT. Also
the central value of s=T3 in our analysis increases as T and
also much less than the ideal gas value, which captures the
essential feature expected from strongly interacting gluon
plasma above Tc.
Shown in Table III are the numerical results of cV=T3

obtained in the present analysis of EMT correlators. Our
results agree quantitatively with the numbers extracted
from the recent high-precision study of the energy density
in the integral method [16] and qualitatively with the
numbers obtained in the differential method [28]. Our
specific heat is about 20% smaller than the ideal gas value,
which also indicates the strong coupling feature of the
system.
In summary, we have investigated the two-point EMT

correlators in SU(3) Yang-Mills theory at finite temperature
(T=Tc ¼ 2.24 and 1.68) using the method of gradient flow
with the flow time t. The correlators C4ν;ρσðτÞ approach
constant values for sufficiently large τ and small t. This is
an indication that the conservation of the EMT is realized in
the gradient flow as long as the two EMT operators do not

TABLE II. Values of s=T3 obtained from Eqs. (4) and (5)
together with those obtained from the one-point function of EMT.
The ideal gas limit for massless gluons is also shown for
comparison. The first (second) parenthesis shows statistical
(systematic) error. The systematic error for the one-point function
originates from the 1% uncertainty of ΛMS [11].

s=T3

T=Tc C44;11ðτmÞ C41;41ðτmÞ hT R
μνi ideal gas

1.68 5.11ð39Þð þ24
−7 Þ 4.78ð1.17Þð þ4

−9 Þ 5.222(10)(24) 7.02
2.24 5.26ð37Þð þ0

−0 Þ 5.79ð1.24Þð þ7
−4 Þ 5.675(10)(24) 7.02

TABLE III. Values of cV=T3 obtained by Eq. (3) as well as
those obtained directly from the differential method [28] and
those calculated indirectly from εðTÞ in the integral method [16].
The ideal gas limit for massless gluons is also shown for
comparison. The error bars are estimated in the same way as
s=T3 in Table II. The symbol � (��) indicates that the numbers are
for T=Tc ¼ 1.5ð2.0Þ. The error bars of cV=T3 in the column
Ref. [16] would be a few % level.

cV=T3

T=Tc C44;44ðτmÞ Ref. [28] Ref. [16] ideal gas

1.68 17.4ð7Þð þ2.1
−0.2Þ 22.8ð7Þ� 17.7 21.06

2.24 17.5ð8Þð þ0
−0.1Þ 17.9ð7Þ�� 18.2 21.06
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have overlap with each other. By taking the double limit
(t → 0 after a → 0) using the data for Nτ ¼ 12, 16, and 24,
we found that the entropy density (s) obtained from the
two-point EMT correlators (C44;11ðτmÞ and C41;41ðτmÞ)
reproduces the high precision result previously obtained
from the one-point function. Also, we found that the
specific heat (cV) can be determined in 5-10% accuracy
from the two-point EMT correlator (C44;44ðτmÞ). Now that
we have confirmed that thermodynamical quantities are
obtained accurately with two-point EMT correlators
with the gradient flow, it is within reach to investigate
transport coefficients with two-point EMT correlations
as well.
Although we focused on SU(3) Yang-Mills theory in

this study, the same analysis can be also performed in full

QCD [17,18]. A preliminary study along this line is
reported in Ref. [29,30].
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