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We derive a positivity bound on the right-chiral tensor coupling ImgR in polarized top quark decay by
analyzing the angular decay distribution of the three-body polarized top quark decay tð↑Þ → bþ lþ þ νl
in next-to-leading order QCD. We obtain the bound −0.0420 ≤ ImgR ≤ 0.0420.
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The general matrix element for the decay t → bþWþ
including the leading order (LO) standard model (SM)
contribution is usually written as (see, e.g., Ref. [1])

MtbWþ ¼ −
gWffiffiffi
2

p εμ�ūb

�
ðV�

tb þ fLÞγμPL þ fRγμPR

þ iσμνqν

mW
ðgLPL þ gRPRÞ

�
; ð1Þ

where PL;R ¼ ð1 ∓ γ5Þ=2. The SM structure of the tbWþ

vertex is obtained by dropping all terms except for the
contribution proportional to V�

tb ∼ 1.
The angular decay distribution for polarized top quark

decay tð↑Þ → bþ lþ þ νl in the top quark rest frame is
given by

dΓ
d cos θdϕ

¼ Aþ BPt cos θP þ CPt sin θP cosϕ

þDPt sin θP sinϕ ð2Þ

which corresponds to the decay distribution introduced in
Refs. [2,3] augmented by the last T-odd term. At LO of the
SM one has A ¼ B and C ¼ D ¼ 0. The second azimuthal
term proportional to D corresponds to a T-odd contribu-
tion. This can be seen by rewriting the angular factor as a
triple product according to

sin θP sinϕ ¼ p̂l · ðp̂b × ŝtÞ ð3Þ

where (see Fig. 1)

p̂l ¼ ð0; 0; 1Þ p̂b ¼ ðsin θb; 0; cos θbÞ
ŝt ¼ ðsin θP cosϕ; cos θP sinϕ; cos θPÞ: ð4Þ

Let us repeat the arguments presented in Ref. [3] that led us
to the conclusion that the equality A ¼ B already implies
the vanishing of the T-even azimuthal contribution C
confirming the LO result C ¼ 0. Consider Eq. (2) for

ϕ ¼ 0, Pt ¼ 1, and factor out the unpolarized rate term A.
Assume first that C=A is positive and expand the trigono-
metric functions around θP ¼ π for positive values of δ, i.e.,
cosðπ þ δÞ ≈ −1þ 1

2
δ2 and sinðπ þ δÞ ≈ −δ. The differ-

ential rate is then proportional to

1þ cos θP þ C
A
sin θP ≈

1

2
δ2 −

C
A
δ ¼ 1

2
δ

�
δ −

2C
A

�
: ð5Þ

The differential rate can be seen to be negative for δ in the
interval ½0; 2C=A�. The interval can be shrunk to zero by
setting 2C=A ¼ 0, i.e., by setting C ¼ 0. If C=A is assumed
to be negative, one has to expand the trigonometric
functions around θP ¼ π for negative values of δ, leading
to the interval ½2C=A; 0�.
The same chain of arguments, but this time with

ϕ ¼ π=2, leads to the LO positivity constraint for the T-
odd structure, D ¼ 0.
At next-to-leading order (NLO) of QCD one no

longer has A ¼ B. However, the relative difference
ðA − BÞ=A is quite small which, as we will see, in turn
implies useful positivity constraints for the T-odd structure
coefficient D. As concerns the T-even azimuthal structure,
the NLO corrections to the LO result C ¼ 0 are so small
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FIG. 1. Definitions of polar and azimuthal angles for the
process t → bþWþð→ lþ þ νlÞ
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that the positivity of the differential rate is not endan-
gered [3].
We now derive the NLO positivity constraint for the

T-odd structure coefficient D. We shall work in the
approximation mb ¼ 0, which implies that the coupling
terms fR and gL in Eq. (1) are zero. The NLO forms
of the integrated mb ¼ 0 rates are listed in Refs. [4–6].
They read

dΓ
d cos θdϕ

¼ ðAð0Þ þ Að1ÞÞ
�
1þ Að0Þ þ Bð1Þ

Að0Þ þ Að1Þ Pt cos θP

þ C

Að0Þ þ Að1Þ Pt sin θP cosϕ

þ D

Að0Þ þ Að1Þ Pt sin θP sinϕ

�
; ð6Þ

where

Að1Þ

Að0Þ ¼
αsCF

4π

1

ð1 − x2Þ2ð1þ 2x2Þ ðð1 − x2Þð5þ 9x2 − 6x4Þ − 2ð1 − x2Þ2ð1þ 2x2Þ
�
2π2

3
þ 4 lnð1 − x2Þ ln xþ 4Li2ðx2Þ

�

− 8x2ð1þ x2Þð1 − 2x2Þ ln x − 2ð1 − x2Þ2ð5þ 4x2Þ lnð1 − x2ÞÞ
¼ −0.0846955; ð7Þ

and

Bð1Þ

Að0Þ ¼
αsCF

4π

1

ð1− x2Þ2ð1þ 2x2Þ ð−ð1− x2Þð15− x2 þ 2x4Þ þ ð1− x2Þð1þ x2 þ 4x4Þ2π
2

3
− 2ð1− x2Þ2ð5þ 4x2Þ lnð1− x2Þ

− 16x2ð2þ x2 − x4Þ ln x− 16ð1− x2Þð2þ 2x2 − x4Þ ln x lnð1− x2Þ − 4ð1− x2Þð5þ 5x2 − 4x4ÞLi2ðx2ÞÞ
¼ −0.0863048; ð8Þ

where x ¼ mW=mt. Here we have also listed the numerical
values for the two ratios using αsðmtÞ ¼ 0.1062,
mt ¼ 173.21 GeV, and mW ¼ 80.385 GeV [7]. The ratio
expressions Að1Þ=Að0Þ and Bð1Þ=Að0Þ have been rechecked in
Ref. [3]. Reference [3] also contains results on the
azimuthal rate coefficient C. This coefficient, however,
will be of no concern in the derivation of the positivity
bounds for the T-odd rate coefficient D. In fact, setting
ϕ ¼ π=2 will eliminate the contribution of C. This will be
our choice.
Next we must determine the contribution of the imagi-

nary part of the coupling factor gR to the T-odd azimuthal
rate term D. The relevant contribution arises from the
interference of the coupling factor gR with the Born term
contribution. It is for this reason that there is no ImfL
contribution to the T-odd rate coefficient D since the
coupling term is self-interfering. After some algebra one
finds

D

Að0Þ ¼
3πð1 − x2Þ
4ð1þ 2x2Þ ImgR ð9Þ

where we have only kept the contribution linear in ImgR.
Further, we assume ImgR to be positive and set Pt ¼ 1.
We expand around θP ¼ π for small positive values of δ
which gives cosðπ þ δÞ ¼ −1þ 1

2
δ2 and sinðπ þ δÞ ¼ −δ

to obtain

WðθPÞ ∼ 1þ ð1 − ΔÞ cos θP þ D

Að0Þ þ Að1Þ sin θP

¼ Δ −
Dδ

Að0Þ þ Að1Þ þ
1 − Δ
2

δ2; ð10Þ

where we have defined the small quantity

Δ¼ANLO−BNLO

ANLO ¼Að1Þ−Bð1Þ

Að0ÞþAð1Þ ¼
Að1Þ−Bð1Þ

Að0Þð1þAð1Þ=Að0ÞÞ; ð11Þ

keeping in mind that Að0Þ ¼ Bð0Þ. Numerically one has Δ ¼
0.001758 where the small difference to the numerical
results in Ref. [3] results from having used updated values
mW ¼ 80.385 GeV and mt ¼ 173.21 GeV [7].
The rate proportional to WðθPÞ in Eq. (10) becomes

negative if the contribution proportional to ImgR
becomes larger than the remaining terms. However, this
is no longer the case if the quadratic Eq. (10) in δ has no
real-valued zeros. The pertinent condition for the discrimi-
nant reads

3πð1 − x2Þ
4ð1þ 2x2Þ jImgRj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð1 − ΔÞ

p �
1þ Að1Þ

Að0Þ

�
: ð12Þ

Numerically one obtains

ImgR ∈ ½−0.0420; 0.0420�: ð13Þ
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The angle δ0 for which the quadratic form (10) becomes
degenerate can be calculated to be δ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ=ð1 − ΔÞp ¼

�0.0593. The corrections to the expansion of cosðπ � δÞ
and sinðπ � δÞ are of the order Oðδ2 ¼ 0.00352Þ and,
therefore, quite small.
In Ref. [8] we have calculated the SM absorptive

electroweak contributions to ImgR with the result ImgR ¼
−2.175 × 10−3 (see also Refs. [9,10]). This value is easily
accommodated in the positivity bound (13).
The ATLAS Collaboration has recently published the

bound [11]

ImgR ∈ ½−0.18; 0.06� ð14Þ

based on the analysis of sequential polarized two-body top
quark decays tð↑Þ → bþWþð→ lþ þ νÞ. A somewhat
tighter bound has been published in Ref. [12] using also
sequential polarized two-body top quark decays. The
bound reads

Im

�
gR
fL

�
∈ ½−0.07; 0.06� ð15Þ

which we translate into a bound on ImgR by substituting the
LO result fL ¼ 1 in Eq. (15). Both bounds are not far away

from the positivity bound on ImgR derived in this paper.
Using the same chain of arguments one can establish
the corresponding bound for mb ≠ 0. Using NLO
mb ≠ 0 results from Ref. [6] on the unpolarized and
polarized rate functions Að1Þ and Bð1Þ we find that for
mb ¼ 4.8 GeV the bound is marginally strengthened to
ImgR ∈ ½−0.0418; 0.0418�. The condition for obtaining this
bound reads

3πð1− x2þ y2Þ ffiffiffi
λ

p

4ðλþ 3x2ð1− x2þ y2ÞÞ jImgRj≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð1−ΔÞ

p �
1þAð1Þ

Að0Þ

�
;

ð16Þ

where y ¼ mb=mt and λ ¼ λð1; x2; y2Þ ¼ 1þ x4 þ y4 −
2x2 − 2y2 − 2x2y2 is the Källén function. Að0Þ, Að1Þ and
the small quantity Δ are evaluated for mb ≠ 0.
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