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We construct generalized diffeomorphisms for E9 exceptional field theory. The transformations, which
like in the E8 case contain constrained local transformations, close when acting on fields. This is the first
example of a generalized diffeomorphism algebra based on an infinite-dimensional Lie algebra and an
infinite-dimensional coordinate module. As a byproduct, we give a simple generic expression for the
invariant tensors used in any extended geometry. We perform a generalized Scherk–Schwarz reduction and
verify that our transformations reproduce the structure of gauged supergravity in two dimensions. The
results are valid also for other affine algebras.
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I. INTRODUCTION

Exceptional symmetries are one of the deepest features
of ungauged maximal supergravity, and symmetry groups
of split real form EnðRÞ have been established for n ≤ 9,
corresponding to supergravity in D ¼ 11 − n space-time
dimensions [1–5]. These symmetries are not only important
for constructing gauged supergravity models with interest-
ing vacuum structures, but also play an important role for
understanding the string theory effective action that con-
jecturally exhibits a discrete U-duality symmetry EnðZÞ
[6], at least for n ≤ 7.
Many papers have been devoted to understanding the

origin of the EnðRÞ hidden symmetries, and recently there
has been considerable progress on “geometrizing” the
EnðRÞ symmetries for n ≤ 8. This geometrization requires
first of all constructing an extended geometry that has
EnðRÞ symmetry and then, secondly, constructing a model
based on this so-called exceptional geometry. A crucial role
in both steps is played by a constraint on the geometry
called the (strong) section constraint that is necessary for
defining a consistent algebra of generalized diffeomor-
phisms and for making sure that the resulting exceptional
field theory reduces consistently to just standard super-
gravity for a particular choice of exceptional geometric
background. All these steps have been carried out for finite-
dimensional EnðRÞ for n ≤ 8 in a series of papers [7–24].
More generally, one can consider generalized Scherk–
Schwarz reductions of these theories [25–29] to obtain
gauged supergravity theories.
In the present paper, we will begin the construction of E9

exceptional field theory, where E9 denotes the affine
extension of the largest finite-dimensional exceptional

Lie group E8. This infinite-dimensional group is known
to be a symmetry of two-dimensional maximal ungauged
supergravity [2,3], and gaugings of this symmetry have
been considered in [30]. The first step in the construction
of E9 exceptional field theory is to establish a consistent
gauge algebra of generalized diffeomorphisms similar to
[14,23,24]. This requires identifying an appropriate set of
coordinates that transform under E9 together with section
constraints. They allow the definition of a generalized Lie
derivative that forms a closed algebraic structure. A
construction of a model based on the E9 exceptional
geometry will be left to future work. In this sense, we
are providing the kinematical background for the con-
struction of a dynamical model.
The main result of this paper will be to provide a

consistent algebra of generalized diffeomorphisms based
on E9 together with consistency checks using a generalized
Scherk–Schwarz reduction. The coordinates lie in the
simplest e9 highest weight representation, sometimes called
the “basic” or “fundamental” representation [30–32], that
can be identified with the Hilbert space of a CFT on the E8

lattice [33] and whose construction will be reviewed in
algebraic terms below. Due to the Hilbert space structure, it
will prove very convenient to employ Dirac notation to
write elements in this representation, its dual and tensor
products.
We will show in this paper that the full Lie derivative can

be put in a remarkably compact form

Lξ;ΣjVi ¼ h∂V jξijVi þ h∂ξjðC0 − 1Þjξi ⊗ jVi
þ hπΣjC−1jΣi ⊗ jVi; ð1:1Þ
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acting on a fundamental vector jVi with the rescaled coset
Virasoro generators Cn ≡ 32Lcoset

n [34], acting on tensor
products of fundamental representations. The gauge param-
eters combine a fundamental vector jξi as the generic
diffeomorphism parameter together with a two-index tensor
which we denote as Σ≡ jΣihπΣj and which is constrained
in its second index as we specify below. The latter
parameter is required for closure of the algebra, in analogy
to a similar term in the E8 exceptional field theory with
three external dimensions [23,24]. This additional gauge
transformation in (1.1) does not absorb the standard
diffeomorphism acting on the highest weights components
of the vector field jVi, and will therefore only gauge away
unphysical components of the generalized vielbein in the
exceptional field theory. Generalized diffeomorphisms
based on the infinite-dimensional Kac–Moody algebra
e11 have been proposed in [35] up to an unknown
connection. The section constraint and the extra con-
strained gauge parameter Σ that we crucially need for
the closure do not feature in the proposal of [35], whereas
we believe that they will be needed for the closure of the
algebra.
The transformations (1.1) close into an algebra, provided

we impose the section constraint

h∂1j ⊗ h∂2jðC0 − 1þ σÞ ¼ 0;

h∂1j ⊗ h∂2jC−n ¼ 0; ∀ n > 0;

ðh∂1j ⊗ h∂2j þ h∂2j ⊗ h∂1jÞC1 ¼ 0: ð1:2Þ

where σ is the operator that exchanges the two factors of the
tensor product h∂1j ⊗ h∂2j. This is a special case of a
general expression for the section condition that applies in
all extended geometries,

h∂1j ⊗ h∂2j½−ηABTA ⊗ TB þ ðλ; λÞ þ σ − 1� ¼ 0: ð1:3Þ

After a generalized Scherk–Schwarz reduction with an
appropriate Ansatz for the gauge parameters jξi and Σ and
the vector jVi, the generalized diffeomorphisms (1.1)
reduce to an algebraic action which precisely reproduces
the gauge structure of two-dimensional gauged supergrav-
ity [30]. The section constraints above then imply the
quadratic constraints on the two-dimensional embedding
tensor.
Remarkably, the entire construction appears to make

little use of the explicit structure of E8 and its specific
tensor identities, in marked contrast to the analogous
constructions for the finite dimensional groups [14,23].
Rather, most of the consistency of the diffeomorphism
algebra is a consequence of the underlying coset Virasoro
symmetry. It is thus natural to expect that the present
construction is not limited to the case of E8 and its affine
extension but naturally generalizes to other affine algebras.
We show that this is indeed the case.

Section II reviews some basic facts about e9 and its
representations, including in particular some tensor prod-
ucts, and the construction of coset Virasoro generators. In
Sec. III, we introduce coordinates and derivatives and
deduce the form of the section constraint using the coset
Virasoro generators. Generalized diffeomorphisms, includ-
ing “extra” local e9-transformations, are introduced in
Sec. IV, and are shown to close when acting on vectors.
Section V deals with the generalized Scherk–Schwarz
reduction, and shows that the diffeomorphisms reproduce
the correct structures, both for standard and non-
Lagrangian gaugings, of two-dimensional gauged super-
gravity. In Sec. VI, it is first shown how our results are
generalized to other affine algebras, and then how a
completely general expression, valid for arbitrary Kac–
Moody algebras and highest weight coordinate representa-
tions, for the generalized Lie derivative and the section
constraint can be derived. We conclude with a summary
and discussion of our results and indicate some questions
for future research in Sec. VII.

II. E9: ALGEBRA AND REPRESENTATIONS

Here we review the structure of the affine algebra e9 and
some useful facts about its representations. We denote by e9
the centrally extended loop algebra over e8, together with
the derivation generator d. The generators are

e9 ¼ hTA
m∶A ¼ 1;…; 248; m ∈ Zi ⊕ RK ⊕ Rd: ð2:1Þ

The first part is the loop algebra, K is the central element
and d the derivation acting by ½d; TA

m� ¼ −mTA
m. The

remaining commutators are

½TA
m; TB

n � ¼ fABCTC
mþn þ ηABmδmþn;0K; ð2:2Þ

with e8 structure constants fABC and Killing metric ηAB,
and where the standard normalization is used, so that
fACDfBDC ¼ 2g∨ηAB ¼ 60ηAB. The horizontal e8 subalge-
bra of e9 is generated by the TA

0 as usual.
The algebra e9 admits highest and lowest weight repre-

sentations. Highest weight representations RðΛÞ are labeled
by a dominant integral weight

P
8
i¼0 l

iΛi where the labels
are those of figure 1 and are distinguished by their “level” k
which is the eigenvalue of the generator K acting on the
module. The level of RðΛÞ is k ¼ P

8
i¼0 ail

i, where ai are
the Coxeter labels ða0;…; a8Þ ¼ ð1; 2; 3; 4; 5; 6; 4; 2; 3Þ.
The leading states of RðΛÞ form the e8 representation

8

0 1 2 3 4 5 6 7

FIG. 1. The Dynkin diagram of e9.
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rðλÞ with highest weight λ ¼ P
8
i¼1 l

iλi. Any dominant
integral highest weight can be shifted by an arbitrary real
amount −hδ, where δ is the lowest positive null root of the
affine algebra and dual to the derivation d. This means that
the d eigenvalue on a weight Λ ¼ P

8
i¼0 l

iΛi − hδ is h. The
lowest weight module conjugate to the highest weight
module RðΛÞ will be denoted by RðΛÞ.
At k ¼ 1 there is (up to δ shifts) only one dominant

weight Λ0 ¼ ð100000000Þ and the corresponding module
is called the “basic” representation of e9. By extrapolation
of the coordinate representations of En exceptional geom-
etries (see e.g. [14]), one would expect this to be the right
representation for the E9 coordinates and we will show
from different angles that this is indeed the case. When one
constructs the relevant invariant tensors used in the gen-
eralized diffeomorphisms and appearing in the section
condition, it is important to have control over tensor
products of highest weight states, especially RðΛ0Þ’s.1

Using the affine grading of (2.2), the module RðΛ0Þ is
generated by acting with the generators on an e8 invariant
scalar highest weight state j0i satisfying

TA
n j0i ¼ 0; n ≥ 0;

dj0i ¼ 0; ðK − 1Þj0i ¼ 0: ð2:3Þ

The basic null states in the module appear as

Pð27000ÞABCDT
C
−1T

D
−1j0i; ð2:4Þ

which is straightforward to verify using (2.2) and (2.3)
together with the projection operators on the tensor product
of two e8 adjoint representations given in Appendix A,
where also the dimensionalities of some e8 representations
are listed.
The first few levels of RðΛ0Þ are

RðΛ0Þ ¼ 10 ⊕ 248−1 ⊕ ð1 ⊕ 248 ⊕ 3875Þ−2 ⊕ ð1 ⊕ 2 · 248 ⊕ 3875 ⊕ 30380Þ−3
⊕ ð2 · 1 ⊕ 3 · 248 ⊕ 2 · 3875 ⊕ 30380 ⊕ 27000 ⊕ 147250Þ−4
⊕ ð2 · 1 ⊕ 5 · 248 ⊕ 3 · 3875 ⊕ 3 · 30380 ⊕ 27000 ⊕ 147250 ⊕ 779247Þ−5 ⊕ …: ð2:5Þ

The subscripts in the above equation refer to minus the number of times the lowering generator of node 0 where used.
Equivalently, it is minus the eigenvalue of the operator d, and we refer to the subscript as “affine level.”We shall sometimes
denote isomorphic modules with shifted affine level h for the vacuum by RðΛ0Þ−h. They satisfy dj0i ¼ hj0i. The character
for RðΛ0Þ that counts only affine level (where a term cnqn corresponds to cn states at level −n) has a remarkable form
[38,39] in terms of the modular invariant function j:

χRðΛ0ÞðqÞ ¼ ðqjðqÞÞ1=3; ð2:6Þ

and we discuss this Hilbert space in some more detail in appendix B.
In a grading with respect to the exceptional root (the simple root corresponding to node 8), the fundamental

representation has the following expansion in terms of slð9Þ representations,

RðΛ0Þ ¼ ð10000000Þ0 ⊕ ð00000010Þ−1 ⊕ ð00010000Þ−2 ⊕ ½ð10000000Þ ⊕ ð01000001Þ�−3
⊕ ½ð00000010Þ ⊕ ð00000002Þ ⊕ ð10000100Þ�−4 ⊕ ½ð00010000Þ ⊕ ð10100000Þ ⊕ ð00001001Þ�−5
⊕ ½2ð10000000Þ ⊕ 2ð01000001Þ ⊕ ð20000001Þ ⊕ ð00100010Þ�−6 ⊕ …; ð2:7Þ

while the adjoint is

adj ¼ ⨁
n∈Z

½ð00100000Þ3nþ1 ⊕ ð10000001Þ3n
⊕ ð00000100Þ3n−1� ⊕ 2ð00000000Þ0: ð2:8Þ

In these equations, the subscript is now given by minus the
number of times the lowering generator of node 8 was used.
Such a grading is suitable for analysing explicit solutions of
the section condition. We will however mostly use the
affine grading, mainly because it is better adapted to the
Virasoro generators.
When dealing with representations of affine algebras, it

is convenient to use their CFT or current algebra inter-
pretation. The Sugawara construction [40] implies the
presence of a Virasoro algebra, with generators

1Highest weight modules of affine Kac–Moody algebras are
closed under the tensor product operation, since they belong to
“category O” [36], and tensor products are completely reducible
but infinitely so, see also [37].
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LðkÞ
m ¼ 1

2ðkþ g∨Þ
X
n∈Z

ηAB∶TA
nTB

m−n∶; ð2:9Þ

and central charge ck ¼ k dim g
kþg∨ . The dual Coxeter number g∨

for e8 is g∨ ¼ 30 and the colons refer to standard normal
ordering moving positive mode numbers to the right. The
Sugawara–Virasoro generators satisfy the commutation
relations

½LðkÞ
m ; LðkÞ

n � ¼ ðm − nÞLðkÞ
mþn þ

ck
12

ðm3 −mÞδmþn;0; ð2:10Þ

and

½LðkÞ
m ; TA

n � ¼ −nTA
mþn; ð2:11Þ

with the loop algebra. Often, we will not write the level k
superscript when the module is clear from the context in
order to keep the notation light.
In an irreducible highest weight representation one can

relate L0 to the derivation operator d. The eigenvalue of L0

is given by the Sugawara construction (2.9), where L0

reduces to 1
kþg∨ times the e8 quadratic Casimir, whereas the

eigenvalue of d on the highest weight state can be shifted
regardless of the weight of the centrally extended loop
algebra. (However, in the non-highest weight representa-
tion on the centrally extended loop algebra itself, L0 and d
act in the same way, and can be identified which each other
in the further extension to the affine algebra).
At k ¼ 1, we have c1 ¼ 8, and the highest weight state

has h ¼ 0, where h is the L0 eigenvalue. At k ¼ 2, there are
three irreducible highest weight representations, namely
Rð2Λ0Þ, RðΛ7Þ and RðΛ1Þ. The leading e8 levels are

Rð2Λ0Þ ¼ 10 ⊕ 248−1 ⊕ ð1⊕ 248⊕ 3875⊕ 27000Þ−2 ⊕ ð1⊕ 3 · 248⊕ 3875⊕ 27000⊕ 2 · 30380⊕ 779247Þ−3 ⊕…;

RðΛ7Þ ¼ 38750 ⊕ ð248⊕ 3875⊕ 30380⊕ 147250Þ−1 ⊕…;

RðΛ1Þ ¼ 2480 ⊕ ð1⊕ 248⊕ 3875⊕ 30380Þ−1 ⊕ ð1⊕ 3 · 248⊕ 2 · 3875⊕ 27000⊕ 2 · 30380⊕ 147250⊕ 779247Þ−2
⊕ ð2 · 1⊕ 6 · 248⊕ 5 · 3875⊕ 3 · 27000⊕ 5 · 30380⊕ 3 · 147250

⊕ 3 · 779247⊕ 2450240⊕ 4096000⊕ 6696000Þ−3 ⊕…: ð2:12Þ

The value of the Virasoro central charge at k ¼ 2 is c2 ¼ 31
2
,

so tensor products of two RðΛ0Þ’s must also contain
“compensating” Virasoro modules with c¼2c1−c2¼ 1

2
.

This is within the minimal series [41] (with m ¼ 3, the
Ising model), where

c¼ 1−
6

mðmþ1Þ ; m¼3;4;…;

hmr;s¼
ððmþ1Þr−msÞ2−1

4mðmþ1Þ ; r¼ 1;…m−1; s¼ 1;…r:

ð2:13Þ
We can easily read off the eigenvalue h of L0 on the highest
weight states of the three representations, since the values
of the e8 quadratic Casimir C2ðrðλÞÞ, normalized to g∨ in
the adjoint representation, can be calculated as C2ðrðλÞÞ ¼
1
2
ðλ; λþ 2ϱÞ. They are 0, 48, and 30 in the three repre-

sentations rð0Þ ¼ 1, rðλ7Þ ¼ 3875 and rðλ1Þ ¼ 248, lead-
ing to h ¼ 0, 3

2
, and 15

16
, respectively. These values must be

matched (see e.g. [42]) by the possible values of h3r;s, which

are h31;1 ¼ 0, h32;1 ¼ 1
2
, h32;2 ¼ 1

16
. There is the possibility of

shifting with an integer, since the eigenvalue of d on a
highest weight state can be shifted. Conservation of
h leads to possible matchings 0 ¼ 0þ h31;1, 2 ¼ 3

2
þ h32;1,

1 ¼ 15
16
þ h31;1. This shows that the first appearances of

Rð2Λ0Þ, RðΛ7Þ and RðΛ1Þ in RðΛ0Þ ⊗ RðΛ0Þmay be (with
some integer multiplicity) at affine levels 0, −2 and −1,
respectively. It thus suffices to check the tensor product to
affine level −2 in order to establish the (integer) coef-
ficients, which all turn out to be 1, such that [43]

RðΛ0Þ⊗ RðΛ0Þ ¼ Vir31;1 ⊗ Rð2Λ0Þ0 ⊕ Vir32;1 ⊗ RðΛ7Þ−3=2
⊕ Vir32;2 ⊗ RðΛ1Þ−15=16; ð2:14Þ

where Virmr;s are Virasoro modules, keeping track of the
repeated occurrence of the three representations in
RðΛ0Þ ⊗ RðΛ0Þ. It is also easily checked that the first
two terms in (2.14) represent the symmetric product and the
last one the antisymmetric product.
The corresponding Virasoro characters are

χ31;1¼
1

2

�
ϕðqÞ2

ϕð ffiffiffi
q

p Þϕðq2Þþ
ϕð ffiffiffi

q
p Þ

ϕðqÞ
�

¼ 1þq2þq3þ2q4þ2q5þ3q6þ3q7þ5q8þ5q9þ7q10þ8q11þ11q12þ12q13þ16q14þ18q15þ23q16þOðq17Þ;

GUILLAUME BOSSARD et al. PHYSICAL REVIEW D 96, 106022 (2017)

106022-4



χ32;1 ¼
1

2

�
ϕðqÞ2

ϕð ffiffiffi
q

p Þϕðq2Þ −
ϕð ffiffiffi

q
p Þ

ϕðqÞ
�

¼ ffiffiffi
q

p ð1þ qþ q2 þ q3 þ 2q4 þ 2q5 þ 3q6 þ 4q7 þ 5q8 þ 6q9 þ 8q10 þ 9q11 þ 12q12 þ 14q13 þ 17q14 þ 20q15

þ 25q16 þOðq17ÞÞ;

χ32;2 ¼
q1=16ϕðq2Þ

ϕðqÞ
¼ q1=16ð1þ qþ q2 þ 2q3 þ 2q4 þ 3q5 þ 4q6 þ 5q7 þ 6q8 þ 8q9 þ 10q10 þ 12q11 þ 15q12 þ 18q13 þ 22q14

þ 27q15 þ 32q16 þOðq17ÞÞ; ð2:15Þ

where ϕðqÞ ¼ Q∞
n¼1ð1 − qnÞ. Note the absence of states at

level −1 in the first of these representations, which of
course derives from the SL(2)-invariance of the highest
weight state. This property will become important later.
The characters satisfy

ððχ31;1Þ2 − ðχ32;1Þ2Þχ32;2 ¼ q1=16: ð2:16Þ

The coset Virasoro generators acting on (2.15) are given by

Lcoset
n ≡ 1 ⊗ Lð1Þ

n þ Lð1Þ
n ⊗ 1 − Lð2Þ

n ; ð2:17Þ

in terms of the level 1 and level 2 Virasoro–Sugawara
operators (2.9), as a particular case of the coset construction
[34]. We will in the following often make use of the
following rescaled coset Virasoro generators:

Cn ≡ 32Lcoset
n ¼ 32ð1 ⊗ Lð1Þ

n þ Lð1Þ
n ⊗ 1 − Lð2Þ

n Þ
¼ 1 ⊗ Lð1Þ

n þ Lð1Þ
n ⊗ 1 −

X
p∈Z

ηABTA
p ⊗ TB

n−p: ð2:18Þ

A general coset Virasoro generator, acting on a tensor
product of states at k ¼ k1 and k ¼ k2, is

Lcoset
n ¼ Lðk1Þ

n ⊗ 1þ 1 ⊗ Lðk2Þ
n − Lðk1þk2Þ

n

¼ 1

k1 þ k2 þ g∨

×

�
Lðk1Þ
n ⊗ Kþ K ⊗ Lðk2Þ

n −
X
p∈Z

ηABTA
p ⊗ TB

n−p

�

≡ −
1

k1 þ k2 þ g∨ ηðnÞABTA ⊗ TB; ð2:19Þ

where the indices A, B in the last expression run over the
semidirect sum of the centrally extended loop algebra with
the full Virasoro algebra (although in this case the ex-
pression is zero wheneverA or B corresponds to a Virasoro
generator different from Ln), and the (noninvertible) bi-
linear forms ηðnÞAB are defined by this equation and

invariant under the loop algebra of e9. For n ¼ 0 we get
the standard invariant form on e9 (if we identify L0 with d).
By construction the operators (2.18) satisfy the Virasoro

algebra up to a factor of 32 and for central charge 1
2
. What

will be important in the following is the algebra they satisfy
when acting on different RðΛ0Þ ⊗ RðΛ0Þ subspaces of the
level 3 tensor product RðΛ0Þ ⊗ RðΛ0Þ ⊗ RðΛ0Þ. Let us
consider the action of (2.18) on two factors of this triple
tensor product, where we use the notation

C
12

n ≡ −ηðnÞABTA ⊗ TB ⊗ 1;

C
13

n ≡ −ηðnÞABTA ⊗ 1 ⊗ TB; etc:: ð2:20Þ

Straightforward computation then shows the following
structure

½C13m; C
23

n� ¼
m − n
2

ðC13mþn þ C
23

mþn − C
12

mþnÞ

þ 2

3
mðm2 − 1Þδmþn;0 þ C

123

mþn; ð2:21Þ

where the last operator is defined as

C
123

m ¼
X
p;q∈Z

fABCTA
p ⊗ TB

q ⊗ TC
m−p−q

þ
X
p∈Z

�
m
2
− p

�
ηABð1 ⊗ TA

p ⊗ TB
m−p

þ TA
m−p ⊗ 1 ⊗ TB

p þ TA
p ⊗ TB

m−p ⊗ 1Þ; ð2:22Þ

and completely antisymmetric under the exchange of the
three spaces. It can be written in compact form as

C
123

m ¼ fAB
CηðmÞA½Dηð0ÞE�BTD ⊗ TE ⊗ TC ð2:23Þ

with the bilinear forms ηðnÞAB from (2.19) and structure
constants fAB

C combining (2.2), (2.10), (2.11). Using its
antisymmetry one can show the following relations
between commutators
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½C13m; C
23

n� − ½C12m; C
13

n� ¼ ðm − nÞðC23mþn − C
12

mþnÞ; ð2:24Þ

½C23m; C
12

n þ C
13

n� ¼ ðm − nÞC23mþn

þ 4

3
mðm2 − 1Þδmþn;0; ð2:25Þ

½C13n;C
23

m−n�− ½C13p;C
23

m−p� ¼ ðn−pÞðC13m þC
23

m −C
12

mÞ

þ 2

3
ðnðn2 − 1Þ−pðp2 − 1ÞÞδm;0;

ð2:26Þ

which will be useful in the following.

III. COORDINATES AND SECTION CONSTRAINT

By extrapolation from the systematics of the coordinate
representation for En one expects that the internal coor-
dinates of E9 exceptional field theory should transform in
the fundamental representation RðΛ0Þ of e9 [30–32]. We
proceed with this assumption and denote the coordinates as
YM. As for the finite-dimensional groups, consistency of
the theory should require a section constraint that elimi-
nates the dependence of fields on all but the physical
coordinates. Derivatives ∂M transform in the dual RðΛ0Þ of
the fundamental representation that decomposes in analogy
with (2.5) according to

RðΛ0Þ ¼ 10 ⊕ 2481 ⊕ ð1 ⊕ 248 ⊕ 3875Þ2 ⊕ … ð3:1Þ
under e8 ⊂ e9.
The section constraint is expected to be bilinear in

derivatives, i.e., to lie in the tensor product of RðΛ0Þ ⊗
RðΛ0Þ which can be decomposed in analogy to (2.14). The
possible projectors onto e9 representations within this
tensor product are naturally expressed in terms of the coset
Virasoro generators defined in (2.17). Our Ansatz for the
(strong) e9 section constraint is

h∂1j ⊗ h∂2jðC0 − 1þ σÞ ¼ 0: ð3:2Þ
Here and in the following we use a notation in which the
fundamental representation and its dual are represented by
ket- and bra-vectors, respectively. In particular, derivatives
∂M are seen as bra-states in lowest-weight modules at
k ¼ −1. Subscripts 1;2 on the derivatives indicate that these
derivatives may act on different objects. The operator C0 is
the rescaled coset Virasoro generator from (2.18), and σ
denotes the permutation operator on a tensor product

h∂1j ⊗ h∂2jσ ≡ h∂2j ⊗ h∂1j: ð3:3Þ
We will show below that the Ansatz (3.2) is compatible

with the expected solutions of the section constraint. As a

first check, let us verify that (3.2) indeed reproduces the
section constraints from three-dimensional E8 exceptional
field theory upon proper embedding. Comparing the
coordinates to E8 exceptional field theory with three
external dimensions, we expect the lowest singlet 10 in
the level decomposition (2.5) to correspond to the singlet in
the 3 → 2þ 1 decomposition of external dimensions while
the adjoint 248−1 on the first level should correspond to
the internal coordinates of E8 exceptional field theory.
Restricting coordinates to these two lowest levels, i.e.,
assuming

h∂j ¼ h0jð∂0 þ TA
1∂AÞ; ð3:4Þ

we can then evaluate the constraint (3.2) as

0 ¼ h∂1j ⊗ h∂2jðC0 − 1þ σÞ
¼ h0j ⊗ h0j∂1A∂2BðΠAB

CDTC
1 ⊗ TD

1

− TA
1T

B
1 ⊗ 1 − 1 ⊗ TB

1T
A
1 Þ; ð3:5Þ

where

ΠAB
CD≡2δðAC δBÞD −fACEfEBD

¼ 14ðP3875ÞABCDþ4ηABηCD−2fABEfECD ð3:6Þ

is given as a linear combination of projectors onto the
1; 248 and 3875, cf. (A2). Using the property that h0jTA

1T
B
1

is only nonzero for ðABÞ in the 1 ⊕ 248 ⊕ 3875, cf. (2.4),
one recovers the E8 section constraint [23]

∂A ⊗ ∂BðP1 þ P248 þ P3875ÞABCD ¼ 0: ð3:7Þ

In turn, one observes that with derivatives ∂A constrained
by (3.7), the tensor product of two derivatives (3.4) is
exclusively contained in the leading Rð2Λ0Þ0 and the
leading RðΛ1Þ1 in the expansion (dual to) (2.14). The
full e9 section condition is then expected to be equivalent to
the vanishing of the remaining (infinite number of) irre-
ducible representations in RðΛ0Þ ⊗ RðΛ0Þ, among them all
RðΛ7Þ’s. As a simple consequence of the grading, all Lcoset

m ,
m < 0 vanish when acting on products of (3.4), so they
may be included in the (conjugate) section condition “for
free”. Moreover, the absence of level −1 states in Vir31;1,
cf. (2.15), then implies that also C1 annihilates these
products. Together, we arrive at the following proposal
for the e9 section constraints

h∂1j ⊗ h∂2jðC0 − 1þ σÞ ¼ 0; ð3:8aÞ

h∂1j ⊗ h∂2jC−n ¼ 0; ∀ n > 0; ð3:8bÞ

ðh∂1j ⊗ h∂2j þ h∂2j ⊗ h∂1jÞC1 ¼ 0; ð3:8cÞ
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which correctly reproduces the D ¼ 3, E8 section con-
straint. Moreover, we show in Sec. VI B that (3.4) satisfy-
ing (3.7) is the unique solution to (3.8) up to conjugation
in E9.
There can be different definitions of E9, in particular for

the space of functions defining the loop group. The proof of
Sec. VI B uses the definition of a Kac–Moody group of [44]
that corresponds in the affine case to taking the loop group
of meromorphic functions in E8 with poles at zero and
infinity only. It follows by iterations that the maximal
vector spaces in RðΛÞ of solutions to (3.8) are E9 conjugate
to the expected type IIB and eleven-dimensional super-
gravity solutions. The latter can be seen explicitly in the
slð9Þ level decomposition (2.7) of the coordinate repre-
sentation, for which a solution to the section constraints
(3.8) is given by restricting the coordinate dependence to
the slð9Þ vector on the lowest level, which corresponds to
the nine coordinates that allow to embed the full eleven-
dimensional supergravity in exceptional field theory.
Although the constraints in (3.8) are independent as

algebraic equations, already the symmetric part of (3.8a) is
sufficient to imply that they are all satisfied. There is no
clear consensus in the literature about what is to be called a
section constraint (except that it should be strong enough).
Sometimes, the complement to Rð2Λ0Þ in the symmetric
product RðΛ0Þ ⊗s RðΛ0Þ is taken as the constraint. This is
suitable in the context of e.g. the tensor hierarchy algebra
[32,45–47]. Here, we choose to include all representations
that vanish in the section, also antisymmetric ones.
In addition to reproducing the expected physical sol-

utions, the main and defining characteristics of the proper
section constraints is the fact that they should guarantee
closure of the algebra of generalized diffeomorphisms. This
is what we will show in the next section.

IV. GENERALIZED DIFFEOMORPHISMS

Having identified a reasonable set of section constraints
(3.8), we will now establish the algebra of generalized
diffeomorphisms. For the finite-dimensional groups, the
generic action of a generalized diffeomorphism on a vector
field is of the form [12,14]

LξVM ¼ ξN∂NVM þ ZMN
PQ∂Nξ

PVQ; ð4:1Þ

with an invariant tensor ZMN
PQ which up to a possible

weight term is built from the projector onto the adjoint
representation

ZMN
PQ ¼ −αPM

Q
N
P þ βδP

NδQ
M; ð4:2Þ

and is unique up to two constants α and β. With a vector
field we mean a vector that could be a gauge transformation
parameter ξ; we do not consider vectors of different weight.
For e9, the natural candidate for this tensor is thus given by

ZMN
PQ ¼ α

�X
n∈Z

ηABðTA
nÞMQðTB

−nÞNP − δMQðL0ÞNP

− ðL0ÞMQδ
N
P

�
þ βδMQδ

N
P: ð4:3Þ

It is important that ZMN
PQ (up to a possible scaling) is e9

valued in the pairs M
Q and N

P. In the following we will
often turn to an index-free notation in which (4.3) takes the
compact form

Z ¼ σð−αC0 þ βÞ; ð4:4Þ

with the permutation operator σ from (3.3) and the rescaled
coset Virasoro generatorC0 from (2.18). The coefficients α,
β are usually determined from closure of the algebra of
transformations (4.1), for which a crucial role is played by
the fact that the section constraint of the theory ensures the
vanishing of [14]

h∂1j ⊗ h∂2jY ¼ 0; ð4:5Þ

for the tensor Y ≡ Z þ 1, i.e., Y has to be a linear
combination of projections on irreducible representations
in the section condition. In the present case this will be an
infinite number of representations. Comparing (4.4) and
(4.5) to the section constraints (3.8) identified in the
previous section, we read off the values α ¼ β ¼ −1, for
which

Y ¼ σðC0 þ σ − 1Þ: ð4:6Þ

In particular, this implies that the canonical weight of a
vector is β ¼ −1. With “canonical weight” (sometimes also
called “distinguished weight” in the literature) we mean the
weight of the gauge parameter ξ. For Ed exceptional field
theory it is β ¼ 1

9−d, which would diverge for d ¼ 9, but we
shall see in Sec. VI B that the appropriate definition for the
highest weight coordinate module RðλÞ is β ¼ ðλ; λÞ − 1
that gives indeed β ¼ −1 for E9. A canonical co-vector
(like e.g. a derivative) then has weight β ¼ þ1.
The tensors Z and Y (and thus the section constraint)

can also be derived from extensions of e9 in the same was
as in [48] for finite-dimensional ed. These extensions are
the Lie algebra e10 and a Lie superalgebra of Borcherds
type, giving the antisymmetric and symmetric parts of Y,
respectively. In both cases the algebra is obtained by adding
a node to the Dynkin diagram of e9 (“white” or “gray”), and
d can be identified with the Cartan generator corresponding
to this additional node.
In the index-free notation, the generalized diffeomor-

phism (4.1) now reads

LξjVi ¼ h∂V jξijVi þ h∂ξjðC0 − 1Þjξi ⊗ jVi; ð4:7Þ
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where the subscript on the derivatives indicate what they act
on, e.g.

h∂V j ⊗ jVi ⊗ jξi ¼
�� ∂

∂Y
���� ⊗ jVðYÞi

�
⊗ jξðYÞi: ð4:8Þ

Specifically, our index-free conventions are such that for a
tensor product one understands the bra and the ket states to
be ordered from left to right, such that for example

jW2 i ¼ hω1 jX12jξ
1

i ⊗ jV2 i ⇔ jWi ¼ hωjXjξi ⊗ jVi; ð4:9Þ
corresponding to the following expression in indices

WM ¼ ωNXN
P
M
Qξ

PVQ: ð4:10Þ
Similarly, the labels on the states will be avoided in
expressions of the type

jW3 i ¼ hω1 j ⊗ hυ2jX12 Y23 jξ
1

i ⊗ jη2i ⊗ jV3 i

⇔ jWi ¼ hωj ⊗ hυjX12 Y23 jξi ⊗ jηi ⊗ jVi; ð4:11Þ
corresponding to the following expression in indices

WM ¼ ωNυPXN
Q
P
RY

R
S
M
Tξ

QηSVT: ð4:12Þ
Having set up the notation, let us come back to the

generalized diffeomorphisms (4.7). It comes as no surprise
that the transformations (4.7) do not close into an algebra.
This is the case already for the generalized diffeomor-
phisms associated with the algebra e8 and it can be seen as a
manifestation of the fact that in three dimensions dual
gravity degrees of freedom become part of the scalar sector
[12,14]. Yet, in this case a consistent symmetry algebra can
be defined upon enlarging (4.1) by local algebra-valued
rotations with constrained gauge parameters [23,49]. The
generic pattern in exceptional field theories for ed (i.e., with
11 − d external dimensions) is the appearance of additional
covariantly constrained (9 − d)-forms in the dual funda-
mental representation. For E8 exceptional field theory these
are the gauge fields whose associated gauge transforma-
tions are required for closure of the diffeomorphism
algebra. For E9 exceptional field theory in contrast, one
expects additional fields to appear among the scalar fields,
i.e. its scalar sector should carry not only a group valued
matrix MMN but also 0-forms of type χM algebraically
constrained by the section constraints (3.8). In the gauge

sector we then expect vector fields Aμ
M in the fundamental

representation together with two-index gauge fields Bμ
N
M

algebraically constrained in its last index according to the
section constraints. Their associated gauge transformations
with parameter ΣN

M are then responsible for closure of the
full diffeomorphism algebra. Fields of the same two-index
structure appear in E8 exceptional field theory among the
two-forms and are required in order to close the algebra of
gauge transformations and supersymmetry on the vector
fields [23,50].
In index-free notation, we will denote the new gauge

parameter as

ΣN
M∶jΣihπΣj; ð4:13Þ

to keep track of its two-index nature (keeping in mind that
in general this matrix is not factorized). The constrained
nature of its first index is then expressed via (3.8) as

h∂j ⊗ hπΣjðC0 − 1þ σÞ ¼ 0;

h∂j ⊗ hπΣjC−n ¼ 0; ∀ n > 0;

ðh∂j ⊗ hπΣj þ hπΣj ⊗ h∂jÞC1 ¼ 0: ð4:14Þ

Combining (4.7) with the new gauge transformations, we
arrive at the following definition for a generalized diffeo-
morphism,

Lξ;ΣjVi ¼ h∂V jξijVi þ h∂ξjðC0 − 1Þjξi ⊗ jVi
þ hπΣjC−1jΣi ⊗ jVi; ð4:15Þ

with gauge parameters given by a vector field jξi and a
constrained tensor jΣihπΣj constrained by (4.14). The last
term in (4.15) carries the coset Virasoro generator C−1 from
(2.18), such that it maps theRðΛ0Þmodule to the isomorphic
module with an L0 spectrum shifted by 1, so that

djΣihπΣj ¼ ðL0 þ 1ÞjΣihπΣj; jΣihπΣjd ¼ jΣihπΣjL0;

ð4:16Þ

with L0 being the Sugawara–Virasoro operator (2.9). The
weight of the gauge parameter jΣi is 0 in contrast to jξi that
has weight 1, such that in overall jΣihπΣj has weight −1.
More generally, one computes that the operatorCn acting on
the product of two vectors jVi and jWi of canonical weight
−1 shifts the weight from −2 to n − 2:

CnLξðjVi ⊗ jWiÞ ¼ h∂V þ ∂W jξiCnjVi ⊗ jWi þ h∂ξjC
23

nðC
12

0 þ C
13

0 − 2Þjξi ⊗ jVi ⊗ jWi

¼ h∂V þ ∂W jξiCnjVi ⊗ jWi þ h∂ξjð½C
23

n; C
12

0 þ C
13

0� þ ðC120 þ C
13

0 − 2ÞC23nÞjξi ⊗ jVi ⊗ jWi

¼ h∂V þ ∂W jξiCnjVi ⊗ jWi þ h∂ξjðC
12

0 þ C
13

0 þ n − 2Þjξi ⊗ ðCnjVi ⊗ jWiÞ; ð4:17Þ
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where we have made use of (2.25). We recall that the
weight appears in the generalized Lie derivative (4.7) as the
integral shift of C0.
Note that in order to view the extra local rotations in the

last term in (4.15) as an element “in the algebra,” the
centrally extended loop algebra has to be supplemented by
L−1. This extension is (up to a sign convention) the
symmetry algebra G used in [30] to describe the structure
of gauged supergravity in two dimensions, which we will
rederive from the generalized diffeomorphisms (4.15) in
Sec. V. Moreover, it agrees precisely with the level zero
content of the tensor hierarchy algebra corresponding to e9,
as defined in [46] for general ed. In general there is an
additional highest weight module of generators, which
reduces to the single element L−1 for d ¼ 9.
Before we address the closure of the algebra of trans-

formations (4.15), let us spell out the action on a covector
of canonical weight

Lξ;Σhωj ¼ h∂ωjξihωj − h∂ξj ⊗ hωjðC0 − 1Þjξi
− hπΣj ⊗ hωjC−1jΣi; ð4:18Þ

and note that if the covector hωj is constrained by the
section constraint, such as the gauge parameter hπΣj in
(4.14), it follows directly that

Lξ;Σhωj ¼ h∂ωjξihωj þ hωjξih∂ξj; ð4:19Þ

i.e., also its resulting Lie derivative is constrained, and
reduces to the ordinary Lie derivative.
Let us now check that the algebra of generalized

diffeomorphisms (4.15) closes. As a first step we compute
the obstruction to the closure of the pure Lie derivative
Lξ;0 ¼ Lξ. We thus calculate ð½Lξ;Lη� − L⟦ξ;η⟧ÞjVi, where
⟦ξ; η⟧≡ 1

2
ðLξη − LηξÞ. For ed with d ≤ 7, this difference is

0, and for d ¼ 8 it gives the “extra” local e8 transformation
[23,24]. Let us go through the different types of terms
arising. The terms with two derivatives on jVi vanish
trivially (due to antisymmetry under ξ ↔ η). The terms
with one derivative on jVi become (here, antisymmetry
between the parameters is implicit)

−h∂ξj ⊗ h∂V jðC
12

0 þ σ
12 − 1Þjξi ⊗ jηi ⊗ jVi; ð4:20Þ

which vanishes thanks to the section condition (the super-
scripts on C0 and σ indicate which pair of positions it
acts on).
The terms without derivatives on jVi come in two

groups, either the two derivatives act on different param-
eters or on the same. When the two derivatives act on
different gauge parameters, one obtains

1

2
h∂ξj⊗ h∂ηjð2ðC

13

0 − 1ÞðC230 − 1Þ− ðC230 − 1ÞðC120 − 1Þ

− σ
12ðC230 − 1ÞÞjξi⊗ jηi ⊗ jVi− ðη ↔ ξÞ

¼ 1

2
h∂ξj⊗ h∂ηj½C

12

0 þC
13

0; C
23

0�jξi⊗ jηi ⊗ jVi− ðη↔ ξÞ
¼ 0; ð4:21Þ

where we have used the section constraint (3.8a) to

reexpress σ
12

and used (2.25). The terms with both deriv-
atives on the same gauge parameter are the only non-
vanishing ones and can be arranged as

Δξ;ηjVi≡ ð½Lξ;Lη�−L⟦ξ;η⟧ÞjVi

¼ 1

2
h∂ηj⊗ h∂ηjð−C

13

0þC
23

0− C
123

0Þjξi⊗ jηi⊗ jVi

þ 1

2
h∂ξj⊗ h∂ξjð−C

13

0þC
23

0 − C
123

0Þjξi⊗ jηi⊗ jVi:
ð4:22Þ

Now we shall show that this variation can be absorbed in a
transformation of the type (4.15) with a constrained gauge
parameter jΣihπΣj. Using the identity (2.21) one shows that

−C
13

0 þ C
23

0 − C
123

0 ¼
1

2
½C13−1 − C

23

−1; C
12

1�: ð4:23Þ

Substituting this into Δξ;ηjVi one finds that the term of the

commutator with C
12

1 on the left vanishes according to the
section constraint (3.8c), such that the result can be
written as

Δξ;ηjVi ¼
1

4
h∂ηjC−1ðh∂ηjC1jηi ⊗ jξi
− h∂ηjC1jξi ⊗ jηiÞ ⊗ jVi

þ 1

4
h∂ξjC−1ðh∂ξjC1jηi ⊗ jξi

− h∂ξjC1jξi ⊗ jηiÞ ⊗ jVi: ð4:24Þ
We thus obtain closure of pure Lie derivatives into full
generalized diffeomorphisms (4.15) with the additional
gauge parameter given by

jΣihπΣj≡ 1

4
h∂ηjC1jðjηi ⊗ jξi − jξi ⊗ jηiÞh∂ηj

þ 1

4
h∂ξjC1jðjηi ⊗ jξi − jξi ⊗ jηiÞh∂ξj: ð4:25Þ

Note that this is manifestly constrained in its last index
since the bra components are all partial derivatives.
Next, we need to check that also the commutator of both

kinds of transformations in (4.15) closes into a gauge
transformation
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½Lξ;0;L0;Σ�jVi ¼ h∂Σ þ ∂V jξihπΣjC−1jΣi ⊗ jVi þ h∂ξj ⊗ hπΣjðC
13

0 − 1ÞC23−1jξi ⊗ jΣi ⊗ jVi

− h∂V jξihπΣjC−1jΣi ⊗ jVi − h∂ξj ⊗ hπΣjC
23

−1ðC
13

0 − 1Þjξi ⊗ jΣi ⊗ jVi

¼ hπΣjC−1ðh∂ΣjξijΣiÞ ⊗ jVi þ h∂ξj ⊗ hπΣj½C
13

0; C
23

−1�jξi ⊗ jΣi ⊗ jVi: ð4:26Þ

We then use (2.25) on the last term

h∂ξj ⊗ hπΣj½C
13

0; C
23

−1�jξi ⊗ jΣi ⊗ jVi ¼ h∂ξj ⊗ hπΣj
�
½C23−1; C

12

0� þ C
23

−1

�
jξi ⊗ jΣi ⊗ jVi

¼ h∂ξj ⊗ hπΣj
�
C
23

−1C
12

0 − ðC120 − 1þ σ
12ÞC23−1 þ σ

12
C
23

−1

�
jξi ⊗ jΣi ⊗ jVi

¼ h∂ξj ⊗ hπΣj
�
C
23

−1C
12

0 þ σ
12
C
23

−1

�
jξi ⊗ jΣi ⊗ jVi; ð4:27Þ

where we used the section constraint (3.8a) in the last step.
Together, we obtain

½Lξ;0;L0;Σ�jVi ¼ hπΣjC−1ðh∂ΣjξijΣi
þ h∂ξjC0jξi ⊗ jΣiÞ ⊗ jVi
þ h∂ξjC−1ðhπΣjξijΣiÞ ⊗ jVi; ð4:28Þ

which indeed gives a gauge transformation with parameter
equal to the Lie derivative of the gauge parameter jΣihπΣj:

LξðjΣihπΣjÞ ¼ h∂ΣjξijΣihπΣj þ h∂ξjC0ðjξi ⊗ jΣiÞhπΣj
þ jΣihπΣjξih∂ξj; ð4:29Þ

cf., (4.19). We recall that the weight of jΣihπΣj is shifted
due to (4.16), explaining the absence of the −1 in the C0

term in the Lie derivative.
As a last step we consider the commutator of two Σ

gauge transformations. Two successive Σ transformations
give

L0;Σ1
L0;Σ2

jVi ¼ hπΣ1
j ⊗ hπΣ2

jC13−1C
23

−1jΣ1i ⊗ jΣ2i ⊗ jVi;
ð4:30Þ

so that their commutator is

½L0;Σ1
;L0;Σ2

�jVi ¼ hπΣ1
j ⊗ hπΣ2

j½C13−1; C
23

−1�jΣ1i ⊗ jΣ2i ⊗ jVi

¼ hπΣ1
j ⊗ hπΣ2

j½C12−1; C
13

−1�jΣ1i ⊗ jΣ2i ⊗ jVi

¼ −hπΣ1
j ⊗ hπΣ2

jC13−1C
12

−1jΣ1i ⊗ jΣ2i ⊗ jVi
¼ hπΣ1

jC−1ð−hπΣ2
jC−1jΣ2i ⊗ jΣ1iÞ ⊗ jVi

¼ L0;1
2
ðhπΣ1 jC−1jΣ1i⊗jΣ2ihπΣ2 j−hπΣ2 jC−1jΣ2i⊗jΣ1ihπΣ1 jÞjVi; ð4:31Þ

where we used the identity (2.25) in the first step, the
section constraint (3.8b) in the second, and finally that the
result is antisymmetric, modulo the same section constraint.
This concludes the proof of closure of the gauge algebra.
To summarize, we have shown the closure of trans-

formations (4.15) into an “algebra”2

½Lξ1;Σ1
;Lξ2;Σ2

� ¼ Lξ12;Σ12
; ð4:32Þ

defined by

ξ12 ≡ ⟦ξ1; ξ2⟧≡ 1

2
ðLξ1ξ2 − Lξ2ξ1Þ;

jΣ12ihπΣ12
j≡ Lξ1ðjΣ2ihπΣ2

jÞ þ 1

2
hπΣ1

jC−1jΣ2i ⊗ jΣ1ihπΣ2
j

þ 1

4
h∂ξ2 jC1jðjξ2i ⊗ jξ1i − jξ1i ⊗ jξ2iÞh∂ξ2 j

− ð1 ↔ 2Þ: ð4:33Þ

2As in the lower-dimensional cases, this will not be a Lie
algebra, since the corresponding brackets do not satisfy Jacobi
identities. The proper structure, which in the double field theory
situation is a Courant algebroid, is maybe best described in an L∞
framework [51,52].
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Finally, it is instructive to decompose the generalized
diffeomorphisms (4.15) under E8, and to recover the
structure of E8 exceptional field theory. Expanding the
gauge parameter jΣihπΣj according to (2.5) yields

jΣihπΣj ¼ ðσ1þ σ2ATA
−1þ σ3ABTA

−1T
B
−1þ�� �Þj0i

× h0j− ðΣ0AþΣ1A;BTB
−1þΣ2A;BCTB

−1T
C
−1þ�� �Þj0i

× h0jTA
1 ; ð4:34Þ

where the indices AB of σ3AB and the indices BC of Σ2A;BC

are restricted to 1 ⊕ 248 ⊕ 3875, and similar terms are
hidden in the ellipses for all higher L0 weights. The section
constraint implies no constraint on the parameters σn;Ξ, and
the parameters Σn;A;Ξ are constrained on their first index
according to the E8 section constraints (3.7). Similarly, we
expand the diffeomorphism parameter ξ as

jξi ¼ ðξ0 þ ηABξ
A
1T

B
−1 þ ξ2ABTA

−1T
B
−1 þ � � �Þj0i: ð4:35Þ

Assuming partial derivatives of the form (3.4), one then
obtains for the Lie derivative

Lξ;Σ ¼ ξ0∂0 þ ξA1∂A − ∂Aξ
0TA

1 þ ∂0ξ
0ðL0 − 1Þ þ ∂Aξ

A
1L0

þ ðfBCA∂Bξ
C
1 þ Σ0AÞTA

0 þ σ1L−1

− ð∂0ξ
A
1 þ ΠAB;CD∂Bξ2CD − fABCΣ1B;CÞηAETE

−1

þ
X
n>1

ωnATA
−n; ð4:36Þ

for some linear combinations ωnA of ∂0ξnΞ; ∂Aξnþ1Ξ; σnΞ;
ΣnA;Ξ. It is important to note that, although σnΞ is defined in
the L0 weight n − 1 component of RðΛ0Þ, and ΣnA;Ξ in
the tensor product of the L0 weight n component of RðΛ0Þ
with the 248 of E8, they only appear in ωnA through
an appropriate projection to the 248 of E8. One under-
stands indeed that Σ belongs to the tensor product
RðΛ0Þ−1 ⊗ RðΛ0Þ, but it only appears in the generalized
diffeomorphism through a projection to e9.
Decomposing the vector jVi accordingly,

jVi ¼ ðV0 þ ηABVA
1T

B
−1 þ V2ABTA

−1T
B
−1 þ � � �Þj0i; ð4:37Þ

one obtains for the action on its lowest components

Lξ;ΣV0 ¼ ξ0∂0V0 − V0∂0ξ
0 þ ξA1∂AV0 − VA

1∂Aξ
0;

Lξ;ΣVA
1 ¼ ξ0∂0VA

1 − V0∂0ξ
A
1

þ ξB1 ∂BVA
1 þ VA

1∂Bξ
B
1

− ðfEABfCDE∂Cξ
D
1 þ fCABΣ0CÞVB

1

− ΠBA;CDV2CD∂Bξ
0 − ΠAB;CDV0∂Bξ2CD

þ fABCΣ1B;CV0; ð4:38Þ

with ΠAB;CD from (3.6). The weight of the covariant
derivative indicates that in three dimensions, V0 is a vector
field, VA

1 a scalar and V2AB a 1-form. The second line in the
Lie derivative of VA

1 reproduces precisely the E8 internal
Lie derivative with respect to the vector field ξA1 and the
constrained parameter Σ0A [23]. We know from E8 geom-
etry [23,24] that such a transformation only removes
unphysical parts of the vielbein. In particular, this decom-
position illustrates that the additional gauge transforma-
tions in (4.15) cannot absorb the standard diffeomorphisms
of the first term (which ultimately is a consequence of the
shift of the L0 charge by the operator C−1). The latter thus
survive as physical gauge symmetries of the theory as
expected. Note that the parameters in Σ enter in a way that
does not disturb the above interpretation of the trans-
formations of the lowest components of jVi. This is
essential, so that it will not affect the physical components
of a generalized vielbein.

V. GENERALIZED SCHERK–SCHWARZ
REDUCTION

We will now perform another consistency check on the
proposed form of E9 generalized diffeomorphisms (4.15).
We will study the behaviour of these transformations under
a suitably generalized Scherk–Schwarz Ansatz [53] for
vectors and gauge parameters. With the internal coordinate
dependence of all fields carried by a Scherk–Schwarz twist
matrix U we will show that under certain assumptions on
this twist matrix, all YM dependence in the transformations
(4.15) consistently factors out such that the generalized
diffeomorphisms translate into an algebraic action on the
two-dimensional fields. We find that this precisely repro-
duces the gauge structures identified in two-dimensional
gauged supergravities [30].
Before writing down the Scherk–Schwarz Ansatz in the

Dirac formalism we introduce a few definitions. First of all,
we need to define the so-called twist matrix U. The group
of symmetries of the theory includes not only E9, but also
the Virasoro group Vir [54]. In two dimensions, the metric
scaling factor e2σ in the conformal gauge gμν ¼ e2σημν
scales under the action of the central operator K in e9 [55].
The scalar fields in E8=ðSpinð16Þ=Z2Þ and their infinite
tower of dual scalar fields, together with the scaling factor
e2σ, parametrize a coset element of the central extension of
the loop group [55–57]. On the other hand, the two-
dimensional dilaton ρ is a free field. This field and its
(single) dual ~ρ transform non-trivially under the Virasoro
reparametrizations of the loop group spectral parameter w.
To see this one observes that an affine redefinition of the
spectral parameter w → awþ b can be compensated by the
affine transformation of ðρ; ~ρÞ → ðaρ; a~ρ − bÞ [54]. These
affine transformations define the parabolic subgroup
Rþ ⋉ R ⊂ SLð2;RÞ ⊂ Vir generated by L0 and L−1. We
therefore expect that a general Scherk–Schwarz Ansatz will
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be described by a twist matrix in the product of this
parabolic subgroup and the central extension of the E8 loop
group. We decompose the twist matrixU accordingly as the
product of a Virasoro parabolic subgroup element UVirðYÞ
and a loop group elementUloopðYÞ, which includes both the
generators TA

n and the central charge generator,

UðYÞ ¼ UVirðYÞUloopðYÞ: ð5:1Þ

The definition of the exceptional E9 theory is beyond the
scope of this paper. Nonetheless, we expect that the
Scherk–Schwarz Ansatz for the scalar fields Mðx; YÞ
and the metric conformal factor σðx; YÞ should be deter-
mined in terms of UloopðYÞ as

e−2σðx;YÞMðx;YÞ¼UloopðYÞTe−2σðxÞMðxÞUloopðYÞ; ð5:2Þ

whereas the dilaton field and its dual should be deter-
mined by3

UT
VirðYÞ ¼ eςðYÞL−1eυðYÞL0 ⇒ ρðx; YÞ ¼ e−υðYÞρðxÞ;
~ρðx; YÞ ¼ e−υðYÞð~ρðxÞ − ςðYÞÞ: ð5:3Þ

The shift of ~ρðx; YÞ in ςðYÞ is indeed consistent with the
gauging defined in [30], where the L0 generator is not
gauged and so υðYÞ ¼ 0. Although the theory remains to be
constructed, one can infer from this discussion that the
Scherk–Schwarz Ansatz should involve in general both a
twist matrix in the loop group and a twist matrix in the
parabolic subgroup of SLð2;RÞ. Assuming that this is
indeed the case, we shall now see that this permits to define
a gauge algebra from the generalized diffeomorphisms
introduced in the last section.
Note that in higher dimensions one does not only

introduce a twist matrix UðYÞ ∈ Ed (for d ≤ 8), but also
a scaling factor ρðYÞ for the metric field Ansatz, not to be
confused with the dilaton ρðx; YÞ discussed above. Since
the central charge of the loop algebra acts as a Weyl
rescaling of the metric in two dimensions, this scaling
factor ρðYÞ is already included in UloopðYÞ by construction.
It will be convenient to write the Maurer–Cartan form4

J ¼ U−TdUT ¼ U−T
VirdU

T
Vir þU−T

VirðU−T
loopdU

T
loopÞUT

Vir

¼ J Vir þ J loop; ð5:4Þ

in Dirac notation as

jJihJj ⊗ h∂Jj ¼ L0 ⊗ h∂υj þ L−1 ⊗ e−υh∂ςj
þ
X
n

TA
n ⊗ hjnAj þ 1 ⊗ hjcj; ð5:5Þ

where we understand that the h∂Jj bra defines the derivative
index and the vir ⊕ e9 matrix is written as jJihJj. The
notation is such that

UTðYÞ⊗ h∂⃖Y j ¼UTL0 ⊗ h∂υj þUTL−1 ⊗ e−υh∂ςj
þ
X
n

UTTA
n ⊗ hjnAj þUT ⊗ hjcj: ð5:6Þ

To distinguish the ket vectors that are acted on the left
by UT and U−T , we use the underlined notation such
that in practice, UT acts on an underlined ket to give a
not underlined ket. The same convention applies to the
bra. It follows for instance that the Maurer–Cartan form
(5.5) acts on an underlined ket vector to give another
underlined ket vector, which justifies that we use the
notation J. The underlined operators are identical to the
nonunderlined ones, but are simply understood to act on
underlined kets.
Before spelling out the Scherk–Schwarz Ansatz, it is

important to understand the covariance under the
parabolic subgroup Rþ ⋉ R ⊂ Vir. The algebraic part
of the generalized Lie derivative (4.15) involves the
derivative of the vector field jξih∂ξj through the
operator C0, and the constrained gauge parameter
jΣihπΣj through the operator C−1. The action of Rþ ⋉
R on these two operators is determined by the
commutation relation

½1 ⊗ Lm þ Lm ⊗ 1; Cn�

¼ ðm − nÞCmþn þ
4

3
mðm2 − 1Þδmþn;0; ð5:7Þ

to be such that a twist matrix parametrized as in (5.1)
acts on C−1 and C0 in the adjoint representation,

ðUT ⊗ UTÞC−1ðU−T ⊗ U−TÞ ¼ eυC−1;

ðUT ⊗ UTÞC0ðU−T ⊗ U−TÞ ¼ C0 − ςC−1; ð5:8Þ

where Cn is Cn acting on flattened (underlined)
vectors. Because jξih∂ξj and jΣihπΣj are naturally
paired with C−1 and C0, they transform in the
coadjoint representation of the parabolic subgroup
Rþ ⋉ R,

jΣihπΣj → e−υðjΣihπΣj þ ςjξih∂ξjÞ; jξih∂ξj → jξih∂ξj:
ð5:9Þ

The Scherk–Schwarz Ansatz for vectors and gauge
parameters written in Dirac notation now takes the form

3On the spectral parameter L0 ¼ −w∂w and L−1 ¼ −∂w.4Here, we use the notation U−T ≡ ðU−1ÞT to denote the
transpose of the inverse.
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jVi ¼ U−T jVi; jξi ¼ U−T jξi;

jΣihπΣj ¼ e−υU−T
�X

n

TA
1þnjξihjnAj þ L1jξih∂υj

þ L0jξie−υh∂ςj
�
þ e−υςjξih∂ξj; ð5:10Þ

where the flat (underlined) ket vectors only depend on
external coordinates. The Ansatz for the vectors jVi, jξi is
of the standard form, while the Ansatz for the gauge
parameter Σ matches the Rþ ⋉ R covariance (5.9) and is
explicitly compatible with the constraints (4.14) that this
parameter satisfies. Its expression can be written formally
for constant ς in terms of a properly renormalized trace (see
Appendix B)

jΣihπΣj ¼ e−υ
1

N
U−TðhJjC1jJi ⊗ jξiÞh∂Jj þ e−υςjξih∂ξj;

ð5:11Þ
which exhibits that this Ansatz preserves E9 covariance.

Let us now consider the action of such a generalized
diffeomorphism,

Lξ;ΣjVi ¼ h∂V jξiðU−T jViÞ þ h∂ξjðC0 − 1ÞðU−T jξi ⊗ jViÞ
þ e−υςh∂ξjC−1ðU−T jξi ⊗ jViÞ

þ e−υ
�
h∂υjC−1U−TL1jξi

þ e−υh∂ςjC−1U−TL0jξi

þ
X
n

hjnAjC−1U−TTA
1þnjξi

�
⊗ jVi; ð5:12Þ

where h∂V j and h∂ξj are understood to derive the twist
matrix U−T multiplying respectively the constant vectors
jVi and jξi using (5.6). Using (5.8) to write everything
in terms of flat vectors, one obtains that the explicit
dependence in υ and ς drops out (such that they only
appear through their derivatives h∂υj and e−υh∂ςj). For
example

− hj
nA
jUT ⊗ UTC0U−T ⊗ U−TTA

n jξi þ e−υhj
nA
jUT ⊗ UTC−1U−T ⊗ U−TðTA

nþ1 − ςTA
nÞjξi

¼ −hj
nA
jðC0 − ςC−1ÞTA

n jξi þ e−υhj
nA
jeυC−1ðTA

nþ1 − ςTA
nÞjξi

¼ −hj
nA
jC0TA

n jξi þ hj
nA
jC−1TA

nþ1jξi: ð5:13Þ

This exhibits that the Ansatz (5.10) is indeed covariant with respect to Rþ ⋉ R, as advocated above. For convenience, we
introduce the flat derivative bra h∂j ¼ h∂jU−T . One then obtains

UTLξ;ΣjVi ¼ −
�
h∂υjξiL0 þ e−υh∂ςjξiL−1 þ

X
n

hj
nA
jξiTA

n þ hj
c
jξi

�
jVi

−
�
h∂υjðC0 − 1ÞL0jξi þ e−υh∂ςjðC0 − 1ÞL−1jξi þ

X
n

hj
nA
jðC0 − 1ÞTA

n jξi þ hj
c
jðC0 − 1Þjξi

�
jVi

þ
�
h∂υjC−1L1jξi þ e−υh∂ςjC−1L0jξi þ

X
n

hj
nA
jC−1TA

nþ1jξi
�
jVi

¼ h∂υjðð1 − C0ÞL0 ⊗ 1 − 1 ⊗ L0 þ C−1L1 ⊗ 1Þjξi ⊗ jVi − hj
c
jC0jξijVi

þ e−υh∂ςjðð1 − C0ÞL−1 ⊗ 1 − 1 ⊗ L−1 þ C−1L0 ⊗ 1Þjξi ⊗ jVi
þ
X
n

hj
nA
jðð1 − C0ÞTA

n ⊗ 1 − 1 ⊗ TA
n þ C−1TA

nþ1 ⊗ 1Þjξi ⊗ jVi

¼ −
�
h∂υjðL0 þ 1Þ þ e−υh∂ςjL−1 þ

X
n

hj
nA
jTA

n þ hj
c
j
�
C0jξi ⊗ jVi

þ
�
h∂υjL1 þ e−υh∂ςjðL0 − 1Þ þ

X
n

hj
nA
jTA

nþ1

�
C−1jξi ⊗ jVi; ð5:14Þ

where in the last step we have used

½C0; Ln ⊗ 1� − Ln ⊗ 1þ 1 ⊗ Ln ¼ ½C−1; Lnþ1 ⊗ 1� þ Cn;

½C0; TA
n ⊗ 1� − TA

n ⊗ 1þ 1 ⊗ TA
n ¼ ½C−1; TA

nþ1 ⊗ 1�; ð5:15Þ
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which one computes straightforwardly using the definition
of Cn. Defining

hθj≡ h∂υjL1 þ e−υh∂ςjðL0 − 1Þ þ
X
n

hj
nA
jTA

nþ1;

hϑj≡ −h∂υjðL0 þ 1Þ − e−υh∂ςjL−1 −
X
n

hj
nA
jTA

n − hj
c
j;

ð5:16Þ

the action (5.14) can be put in the compact form

δξjVi≡UTLξ;ΣjVi
¼ hθjC−1jξi ⊗ jVi þ hϑjC0jξi ⊗ jVi: ð5:17Þ

A consistent reduction thus corresponds to a twist matrix
constructed such that the combinations (5.16) are constant,
corresponding to two different types of gaugings. The first
one, parametrized by a constant embedding tensor hθj,
precisely reproduces the standard gauge structure of two-
dimensional gauged supergravity [30]. The second type of
gauging, parametrized by a constant hϑj, is slightly less
standard. As follows from (5.17), it gauges the generator
d ∈ e9 that is represented as L0, which is not a symmetry of
the ungauged Lagrangian. The resulting gaugings thus do
not admit an action but are defined only on the level of their
field equations. In this sense they are the analogues of the
trombone gaugings [58] that gauge the trombone scaling
symmetry [59] of higher-dimensional supergravities. Note
that in the two-dimensional case the trombone symmetry as
defined in [59] is an ordinary (and off-shell) Weyl sym-
metry of the two-dimensional theory that is generated by
the central charge K of E9. It is gauged by both parameters
hθj and hϑj and thus part of a generic gauging in two
dimensions.
Explicitly, one has

hθjC−1jξi þ hϑjC0jξi
¼ ðhθjL−1jξi þ hϑjL0jξiÞ − ηAB

X
n∈Z

ðhθjTA
−n−1jξi

þ hϑjTA
−njξiÞTB

n þ hθjξiL−1 þ hϑjξiL0: ð5:18Þ

A straightforward computation shows that the algebra of
gauge transformations (5.17) closes according to

½δξ1 ; δξ2 �jVi ¼ δξ12 jVi; ð5:19Þ
with gauge parameter

jξ12i≡ 1

2
ðhθjC−1 þ hϑjC0Þðjξ1i ⊗ jξ

2
i − jξ

2
i ⊗ jξ

1
iÞ;
ð5:20Þ

provided that the components of the embedding tensor
satisfy the constraints

hθj ⊗ hθjC−1 þ hϑj ⊗ hθjðC0 þ σ − 1Þ ¼ 0;

hϑj ⊗ hϑjC0 þ hθj ⊗ hϑjC−1 ¼ 0: ð5:21Þ

If the twist matrix from which this embedding tensor is
obtained satisfies the section constraint, these constraints
must be automatically satisfied since closure of the algebra
is guaranteed by construction by the closure of the
generalized diffeomorphism algebra. In the absence of
an L0-gauging (hϑj ¼ 0), we recover the condition

hθj ⊗ hθjC−1 ¼ 0; ð5:22Þ

which had been identified as the quadratic constraint on the
embedding tensor in [30]. For pure L0-gaugings (hθj ¼ 0)
on the other hand, we precisely recover the section
constraint

hϑj ⊗ hϑjC0 ¼ 0; ð5:23Þ

as for pure trombone gaugings in higher dimensions.

VI. GENERALIZATION TO OTHER GROUPS

In this section, we discuss two generalizations of our
formulas for the generalized diffeomorphisms (1.1) and
section constraint (1.2). The first generalization is to
arbitrary affine algebras and the second one to arbitrary
Kac–Moody algebras. In the most general case, the
generalizations we present only give the generalized form
of the section constraint and generalized Lie derivative, but
we have not checked directly closure of the gauge algebra
which also requires the introduction of extra constrained
transformation parameters Σ. For the generalization to other
affine algebras with coordinates in the basic representation,
the parameter Σ can be defined in analogy with the e9 case
considered in detail above and the gauge algebra closes in
exactly the same way. For general Kac–Moody algebras, a
systematic introduction of Σ most probably requires the
language and properties of tensor hierarchy algebras that
we shall not attempt here. We also note that even if a
consistent gauge algebra is established, this does not
guarantee the existence of a nontrivial physical model
for any Kac–Moody algebra.

A. Extension to other affine groups

In this section, we discuss how much of the structure of
the E9 exceptional geometry will carry over to affine
extensions of other “exceptional” field theories based on
simple symmetry groups in D ¼ 3 space-time dimensions
[60,61].5 An example of a double field theory with
SOð8; nÞ symmetry with three external dimensions was

5The case of semisimple symmetries and their affine and
further extensions was discussed in [62].
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recently constructed in [63], the duality covariant theory
based on the Ehlers group SL(2) was constructed in [49],
and the picture for higher SLðnÞ was given in [24].
The important steps in the construction of the E9

exceptional geometry performed in this paper were
(i) the identification of an appropriate representation
RðΛ0Þ for the coordinates, (ii) the identification of an
appropriate section constraint in RðΛ0Þ ⊗ RðΛ0Þ and
(iii) verification of the closure of the generalized diffeo-
morphisms up to section constraint. It is noticeable that in
the definition of the generalized diffeomorphism (4.15) and
section constraint (3.8) only the coset Virasoro generators
appear. Little use of the structure of E8 itself is made.
Let us consider an arbitrary simple finite-dimensional

algebra g (replacing e8) and its associated (nontwisted)
affine extension gþ (replacing e9). The associated groups
will be denoted by G and Gþ, respectively. The known
structure of exceptional field theory with G symmetry have
internal coordinates in the adjoint representation adj of G
satisfying a section constraint in the representation sec ofG
that lies in the tensor product of two adjoint representations.
The pieces of the section constraint that lie in the symmetric
part of the tensor product correspond to the three-dimen-
sional embedding tensor (as a consequence of the duality
between level 2 and level −1 in the tensor hierarchy algebra
for compactifications to three dimensions [32]). There is
also an antisymmetric contribution to the section constraint
[23,24,49,63]. In addition, the generalized Lie derivatives
with three external dimensions contain also constrained
parameters Σ besides the standard parameters ξ. The
standard physical solution to the D ¼ 3 section constraint
is given by taking from adj a d-dimensional subspace that
corresponds to the maximal number of dimensions that can
be oxidized [61,64].
All affine algebras afford a “basic” representation RðΛ0Þ

at level k ¼ 1 [33,36]. Its distinguishing property is that it is
an irreducible highest weight module of gþ that decom-
poses under g as

RðΛ0Þ ¼ 10 ⊕ adj−1 ⊕ sec−2 ⊕ …; ð6:1Þ

where the antisymmetric part of sec (in the tensor product
of two adjoints) is seca ¼ adj. This is the generalization of
(2.5). It is a generic property of RðΛ0Þ that there are null
states at affine level −2. They are a consequence of
f0f0j0i ¼ 0, where f0 is the generator corresponding to
the root −α0. It is easily shown that this state is annihilated
by e0. In terms of g, the state f0f0j0i would carry the
weight 2θ, where θ is the highest root of g. Therefore, the
“big” representation in the symmetric product of two g-
adjoints is always absent at affine level −2 in RðΛ0Þ, and
the symmetric part of sec is some smaller representa-
tion: adj ⊗s adj ¼ rð2θÞ ⊕ secs.
We can then work out the general tensor product of two

elements in RðΛ0Þ at low g levels,

RðΛ0Þ ⊗ RðΛ0Þ ¼ 10 ⊕ ð2 · adjÞ−1
⊕ ð2 · sec ⊕ adj ⊗ adjÞ−2 ⊕ …:

ð6:2Þ

A physically expected solution to the D ¼ 2 section
constraint is taking the singlet at level 0 and the
d-dimensional subspace in adj that corresponds to the
solution of the D ¼ 3 section constraint. These dþ 1
coordinates together correspond to the oxidation from
D ¼ 2 external space to the same maximal oxidation
endpoint in 3þ d dimensions. We would therefore like
theD ¼ 2 section constraint to be strong enough to remove
everything but a solution of this type.
From the representation theory of affine algebras we

know that the tensor product RðΛ0Þ ⊗ RðΛ0Þ decomposes
into representations at level k ¼ 2. More precisely, there is
again a coset construction similar to (2.14) where the
standard modules at k ¼ 2 appear multiplied with coset
Virasoro characters that are q-series. What types of k ¼ 2
modules exist does depend on the structure of gþ. Two
k ¼ 2 modules that always exist are

Rð2Λ0Þ ¼ 10 ⊕ adj−1 ⊕ ðsec ⊕ rð2θÞÞ−2 ⊕ … ð6:3Þ

that is the leading term in the symmetric part of the tensor
product and

RðΛ1Þ−1 ¼ adj−1 ⊕ ðadj ∧ adj ⊕ secsÞ−2 ⊕ … ð6:4Þ

by which we denote the leading term in the antisymmetric
part of the tensor product6 The first null states in Rð2Λ0Þ
appear at level −3. The null states in rð2θÞ at affine level −1
in RðΛ1Þ come from the observation that f0jΛ1i is a
null state.
Comparing these two leading expansions with the full

tensor product (6.2) we conclude that any other k ¼ 2
module can only start contributing from level −2 onwards.
Writing the levels as a q-series this means that

RðΛ0Þ ⊗s RðΛ0Þ ¼ ð1þ q2ÞRð2Λ0Þ ⊕ q2sec0s ⊕ …

RðΛ0Þ ∧ RðΛ0Þ ¼ ðqþ q2ÞRðΛ1Þ ⊕ … ð6:5Þ

where the ellipses denote terms at affine level −3 and lower,
and where secs ¼ 1 ⊕ sec0s. Note that the identification of
an irreducible highest weight affine representation from its
leading irreducible g representation is unique at a given k.
What is noteworthy is the absence of a term at level −1 in
the Rð2Λ0Þ piece.

6The notation may seem to indicate that there is a unique
simple root α1 connected with a single line to α0. This is not
necessarily the case (e.g., in Aþ

n ); then Λ1 has to be reinterpreted
as the weight

Prankg
i¼1 aiΛi, where the highest root of g is

θ ¼ Prankg
i¼1 aiλi.
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There is a coset Virasoro construction associated with the
tensor product of two k ¼ 1modules. The q-series (after an
appropriate shift of the conformal weight of the affine
representations) are characters of this coset Virasoro
algebra. Unlike the case for E9, it is not true in general
that they are characters in the minimal series since the
central charge can be c ≥ 1 [65].7 Nevertheless, the q-series
always represent characters of (possibly reducible) unitary
representations of the Virasoro algebra.
The contribution to h from the g quadratic Casimir is

0 for Rð2Λ0Þ and g∨
2þg∨ for RðΛ1Þ. The generalization of

(2.14) is

RðΛ0Þ ⊗ RðΛ0Þ ¼ Vir0 ⊗ Rð2Λ0Þ0 ⊕ Vir− 2
2þg∨

⊗ RðΛ1Þ− g∨
2þg∨

⊕ … ð6:6Þ

where the subscript on the coset Virasoro modules is −h. If
we define the rescaled coset Virasoro operators
Cn ¼ ð2þ g∨ÞLcoset

n , we can conclude that the appropriate
section constraints remain of the precise form (3.8):

h∂1j ⊗ h∂2jðC0 − 1þ σÞ ¼ 0;

h∂1j ⊗ h∂2jC−n ¼ 0; ∀ n > 0;

ðh∂1j ⊗ h∂2j þ h∂2j ⊗ h∂1jÞC1 ¼ 0; ð6:7Þ

since C0 then takes the value 0 and 2 in the leading
symmetric and antisymmetric states, respectively. Then, the
only modules remaining in the product of two derivatives
are the leading ones, corresponding to the highest weights
in the (conjugate) Virasoro modules corresponding to
Rð2Λ0Þ and RðΛ1Þ.
Since all the remaining steps in the calculation only

depend on the coset Virasoro algebra, we conclude that the
form of the generalized diffeomorphism and the closure of
the gauge algebra proceed in the same way for all affine
symmetries Gþ.

B. Strong section constraint for an arbitrary
Kac–Moody algebra

The section constraint is an important starting point for
the construction of any “extended geometry,” be it double
or exceptional field theory, or some other model with
enhanced symmetry algebra g. The actual form of the Y
tensor defining this constraint has normally been deter-
mined on a case-by-case basis. This applies in particular to
exceptional field theory, where it is notoriously difficult to
find tensorial identities applying to every member of the

series of exceptional algebras. However, in [48] a general
construction of the Y tensor was given, based on bosonic
and fermionic extensions of the algebra g. The identities
needed for closure and covariance of the generalized Lie
derivative are then automatically satisfied, except for one of
them (whose failure is the reason for introducing an extra
constrained transformation parameter in the e8 case).
The construction of the Y tensor in [48] was given

explicitly for exceptional field theory, but can easily be
generalized to any highest (or lowest) weight representation
RðλÞ of any Kac–Moody algebra g, except for cases where g
or its fermionic extension has a degenerate Cartan matrix. In
this section we will obtain a general formula for the Y tensor
which includes also the degenerate cases, and thus encom-
passes all the known finite-dimensional examples and the
affine algebra examples described in this paper. We will
restrict to simply lacedg. Ingeneralwe consider theLiegroup
G defined in [44] for an arbitrary Kac–Moody algebra g.
A vector jpi in a highest weight representation RðλÞ

satisfies the (weak) section constraint if jpi⊗ jpi∈Rð2λÞ.
This is equivalent to the statement that jpi is in a minimal
RðλÞ-orbit under g. This is discussed e.g. in [14], and a
direct connection between minimal orbits and Borcherds
superalgebras (the fermionic extensions of g) was made
in [66].
The quadratic Casimir,

C2 ¼
1

2
ηAB∶TATB

≔
X
α∈Δþ

E−αEα þ
1

2
ðH;HÞ þ ðϱ; HÞ; ð6:8Þ

is defined for finite- and infinite-dimensional Kac–Moody
algebras on a highest weight module, where the Weyl
vector ϱ is the sum of the fundamental weights (instead of
half the sum of the possibly infinitely many positive roots
in Δþ). It is normalized by C2ðRðλÞÞ ¼ 1

2
ðλ; λþ 2ϱÞ, so

thatC2ðadjÞ ¼ g∨ for finite-dimensional g. Here TA are the
generators of g and ηAB is the invariant symmetric bilinear
form. The last term is a normal ordering term, which
for finite-dimensional g can be absorbed into a symmet-
rically ordered product of generators. We observe that
C2ðRð2λÞÞ ¼ 2C2ðRðλÞÞ þ ðλ; λÞ. Also, there is no other
irreducible highest weight representation in the symmetric
product of RðλÞ with itself with this maximal value of C2.
The weak section constraint on jpi is equivalent to the

equation

0¼ ½C2ðRð2λÞÞ− 2C2ðRðλÞÞ− ðλ;λÞ�jpi⊗ jpi

¼ 1

2
ηAB∶TATB∶ðjpi⊗ jpiÞ−

�
1

2
ηAB∶TATB∶jpi

�
⊗ jpi

− jpi⊗
�
1

2
ηAB∶TATB∶jpi

�
− ðλ; λÞjpi⊗ jpi

¼ ½ηABTA ⊗ TB − ðλ; λÞ�jpi⊗ jpi: ð6:9Þ

7Another case where one has c ¼ 1
2
as for E9 is the affine

extension Aþ
1 of SL2ðRÞ (the Geroch group [55–57]) correspond-

ing to pure four-dimensional Einstein gravity. Also the coset
constructions based on A2 or any finite-dimensional exceptional
algebra fall in the minimal series.
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Any vector satisfying jpi ⊗ jpi ∈ Rð2λÞ satisfies this
equation by construction and it was proven in [44] that
all the solutions to this equation are in the R× ×G-orbit of
the highest weight vector jλi of RðλÞ.8 This equation
determines therefore the unique minimal nontrivial G-orbit
in RðλÞ, where the R× is related to rescalings in the one-
dimensional highest weight space.
In order to define the strong section constraint we

now consider a second vector jqi such that all jpi, jqi
and jpi þ jqi satisfy the section constraint. Since (6.9) is
by constructionG invariant, one can assume without loss of
generality that jpi ¼ jλi, the highest weight vector. Then it
is convenient to decompose

jqi ¼
Xn
k¼0

jqik; ðλ; HÞjqik ¼ ððλ; λÞ − kÞjqik; ð6:10Þ

and the positive roots as Δþ ¼ P
k≥0Δk such that αk ∈ Δk

satisfies ðλ;αkÞ ¼ k, and n is the lowest weight for which
jqin is nonzero. Because the weight is preserved by the
operator ηABTA ⊗ TB, one obtains that the lowest weight
component of the constraint on jpi ⊗ jqi þ jqi ⊗ jpi
reduces to

0 ¼ ð½ηABTA ⊗ TB − ðλ; λÞ�ðjλi ⊗ jqi þ jqi ⊗ jλiÞÞn
¼ ½ηABTA ⊗ TB − ðλ; λÞ�ðjλi ⊗ jqin þ jqin ⊗ jλiÞ
¼ −njλi ⊗ jqin − njqin ⊗ jλi

þ
Xn
k¼1

X
αk∈Δk

ðE−αk jλi ⊗ Eαk jqin þ Eαk jqin ⊗ E−αk jλiÞ;

ð6:11Þ

which in turn can only be satisfied if

njλi ⊗ jqin ¼
X
αn∈Δn

Eαn jqin ⊗ E−αn jλi: ð6:12Þ

The only solution is

jqin ¼
X
αn∈Δn

vαnE−αn jλi: ð6:13Þ

Recalling from (6.10) that n is the maximal value for which
jqin is nonzero, we now consider the lowest weight
component of the constraint on jqi ⊗ jqi, i.e.

ð½ηABTA ⊗ TB − ðλ; λÞ�jqi ⊗ jqiÞ2n
¼

X
αn;βn∈Δn

vαnvβn ½ηABTA ⊗ TB − ðλ; λÞ�E−αn jλi ⊗ E−βn jλi

¼
X

αn;βn∈Δn

vαnvβn

�
ððαn; βnÞ − 2nÞE−αn jλi ⊗ E−βn jλi

þ
X
γ∈Δ

½Eγ; E−αn �jλi ⊗ ½E−γ; E−βn �jλi
�
: ð6:14Þ

There is a lowest weight λ − αn such that vαn ≠ 0,
i.e., vαnþγ0 ¼ 0 for all positive γ0 on level 0. This
implies that there is no contribution to the term in
ððαn; αnÞ − 2nÞE−αn jλi ⊗ E−αn jλi from ½Eγ0 ; E−αn−γ0 �jλi ⊗
½E−γ0 ; E−αnþγ0 �jλi and we must therefore have
ðαn; αnÞ ¼ 2n. Since in general ðαn; αnÞ ≤ 2 for any
Kac–Moody algebra, the constraint on jqi can only have
solutions with n ¼ 1.
We thus have

jqi ¼
�
v0 þ

X
α1∈Δ1

vα1E−α1

�
jλi; ð6:15Þ

and the weak section constraint reduces to

½ηABTA ⊗TB− ðλ;λÞ�jqi⊗ jqi

¼
X

α1;β1∈Δ1

vα1vβ1

�
ððα1;β1Þ−2ÞE−α1 jλi⊗E−β1 jλi

þ
X

�γ0∈Δ0

½Eγ0 ;E−αn �jλi⊗ ½E−γ0 ;E−βn �jλi

þE−α1E−β1 jλi⊗ jλiþ jλi⊗E−α1E−β1 jλi
�
: ð6:16Þ

The vector jqi automatically solves the section constraint if
vα1 is only nonzero for the simple root dual to λ, and by
construction for any vα1 obtained from the latter by the
action of the stabilizer G0 of ðλ; HÞ. The same theorem
from [44] implies then moreover that all the solutions are
G0-conjugate to this one.
Now we can compute for the orbit representative

jqi ⊗ jλi [with jqi as in (6.15)] that

½ηABTA⊗TB− ðλ;λÞ�jqi⊗ jλi

¼
X
α1∈Δ1

vα1

�
−E−α1 jλi⊗ jλiþ

X
β1∈Δ1

Eβ1E−α1 jλi⊗E−β1 jλi
�

¼−jqi⊗ jλiþjλi⊗ jqi: ð6:17Þ

By G-covariance we therefore have that the strong section
constraint on any pair of vectors jpi and jqi therefore
implies in general that Yjpi ⊗ jqi ¼ 0 for the tensor

8The rescaling factor R× is not included in G when ðλ; λÞ ¼ 0,
unless g includes a central charge. This would be the case for E10

for example.
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σY ¼ −ηABTA ⊗ TB þ ðλ; λÞ þ σ − 1: ð6:18Þ

This tensor permits to define the generalized diffeo-
morphisms uniquely and uniformly for any group G and
highest weight representation RðλÞ as

LξjVi ¼ h∂V jξijVi − h∂ξjVijξi þ h∂ξjσYjξi ⊗ jVi
¼ h∂V jξijVi − ηABh∂ξjTAjξiTBjVi
þ ððλ; λÞ − 1Þh∂ξjξijVi; ð6:19Þ

such that they reduce to standard diffeomorphisms if jVi
and jξi satisfy the strong section constraint, and the
connection term is valued in R ⊕ g. The Z tensor is then
as usual Z ¼ Y − 1. The overall normalization of the Y
tensor is of course not determined by the homogeneous
condition Yjpi ⊗ jqi ¼ 0, but follows from demanding
that9 σZ ∈ ðg ⊕ RÞ ⊗ ðg ⊕ RÞ, i.e., that the term σ in
(6.18) cancels in σZ ¼ σY − σ. Note, however, that the
closure of these candidate generalized diffeomorphisms is
not guaranteed by the construction, neither is it expected
that any choice of algebra and representation will lead to a
meaningful field theory.
The remarkably simple expression (6.19) turns out to

reproduce (by necessity) the invariant tensors used in all
previously constructed extended geometries. In particular
ðλ; λÞ − 1 ¼ 1

9−d for Ed type groups with 3 ≤ d ≤ 11, except
for d ¼ 9, in which case one gets instead ðλ; λÞ ¼ 0 as
described in this paper. They also generalize to arbitrary
Kac–Moody algebras, and have therefore a potential to be
applicable also e.g. in Ed, d > 9.
We also remark that the construction above can be used

to recover ordinary Riemannian geometry as well by taking
g ¼ slðnÞ and coordinates xa in the fundamental repre-
sentation. For traceless generators Ka

b and Kc
d the

invariant metric is δadδ
c
b −

1
n δ

a
bδ

c
d and ðλ; λÞ ¼ 1 − 1

n for
the fundamental representation. Evaluating (6.19) on a
vector with components Va then leads to

LξVa ¼ ξb∂bVa − Vb∂bξ
a; ð6:20Þ

the usual Lie derivative for glðnÞ ¼ slðnÞ ⊕ R. Moreover,
the section constraint Yjpi ⊗ jqi ¼ 0 becomes trivial in
this case so that all coordinates xa can be used at the
same time.
The construction given here agrees with the one in [48],

where g is extended to a Borcherds superalgebra B. The
Cartan matrix Aij of g (i; j ¼ 1; 2;…; r, where r is the rank
of g) is then extended to a Cartan matrix BIJ of B
(I; J ¼ 0; 1;…; r), such that

B00 ¼ 0; Bij ¼ Aij; B0i ¼Bi0 ¼−ðλ;αiÞ: ð6:21Þ

We assume both A and B to be nondegenerate, which
implies ðB−1Þ00 ≠ 0, although the construction can be
generalized to arbitrary Kac–Moody algebras g. In the
notation used here, the general expression for Y that follows
from the construction in [48] is then

σY ¼ −ηABTA ⊗ TB −
�
1þ 1

ðB−1Þ00

�
þ σ: ð6:22Þ

Since

AkiðB−1Þi0 ¼ BkiðB−1Þi0 ¼ −Bk0ðB−1Þ00; ð6:23Þ

the coefficients of the weight λ in the basis of simple roots
αi of g are given by

λ ¼ −ðA−1ÞijBj0αi ¼
ðB−1Þi0
ðB−1Þ00

αi; ð6:24Þ

and its length squared by

ððB−1Þ00Þ2ðλ; λÞ ¼ ðB−1Þ0iBijðB−1Þj0
¼ −ðB−1Þ0iBi0ðB−1Þ00
¼ −ðB−1Þ0IBI0ðB−1Þ00
¼ −ðB−1Þ00; ð6:25Þ

from which it follows that (6.22) can be rewritten as (6.18).
In terms of the present work, and e9, the Y tensor (4.6) is

already manifestly of the form (6.18) with ðλ; λÞ ¼ 0. It
follows from the presentation above that a representative of
solutions to the strong section condition is spanned by h0j
and a subspace representing the M-theory or type IIB
branch of the E8 strong section condition. The procedure is
general and gives a recipe for such an “oxidization”
procedure, which can be continued through a series of
duality groups Xn with decreasing rank by sequentially
removing nodes of the Dynkin diagram corresponding to
the coordinate module, with highest weight jλi, each time
expressing a representative of the solutions of the strong
section constraint for Xn as the linear subspace spanned by
λ and a section for Xn−1. In general Xn−1 is the Levi
stabilizer of the representative jλi, that reduces when λ is a
fundamental weight to the algebra whose Dynkin diagram
is the one of Xn with the node associated to λ removed. The
sequence is uniquely determined provided the module
RðλnÞn is irreducible for all n, but this is generally not
the case. Whenever the module reduces to several irreduc-
ible components, there are as many “oxidized” algebras
Xn−1 as there are irreducible components. The “oxidiza-
tion” procedure therefore generally gives rise to a tree
rather than a linear sequence. For maximal supersymmetry
the module becomes reducible inD ¼ 9, giving rise to both

9In the affine case the scaling is included in g through the
central extension.
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the type IIB and the eleven-dimensional supergravity
solution. For half maximal the module becomes reducible
in D ¼ 5, giving rise to both type IIB on K3 and heterotic
solutions.

VII. CONCLUSIONS

We have performed the first and critical step towards an
exceptional field theory based on E9 or other affine groups,
which consists in the construction of a closed algebra of
gauge transformations. Like in the case of E8, extra local and
constrained rotations are part of the gauge transformations.
This is connected to the presence of dual gravity and other
(in the present case an infinite number of) mixed tensors.
These extra transformations are shown to be such that they
do not interfere with the dynamics of the physical part of a
vielbein. The precise covariant form of this dynamics
remains to be constructed. Our construction makes heavy
use of Virasoro generators in order to form and use invariant
tensors. We also provide a generalized Scherk–Schwarz
reduction, which shows that our gauge transformations
reduce to the ones expected from two-dimensional gauged
supergravity, and predicted by the tensor hierarchy algebra.
A completely generic form of the Y tensor, and thereby of
candidate generalized diffeomorphisms based on any Kac–
Moody algebra was presented.
One important implication from our construction is that

thegeneralized vielbein shouldparametrize an element of the
coset G=KðGÞ, where the group G is constructed from
exponentiation of an extended algebra e9 ⊕ RL−1 [just like
the twistmatrix (5.1)]. In such a construction, thegeneralized
vielbein would include all the fields of the theory, including
the scaling factor of the metric in the conformal gauge. It is
therefore not clear whether the E9 exceptional field theory
can be formulated without resorting to the conformal gauge,
such as to bemanifestly invariant under both exceptional and
ordinary two-dimensional diffeomorphisms.
The additional gauge transformation involving the tensor

Σ is highly degenerate. The parameter Σ is a section-
constrained element of RðΛ0Þ−1 ⊗ RðΛ0Þ, whereas it only
enters the generalized diffeomorphism through its projec-
tion to e9 ⊕ RL−1 defined by C−1. The existence of a
Courant algebroid (or generalization thereof) underlying
the algebra of generalized diffeomorphisms Lξ;Σ remains
unclear at the moment. Another feature of the transforma-
tions in their present form is that they are noncovariant, i.e.,
it is not possible to introduce tensors as in [16]. The
situation is in that sense identical to that of the E8

generalized diffeomorphisms of [23]. In the E8 case, this
was remedied by the introduction of a nondynamical
background vielbein and its associated Weitzenböck con-
nection [24]. The corresponding procedure in the present
case remains an open problem.
Our construction lends strong support to the relevance of

the tensor hierarchy algebra [32]. We are necessarily led to
a situation where the algebra consists of TA

m, K, L0 and L−1.

Also the embedding tensor representation matches the level
−1 part of the tensor hierarchy algebra. This is the first
instance where additional elements (in this case L−1) are
seen in the algebra, and the lesson should be important for
the continuation to higher exceptional algebras (see [46]).
In the present work, the well developed representation
theory for affine algebras, relying in particular on the
presence of a Virasoro algebra, was of immense help. If one
wants to continue to E10 or E11 [67], the situation is quite
the opposite. Still, level expansions may be helpful, and the
existence of a simple generic form for the generalized
diffeomorphisms looks encouraging. It would be very
interesting to see if a generalized geometry for E10 in
some way can make contact with the E10 emergent space
proposal of [68].
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APPENDIX A: SOME E8 REPRESENTATIONS
AND TENSOR PRODUCTS

In this Appendix, we collect some useful information
about e8 representations. First we list the highest weights of
those occurring at low levels in the expansions of the
various e9 representations:

rð0Þ ¼ 1;

rðλ1Þ ¼ 248;

rðλ7Þ ¼ 3875;

rð2λ1Þ ¼ 27000;

rðλ2Þ ¼ 30380;

rðλ8Þ ¼ 147250;

rðλ1 þ λ7Þ ¼ 779247;

rðλ3Þ ¼ 2450240;

rðλ1 þ λ2Þ ¼ 4096000;

rðλ6Þ ¼ 6696000: ðA1Þ

The tensor product of two adjoints gives 248 ⊗ 248 ¼
1 ⊕ 3875 ⊕ 27000 ⊕ 248 ⊕ 30380. The first three are the
symmetric product and the last two the antisymmetric. The
projection operators on the five irreducible representations
in the tensor product are given by [69]
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PMN
ð1Þ PQ

¼ 1

248
ηMNηPQ;

PMN
ð3875ÞPQ ¼ 1

7
δðMP δNÞ

Q −
1

14
fAðMPfANÞ

Q −
1

56
ηMNηPQ;

PMN
ð27000ÞPQ ¼ 6

7
δðMP δNÞ

Q þ 1

14
fAðMPfANÞ

Q þ 3

217
ηMNηPQ;

PMN
ð248ÞPQ ¼ −

1

60
fAMNfAPQ;

PMN
ð30380ÞPQ ¼ δMN

PQ þ 1

60
fAMNfAPQ; ðA2Þ

where indices are lowered and raised with ηAB and ηAB. The
structure constants satisfy the identity [69]

fEAGfBEHfGICfIHD ¼ 24δCðAδ
D
BÞ þ 12ηABη

CD

− 20fEACfEBD þ 10fEADfEBC:

ðA3Þ

APPENDIX B: NORMALIZATION
OF THE TRACE

Wewould like to define a trace on operators acting on the
Hilbert space (the representation RðΛ0Þ). The idea is that
even if infinities are encountered, they may be consistently
renormalized, or even cancel in final results of calculations.
It is included here as a speculation. If the trace can be
defined in a more rigorous way, it may be useful, since it
seems to give correct results at least in some calculations
(see below), but we should stress that we have not relied on
its use in the derivation of any results in the paper.
The relation of the trace to the quadratic Casimir implies

that for some possibly infinite factor N , one must have

Tr1 ¼ 0; TrL0 ¼ N ;

TrTA
nTB

m ¼ −N δmþn;0η
AB; ðB1Þ

on the representation space RðΛ0Þ of the basic module with
character

ðqjðqÞÞ1=3 ¼ E4ðqÞQ
n>0ð1 − qnÞ8 ; ðB2Þ

where

E4ðqÞ¼1þ240
X
n>0

σ3ðnÞqn¼ΘE8
ðqÞ¼

X
Q∈E8

qQ
2=2; ðB3Þ

is the theta function of the E8 lattice and the full character is
the partition function of eight free chiral bosons on the E8

torus. The Hilbert space factorizes into the momentum
component in the E8 lattice and the oscillator Hilbert space
RðΛ0Þ ¼ E8 ⊗ H⊗8, and the action of L0 on RðΛ0Þ is
simply the tensor product action on E8 andH⊗8. The naive

computation of (B1) from the Hilbert space trace gives
infinite factors for all of them, and one needs to introduce
some well chosen insertion to potentially regularize them.
One difficulty is to find a regularization that preserves E9

invariance. We shall simply assume that it exists in the
following.
The trace satisfies

Tr1ðX
1

σ12Þ ¼ X
2

: ðB4Þ

Say that jJihJj ∈ e9, then one can decompose it in the base
1; L0; TA

n , and one can define a projector using the trace
formula

jJihJj ¼ 1

N

�
TrjJihJj · L0 þ TrL0jJihJj · 1

−
X
n

ηABTrTA
n jJihJj · TB

−n

�

¼ 1

N
hJjC0jJi: ðB5Þ

This permits to prove the identity

hJ1 jσ12X
13jJ1i¼ 1

N
Tr4ðhJ

1 jC140jJ
1iσ42X

43Þ¼ 1

N
X
23hJ1 jC120jJ

1i ðB6Þ

for any operator X acting on the tensor product
RðΛ0Þ ⊗ RðΛ0Þ. In the same way one obtains

hJ1 jσ12X
23jJ1i ¼ hJ1 jX13σ12jJ

1i ¼ 1

N
hJ1 jC120jJ

1iX23: ðB7Þ

These two identities will be very useful in the following.
Based on this formal trace, an alternative computation of

the Scherk–Schwarz Ansatz in the absence of L−1 gauging
goes as follows. For a twist matrix U solely in E9, such that
ς ¼ 0 in (5.3), one can define the Ansatz in terms of
matrices using the normalized trace

1

N
TrJ ¼ 1

N
hJjJih∂Jj ¼ h∂υj: ðB8Þ

The Scherk–Schwarz Ansatz written in the Dirac for-
malism then takes the form

jVi ¼ U−T jVi;
jξi ¼ U−T jξi;

jΣihπΣj ¼
1

N
e−υU

2 −T
ðhJ1jC121jJ1i ⊗ jξ

2

iÞh∂Jj; ðB9Þ

and we have
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Lξ;ΣjV
3 i ¼ h∂V jξiðU−T jViÞ þ h∂ξjðC0 − 1ÞðU−T jξi⊗ jViÞ þ 1

N
e−υh∂2 JjC

23

−1ðU
2 −T

hJ1jC121jJ1i⊗ jξ
2

iÞ⊗U
3 −T

jV3 i
¼ −U−Th∂JjξijJihJjVi−U−Th∂ρjðC0 − 1Þjξi⊗ jVi−U−Th∂JjðC0 − 1ÞðjJi⊗ jViÞhJjξi

þ 1

N
U−ThJj⊗ h∂JjC

23

−1C
12

1jJi⊗ jξi⊗ jVi

¼U−T
�
−h∂JjJihJjC0jξi⊗ jVi þ hJj⊗ h∂Jj

�
−σ13 þ σ12ð1−C

13

0 þC
23

0Þ−
1

N
C
23

−1C
12

1

�
jJi⊗ jξi⊗ jVi

�
: ðB10Þ

We can now remove all the σ12 and σ13 operators using Eq. (B6) as

hJj ⊗ h∂Jj
�
−σ13 þ σ12ð1 − C

13

0 þ C
23

0Þ þ
1

N
C
23

−1C
12

1

�
jJi ⊗ jξi ⊗ jVi

¼ 1

N
hJj ⊗ h∂JjðC

23

−1C
12

1 − C
13

0 þ C
12

0 − ½C230; C
12

0�ÞjJi ⊗ jξi ⊗ jVi

¼ 1

N
hJj ⊗ h∂JjðC

12

1C
23

−1 − C
23

0ÞjJi ⊗ jξi ⊗ jVi; ðB11Þ

where we used (2.21) in the last step.
The final result is

UTLξ;ΣjVi ¼
1

N
½hJj ⊗ h∂JjC1jJi�C−1ðjξi ⊗ jViÞ −

�
h∂JjJihJj þ

1

N
hJjJih∂Jj

�
C0ðjξi ⊗ jViÞ

¼ hθjC−1jξi ⊗ jVi þ hϑjC0jξi ⊗ jVi; ðB12Þ

corresponding to the ordinary gauging and the L0-gauging.
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