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The polymer representations, which are partially motivated by loop quantum gravity, have been
suggested as alternative schemes to quantize the matter fields. Here we apply a version of the polymer
representations to the free electromagnetic field, in a reduced phase space setting, and derive the
corresponding effective (i.e., semiclassical) Hamiltonian. We study the propagation of an electromagnetic
pulse, and we confront our theoretical results with gamma ray burst observations. This comparison reveals
that the dimensionless polymer scale must be smaller than 4 × 10−35, casting doubts on the possibility that
the matter fields are quantized with the polymer representation we employed.
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Loop quantum gravity (LQG) [1–3], which is a promi-
nent quantum gravity candidate, has inspired alternative
matter quantization methods, known as polymer represen-
tations [4–8]. These alternative methods resemble LQG in
that they are nonperturbative and unitarily inequivalent to
the Schrödinger representation. Also, the formal way the
states and the fundamental operators are expressed in the
polymer representations mimics the cylindrical functions
and the holonomy-flux algebra of LQG, respectively.
Moreover, the polymer representations have been consid-
ered, by themselves, as interesting alternatives to the
Schrödinger quantization [9–12].
Notably, most works on the polymer representations of

matter fields use scalar fields or do not make contact with
experimental data [13–19]. In contrast, our goal is to study
the empirical consequences of applying such a quantization
scheme to the free electromagnetic field in the framework
of Ref. [7]. To that end, we polymer quantize the Maxwell
theory and then use well-known methods to extract the
corresponding effective dynamics.
As it is well known, the electromagnetic field AνðxÞ, ν

being a spacetime index, has a Uð1Þ gauge symmetry and,
to quantize it, we utilize a reduced phase space quantization
(see, for example, Ref. [20]). Furthermore, we work in the
Minkowski spacetime with a global Cartesian coordinate
frame where t represents the time index and i, j are spatial
indices. We fix the gauge by taking At ¼ 0 ¼ ∂iAi, which
can be consistently imposed when there are no sources
[[21], Chap. 6.3]. In this case the action takes the form

S ¼ 1

2

Z
dtd3x½∂tAi∂tAi − ∂iAj∂iAj�: ð1Þ

In this work we use a metric with signature þ2 and adopt
natural units, i.e., Lorentz-Heaviside units with the addi-
tional conditions c ¼ 1 ¼ ℏ. To get the Hamiltonian H, we
use the spacetime foliation associated with constant t
hypersurfaces and denote the canonically conjugated
momenta by Ei, resulting in

H ¼ 1

2

Z
d3x½EiEi þ ∂iAj∂iAj�: ð2Þ

The fact that no constraints arise reflects that there is no
remaining gauge freedom.
To properly implement the polymer quantization we turn

to Fourier space. Notice, however, that a priori we cannot
assume Lorentz invariance, and thus, we do not use the
standard four-dimensional Fourier transform. Instead we
only perform such a transformation on the spatial coor-
dinates. Furthermore, to have a countable number of
modes, we consider the system to be in a finite box
that induces an energy cutoff Λc. Then, the fields can be
written as

Aiðx; tÞ ¼
X
k;r

ϵri

�
1þ i
2

Arðk; tÞ þ
1 − i
2

Arð−k; tÞ
�

× e−ik·x; ð3aÞ

Eiðx; tÞ ¼
X
k;r

ϵir
�
1þ i
2

Erðk; tÞ þ
1 − i
2

Erð−k; tÞ
�

× e−ik·x; ð3bÞ

where ϵri are the polarization vectors which satisfy ϵ
r
i k

i ¼ 0,
and the polarization index r runs from 1 to 2. It can be
checked that Ar and Er are real, have mass dimensions 1
and 2, respectively, and are canonically conjugate, that is,

*bonder@nucleares.unam.mx
†angel.garcia@correo.nucleares.unam.mx
‡saeed@xanum.uam.mx

PHYSICAL REVIEW D 96, 106021 (2017)

2470-0010=2017=96(10)=106021(8) 106021-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.106021
https://doi.org/10.1103/PhysRevD.96.106021
https://doi.org/10.1103/PhysRevD.96.106021
https://doi.org/10.1103/PhysRevD.96.106021


fArðk; tÞ; Esðk0; tÞg ¼ Λ3
cδrsδðk − k0Þ; ð4Þ

with all other Poisson brackets vanishing; s is another
polarization index. The factor Λ3

c compensates for the fact
that, in contrast to the Dirac delta, the Kronecker delta is
dimensionless. In terms of these fields, the Hamiltonian (2)
becomes

H ¼ 1

2Λ3
c

X
k;r

½Erðk; tÞ2 þ jkj2Arðk; tÞ2�; ð5Þ

which has the form of a harmonic oscillator for each mode
k and each polarization r.
We now implement the polymer representation on this

classical theory in the spirit of Ref. [7]. We start by
recalling that the Stone–von Neumann theorem [22] states
that, for any quantum system with finite degrees of free-
dom, any weakly continuous representation of the Weyl
algebra is unitarily equivalent to the standard Schrödinger
representation. There are situations, however, where the
weak continuity assumption is not valid and the represen-
tation of the algebra is thus inequivalent to that of
Schrödinger [23–25].
Now, to obtain the elements of the polymer quantization,

it is convenient to first define the Weyl algebra for each
mode k. The generators of this algebra are denoted by
WðA1;A2; E1; E2Þ, and their multiplication is given by

WðA1;A2; E1; E2ÞWðÃ1; Ã2; Ẽ1; Ẽ2Þ
¼ e

i
2
ΩWðA1 þ Ã1;A2 þ Ã2; E1 þ Ẽ1; E2 þ Ẽ2Þ; ð6Þ

where Ω ¼ P
r¼1;2ðErÃr −ArẼrÞ=Λ3

c is the symplectic
form evaluated at the corresponding phase-space point.
This algebra can be used to define four groups by setting all
but one of the arguments of W to zero. The most relevant
for our purposes are

V1;E1 ¼ Wð0; 0; E1; 0Þ; V2;E2 ¼ Wð0; 0; 0; E2Þ: ð7Þ

Should the algebra representation be weakly continuous,
there would be infinitesimal generators for all four groups
defined above satisfying the canonical commutation rela-
tions. In our case, which is inspired by the holonomy-flux
variables used in LQG, the weakly continuous condition of
the Stone–von Neumann theorem is not satisfied, and thus,
there are no infinitesimal generators for V1;E1 and V2;E2 .

Therefore, the fundamental operators are Ê1, Ê2, V̂1;E1 and
V̂2;E2 which satisfy

½V̂r;Er ; Ês� ¼ −δrsErV̂r;Er
: ð8Þ

We now focus on one harmonic oscillator labeled by the
fixed index r. The Hilbert space of such an oscillator is

HðrÞ
poly ¼ L2ðR̄; dμBohr½Ar�Þ, where R̄ is the Bohr compac-

tification of the real line and dμBohr½Ar� is the correspond-
ing measure [23,26]. Then, the wave functions can be
expressed as almost periodic functions

ΨðArÞ ¼
X
EðnÞ
r

ΨEðnÞr
e−iE

ðnÞ
r Ar=Λ3

c ; ð9Þ

with basis elements e−iE
ðnÞ
r Ar=Λ3

c . Such wave functions can
be represented by a graph with a finite, but arbitrary,
number of vertices N, with the nth vertex having a “color”

EðnÞ
r , and n ¼ 1; 2;…; N. Furthermore, the inner product

with respect to the measure dμBohr½Ar� is

he−iEðnÞr Ar=Λ3
c je−iE0ðmÞ

r Ar=Λ3
c i ¼ δ

EðnÞr ;E0ðmÞ
r
: ð10Þ

We emphasize that the right-hand side of the last equation is
a Kronecker delta. Finally, the representation of the
fundamental operators is

ÊrΨðArÞ ¼ −iΛ3
c

δ

δAr
ΨðArÞ; ð11Þ

V̂r;Ere
−iEðnÞr Ar=Λ3

c ¼ e−iðE
ðnÞ
r −ErÞAr=Λ3

c ; ð12Þ

which correctly implements the commutators (8).
The next step is to write the polymer quantum

Hamiltonian. Our starting point is the classical
Hamiltonian (5) at a fixed time, so that, when promoted
to an operator, it is in the Schrödinger representation. The
fact that the operator Âr does not exist creates serious
obstructions in representing the classical Hamiltonian,
which depends on A2

r . This difficulty can be circumvented
by replacing the operators Â2

r by a combination of Weyl
generators. Specifically, we consider only regular graphs1

that have equidistant values of Er, where the separation is
given by a fixed, albeit arbitrary, positive parameter μ, i.e.,

EðnÞ
r ¼ nμ. Note that we use the same μ for all polarizations

and for every Fourier mode. This is a rather common
assumption in this type of polymer quantization [7,8] and μ,
known as the polymer scale, is thought to be of the order of
the Planck scale (see, e.g., Ref. [23]). Concretely, we
replace Â2

r in the Hamiltonian by

Â2
r →

Λ6
c

μ2
½2 − V̂r;μ − V̂r;−μ�; ð13Þ

1For the polymer harmonic oscillator, the dynamics super-
selects equidistant graphs with polymer scale μ [23]. Moreover,
when considering all possible shifts of a regular graph, the energy
spectrum has a band structure [27,28]. However, when μ is much
smaller than the oscillator characteristic length, the bands’ width
is extremely narrow and it produces negligible physical effects.
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where, as can be seen from Eq. (12), V̂r;�μ, when applied to

a basis element, produces a shift in EðnÞ
r by�μ. Note that, in

the formal limit μ → 0, which only exists for regular
representations, the right-hand side of Eq. (13) reduces
to Â2

r . Under this replacement, the quantum polymer
Hamiltonian associated with Eq. (5) becomes

Ĥ¼ 1

2Λ3
c

X
k;r

�
Ê2
rðkÞþ

�
Λ3
c jkj
μ

�
2

ð2− V̂r;μ− V̂r;−μÞ
�
: ð14Þ

To derive the theoretical predictions that can be com-
pared with available empirical data, we obtain the effective
polymer Hamiltonian. This procedure is somehow techni-
cal, and it is thus described in Appendix A (see also
Refs. [23,27,29–34]). It turns out that such an effective
Hamiltonian can be obtained by replacing

ArðkÞ2 →
�
2Λ3

c

μ

�
2

sin2
�

μ

2Λ3
c
ArðkÞ

�
ð15Þ

in the classical action, which leads to the effective
Hamiltonian

Heff ¼
1

2Λ3
c

X
k;r

�
ErðkÞ2 þ

�
2Λ3

c jkj
μ

�
2

sin2
�
μArðkÞ
2Λ3

c

��
:

ð16Þ

This Hamiltonian leads to the equations of motion

dArðk; tÞ
dt

¼ Erðk; tÞ; ð17aÞ

dErðk; tÞ
dt

¼ −
Λ3
c jkj2
μ

sin

�
μ

Λ3
c
Arðk; tÞ

�
: ð17bÞ

Equations (17) are nonlinear, making it challenging to
find wave solutions, and consequently the modified
dispersion relations, as is typically done when looking
for quantum gravity effects (cf. Ref. [35]). Still, we want to
find empirical bounds on μ; hence, we solve Eqs. (17)
perturbatively.
Note that standard electromagnetism is recovered from

Eqs. (17) when μ → 0, and since this theory properly
describes all (classical) experiments, μ must be extremely
small. We use this fact to solve Eqs. (17) perturbatively
where, to have a well defined perturbative expansion, we
utilize the dimensionless polymer parameter ~μ ¼ μ=Λ2

c. To
obtain the perturbative equations it is convenient to first
combine Eqs. (17) into a single second-order equation for
Arðk; tÞ, which, when expanded in ~μ, takes the form

0 ¼ ∂2
t arðk; tÞ þ jkj2arðk; tÞ þ ~μ2

�
∂2
t δarðk; tÞ

þjkj2δarðk; tÞ −
jkj2
6Λ2

c
a3rðk; tÞ

�
þOð ~μ4Þ; ð18Þ

where Arðk; tÞ ¼ arðk; tÞ þ ~μ2δarðk; tÞ þOð~μ4Þ. It can
be verified that the solution to Eq. (18) is

arðk;tÞ¼Arðk;0ÞcosðjkjtÞþ
Erðk;0Þ

jkj sinðjkjtÞ; ð19aÞ

δarðk; tÞ ¼
jkj
6Λ2

c

Z
t

0

dsa3rðk; sÞ½sin ðjkjtÞ cos ðjkjsÞ

− cos ðjkjtÞ sin ðjkjsÞ�: ð19bÞ

We study the propagation of particular electromagnetic
pulses according to Eqs. (19). Such pulses have been
detected in the form of gamma ray bursts (GRBs), which
are high-energy electromagnetic emissions from astro-
physical sources that have played important roles in various
quantum gravity phenomenology scenarios (see, for exam-
ple, Refs. [36,37]). We model the GRB to be created in the
form of a Gaussian pulse that propagates along the x
direction, oscillates transversely in the y direction, and, at
t ¼ 0, is centered at the origin and around the frequency ω.
Concretely, during an infinitesimal time interval around
t ¼ 0, we take

Aðx; tÞ ¼ ŷae−σ
2ðx−tÞ2=2 cos½ωðx − tÞ�; ð20Þ

where a is the pulse amplitude and σ is the Gaussian
frequency width. The pulse’s profile is plotted in Fig. 1 for
the particular case where σ ¼ ω. We present the derivation
of the solution Aðx; tÞ for the initial data (20) in
Appendix B.
To compare with observations, we compute the pulse

speed (in the frame we use throughout the paper). To define

–3 –2 –1 1 2 3
x

–1.0

– 0.5

0.5

1.0

FIG. 1. Initial pulse profile in units of a for the particular case
where σ ¼ ω. The solid and the dashed lines, respectively,
represent jAðx; 0Þj and jEðx; 0Þj=ω.
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such a speed we follow the central pulse peak, since, as we
mention above, there is no dispersion relation at our
disposal from which we can read off a group velocity.
We find this speed by using xðtÞ ¼ tþ ~μ2αðtÞ þOð ~μ4Þ as
an ansatz for the x component of the central peak world
line, and we determine αðtÞ by the conditions that the peak
is an extremum of jAðx; tÞj, namely, that ∇jAðx; tÞj ¼ 0,
and that, at t ¼ 0, this peak is centered at the origin (see
Fig. 1). We present the derivation of αðtÞ in Appendix B.
Then, the pulse speed is simply dx=dt and, as we also
show in Appendix B, the t dependence of dx=dt drops as
e−2σ

2t2=3, and thus, after a small time (with respect to σ−1)
the speed stabilizes to the large-time speed v such that

1 − v ¼ a2 ~μ2

96
ffiffiffi
3

p
�
σ2 þ 3ω2 þ e−

4ω2

3σ2 ð3σ2 þ ω2Þ
σ2ðσ2 þ ω2Þ

�
þOð~μ4Þ:

ð21Þ

In Fig. 2 we plot the difference of the pulse speed dx=dt
and the large-time speed v as a function of t, for the
particular case where σ ¼ ω. For t≳ 3ω, such a difference
becomes negligible as is also evident from this figure. Thus,
given that we are interested in comparing the theoretical
predictions with astrophysical observations in which the
time of flight is much larger than the time scales associated
with σ, we neglect the time dependence of dx=dt and take v
to describe the pulse speed. Still, the pulse speed depends
on its frequency, frequency width, and amplitude.
We use the empirical data of a particular short GRB,

known as GRB090510, which was detected by the GBM
and LAT instruments onboard the Fermi Gamma-Ray
Space Telescope [38]. The GRB090510 event has ω ≈
30 GeV and the pulse energy ranges from hundreds of keV
to tens of GeV, setting the value of σ. Even though the pulse
amplitude is not reported, from the total energy released by
the GRB, we are able to infer that a ≈ 1028 GeV (see
Appendix C). Furthermore, it has been estimated that the
traveling time difference for different frequencies satisfies

jΔtj < 859 ms [39]. Since the traveling distance is
d ≈ 1028 cm, we can conclude that the speed difference
is restricted by j1 − vj < 3 × 10−18.
These experimental results can be compared with the

pulse speed prediction given by Eq. (21). The result is that,
for the effective theory under consideration to properly
describe the propagation of such a GRB,

~μ < 4 × 10−35: ð22Þ

The stringency of this bound comes, mainly, from the
enormous energy released by the GRB, and the large
distance traveled by the light. There are studies in which
more stringent limits on Δt are set by combining several
GRB observations [40], which would yield stronger bounds
on ~μ.
To get a sense of the stringency of the condition (22), we

can set Λ−1
c ∼D, where D ≈ 1010 yr is the universe age

[41]. That is, the size of the box in which we put the system
to have a countable number of modes is of the order of the
size of the observable universe. Under this assumption we
get μ < 10−118 GeV2 ¼ 10−156l2P=G

2, whereG is Newton’s
constant and lP is the Planck length. In other words, with
this hypothesis, μ is restricted to be at least 156 orders of
magnitude below the expected scale.
To summarize, we have successfully applied a polymer

quantization scheme to the free electromagnetic field in a
fixed gauge. We then obtained the effective Hamiltonian,
which leads to a nonlinear evolution and predicts that
electromagnetic pulses propagate with subluminal speeds
that depend on the pulses’ frequency, frequency width, and
amplitude. By comparing with the GRB data, we are able to
conclude that, to reconcile the theory with observations, the
polymer scale μ, when divided by the cutoff scale squared,
has to be smaller than 4 × 10−35. We would like to stress
that although other studies [8,42,43] have found obstruc-
tions on alternative matter polymer representations, our
analysis is the first to use physical fields, to actually
connect the predictions with existing observations, and
to put a bound on the polymer scale. Importantly, the strong
bound we set suggests that the polymer representation that
we employed may not be directly related with the presumed
quantum gravity scale, and that the method under consid-
eration may not be the way the matter fields in nature are
quantized.
Finally, an interesting extension of our work which could

shed light into the quantum nature of spacetime itself is to
study the gravitational waves in the effective polymer
description, particularly since there are experimental con-
straints on the speed of such waves [44,45]. In addition, it
would be enlightening to study the behavior of the
electromagnetic constraints when the field is quantized
polymerically, in which case, one cannot fix the gauge at
the classical level.

2 4 6 8 10
t

–0.010

–0.005

0.005

0.010

0.015

FIG. 2. Difference of the pulse speed and the large-time speed
v in units of ~μ2a2=ω2 and as a function of tω, for the case
where σ ¼ ω.
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APPENDIX A: EFFECTIVE DYNAMICS

In this appendix we derive the effective dynamics for the
theory under consideration. We first study the polymer
amplitude, and we then take the continuum limit. At this
point it is possible to extract the semiclassical action, where
the replacement (15) can be justified.
The polymer amplitude satisfies

hAr;f; tfjAr;i; tii
¼ hAr;fje−iðtf−tiÞĤjAr;ii

¼
�YN
n¼1

Z þπAc

−πAc

dAr;n

2πAc

�YNþ1

k¼1

hAr;k; tkjAr;k−1; tk−1i; ðA1Þ

where Ac ¼ Λ3
c=μ and ϵ ¼ tk − tk−1 are infinitesimal.

This calculation cannot be done using the conven-
tional techniques since the Er take values in discrete sets,

which implies that the Ar are compact and satisfy
ð1=2πAcÞ RþπAc

−πAc dArjArihArj ¼ 1.
As it is done in Ref. [[46], Chap. 6.1], we first compute

the infinitesimal amplitude for a vanishing Hamiltonian,

hAr;k; tkjAr;k−1; tk−1ið0Þ
¼ hAr;kjAr;k−1i
¼ 2πAc

X
n∈Z

δðAr;k −Ar;k−1 − 2πnAcÞ

¼ 1

2

X
n∈Z

Z þ∞

−∞
dφkeiφkðAr;k−Ar;k−1−2πnAcÞ=2Ac

; ðA2Þ

where φk are auxiliary variables. Then, to calculate
hAr;k; tkjAr;k−1; tk−1i we follow the derivation given in
chapter 2.1 of Ref. [[46], pp. 89–94], which calls for
amplitude (A2). The result is

hAr;k; tkjAr;k−1; tk−1i

¼
X
nk∈Z

Z þ∞

−∞

dφk

2
e

iφk
2AcðAr;k−Ar;k−1−2πnkAcÞ−iϵHðkÞ

;

where HðkÞ is the Hamiltonian (5) evaluated at Ar ¼
2Ac sin ðAr;k=2AcÞ and Er ¼ μφk=2.
Next we substitute Eq. (A3) in the amplitude (A1) and

redefine the integration variables Ar;nk → Ar;nk − 2πnkAc,
which leaves only one sum (more details on this last step
can be found in Ref. [[27], Appendix B]). Then, the
amplitude (A1) takes the form

hAr;f; tfjAr;i; tii ¼
X
l

�YN
n¼1

Z þ∞

−∞

dAr;n

2πAc�
�YNþ1

k¼1

Z þ∞

−∞

dφk

2

�
e
P

Nþ1

k¼1
½iφkðAr;k−Ar;k−1−2πlδk;Nþ1AcÞ=2Ac−iϵHðkÞ�: ðA3Þ

After integrating the auxiliary variables, the right-hand side of Eq. (A3) becomes

X
l

�YN
n¼1

Z þ∞

−∞

dAr;n

2πAc

�YNþ1

k¼1

ffiffiffiffiffiffiffiffiffi
2π

iϵμ2

s
exp

�
−
ðAr;k −Ar;k−1 − 2πlδk;Nþ1AcÞ2

2iΛ3
cðtk − tk−1Þ

−
2iðtk − tk−1Þjkj2ðAcÞ2

Λ3
c

sin2
�
Ar;k

2Ac

��
: ðA4Þ

The last step is to take the continuum limit N → ∞ in
Eq. (A4), which implies

hAr;f; tfjAr;i; tii ¼
X
l

Z
Ar;fþ2πlAc

Ar;i

DAr

2πAc e
iSeff=Λ3

c ; ðA5Þ

where DAr is the formal notation for the measure and the
effective action is

Seff ¼
Z

tf

ti

dt

�
1

2
Ȧ2

r −
jkj2
2

�
2Λ3

c

μ

�
2

sin2
�
μAr

2Λ3
c

��
: ðA6Þ

Observe that this effective action can be obtained from
Eq. (1) after making the replacement (15). This result

justifies such a replacement as a method to get the effective
limit from the polymer quantum theory. We want to
emphasize that our derivation was possible because the
field modes are described by quantum harmonic oscillators
and, in this case, there are no ambiguities; in other
theories one needs to be careful when applying similar
replacements.

APPENDIX B: DETAILED
PHENOMENOLOGICAL ANALYSIS

Here we present the computational details of some of the
results of the phenomenological part of the paper. We first
focus on the expression for Arðk; tÞ that is a solution with
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the initial data (20). To put these data in the form required
by the solution (19), we use the inverse of Eq. (3a) and
Eq. (17a); the result is

A1ðk; 0Þ ¼
aΛc

2σ

�
e−

ðjkj−ωÞ2
2σ2 þ e−

ð−jkj−ωÞ2
2σ2

�
; ðB1aÞ

A2ðk; 0Þ ¼ 0; ðB1bÞ

Erðk; 0Þ ¼ jkjArðk; 0Þ: ðB1cÞ

We then insert these initial conditions into Eqs. (19),
which, after some simplifications, lead to A2ðk; tÞ ¼ 0 and

A1ðk; tÞ ¼
aΛc

2σ

�
e−

ðjkjþωÞ2
2σ2 þ e−

ð−jkjþωÞ2
2σ2

�
½sinðjkjtÞ þ cosðjkjtÞ� þ ~μ2

a3Λc

768σ3

�
e−

ðjkjþωÞ2
2σ2 þ e−

ð−jkjþωÞ2
2σ2

�3

× fcosð3jkjtÞ − ð12jkjtþ 1Þ cosðjkjtÞ þ ½12jkjt − 2 cosð2jkjtÞ þ 14� sinðjkjtÞg þOðμ4Þ: ðB2Þ

It can easily be verified that, at t ¼ 0, these expressions reduce to Eqs. (B1). Next, we use Eq. (3a) to derive

Aðx; tÞ ¼ ŷae−
1
2
σ2ðt−xÞ2 cos½ωðt − xÞ� þ ~μ2

ŷa3

384
ffiffiffi
3

p
σ2

eð−9t2σ4−x2σ4−6txσ4−8ω2Þ=ð6σ2Þ

×

	
3ð4σ2t2 − 4σ2txþ 7Þe4σ2tðtþxÞ=3 cos

�
ω

3
ðt − xÞ

�
þ 12tωe4ðσ4t2þσ4txþω2Þ=ð3σ2Þ sin½ωðt − xÞ�

þ ð4σ2t2 − 4σ2txþ 7Þe4ðσ4t2þσ4txþω2Þ=ð3σ2Þ cos½ωðt − xÞ� − 8eð4σ4t2þ2σ4txþ4ω2Þ=ð3σ2Þ cos½ωðtþ xÞ�

þ e4ω
2=ð3σ2Þ cos½ωð3tþ xÞ� þ 12tωe4σ

2tðtþxÞ=3 sin
�
ω

3
ðt − xÞ

�
− 24e2σ

2tð2tþxÞ=3 cos
�
ω

3
ðtþ xÞ

�

þ3 cos

�
tωþ xω

3

�

þOðμ4Þ: ðB3Þ

Because of the complicated form of the above expression, it is hard to do a full consistency check; however, we can verify
that the above equation reduces to the corresponding initial data at t ¼ 0.
We now want to find the propagation speed of the central peak, which is the physical quantity we use to compare with the

experimental observations. We employ the ansatz xðtÞ ¼ tþ ~μ2αðtÞ þOð ~μ4Þ for the central peak world line. The value of
αðtÞ can be found using that the central peak is an extremum of jAðx; tÞj; i.e., it satisfies ∇jAðx; tÞj ¼ 0. When we take the
gradient of the norm of Eq. (B3) and evaluate it at xðtÞ ¼ tþ ~μ2αðtÞ, we get that, at order Oð~μ0Þ,

∇jAðx; tÞj ~μ¼0 ¼ x̂ae−σ
2ðt−xÞ2=2fσ2ðt − xÞ cos½ωðt − xÞ� þ ω sin½ωðt − xÞ�g: ðB4Þ

This last equation clearly vanishes for xðtÞj ~μ¼0 ¼ t, recovering the well-known result that, according to conventional
electrodynamics, pulses propagate at the speed of light. The Oð ~μ2Þ contribution has two parts: one from evaluating
∇jAðx; tÞj ~μ¼0 at ~μ

2αðtÞ, and a second from theOð~μ2Þ part of∇jAðx; tÞj, which is evaluated at xðtÞj ~μ¼0 ¼ t. From setting the
resulting expression to zero we obtain

αðtÞ ¼ −a2

1152
ffiffiffi
3

p
σ2ðσ2 þ ω2Þ

	
12tðσ2 þ 3ω2Þ þ 12tðω2 þ 3σ2Þe−4ω2=ð3σ2Þ − 8e−2σ

4t2=ð3σ2Þ½3ω sinð2tωÞ þ 2σ2 cosð2tωÞ�

− 24eð−2σ4t2−4ω2Þ=ð3σ2Þ
�
ω sin

�
2tω
3

�
þ 2σ2t cos

�
2tω
3

��
þ e−8σ

4t2=ð3σ2Þ½3ω sinð4tωÞ þ 4σ2t cosð4tωÞ�

þ 3eð−8σ4t2−4ω2Þ=ð3σ2Þ
�
4σ2t cos

�
4tω
3

�
þ 3ω sin

�
4tω
3

��

: ðB5Þ

It can be directly verified that αð0Þ ¼ 0, and therefore, xð0Þ ¼ Oð~μ4Þ, which ensures that we follow the central peak of the
pulse and not another extremum of jAðx; tÞj. Importantly, the fact that there exists a solution of αðtÞ for all t shows that
within our perturbative approach, the central peak can be traced for all times. Whether such a peak can be traced using the
unperturbed dynamics given in Eqs. (17) is an open question that is left to a future analytical or numerical study.
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Finally, the speed of the pulse’s central peak is

dx
dt

¼ 1þ ~μ2
dαðtÞ
dt

þOð ~μ4Þ

¼ 1 −
~μ2a2

864
ffiffiffi
3

p
σ2ðσ2 þ ω2Þ

	
9ðσ2 þ 3ω2Þ þ 9ðω2 þ 3σ2Þe−4ω2=ð3σ2Þ

þ 4e−2σ
2t2=3½12tωσ2 sinð2tωÞ þ ð4σ4t2 − 3σ2 − 9ω2Þ cosð2tωÞ�

þ 12eð−2σ4t2−4ω2Þ=ð3σ2Þ
�
4σ2tω sin

�
2tω
3

�
þ ð4σ4t2 − 3σ2 − ω2Þ cos

�
2tω
3

��

þ e−8σ
4t2=ð3σ2Þ½−24σ2tω sinð4tωÞ þ ð−16σ4t2 þ 3σ2 þ 9ω2Þ cosð4tωÞ�

þ eð−8σ4t2−4ω2Þ=ð3σ2Þ
�
−24σ2tω sin

�
4tω
3

�
þ ð9σ2 − 48σ4t2 þ 3ω2Þ cos

�
4tω
3

��

þOð~μ4Þ: ðB6Þ

Clearly, in the limit tσ ≫ 1, the last four lines are
exponentially suppressed, and we get the large-time speed
v given in Eq. (21).

APPENDIX C: GRB AMPLITUDE

The goal of this appendix is to infer the value of the pulse
amplitude a from the reported data: the pulse’s frequency,
frequency width, and total released energy, which has been
estimated at U ≈ 6 × 1055 GeV [47]. This part of the
analysis can be done using standard electromagnetism,
since, in Eq. (21), a is suppressed by ~μ2, and thus, any
additional ~μ correction lies at the order we neglect.
Moreover, we assume that the GRB is well described by
a three-dimensional spherical Gaussian pulse (since we are
only looking for an order-of-magnitude estimation, we
ignore that spherical symmetric systems do not radiate).
Around the emission time t ¼ 0, such a pulse can be
described by

Aðx; tÞ ¼ aϕ̂e−σ
2ðr−tÞ2=2 cos½ωðr − tÞ�; ðC1Þ

where we use conventional spherical coordinates r, θ, and
ϕ. This field is divergence free and, importantly, a, ω, and σ
play the same roles as in Eq. (20).
The total energy of an electromagnetic configuration is

given by the Hamiltonian (2) [[21], Chap. 6.7]. This total
energy for the pulse under consideration [taking into
account that Eq. (2) is written in Cartesian coordinates],
at t ¼ 0, is

U ¼ π3=2a2

4σ3

h
2ω2ð1 − e−

ω2

σ2 Þ þ ð3þ ln 4Þσ2ð1þ e−
ω2

σ2 Þ
i
:

ðC2Þ

Using the particular values for the GRB under consider-
ation (see the text for the values of ω and σ; we neglect the
frequency shift due to the relative speed of the source and
the detector) we find a ≈ 1028 GeV, which is the quantity
we require.
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