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To study the effect of parity violation on the rate of complexity growth, by using “complexity ¼ action”
conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically
massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one
can see that decreasing the parameter μ, which increases the effect of the Chern-Simons term and increases
chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation
between complexity growth and temperature rather than complexity growth and entropy. At the end we
comment on the possible meaning of the deforming term of chiral Liouville action for the rate of
complexity growth of warped conformal field theories in the tensor network renormalization picture.
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I. INTRODUCTION

Based on AdS/CFT duality and holography, one should
be able to calculate different parameters of a boundary CFT
by using the dual bulk theory. One such quantity is the
complexity of a quantum state where in the quantum
information context is defined by using the minimum
number of simple gates which are needed to build a
quantum circuit that constructs them from a certain
reference state [1]. There are also some recent progresses
in [2,3] to define complexity more rigorously in quantum
field theory and in a continuous way, where interestingly
their results in different setups match with results from
holography.
The holographic proposal, by Susskind [4,5], states that

for computing the quantum computational complexity of a
holographic state one can calculate the on-shell action on
the “Wheeler-De Witt” (WDW) patch. Therefore,

CðΣÞ ¼ IWDW

πℏ
; ð1:1Þ

where Σ is the time slice which is the intersection of
asymptotic boundary and the Cauchy surface in the
bulk. This proposal is named complexity ¼ action (CA)
conjecture.
There is also complexity ¼ volume (CV) conjecture [4]

which states that to compute the complexity of the
boundary state, one can evaluate the volume of a codi-
mension-one bulk hypersurface intersecting with the
asymptotic boundary on the desired time slice. So

CVðΣÞ ¼ maxΣ¼∂B
�
VðBÞ
GNl

�
; ð1:2Þ

where B is in the bulk and l is a specific time scale such as
the radius of AdS space.
The complexity grows linearly even after the boundary

reaches the thermal equilibrium and therefore it could be a
useful thermodynamical and quantum information mea-
sure. In the dual picture, this growth of complexity
corresponds to the expansion of the length of Einstein-
Rosen bridge or the volume of the wormhole entangling
two thermofield-double CFTs on boundary. Studying
properties of complexity could also help to understand
the inside of black holes.
In [6] an upper bound (Lloyds’ bound) for the rate of

growth of quantum complexity has been found and later in
[7] it was written in the holographic context as

dC
dt

≤
2M
πℏ

; ð1:3Þ

where M is the mass of the black hole in the bulk, and this
inequality saturates for the uncharged black holes.
In [8], using the CA conjecture, by calculating the on-

shell actions on two nearbyWDW patches, shown in Fig. 1,
the rates of complexity growth for gravity theories with
higher derivative terms, such as FðRÞ and new massive
gravity (NMG), for specific black hole solutions and
shockwave have been calculated and no violation for the
above bound has been observed.
However, recently in [9], it was suggested that funda-

mentally this bound could not be used in the holographic
setups since the assumption behind Margolus-Levitin
theorem [10] and therefore Lloyd’s bound is that the
quantum gates should be “orthogonalizing”. However, in
[9] it has been argued that the corresponding gates of
holographic setups and specifically the ones dual to black
holes should be “simple gates” and therefore Lloyd’s bound
will be violated as it has been observed in different example*mahdisghodrati@ipm.ir
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already such as in [10–13]. In this work we also present
another example where this bound is violated for warped
AdS3 and therefore warped CFTs and also some other
solutions of topologically massive gravity (TMG) and new
massive gravity (NMG).
Since now all the theories which were studied were

parity preserving having both left and right moving
modes in the dual boundary CFTs. In this work, we
are mainly interested in studying the effect of chirality on
the rate of growth of complexity. Notably, the effects of
chirality on the entanglement entropy in parity-violating
quantum field theories have been studied in [14–16].
There, an entanglement inflow between the bulk and the
domain wall has been perceived which actually comes
from the imbalance in the flux of modes flowing through
the boundary. So, it would be very interesting to check if
such effects can also be detected by calculating the
holographic complexity of the bulk in parity-violating
gravitation theories and specifically to study the effects of
edge states.
In this work, first we study the effect of the Chern-

Simons term on the rate of growth of complexity. Again
using the CA conjecture, we calculate the rate of complex-
ity growth in several solutions of topologically massive
gravity (TMG) which is the Einstein-Hilbert action plus the
chiral breaking Chern-Simons term.
As mentioned in [8], the main challenge is to calculate

the contribution coming from the boundary term. For the
Gibbons-Hawking boundary term of TMG we specifically
use the boundary term first introduced in [17] where the
background-independent charges of TMG have been cal-
culated. Considering that the approach of [5,7] has worked
for [8], we go forward and use it for different black hole
solutions of TMG namely, Bañados-Teitelboim-Zanelli
(BTZ), warped AdS3, null warped AdS3, supersymmetric
and Ait Moussa-Clément-Leygnac (ACL) black holes. We
will also present the result for the shockwave solution of
TMG in our following paper.
For the sake of comparing our results with the parity-

preserving case, we also calculate complexity growth in

warped AdS3, new hairy and log black hole solutions of
NMG and comment on the effect of warping factor, hair
parameter and log term on the growth rate of complexity.
We also compare complexity growth rate with different
thermodynamical quantities of these black holes and
observe a curious correlation between temperature and
complexity growth which might be useful in understand-
ing thermodynamical-like laws for complexity. Finally,
we conclude with a discussion where we comment on
many recent progresses in defining quantum complexity
in CFTs which one could also apply for the warped CFT
case as well. Specifically, we compare the usual Liouville
and “chiral Liouville” actions to try to interpret the
meaning of the warped CFT deformed term in the
multi-scale entanglement renormalization ansatz (MERA)
language.

II. COMPLEXITY GROWTH
IN A CHIRAL THEORY

The chiral theory of topologically massive gravity, also
known as Chern-Simons gravity is a rich, ghost-free theory
of gravity in 2þ 1 dimensions. The field equations of this
theory include the Cotton tensor which is the analogue of
the Weyl tensor in three dimensions and it can add a degree
of freedom to the theory to make it dynamical which also
makes the graviton massive. The effects of all these could
change the rate of complexity growth.
In first order formalism, the action of TMG with a

negative cosmological constant Λ ¼ −1=l2 can be written
as [17]

I ¼ −
1

16πG

Z
M
ϵABC

�
RAB þ 1

3l2
eAeB

�
eC

þ 1

32πGμ

Z
M
ðLCSðωÞ þ 2λATAÞ þ

Z
∂M

B: ð2:1Þ

In the above action, M is a three-dimensional manifold
where xμ are the local coordinates, G is the gravitation
constant, μ is a constant parameter with the dimension of
mass and LCS is the gravitational Chern-Simons three-form
whose relation is

LCSðωÞ ¼ ωABdωBA þ
2

3
ωA

Bω
B
Cω

C
A: ð2:2Þ

By defining the dreibein eA ¼ eAμdxμ and the spin
connections ωAB ¼ ωAB

μ dxμ one can write the curvature
two-form as

RAB ¼ 1

2
RAB
μν dxμdxν ¼ dωAB þ ωA

Cω
CB; ð2:3Þ

and then the torsion two-form as TA ¼ 1
2
TA
μνdxμdxν ¼

DeA, where the covariant derivative acts on the vectors
asDVA ¼ dVA þ ωA

BVB. As one would want a torsionless

FIG. 1. General Penrose diagram and the corresponding WDW
patch for calculating complexity growth. At the late time only
region 1 contributes to the complexity growth.
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theory, then TA ¼ 0 and then one can find the Lagrange
multipliers in terms of the Schouten tensor of the manifold

Sμν ¼ ðRicÞμν −
1

4
GμνR; ð2:4Þ

as

λmuA ¼ −2eAνSμν; ð2:5Þ
where G ¼ ηABeAμeBν .
For the first time, for the TMG case, in [17], the

boundary term which makes the variational principle well
defined was introduced as

B ¼ 1

32πG
ϵABCω

ABeC: ð2:6Þ

Note that specifically for the topological theories and
Chern-Simons action the contribution of the boundary
term is significant as it is also the case for the modes on
the boundary of topological matters.
Now, as explained in [18], TMG admits two different

kinds of black hole solutions, one is the asymptotically
AdS, BTZ solution of Einstein gravity with a negative
cosmological constant, and the other is the nonasymptoti-
cally flat, nonasymptotically AdS, with a zero cosmologi-
cal constant ACL black hole. In the following sections we
calculate the rate of complexity growth for these two
categories of black holes and study the effect of different
parameters of the theory and solutions, specifically the
parameter μ on this growth rate.

A. BTZ black hole

By the method introduced in [8,19], we evaluate the
TMG action for the BTZ case. For the BTZ metric of

ds2 ¼ −fðrÞ2dt2 þ dr2

fðrÞ2 þ r2
�
dϕ −

4GJ
r2

dt

�
2

;

f2ðrÞ ¼ r2

l2
− 8GM þ ð8GJÞ2

4r2
; ð2:7Þ

the vierbeins and spin connections would be [18]

e0 ¼ fðrÞdt;

e1 ¼
�
rdϕ −

4GJ
r

�
dt;

e2 ¼ 1

fðrÞ dr;

ω0
1 ¼

4GJ
r2fðrÞ dr;

ω0
2 ¼

�
f0ðrÞfðrÞ − 16G2J2

r3

�
dtþ 4GJ

r
dϕ;

ω1
2 ¼ fðrÞdϕ: ð2:8Þ

Note that for the BTZ case, the Cotton tensor vanishes
identically and so it satisfies the TMG field equations in a
trivial way. Now calculating the Lagrangian, the first term,
ϵABCRABeC, gives

ϵABCRABeC ¼ 2
�
2f0ðrÞfðrÞ þ rf00ðrÞfðrÞ þ rf02ðrÞ

þ 4G2J2

r3

�
dtdrdϕ: ð2:9Þ

For the second term we get

1

3l2
ϵABCeAeBeC ¼ −

2r
l2

dtdrdϕ: ð2:10Þ

Also for the BTZ metric, the Chern-Simon term would
give

LCS ¼ −
8GJ
r

�
64G2J2

r4
þ f00f þ f02 −

f0f
r

�
: ð2:11Þ

One can also check that as the Lagrange multiplier for the
locally AdS space is λAμ ¼ 1

l2 eAμ then λATA ¼ 0 and there
would be no contribution from this term as one expects
from the equations of motion of TMG. Also for the
boundary term B one finds

B ¼ 1

32πG
ϵABCω

ABeC ¼ 2fðf þ rf0Þdϕ ∧ dt: ð2:12Þ

Now we can write the parameters of the BTZ metric in
terms of the outer and inner horizon radii, rþ; r− [the
solutions of fðrÞ ¼ 0] in the following form:

f2ðrÞ ¼ ðr2 − r2þÞðr2 − r2−Þ
r2l2

;

8GM ¼ r2þ þ r2−
l2

;

8GJ ¼ 2rþr−
l

: ð2:13Þ

Also the total mass and total angular momentum of TMG
could be written as [17]

M ¼ M −
J
μl2

; J ¼ J −
M
μ
: ð2:14Þ

Now similar to [8], to find the rate of the growth of
complexity, one should calculate the difference between the
on-shell actions which are evaluated over the two nearby
WDW patches. At the late time the only part that contrib-
utes to the rate of complexity growth is region 1 which is
shown in blue in Fig. 2. For the BTZ case and at the late
time, only the region between the two horizons contribute
to this difference. So one would find
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δIM ¼ IM½WDWjtþδt� − IM½WDWjt�

¼ −
1

16πG

Z
rþ

r−

Z
tþδt

t

Z
2π

0

LEHdtdrdϕþ 1

32πGμ

Z
rþ

r−

Z
tþδt

t

Z
2π

0

LCSdtdrdϕ

¼ −
δt

4Gl2

Z
rþ

r−

�
rþ r2þr2−

r3

�
dr −

δtJ
2μ

Z
rþ

r−

dr
r

�
64G2J2

r4
þ f00f þ f02 −

f0f
r

�

¼ −
ðr2þ − r2−Þ
4Gl2

δtþ 1

4Gl3μ

�
r4þ − r4−
rþr−

�
δt: ð2:15Þ

The first term coming from the Einstein Hilbert term
matches with previous calculations such as in [8].
Then the contribution of the generalized Gibbons-

Hawking boundary term (2.6) would be

δI∂M ¼
Z

tþδt

t

Z
2π

0

2

l2
ð2r − r2þ − r2−Þdtdϕ

���
rþ

−
Z

tþδt

t

Z
2π

0

ð2r − r2þ − r2−Þdtdϕ
���
r−

¼ ðr2þ − r2−Þ
4Gl2

δt: ð2:16Þ

Based on (1.1), the complexity growth would be

_C ¼ dI
dt

¼ 1

4Gl3μ

�
r4þ − r4−
rþr−

�
: ð2:17Þ

We can also write the complexity growth _C in terms of the
conserved charges of BTZ as

_C ¼ 4M
μJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

l2

s
¼ 4

l2

Mμl2 þ J
Mþ μJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2M2 − J 2

μ2l2 − 1

s
:

ð2:18Þ

One can notice that the higher derivative corrections which
here is theChern-Simons term,would actually slowdown the
rate of growth of complexity similar to the results of [8] for
the critical gravity where the mass term decreased the rate.
Also note that for the special case of μl ¼ 1 the

complexity growth rate diverges indicating again that this
is a special point in the region of the solution. In this critical
point, the left central charge would vanish and the equation
of motion degenerate to a log gravity whose dual is the
Logarithmic conformal field theory [20].
From the result of (2.17) one can see that decreasing the

coupling μ which increases the effect of the Chern-Simons
term in the action (2.1) and increases the parity violation
would increase the rate of complexity growth. This actually
makes sense, since breaking the symmetry between the left
and right moving modes should definitely increase com-
plexity and its growth rate. Note that for μ → 0, where the
Chern-Simons term becomes completely dominant, the rate
of complexity growth diverges. This suggests that again for
this setup not all the gates are orthogonalizing and therefore
the Lloyd’s bound could be violated here as we observe this
is the case.
Note also that for the case μ → ∞, (2.17) will not give

the complexity growth of pure Einstein action. This is only
because, as one can see from the action of TMG with its
boundary term, (2.1), for the case of μ → ∞, only the
second integral vanishes and the third integral containing
the boundary term does not change. This is due to the fact
that the boundary term we consider, (2.6), does not depend
on μ. So as at the level of action when μ goes to infinity we
do not reach to Einstein theory, for the complexity we
should not expect to get the Einstein result as well
specifically as we use “complexity ¼ action” proposal.
Also, note that in (2.15), which considers action without

boundary term, sending μ to infinity in fact gives the
complexity of the BTZ black hole in Einstein theory, so our
calculations are in fact consistent. Only when we add the
(2.16) part to complexity (which again does not depend on
μ as it comes from the boundary term), we get the final
result (2.17) which for μ → ∞ does not give the Einstein
result, as we expected from the beginning considering the
total action.
The physical reason behind this could be that TMG is in

fact unstable. So as the theory collapses, we should change
FIG. 2. Penrose diagram of the BTZ black hole. At late times,
only the dark blue part contributes to the complexity growth.
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the whole action and its boundary to another theory (which
is here Einstein theory). So we cannot change smoothly
μ → ∞ and get the Einstein result as the TMG with its
boundary would not be correct any more. Therefore, we
should expect a discontinuity in complexity (as it is also the
case in the level of action) as μ goes to infinity. Note that
this kind of discontinuous behavior of complexity has been
seen in other solutions and setups recently such as in [21]
(note its Fig. 5). So, in fact, we expect complexity shows
discontinuous behavior in many other setups. Here in this
work we were only interested in the effect of chirality on
the whole complexity at points were TMG holds.
One might also try to interpret the results based on the

difference between the central charges,

cL ¼ 3l
2G

�
1 −

1

μl

�
; cR ¼ 3l

2G

�
1þ 1

μl

�
; Δc ¼ 3

μl
:

ð2:19Þ

To examine the behavior of complexity, we compare it
with other thermodynamical quantities of the BTZ black
holes in TMG which are as follows [22,23]:

S ¼ πrþ
2G

þ 1

μl
πr−
2G

; TH ¼ r2þ − r2−
2πl2rþ

;

M ¼ r2þ þ r2−
8Hl2

; J ¼ 2rþr−
8Gl

: ð2:20Þ

Note that for the extremal case where T → 0 and
rþ − r− → 0, we have _C → 0 as we expected.
In fact, there are evidences that complexity is a quantity

which shows similarities to both temperature and entropy.
However, from (2.20), one can notice the more similarities
are actually between complexity and temperature where
both are always proportional to ðrþ − r−Þ. In [24,25] also it
was shown that in certain systems by decreasing temper-
ature complexity would decrease. All these observations
could suggest that a more direct relationship between
complexity and temperature exists, rather than complexity
and entropy.
This is actually in accordance with the Lloyd’s proposal

in [6]. As he put forward, integrating T ¼ ð∂S=∂EÞ−1,
leading to T ¼ CE=S (C is just constant), suggests that the
temperature would actually govern the number of oper-
ations per bit per second, ðkB ln 2E=ℏS ≈ kBT=ℏÞ, that a
system can perform, and conceptually this is more related
to the concept of complexity than entropy. By calculating
the complexity of black holes, we also see this intercon-
nection directly.

B. Warped AdS3 black hole

Now we want to calculate the holographic quantum
complexity for a warped AdS3 black hole and study the
effect of warping factor in addition to the effect of chirality.

Warped AdS3 (WAdS3) black holes are in fact stretched
or squeezed deformation of BTZ black holes. Their
isometry group is SLð2; RÞ ×Uð1Þ and their dual boundary
theory is warped CFT (WCFT) which is a semidirect
product of a Virasoro algebra and a Uð1Þ Kac-Moody
algebra.
The metric of WAdS3 black hole in the Arnowitt-Deser-

Misner(ADM) form can be written as

ds2 ¼ l2ðdt2 þ 2MðrÞdtdθ þ NðrÞdθ2 þDðrÞdr2Þ;
ð2:21Þ

where

MðrÞ ¼ νr −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q
;

NðrÞ ¼ r
4

�
3ðν2 − 1Þrþ ðν2 þ 3Þðrþ þ r−Þ

− 4ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q �
;

DðrÞ ¼ 1

ðν2 þ 3Þðr − rþÞðr − r−Þ
: ð2:22Þ

Note that ν ¼ μl
3

and for the case of ν ¼ 1 this metric
reaches to the BTZ black hole in an unusual coordinate.
The Carter-Penrose diagrams of these kinds of black

space holes have been presented in [26] which are similar to
the asymptotically flat space times in 3þ 1 dimensions.
Also, in [26] it was shown that these black holes are stable
against the massive scalar field perturbations.
If we choose the following vierbein [27],

e0 ¼ l

2
ffiffiffiffiffiffiffiffiffiffi
DðrÞp dθ; e1 ¼ l

ffiffiffiffiffiffiffiffiffiffi
DðrÞ

p
dr;

e2 ¼ ldtþMðrÞldθ; ð2:23Þ

then the spin connections would be

ω01
t ¼ −ω10

t ¼ −M0; ω02
r ¼ −ω20

r ¼ −
ffiffiffiffi
D

p
M0;

ω01
θ ¼ −ω10

θ ¼ MM0 − N0;

ω12
θ ¼ −ω21

θ ¼ −
M0

2
ffiffiffiffi
D

p : ð2:24Þ

Then calculating different terms in the Lagrangian, we find

ϵABCRABeC ¼ 3

2
lM02dtdrdθ;

1

3l2
ϵABCeAeBeC ¼ −ldtdrdθ;

LCS ¼ 2ðM0N00 −M00N0Þdtdrdθ; 2λATA ¼ 0:

ð2:25Þ
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Taking the integral we get

δIM ¼ −
l
8G

ðν2 − 1Þðrþ − r−Þδt: ð2:26Þ

From the boundary term we also get

δI∂M ¼ l
16G

ðν2 þ 3Þðrþ − r−Þδt: ð2:27Þ

So the rate of complexity growth would be

_C ¼ l
G

�
5 − ν2

16

�
ðrþ − r−Þ: ð2:28Þ

As the central charges of dual CFT are

cL ¼ 4νl
ð3 − ν2ÞG ;

cR ¼ ð5ν2 − 3Þl
νð3 − ν2ÞG ; ð2:29Þ

in order to have positive central charges we should have
ν2 < 3, then one can see the growth of complexity is
actually positive as one expected.
It can be seen that the deformation parameter ν would

actually decrease the rate of the growth of complexity. In
future works, different proposed pictures for complexity,
such as the ones in [28] or [29], could be implemented to
describe this fact, which we will explain in the discussion
section.
The thermodynamical properties of warped AdS3 black

holes are also as follows [30]:

TR ¼ ðν2 þ 3Þðrþ − r−Þ
8πl

;

TL ¼ ðν2 þ 3Þ
8πl

�
rþ þ r− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

p
ν

�
;

TH ¼ ðν2 þ 3Þ
4πl

ðrþ − r−Þ
ð2νrþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

p
Þ ;

S ¼ πl
24νG

h
ð9ν2 þ 3Þrþ − ðν2 þ 3Þr−

− 4ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 þ 3Þrþr−

q i
: ð2:30Þ

One can see that again the rate of complexity growth is
more correlated with the temperatures, i.e., TR and TH,
rather than the entropy of the black hole. It could be
interesting to try to further explain this observation by
considering the properties and dynamics of the modes in
the warped CFTs and then also by taking into account some
other more exotic pictures such as ER ¼ EPR in warped
CFTs or others such as [28,29].

C. Null warped AdS3

A vacuum solution of TMG is null warped AdS3 which
is only well defined at ν ¼ 1. So it would be easier to
study just the effect of the μ term in the action on the
rate of complexity growth. Its isometry group is again
SLð2; RÞ × Uð1Þ. Also the entropy and TL for this case is
zero, but TR ¼ α

πl.
The metric of the null warped black hole is of the

form [27]

ds2 ¼ l2
�
−2rdθdtþ ðr2 þ rþ α2Þ þ dr2

4r2

�
; ð2:31Þ

where to avoid naked causal singularity, one should
take 0 < α < 1=2.
The vierbein are

e0 ¼ rldtþ 1

2
lð1 − α2 − r − r2Þdθ; e1 ¼ l

2r
dr;

e2 ¼ −rldtþ 1

2
lð1þ α2 þ rþ r2Þdθ; ð2:32Þ

and the nonzero components of the spin connections are

ω01 ¼ −ω10 ¼ rdtþ 1

2
ð1 − r − 3r2 þ α2Þdθ;

ω02 ¼ −ω20 ¼ 1

2r
dr;

ω12 ¼ −ω21 ¼ rdtþ 1

2
ð−1 − r − 3r2 þ α2Þdθ: ð2:33Þ

Now computing all the terms in the Lagrangian we get

ϵABCRABeC ¼ −3ldtdrdθ;
1

3l2
ϵABCeAeBeC ¼ ldtdrdθ;

LCS ¼ 2ð1þ α2 þ 3r2Þdtdθdr;
B ¼ −4rldθdt: ð2:34Þ

Taking the integral from r ¼ 0 to a specific rs wewill get

_C ¼ rs
4G

�
lþ 1þ α2 þ r2s

2μ

�
− 8πGrs: ð2:35Þ

The first two terms come from the bulk action and the
last term comes from the boundary term. Note that again
decreasing the parameter μ, which increases the chirality,
would actually increase the rate of growth of complexity
similar to the BTZ solution of TMG.

D. Supersymmetric black hole

A new solution of TMG with negative cosmological
constant was found in [31] which is supersymmetric,
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asymptotically approaches the extremal BTZ solution, and
goes to flat space if one sets the cosmological constant to
zero. So with these specific characteristics it might be
interesting to also check its rate of complexity growth.
For these black holes the vierbein would be [31]

e0 ¼ fðρÞdt; e1 ¼ dρ; e2 ¼ hðρÞðdϕþ aðρÞdtÞ;
ð2:36Þ

and the spin connections are

ω0
1 ¼

�
f0 −

aa0h2

2f

�
dt −

a0h2

2f
dϕ;

ω0
2 ¼ −

a0h
2f

dρ; ω1
2 ¼

�
−
a0h
2

− ah0
�
dt − h0dϕ:

ð2:37Þ
The metric functions for the solution of [31] are

f ¼ f0e2ρ=lð1þ β1e2ρ=l þ β2eð1=l−kμÞρÞ−1=2;
h ¼ h0ð1þ β1e2ρ=l þ β2eð1=l−kμÞρÞ1=2;

a ¼ −a0 þ k
f0
h0

e2ρ=lð1þ β1e2ρ=l þ β2eð1=l−kμÞρÞ−1;

ð2:38Þ

where β1, β2, a0, f0, h0 are some integration constants.
The extremal BTZ can be recovered in the limit of jμj → ∞
of the above solution.
Note that both the extremal BTZ and the solution here

are in fact supersymmetric since for them, there exists a
2-spinor ϵ which satisfies�

2Dþ 1

l
γ

�
ϵ ¼ 0; ð2:39Þ

where γ ¼ γaea and D ¼ dþ 1
2
ωabσab.

As mentioned in [31], depending on the values of the
integration constants β1 and β2, we can find singularities
and event horizons in the metric functions.
Now by inverting the metric and finding the roots of the

tt component of the inverse metric, i.e, g−1tt , we can find the
location of the event horizon as

2β1eð
1
lþkμÞρ þ β2ð1 − μklÞ ¼ 0;

→ ρs ¼
l

1þ μkl
log

�
β2ðμkl − 1Þ

2β1

�
: ð2:40Þ

Now for this solution we can find the terms in the
Lagrangian. The first term gives

ϵABCRABeC ¼ a02h3

2f
− 2ðhf00 þ h0f0 þ h00fÞ: ð2:41Þ

The second term would be

1

3l2
ϵABCeAeBeC ¼ 2fh

l2
dtdϕdρ: ð2:42Þ

The Chern-Simons term is

LCS ¼
h2a0

f2
ðf02 − h2a02Þ − f0h

f
ða00hþ 4a0h0Þ

þ h

�
a00h0 − a0h00 þ a0hf00

f

�
þ 3a0h02; ð2:43Þ

and the boundary term is

B ¼ −
1

16πG
ðhf0 þ h0fÞdϕ ∧ dt ¼ −

1

4Gl
e
2ρ
l f0h0δt:

ð2:44Þ

The general terms for the rate complexity are compli-
cated. However for the special case of k ¼ 1 in this
solution, things would become much more simplified
and therefore we only present the result for this special
case. Therefore we find

δIM ¼ f0h0
Gl2

��
β2ðμl − 1Þ

2β1

� 2
μlþ1

−
l
4

�
δt; ð2:45Þ

and

δI∂M ¼ f0h0
Gl

�
1

4
− 2−2−

2
μlþ1

�
β2ðμl − 1Þ

β1

� 2
μlþ1

�
δt; ð2:46Þ

So the rate of complexity growth would be

_C ¼ f0h0
Gl2

2−2−
2

μlþ1

�
4

1
μlþ1l − ðl − 2Þ

�
β2ðμl − 1Þ

β1

� 2
μlþ1

�
:

ð2:47Þ

Note that the above relation is actually a more compli-
cated function of μ, but one can see that generally it
decreases by increasing the coupling constant μ which is
similar or BTZ and warped AdS3 case.

E. ACL black hole

In addition to BTZ, TMG also admits a nonasymptoti-
cally flat, nonasymptotically AdS black hole solution
named ACL [18]. It was shown in [32] that these black
holes are geodesically complete and causally regular which
this property makes the computation of their complexity
interesting.
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This black hole is of the following form:

ds2 ¼ −β2
ρ2 − ρ20

r2
dt2 þ 1

ζ2β2
dρ2

ρ2 − ρ20

þ r2
�
dφ −

ρþ ð1 − β2Þω
r2

dt

�
2

; ð2:48Þ

with

r2 ¼ ρ2 þ 2ωρþ ω2ð1 − β2Þ þ β2ρ20
1 − β2

; ð2:49Þ

where

β2 ≡ 1

4

�
1 −

27Λ
μ2

�
; ζ ¼ 2

3
μ: ð2:50Þ

Note that the two parameters ω and ρ0 ≥ 0 are related to
the mass and angular momentum of the black hole. Also if
ω ¼ ρ0 ¼ 0, the metric becomes horizonless and becomes
a ground state solution. Therefore, we expect for this case
the complexity and its growth rate vanishes.
Writing the metric in the ADM form,

ds2 ¼ −N2dt2 þ r2ðdφþ NφdtÞ2 þ 1

ðζrNÞ2 dρ
2; ð2:51Þ

the dreibein ea for this metric would be

e0 ¼ Ndt; e1 ¼ rðdφþ NφdtÞ; e2 ¼ 1

ζrN
dρ; ð2:52Þ

with the following corresponding spin connections [18]:

ω0
2 ¼ ζr

�
N0e0 þ 1

2
rðNφÞ0e1

�
;

ω0
1 ¼ ζr

1

2
rðNφÞ0e2;

ω1
2 ¼ ζr

�
1

2
rðNφÞ0e0 þ N

r0

r
e1
�
: ð2:53Þ

Now calculating different terms in the Lagrangian, we get
the following results:

ϵABCRABeC ¼ ζr
2
ðr3ðNφ0Þ2 þ 4NN0r0Þdtdρdφ

¼ ζ

2
dtdρdφ;

1

3l2
ϵABCeAeBeC ¼ −

2

ζl2
dtdρdφ;

LCS ¼ −
ζ2r3

2
ðNφÞ0ðr3ðNφ0Þ2 − 4NN0r0Þ

× dtdρdφ; ð2:54Þ

and the boundary term would be

1

32πG
ϵABCω

ABeC ¼ ζ

16πG
rNðN0rþ Nr0Þdtdφ: ð2:55Þ

The contribution of the first two Einstein terms would be

δIM1
¼ −

ρ0ζ

8G

�
1 −

4

l2ζ2

�
δt; ð2:56Þ

and the contribution of the Chern-Simons term is

δIMCS
¼ ζβ

24G

�
ζ2ð2ρ02 þ ω2ð3β4 − β2 − 2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ02 þ ðβ2 − 1Þω2Þðβ2 − 1Þ

p
× ArcTanh

�
2βρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ02 þ ðβ2 − 1Þω2Þðβ2 − 1Þ

p
ρ0

2 þ ðβ4 − 1Þω2

�

þ 5βω log

�
ρ0 − ωðβ2 − 1Þ
ρ0 þ ωðβ2 − 1Þ

�

þ 4ρ0
3β3

ρ0
2 − ðβ2 − 1Þ2ω2

− 6ρ0β −
ρ0
β

�
δt: ð2:57Þ

Finally the boundary term would result in

δI∂M ¼ ρ0ζβ
2

4G
δt: ð2:58Þ

Note that if ω ¼ ρ0 ¼ 0 all these three terms vanish as we
have expected.
Using (2.50), one can then write the sum of all these in

terms of μ. The final result of the rate of complexity growth
versus μ is shown in Fig. 3. Again, one can notice that
decreasing μ, meaning increasing the effect of the Chern-
Simons term, would increase the rate of complexity growth
to the point that for μ → 0 it diverges, again in a 1

μ fashion,
which is similar to the previous cases. The Lloyd’s bound
will be violated since in this setup not all the gates are

10 5 5 10

2

1

1

2

dC

dt

FIG. 3. Plot of _C vs μ for ρ0 ¼ ω ¼ G ¼ l ¼ 1 and β ¼ 1
2
.
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orthogonalizing. For this figure, however, note that one
should only consider the region where _C is positive.
As calculated in [18], the thermodynamical quantities of

this black hole is as follows:

TH ¼ μβ2

3π

ρ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
ρ0 þ ð1 − β2Þω ;

S ¼ π

3G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ðð1þ β2Þρ0 þ ð1 − β2ÞωÞ;

M ¼ μ

9G
β2ð1 − β2Þω;

J ¼ μβ2

18G

�
ð1 − β2Þω2 −

1þ β2

1 − β2
ρ20

�
: ð2:59Þ

Here it is a bit more difficult to distinguish the strength of
correlation between different thermodynamical quantities.

F. Shockwave solution of TMG

Similar to [8], one can also study the shockwave solution
of TMG to get more information about the boundary
complexity. We will present this computation in our future
paper. However we just sketch the general idea here.
First, one writes the black brane metric of

ds2 ¼ −
r2 − r2h
l2

dt2 þ l2

r2 − r2h
dr2 þ r2

l2
dx2;

Λ ¼ −
1

l2
; ð2:60Þ

in the Kruskal coordinates [34],

ds2 ¼ 2AðuvÞdudvþ BðuvÞdx2; ð2:61Þ
where

AðuvÞ ¼ −
2cl2

ð1þ cuvÞ2 ; BðuvÞ ¼ r2h
l2

�
1 − cuv
1þ cuv

�
:

ð2:62Þ

Then, by considering the following backreacted metric
ansatz

ds2 ¼ 2AðUVÞdUdV þ BðUVÞdx2
− 2AðUVÞhðxÞδðUÞdU2; ð2:63Þ

and the calculated form of shockwave strength, i.e, the
function hðxÞ [34],

hðxÞ ¼ −
η

2a2

�
xþ 1

2a2

�
e−a2x; ð2:64Þ

and also the following form of scrambling time and
butterfly velocities [34]:

t� ¼ −
β

2π
log

k
l
; vð1ÞB ¼ 2π

βa2
¼ 1;

vð2ÞB ¼ 2π

βa1
¼ 1

μl
; ð2:65Þ

one can calculate the action for two different regimes of
small shifts, u−10 þ hðxÞ < v0 and large shifts where
u−10 þ hðxÞ ≥ v0. Note that for these two different cases
the corresponding WDW patches are different leading to
different results for the rate of complexity growth.

III. COMPLEXITY GROWTH IN A
PARITY-PRESERVING THEORY

We now study the rate of complexity growth for several
black hole solutions of new massive gravity, as a parity-
preserving theory, to compare some results with the
previous case and also to examine the effects of mass
term, warping factor, hair parameter and different variables
of the theory.
The action of NMG is

I ¼ 1

16πG

Z
M

d3x
ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

m2

�
RμνRμν −

3

8
R2

��
;

ð3:1Þ

where m is a dimensionful parameter. One can also write
this theory in the following form [35]:

I ¼ 1

16πG

Z
M

d3x
ffiffiffiffiffiffi
−g

p

×
h
R − 2Λþ fμνGμν þ

m2

4
ðfμνfμν − f2Þ

i
: ð3:2Þ

In the above term, Gμν is the Einstein tensor and the
auxiliary field fμν is

fμν ¼ −
2

m2

�
Rμν −

1

2ðdþ 1ÞRgμν
�
: ð3:3Þ

The Gibbons-Hawking boundary term would be

IGGH ¼ 1

16πG

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p ð−2K − f̂ijKij þ f̂KÞ; ð3:4Þ

where Kij is the extrinsic curvature of the boundary and
K ¼ γijKij is the trace of the extrinsic curvature. The
auxiliary filed f̂ij is also defined as

f̂ij ¼ fij þ 2hðiNjÞ þ sNiNj; ð3:5Þ

where the above functions are defined from the following
ADM form of the metric:
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ds2 ¼ N2dr2 þ γijðdxi þ NidrÞðdxj þ NjdrÞ: ð3:6Þ

Note that NMG is also a rich theory which admits
several solutions. The complexity growths for BTZ, AdS-
Schwarzschild black hole, and shockwave solutions of
this theory have been studied in [8]. Here we would like to
study the rate of complexity for some other black hole
solutions.

A. Warped AdS3 black hole

The form of the metric has been given in Eq. (2.21).
By calculating the action (3.1) and the boundary term (3.4),
the rate of complexity growth can be found as

δIM ¼ 1

16πG

Z
rþ

r−

Z
tþδt

t

Z
2π

0

LNMGdϕdtdr

¼ δtlð4ν4 − 48ν2 þ 9Þ
8Gð20ν2 − 3Þ ðrþ − r−Þ; ð3:7Þ

and

δI∂M ¼ 1

16πG

Z
tþδt

t

Z
2π

0

dtdϕ

×

�
3lðν2 þ 3Þð4ν2 − 1Þ

ð20ν2 − 3Þ ð2r − rþ − r−Þ
�����

rþ

−
1

16πG

Z
tþδt

t

Z
2π

0

dtdϕ

×
�
3lðν2 þ 3Þð4ν2 − 1Þ

ð20ν2 − 3Þ ð2r − rþ − r−Þ
�����

r−

¼ δt3lðν2 þ 3Þð4ν2 − 1Þ
4Gð20ν2 − 3Þ ðrþ − r−Þ: ð3:8Þ

So, the rate of increase in complexity is

_C ¼ dI
dt

¼ lð28ν4 þ 18ν2 − 9Þ
8Gð20ν2 − 3Þ ðrþ − r−Þ: ð3:9Þ

We can also write the above result in terms of the conserved
charges of the solution, M and J [36].
One can notice that similar to (2.28), both in TMG and

NMG, the rate of complexity growth for warped AdS3
black holes only depends on the warping factor ν and
the difference between the inner and outer horizons; i.e.
_CWBTZ ∝ ðrþ − r−Þ, while in the BTZ case the relation is in
the form of _CBTZ ∝ ðr2þ − r2−Þ. These results are summa-
rized in Table I.
Interestingly, this is similar to the way that the inner and

outer temperatures of the horizons of these black holes,
i.e, TH

þ, TH
−, and also the right-moving temperature TR of

the warped AdS3 black hole, depend on the horizons’ radii.
The difference between the factors of rþ and r− in CFT
and warped CFT cases could be due to the fact that in CFTs

we have both left and right moving modes while in WCFTs
there are only right moving modes. Studying these relations
further could lead to a better understanding of the thermo-
dynamics of quantum complexity.
Also, it is worth noticing that in the region where the

solution is spacelike stretched and is free of naked closed
timelike curves (which is satisfied when ν2 > 1), the
relation (3.9) is an increasing function of ν, while relation
(2.28) is a decreasing one.

B. New hairy black hole

It would also be interesting to study the effect of black
hole’s hair on the growth rate of complexity as any hair
parameter could change different features of black holes
such as evaporation, encoding of information and scram-
bling behaviors.
For doing so we study a hairy black hole solution of

NMG which was first introduced in [37] and then later it
was studied more in [38–40] and also in [41,42] where their
Hawking-Page phase diagrams were presented.
For this type of black hole, in the action (3.1), we should

set m2 ¼ Λ ¼ − 1
2l2. Then the form of the metric could be

derived as

ds2 ¼ −NFdt2 þ dr2

F
þ r2ðdϕþ NϕdtÞ2; ð3:10Þ

where

N ¼
�
1þ bl2

4H
ð1 − Ξ1

2Þ
�

2

;

Nϕ ¼ −
a
2r2

ð4GNM − bHÞ;

F ¼ H2

r2

�
H2

l2
þ b

2
ð1þ Ξ1

2ÞH

þ b2l2

16
ð1 − Ξ1

2Þ2 − 4GNMΞ1
2

�
;

H ¼
�
r2 − 2GNMl2ð1 − Ξ1

2Þ − b2l4

16
ð1 − Ξ1

2Þ2
�1

2

;

and Ξ ≔ 1 − a2

l2 , −l ≤ a ≤ l.
Depending on the range of the parameters M, a, and b,

this solution could have an ergosphere and inner and outer
horizons which could make this example more interesting
for studying its rate of complexity growth.

TABLE I. Complexity growth of BTZ and WAdS3 black holes
in two theories of TMG and NMG.

TMG NMG

BTZ r2þ−r
2
−

4Gl2 ðr2þþr2−
μlrþr−

Þ r2þ−r
2
−

4Gl2 ð1 − 1
2l2m2Þ

WAdS3 lðrþ−r−Þ
8G ð5−ν2

2
Þ lðrþ−r−Þ

8G ð28ν4þ18ν2−9
20ν2−3 Þ
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The Penrose diagrams for different signs of b and μ have
been brought in [37] which basically are similar to the
Schwarzschild case.
Now calculating the complexity growth for the most

general case gives a very complicated answer. Since we are
only interested in studying the effect of hair parameter b
here, by taking a ¼ 0, we only consider the nonrotating
case. So we get

δIM ¼ IM½WDWjtþδt� − IM½WDWjt�

¼ ðrþ − r−Þ
2Gl2

ðbl2 þ rþ þ r−Þδt; ð3:11Þ

and the contribution from the boundary term is

δI∂M ¼ −
ðrþ − r−Þ
2Gl2

�
b2l4

4
þ bl2ðrþ þ r−Þ

þ 2

3
ðrþ2 þ rþr− þ r−2 − 6MGl2Þ

�
δt: ð3:12Þ

Note that increasing the hair parameter b increases the
contribution to the complexity growth from the bulk term
and decreases the complexity growth coming from the
boundary term.
For the following special case where

b ¼ −
1

l2
ðrþ þ r−Þ; M ¼ −

rþr−
4Gl2

; ð3:13Þ

the total rate of complexity growth is

_C ¼ ðrþ − r−Þ
2Gl2

�
1

3
ðr2þ þ r2−Þ þ

l2

4
ðrþ þ r−Þ þ

7

3
rþr−

�
:

ð3:14Þ

One can see that similar to the relation for the temperature
of this type of black hole, the rate of complexity growth
also has a factor of ðrþ − r−Þ.
It might also be interesting to study complexity growth

rate for the case with a positive cosmological constant
where the black hole posses both the event horizon and
cosmological horizon [37].

C. Log black hole solution

Another solution of NMGwhere one might think that the
behavior of its complexity growth could be interesting is
the so-called “log” solution. This solution was first found in
[43,44]. For the special case of ν ¼ −l which was defined
in [44], the following simple solution could be written as

ds2 ¼ ð−2l−2ρþ ðAρ−l logðρÞ þ BÞÞdt2
− 2lðAρ−l logðρÞ þ BÞdtdϕ

þ ð2ρþ l2ðAρ−l logðρÞ þ BÞÞdϕ2 þ l2dρ2

4nρ2
;

ð3:15Þ

and for this case the entropy is

S ¼ 2Ahlðlþ 1Þ
Gð1þ 8lðlþ 1Þ : ð3:16Þ

Now computing the Lagrangian (3.1) and (3.4) we find

δIM ¼ −
4ðlþ 1Þðrþ − r−Þ
Glð1þ 8lðlþ 1ÞÞ δt; ð3:17Þ

and

δI∂M ¼ 4ðlþ 1Þðrþ2 − r−2Þ
Glð1þ 8lðlþ 1ÞÞ δt; ð3:18Þ

leading to the total complexity growth of

_C ¼ 4ðlþ 1Þ
Glð1þ 8lðlþ 1ÞÞ ðrþ − r−Þðrþ þ r− − 1Þ: ð3:19Þ

One can see that even for a log solution, although
different terms such as fij might have a complicated form,
the final result for the rate of complexity growth would
greatly simplify and also a factor of ðrþ − r−Þ is again
present here, similar to the BTZ and warped AdS3
black holes.

IV. DISCUSSION

In this paper our first aim was to examine the effect
of chirality on the rate of growth of complexity in order
to get more information about how different aspects of
“complexity ¼ action” conjecture would work in different
setups.
To do so we studied the rate of complexity growth for

different solutions of a chiral breaking theory (TMG) and a
chiral-preserving theory (NMG). Specifically using CA
conjecture, we calculated the complexity growth for BTZ,
warped AdS3, null warped AdS3, supersymmetric and ACL
black hole solutions of TMG and then warped AdS3, new
hairy and log black hole solutions of NMG.
Using the specific Gibbons-Hawking boundary term of

TMG, introduced in [17], and then by calculating different
terms of the action and integrating on the Willer-DeWitt
patch, we found that increasing the parameter μ would
actually decrease the rate of complexity growth of the BTZ
black hole in TMG. By decreasing μ which increases the
effect of the Chern-Simons term and increases chirality, the

COMPLEXITY GROWTH IN MASSIVE GRAVITY … PHYSICAL REVIEW D 96, 106020 (2017)

106020-11



rate of complexity growth would increase where for μ → 0
the rate of complexity growth would diverge. The Lloyd’s
bound also would be violated in our case. For the parity-
preserving theory of NMG, however, we see that by
decreasing m2 which increases the effect of the higher
derivate term (couples the 1

m2), the rate of growth of
complexity of BTZ would decrease.
For the case of the warped AdS3 black hole we found that

generally the warping factor ν decreases the rate of growth
of complexity in the chiral theory of TMGwhile it increases
this rate in NMG. This could be interpreted by the dynamics
of left and right moving modes and their effects on the
growth of complexities in these two theories. It would also
be very interesting to study the effect of μ or warping factors
on the scrambling or switchback time of a warped AdS3
black hole in these two theories and compare the results.
Another interesting point that we have found is that in all

of these theories there was a direct relationship between the
rate of complexity growth and the difference between the
inner and outer horizons; i.e, _C ∝ ðrþ − r−Þ. This factor is
also present in the relation of temperature of BTZ, warped
BTZ and hairy black holes while this is not the case for the
relations of entropies. This could suggest that there is a
stronger correlation between the complexity and temper-
ature, rather than the complexity and entropy, which is
worth further investigation. This is actually in line with the
idea of Lloyd [6]. This fact could help to understand further
the similar thermodynamical laws for complexity.
One could also think to study this rate for other solutions

such as Lifshitz or hyperscaling violating [45] backgrounds
with black holes. However for those solutions which break
the Lorentz invariance there is not a well-defined Carter-
Penrose diagram as the scaling of time and space coor-
dinates for these backgrounds are different and this makes
the form of the WDW patch and computing the holographic
complexity more difficult.
It would also be very interesting to calculate the rate of

change of complexity in the dynamical setups such as the
ones in [46,47] where an interpolating solution between a
past horizon and a chiral AdS pp-wave has been found.
Studying the behavior of complexity growth rate and the
effects of different factors in these backgrounds could shed
more light on the nature of holographic complexity.

In [48], the structure of UV divergences that appear in
CVðΣÞ has been studied where for the first order the
coefficients of the divergences have been written in terms
of the extrinsic and intrinsic curvatures which were
integrated over the boundary time slice. To gain more
information about these structures, in different boundary
CFTs such as warped CFTs or topological matters and to
study the effect of different factors such as chirality, it
might be useful to go beyond the first order and to try to
find some universal coefficients in the first and second
order of these divergences. For example similar to [49] one
can gain more information about the fidelity susceptibility
of different field theories. Wewill sketch a few steps for this
calculation in the Appendix.
There are many more ideas and progresses in different

setups for calculating complexity or complexity growth
rate that could be applied for the warped CFT case
as well, which in the following parts we are going to
review.
In [50], by discretizing the Uð1Þ gauge group as ZN

authors studied the time evolution of complexity for
Abelian pure gauge theories. They could define a universal
gate set for the Uð1Þ gauge theories which enabled them to
calculate the complexity growth explicitly. It would be
interesting to use the same idea for WCFT and by discretiz-
ing the Uð1ÞL × SLð2;RÞR group, define some new gate
sets. Then by evaluating the eigenvalues of the
Hamiltonian, one could directly study the rate of complex-
ity growth in WCFTs and then one can compare the results
with usual CFTs and also obviously with the results found
here coming from holography.
Another approach to define complexity was introduced

by Nielsen, [51]. In this method, the complexity was
defined by the geodesic distance between a unitary operator
U and an identity operator with respect to a metric in the
space of unitary operators. It would be interesting to study
the behavior of complexity metric or Nielsen geometry in
warped CFTs. Note that as mentioned in [52,53], the
complexity metric would actually punish directions that
touch more qubits. So it would be interesting to see how
chirality and parity violation of the modes would affect the
complexity metric.
There are also some new ideas to evaluate complexity by

minimizing the Liouville action, [29,54]:

ð4:1Þ

By minimizing this action, one can define complexity
[29] in the field theory side. It would also be possible to
derive Einstein’s equation in the bulk and to build a
hyperbolic space which is the time slice of AdS3 [54].

Note that in the Liouville action the first two terms which
are the kinetic terms are actually dual to the number of
isometries (coarse graining) [54] and the third term which
is the potential term is dual to the number of unitaries
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(disentanglers), in the tensor network formalism of
MERA.
It would be interesting to see if one can also derive the

time slice of AdS3 or warped AdS3 space-times from
warped CFTs by using the “chiral Liouville theory” [55],
which is in the following form:

SL ¼ c
12π

Z
d2x

�
∂þρ∂−ρ −

Λ
8
e2ρ þ hð∂−ρÞ2

þ ½∂−h∂−ρ� −
6

c
hΔ

�
; ð4:2Þ

or one can also write it as

S ¼ S0L þ
Z

dtþdt−
�

∂þϕ∂−ϕ|fflfflfflfflffl{zfflfflfflfflffl}
# of Isometries

þ h∂−ϕ∂−ϕ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
# of WCFTs new gate

−
m2

4
e2ρϕ2|fflfflfflfflffl{zfflfflfflfflffl}

# of Unitaries

�
: ð4:3Þ

The main difference between the two actions is the
middle term, i.e., h∂−ϕ∂−ϕ. As noted in [55], h which is
proportional to a right moving current is dimension (1,0)
and ð∂−ϕÞ2 is dimension (0,2). So this term is a dimension
(1,2) operator and one can think of chiral theory as a usual
field theory which is deformed by this operator [55]. These
operators are indeed very special as they are related to the
IR limits of the dipole deformed gauge theories. It would be
interesting to study the corresponding gates for these
operators in the MERA pictures and also study the effects
of these operators on complexity or its rate of growth, and
then compare these results with the holographic ones.
In [28,56], a new picture based on max-flow min-cut

theorem or a set of Planck-thickness “bit threads” for
entanglement entropy has been proposed. In this picture the
entanglement entropy of a boundary region is related to the
maximum number of threads that can emanate from its
area. One might be able to use this picture here as well and
by considering the dynamics of these threads explains the
holographic conjecture for the complexity and then use
these ideas to explain the complexity of chiral theories
explicitly.
In [57], the authors tried to define a quasilocal measure

of quantum entanglement and by considering the infini-
tesimal variation of the region, they defined the concept of
entanglement density. Also using the positivity of the
entanglement which would be mapped to the null energy
condition in the gravity bulk dual, they derived the second
law of thermodynamics for the extremal surfaces. One
might think that the similar concepts of quasilocal measure
of quantum complexity and a notion of quantum complex-
ity density could also be defined and using the positivity of
complexity growth rate, similar maps to the bulk dual can

be implemented which might lead to more rigorous
thermodynamics-like laws for complexity.
Another more exotic idea is to study the relationship

between complexity and Schwinger effect. For doing so,
similar to studies in [58], one could study both of their rates in
different backgrounds and also study the effect of external
factors such as electric or magnetic fields to find the
relationship between these two quantities. Hypothetically,
these studies could shed more light on the dynamics and
structure of the bulk and also different aspects of ER ¼ EPR.
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APPENDIX: HIGHER ORDERS
OF COMPLEXITY

In this Appendix we expand the complexity in the
second order. So first reviewing the steps in [48], we write
the induced metric on the embedded hypersurface, H, as

hAB ¼ eμAe
ν
BGμν ¼ ∂AXμ∂BXνGμν: ðA1Þ

There is a normal vector on H, nμ, which we normalize
as Gμνnμnν ≡ ϵ ¼ �1, depending on whetherH is timelike
or spacelike. The profile of H is specified through the
“Gauss-Weingarten” equation

∂A∂BXμ þ Γμ
αβ∂AXα∂BXβ − γCAB∂CXμ ¼ −ϵKABnμ;

ðA2Þ
where Γμ

αβ and γCAB are constructed from Gμν and hAB,
respectively, and KAB is the extrinsic curvature on H.
If H is extremal, then K ¼ TrKAB ¼ 0 and thus the Gauss-
Weingarten equation reduces to

hAB∂A∂BXμ þ hABΓμ
αβ∂AXα∂BXβ − hABγCAB∂CXμ ¼ 0:

ðA3Þ
Working in the Fefferman-Graham coordinates, the bulk

metric reads

ds2 ¼ L2

4ρ2
dρ2 þ 1

ρ
gijðX; ρÞdXidXj;

gijðX; ρÞ ¼ gð0Þij ðXÞ þ ρgð1Þij ðXÞ þ ρ2gð2Þij ðXÞ
þ � � � þ ρ

d
2g

ðd
2
Þ

ij ðXÞ þ ρ
d
2 log ρfijðXÞ þ � � �

ðA4Þ
and the logarithm appears in only even dimensions.
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The induced metric on H finds the following expansion
in ρ:

hAB ¼
(
hρρ ¼ L2

4ρ2
ð1þ ρhð1Þρρ þ � � �Þ;

hab ¼ 1
ρ ðhð0Þab þ ρhð1Þab þ � � �Þ:

Note that

hρρ ¼ 4ρ2

L2

1

1þ ρhð1Þρρ

¼ 4ρ2

L2
ð1 − ρhð1Þρρ þ � � �Þ;

hab ¼ ρðhð0Þab − ρhð1Þab þ � � �Þ; ðA5Þ

where

hð1Þab ¼ hð0Þachð0Þbdhð1Þcd : ðA6Þ

The desired components of the Gauss-Weingarten equation
are then

hab∂a∂bXi þ habΓi
jk∂aXj∂bXk − habγCab∂CXi ¼ 0: ðA7Þ

The last term can be decomposed to

habγCab∂CXi ¼ habγρab∂ρXi þ habγcab∂cXi; ðA8Þ

but

γρab ¼ −
1

2
hρρhab;ρ ¼ −

1

2
×
4ρ2

L2
×

�
−

1

ρ2
hð0Þab þ � � �

�

¼ 2

L2
hð0Þab ; ðA9Þ

and

habγρab∂ρXi ¼ ρhð0Þab
2

L2
hð0Þab ∂ρXi ¼ ρ

2ðd − 1Þ
L2

∂ρXi:

ðA10Þ

The next step is to expand Xi as follows:

Xi ¼ Xð0Þi þ ρXð1Þi þ � � � ; ðA11Þ

Then at the first order of ρ we get

∂a∂aXð0Þi − hð0Þabγcab∂cXð0Þi þ Γi
jk∂aXð0Þj∂aXð0Þk

¼ 2ðd − 1Þ
L2

Xð1Þ: ðA12Þ

So

∇a∂aXð0Þi þ Γi
jk∂aXð0Þj∂aXð0Þk ¼ 2ðd − 1Þ

L2
Xð1Þi: ðA13Þ

The left-hand side is by definition the trace of the
extrinsic on Σ, thus

Xð1Þi ¼ −ϵ
L2

2ðd − 1ÞKn
i; ðA14Þ

where ni is the unit normal on Σ and K is the trace of the
extrinsic curvature contracted from ni.
Now one can compute the expanded induced metric,

Gμν∂ρXμ∂ρXν ⇒
1

ρ
gij∂ρXi∂ρXj

¼ 1

ρ
gð0Þij Xð1ÞiXð1Þj

¼ 1

ρ

L4

4ðd − 1Þ2K
2gð0Þij n

inj ¼ ϵ
1

ρ

L4

4ðd − 1Þ2 K
2; ðA15Þ

and then finds

hð1Þρρ ¼ ϵ
L2

ðd − 1Þ2K
2: ðA16Þ

Then we can write

Gμν∂aXμ∂bXν ⟶
OðρÞ

gð0Þij ð∂aXð1Þi∂bXð0Þj

þ ∂aXð0Þi∂bXð1ÞjÞ þ gð1Þij ∂aXð0Þi∂bXð0Þj; ðA17Þ

and we have also

gð0Þij ∂bXð0Þj∂aXð1Þi ¼ gð0Þij e
j
b∂a

�
−ϵ

L2

2ðd − 1ÞKn
i

�

¼ −ϵ
L2

2ðd − 1Þ g
ð0Þ
ij e

j
bðð∂aKÞniþK∂aniÞ:

ðA18Þ

Note that e:n ¼ gð0Þij e
j
bn

i ¼ 0, thus the first term in (A18)
vanishes identically. For the second term we have

gð0Þij e
j
b∂ani ¼ eib∂ani ¼ eibe

j
bni;j· ðA19Þ

Now since n:e ¼ 0 we can add and subtract Σi
jkni, and

therefore we get

gð0Þij e
j
b∂ani ¼ eibe

j
bni;j ¼ Kab; ðA20Þ

therefore
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gð0Þij ∂bXð0Þj∂aXð1Þi ¼ −ϵ
L2

2ðd − 1ÞKKab: ðA21Þ

We also know

gð1Þij ðxÞ ¼ −
L2

d − 2

�
Rijðgð0ÞÞ −

gð0Þij

2ðd − 1ÞRðg
ð0ÞÞ

�
; ðA22Þ

so we get

gð1Þij ðxÞ∂aXð0Þi∂bXð0Þj

¼ −
L2

d − 2

�
Rijeiae

j
b −

1

2ðd − 1ÞRðg
ð0ÞÞgð0Þij e

i
ae

j
bÞ

¼ −
L2

d − 2
ðRâ b̂ −

1

2ðd − 1ÞRh
ð0Þ
ab

�
: ðA23Þ

Therefore we finally get

hð1Þab ¼ −
L2

d − 1

�
d − 1

d − 2
Râ b̂ −

1

2ðd − 2ÞRh
ð0Þ
ab þ ϵKKab

�
:

ðA24Þ

Now we want to calculate the volume

V ¼
Z

ddx
ffiffiffi
h

p ���
extremal

; ðA25Þ

where

ffiffiffi
h

p
¼

ffiffiffiffiffiffiffi
hρρ

q ffiffiffiffiffiffiffi
hab

p
;

ffiffiffiffiffiffiffi
hρρ

q
¼ L

2ρ

�
1þ 1

2
ρhð1Þρρ

�
:

ðA26Þ

We can also use the lemma that if gij ¼ ḡij þ ϵhij, then

ffiffiffi
g

p ¼ ffiffiffī
g

p �
1þ 1

2
ϵhii −

1

4
ϵ2hijhij þ

1

8
ϵ2ðhiiÞ2

�
þ � � � ;

ðA27Þ

where hii ¼ ḡijhij and hijhij ¼ ḡikḡjlhijhkl. Additionally,

ffiffiffiffiffiffiffiffiffiffi
jhabj

p
¼ 1

ρ
d−1
2

ffiffiffiffiffiffiffiffi
hð0Þ

p �
1þ 1

2
ρhð0Þabhð1Þab þ � � �

�
; ðA28Þ

so

ffiffiffi
h

p
¼ L

2ρ
dþ1
2

ffiffiffiffiffiffiffiffi
hð0Þ

p �
1þ 1

2
ρðhð1Þρρ þ hð0Þabhð1Þab Þ

�
þ � � � ;

ðA29Þ

then

hð0Þab h
ð1Þab ¼ −

L2

d − 1

�
d − 1

d − 2
Râ
â

−
1

2ðd − 2ÞRðd − 1Þ þ ϵK2

�
: ðA30Þ

Therefore,

V ¼
Z

dd−1x
ffiffiffiffiffiffiffiffi
hð0Þ

p Z
δ2

L2

dρ
L

2ρ
dþ1
2

�
1þ 1

2
ρ

�
ϵ

L2

ðd − 1Þ2 K
2 −

L2

d − 1

�
d − 1

d − 2
Râ
â −

d − 1

2ðd − 2ÞRþ ϵK2

���

¼
Z

dd−1x
ffiffiffiffiffiffiffiffi
hð0Þ

p Z
δ2

L2

dρ
L

2ρ
dþ1
2

þ
Z

dd−1x
ffiffiffiffiffiffiffiffi
hð0Þ

p Z
δ2

L2

dρ
L3

4ðd − 2Þρd−1
2

�
−Râ

â þ
1

2
R −

ðd − 2Þ2
ðd − 1Þ2 ϵK

2

�

¼ Ld

d − 1

Z
dd−1x

ffiffiffiffiffiffiffiffi
hð0Þ

p �
1

δd−1
−

d − 1

2ðd − 2Þðd − 3Þδd−3
�
Râ
â −

1

2
Rþ ϵ

ðd − 2Þ2
ðd − 1Þ2 K

2

��
: ðA31Þ

For d ¼ 3, we get a logarithm as

V log
d¼3 ¼

L3

8
log

�
δ

L

�Z
d2x

ffiffiffiffiffiffiffiffi
hð0Þ

p
ð4Râ

â − 2Rþ ϵK2Þ;

ðA32Þ
which is the result in [48].
Now it would be interesting to perform the similar

procedure in the second order of the metric and then

maybe even higher orders to see if one can get more
universal results in the different terms of the expansions of
complexity.
So first, in the second order one would have

γρab ¼
2

L2
hð0Þab −

2ρ2

L2
hð1Þρρ h

ð0Þ
ab −

2ρ2

L2
hð0Þab h

ð2Þ
ρρ −

2ρ2

L2
hð2Þab :

ðA33Þ
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Then from (A3), for the second order of ρ one would get

Xð2Þi ¼ ϵL2

4
Knihð1Þab −

�
d − 1

2
hð1Þρρ −

1

2
hð0Þab h

ð1Þab
�
Xð1Þi

þ L2

4
½∇a∂aXð1Þi þ Γi

jkh
ð0Þab

× ð∂aXð0Þj∂bXð1Þk þ ∂aXð1Þj∂bXð0ÞkÞ�: ðA34Þ

Then hð2Þρρ would be

hð2Þρρ ¼ L4K2

ρðd − 1Þ2ðd − 2Þ
�
Rð0Þ
ij n

inj −
Rðgð0ÞÞ
2ðd − 1Þ

�

−
�

8ϵ

d − 1

�
KnjXð2Þj: ðA35Þ

For finding the second order of hð2Þab we should find the following terms:

Gμν∂aXμ∂bXν ⇒ gð0Þij ∂aXð1Þi∂bXð1Þj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1Þ

þ gð1Þij ð∂aXð1Þi∂bXð0Þj þ ∂aXð0Þi∂bXð1ÞjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2Þ

þ gð2Þij ∂aXð0Þi∂bXð0Þj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð3Þ

: ðA36Þ

The first term would be

ð1Þ → gð0Þij L4

4ðd − 1Þ2 ðð∂aKÞð∂bKÞninj þ K2ð∂aniÞð∂bnjÞ

þ Kð∂aKni∂bnj þ ∂bKnj∂aniÞÞ: ðA37Þ

The second term is

ð2Þ → ϵL4

2ðd − 1Þðd − 2Þ ½Rijðgð0ÞÞð∂aKniejb þ ∂bKnjeia

þ K∂anie
j
b þ K∂bnjeiaÞ

−
Rðgð0ÞÞK
2ðd − 1Þ ð∂anje

j
b þ ∂bnjeiaÞ�; ðA38Þ

and the third term is

ð3Þ → gð2Þij eiae
j
b; ðA39Þ

where from the appendix of [59], gð2Þij is

gð2Þij ¼ 1

d− 4

�
−

1

8ðd − 1ÞDiDjRþ 1

4ðd− 2ÞDkDkRij

−
1

8ðd− 1Þðd− 2ÞDkDkRgð0Þij −
1

2ðd− 2ÞR
klRikjl

þ d− 4

2ðd − 2Þ2 R
k
i Rkj þ

1

ðd− 1Þðd− 2Þ2RRij

þ 1

4ðd− 2Þ2R
klRklg

ð0Þ
ij −

3d
16ðd− 1Þ2ðd− 2Þ2R

2gð0Þij

�
:

ðA40Þ
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