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We extend the holographic analysis of the light-baryon spectrum by Cai et al. [Phys. Rev. D 90, 106001
(2014)] to the case involving the heavy flavors. With the construction of the Witten-Sakai-Sugimoto model
in the D0-D4 background, we use the mechanism proposed by Liu and Zahed by including two light-flavor
and one heavy-flavor brane, to describe the heavy-light baryons as heavy mesons bound to a flavor
instanton. The background geometry of this model corresponds to an excited state in the dual field theory
with a nonzero glue condensate hTrF ∧ F i ¼ 8π2Nc ~κ (or equivalently a nonzero θ angle), which is
proportional to the number density of the D0-brane charge. In the strong-coupling limit, this model shows
that the heavy meson is always bound in the form of the zero mode of the flavor instanton in the
fundamental representation. We systematically study the quantization of the effective Lagrangian of heavy-
light baryons by employing the soliton picture, and derive the mass spectrum of heavy-light baryons in the
situation with single- and double-heavy baryons. We find that the difference in the mass spectrum becomes
smaller if the density of the D0-brane charge increases, and the stability constraint of the heavy-light
baryons is 1 < b < 3. This indicates that a baryon cannot stably exist for a sufficiently large D0 charge
density, which is in agreement with the conclusions in the previous study of this model.

DOI: 10.1103/PhysRevD.96.106018

I. INTRODUCTION

The heavy quarks (c, b, t) are characterized by the
heavy-quark symmetry in QCD [1], while the light quarks
(u, d, s) are dominated by the spontaneous breaking of
chiral symmetry. As measured in Refs. [2,3], the chiral
doubling in heavy-light mesons [4–7] combines these
symmetries. Recently, a flurry of experiments have reported
that many multiquark exotics are incommensurate with
quarkonia [8–14]. Accordingly, some new phenomena
involving heavy-light multiquark states are strongly sup-
ported by these experimental results. On the other hand, the
spontaneous parity violation in QCD has also been dis-
cussed in the context of the RHIC [15–19]. It is well known
that P or CP violation is usually described by a nonzero θ
angle in the action of such theories. So when deconfine-
ment happens in QCD, a metastable state with a nonzero θ
angle may be produced in the hot and dense situation in
the RHIC; then, a bubble that forms with odd P or CP
parity would soon decay into the true vacuum. For
example, the chiral magnetic effect was proposed as a test
of such phenomena [20–22]. Thus, it is theoretically
interesting to study the θ dependence of some observables
in QCD or in the gauge theory, e.g., the θ dependence of the
spectrum of the glueball [23] or the phase diagram [24,25],
and the θ dependence in the large-Nc limit [26] (one can
also review the details of the θ dependence in Ref. [27]).

The holographic construction by the gauge/gravity
duality offers a framework to investigate the aspects of
the strongly coupled quantum field theory [28,29] since
QCD at the low-energy scale is nonperturbative. Using
Witten’s D4-brane construction [30], a concrete model was
proposed by Sakai and Sugimoto [31,32] which contains
almost all of the necessary ingredients for QCD, e.g.,
baryons [33,34], quark matter, chiral/deconfinement phase
transitions [35–38], and the glueball spectrum and inter-
action [39–43]. Specifically, flavors are introduced into this
model by a stack of Nf pairs of suitable D8-=D8-branes as
probes embedded in the Nc D4-brane background. The
chiral quarks are in the fundamental representation of the
color and flavor groups which come from the massless
spectrum of the open strings stretched between the color
and flavor (D8=D8) branes. Since the flavor branes are
connected, it provides a geometrical description of the
spontaneous breaking of the chiral symmetry. The baryon
in this model is the D4-branes1 warped on S4, which is
called the “baryon vertex” and has been recognized as the
instanton configuration of the gauge field on the worldvo-
lume of the flavor branes [44]. In particular, the θ angle in
the dual theory is holographically realized as the instan-
tonic D-brane (D-instanton) in the construction of the string
theory [45]. Hence, adding the D-instanton (D0-branes) to
the background of the Witten-Sakai-Sugimoto model
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1We will use “D40-brane” to denote the baryon vertex in order
to distinguish the Nc D4-branes in the following sections.
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involves the θ dependence in the dual field theory [46,47].
The systematical study of the Witten-Sakai-Sugimoto
model in the D0-D4 brane background (i.e., the D0-D4/
D8 brane system) in Refs. [48,49] provided a way to
holographically investigate the θ dependence of QCD or
Yang-Mills theory [50–53].2
Since the baryon spectrum with light flavors was

reviewed in Refs. [50,51,54,55] using the Witten-Sakai-
Sugimoto model with the D0-D4 brane background,
naturally the purpose of this paper is to extend the analysis
to involve the heavy flavors. As mentioned, the funda-
mental quarks in this model are represented as the fermion
states created by the open strings stretched between the Nc

D4-branes and Nf coincident D8-=D8-branes without
length, which are therefore massless states [31,58]. So
the fundamental quarks in this model can be called “light
quarks” and the Nf coincident flavor branes are called
“light-flavor branes.” In order to address the chiral and
heavy-quark symmetries using holographic duality, we
follow the mechanism proposed in Refs. [59–61], that is,
we consider one pair of flavor branes as a probe (called a
“heavy-flavor brane”) which is separated from the other Nf

coincident flavor branes, as shown in Fig. 1. The string
stretched between the heavy- and light-flavor branes (called
the “HL-string”) produces massive multiplets. Hence, the

heavy-light mesons correspond to the low-energy modes of
these strings, which can be approximated by the local
vector fields in the bifundamental representation in the
vicinity of the light-flavor branes. With a nonzero vacuum
expectation value (VEV), the heavy-light fields are massive
and their mass comes from the moduli spanned by the
dilaton fields in the action. This setup allows to describe the
radial spectra of heavy-light multiplets, their pertinent
vector and axial correlations, and so on. The baryons with
heavy flavor should have the form of instanton configu-
rations in the worldvolume theory of D8-=D8-branes bound
to heavy-light vector mesons. This method will also allow
us to holographically develop the bound-state approach in
the context of the Skyrme model (e.g., Ref. [62]) by
including the θ dependence.
The outline of this paper is as follows. In Sec. II, we

briefly review the D0-D4 background and its dual field
theory. In Sec. III, we outline the geometrical setup and
derive the heavy-light effective action through the Dirac-
Born-Infield (DBI) and Chern-Simons (CS) actions of the
D-branes. It shows the heavy-meson interactions with
the instanton on the flavor branes. In Sec. IV, we show
the effective action in the double limit, and that a spin-1
vector meson bound to the bulk instanton is transmuted to
spin-1=2. In Sec. V, we employ the quantization and show
how to include the heavy flavors in the spectrum (as in
previous works [50,51,54,55]) with a finite D0-brane
charge or θ angle. The derivation of the baryon spectra
with single- and double-heavy quarks is explicitly shown in
this section. Section VI is the summary. In the Appendix,
we briefly summarize the essential steps for the quantiza-
tion of the light meson moduli without the heavy-flavor
branes, which has already been studied in Ref. [50].

II. THE D0-D4 BACKGROUND AND THE
DUAL FIELD THEORY

In this section, we will review the D0-D4 background
and its dual field theory by following Ref. [48]. In the
Einstein frame, the solution of a D4-brane with a smeared
D0-brane in IIA supergravity is given as

ds2 ¼ H
−3
8

4 ½−H7
8

0fðUÞdτ2 þH
1
8

0δμνdx
μdxν�

þH
5
8

4H
1
8

0

�
dU2

fðUÞ þU2dΩ2
4

�
: ð2:1Þ

The direction τ is compactified on a cycle with the period β.
The dilaton, and Ramond-Ramond 2-form and 4-form are
given as

e−Φ ¼ g−1s

�
H4

H3
0

�1
4

; f2 ¼
ð2πlsÞ7gsN0

ω4V4

1

U4H2
0

dU ∧ dτ;

f4 ¼
ð2πlsÞ3Ncgs

ω4

ϵ4; ð2:2Þ

FIG. 1. Various brane configurations in the τ-U plane, where τ
is compactified on S1. The bubble background (cigar) is produced
by Nc D4-branes with N0 smeared D0-branes. The Nf ¼ 2 light-
flavor D8-=D8-branes (L) living at the antipodal position of the
cigar are represented by the blue line. A pair of heavy-flavor
D8-=D8-branes (H) is separated from the light-flavor branes,
which is represented by the red line. The massive state is
produced by the string stretched between the light- and heavy-
flavor branes (HL-string), which is represented by the green line
in this figure.

2See also Refs. [54,55] for a similar approach, the
applications in Refs. [56,57] in hydrodynamics, or the model
in Refs. [48,49].
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where

H4 ¼ 1þU3
Q4

U3
; H0 ¼ 1þU3

Q0

U3
;

fðUÞ ¼ 1 −
U3

KK

U3
;

U3
Q0 ¼

1

2

�
−U3

KK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U6

KK þ ðð2πÞ5l7sgs ~κNcÞ2
q �

;

U3
Q4 ¼

1

2

�
−U3

KK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U6

KK þ ðð2πÞ5l7sgsNcÞ2
q �

: ð2:3Þ

We have used dΩ4, ϵ4, and ω4 ¼ 8π2=3 to represent the line
element, the volume form, and the volume of a unit S4.UKK
is the horizon position of the radius coordinate and V4 is
the volume of the D4-branes. The number of D4- and
D0-branes are denoted by Nc and N0, respectively.
D0-branes are smeared in the directions x0, x1, x2, and
x3, so the number density of the D0-branes can be
represented by N0=V4. In order to take account of the
backreaction from the D0-branes (as in Ref. [47]), we also
require that N0 is of the order of Nc. In the large-Nc limit, ~κ
would be of the order of Oð1Þ, which is defined
as ~κ ¼ N0=ðNcV4Þ.
In the string frame, making a double Wick rotation and

taking the field limit, i.e., α0 → 0 with fixed U=α0 and
UKK=α0, we obtain the D0-D4 bubble geometry and the
metric becomes

ds2 ¼
�
U
R

�
3=2

½H1=2
0 ημνdxμdxν þH−1=2

0 fðUÞdτ2�

þH1=2
0

�
R
U

�
3=2
�
dU2

fðUÞ þ U2dΩ2
4

�
: ð2:4Þ

The dilaton becomes

eΦ ¼ gs

�
U
R

�
3=4

H3=4
0 ; ð2:5Þ

where R3 ¼ πgsl3sNc is the limit of U3
Q4. Here ls is the

length of the string and α0 ¼ l2s . In the bubble geometry
(2.4), the spacetime ends at U ¼ UKK . In order to avoid the
conical singularity at UKK , the period β of τ must satisfy

β ¼ 4π

3
U−1=2

KK R3=2b1=2; b≡H0ðUKKÞ: ð2:6Þ

In the low-energy effective description, the dual theory
is a five-dimensional UðNcÞ Yang-Mills (YM) theory
which lives inside the worldvolume of the D4-brane.
Since one direction of the D4-branes is compactified on
a cycle τ, the four-dimensional Yang-Mills coupling could
be obtained as in Ref. [30], i.e., relating the D4-brane
tension and the five-dimensional Yang-Mills coupling
constant g5, and then analyzing the relation of the

five-dimensionally compactified theory and four dimen-
sions in the τ direction. Thus the resultant four-
dimensional Yang-Mills coupling is

g2YM ¼ g25
β
¼ 4π2gsls

β
; ð2:7Þ

and b and R3 can be evaluated as

b ¼ 1

2
½1þ ð1þ Cβ2Þ1=2�;

C≡ ð2πl2sÞ6λ2 ~κ=U6
KK;

R3 ¼ βλl2s
4π

; ð2:8Þ

where the ’t Hooft coupling λ is defined as λ ¼ g2YMNc.
The Kaluza-Klein (KK) modes can be introduced by
defining a mass scale MKK ¼ 2π=β. The fermion and
scalar become massive at the KK mass scale since the
antiperiodic condition is imposed on the fermions [31].
Therefore, the massless modes of the open string domi-
nate the dynamics in the low-energy theory which is
described by a pure Yang-Mills theory. According to
Eqs. (2.6) and (2.8), we have the following relations:

β ¼ 4πλl2s
9UKK

b; MKK ¼ 9UKK

2λl2sb
: ð2:9Þ

Because b ≥ 1 andUKK ≥ 2λl2sMKK=9, β can be solved by
using Eqs. (2.8) and (2.9) as

β ¼ 4πλl2s
9UKK

1

1 − ð2πl2sÞ8
81U8

KK
λ4 ~κ2

; b ¼ 1

1 − ð2πl2sÞ8
81U8

KK
λ4 ~κ2

: ð2:10Þ

Let us consider the effective action of a D4-brane with
the smeared D0-branes in the background, which takes the
following form:

SD4
¼ −μ4Tr

Z
d4xdτe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ 2πα0F Þ

p
þ μ4

Z
C5 þ

1

2
ð2πα0Þ2μ4

Z
C1 ∧ F ∧ F ; ð2:11Þ

where μ4 ¼ ð2πÞ−4l−5s , ϕ ¼ Φ −Φ0, eΦ0 ¼ gs, andG is the
induced metric on the worldvolume of D4-branes. F is
the gauge field strength on the D4-brane. C5 and C1 are the
Ramond-Ramond 5-form and 1-form, respectively, and
their field strengths are given in Eq. (2.2). The Yang-
Mills action can be obtained from the leading-order
expansion with respect to small F of the first term in
Eq. (2.11) (i.e., the DBI action). In the bubble D0-D4
solution, we have C1 ∼ θdτ in Eq. (2.2); thus, D0-branes
are actually D-instantons (as shown in Table I) and the last
term in Eq. (2.12) can be integrated as
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Z
S1τ

C1 ∼ θ ∼ ~κ;
Z
S1τ×R4

C1 ∧ F ∧ F ∼ θ

Z
R4

F ∧ F :

ð2:12Þ

So the free parameter ~κ (related to the θ angle in the dual
field theory) has been introduced into the Witten-Sakai-
Sugimoto model by this string theory background; how-
ever, this background is not dual to the vacuum state of the
gauge field theory. Similarly as in Ref. [45], in the dual
field theory, some excited states with a constant homo-
geneous field strength background may be described in the
D0-D4 model. The expectation value of TrF ∧ F can be
evaluated as hTrF ∧ F i ¼ 8π2Nc ~κ [48,50]. Then, the
deformed relations in the presence of the D0-branes of
the variables in QCD are given as follows:

R3 ¼ λl2s
2MKK

; gs ¼
λ

2πMKKNcls
;

UKK ¼ 2

9
MKKλl2sb: ð2:13Þ

III. HOLOGRAPHIC EFFECTIVE ACTION FOR
HEAVY-LIGHT INTERACTION

A. D-brane setup

The chiral symmetry URðNfÞ ×ULðNfÞ can be intro-
duced into the D0-D4 system by adding a stack of Nf

probe D8–anti D8 (D8=D8) branes to the background,
which are called flavor branes. The spontaneous breaking
of URðNfÞ × ULðNfÞ symmetry to UVðNfÞ in the dual
field theory can be geometrically understood as the distant
D8-=D8-branes combining near the bottom of the bubble at
U ¼ UKK (as shown by the blue lines in Fig. 1). This can be
verified by the appearance of massless Goldstones [63].
The brane configurations are illustrated in Table I.
The induced metric on the probe D8-=D8-branes is

ds2
D8=D8

¼
�
U
R

�
3=2

H−1=2
0

�
fðUÞ þ

�
R
U

�
3 H0

fðUÞU
02
�
dτ2

þ
�
U
R

�
3=2

H1=2
0 ημνdxμdxν þH1=2

0

�
R
U

�
3=2

×U2dΩ2
4; ð3:1Þ

where U0 is the derivative with respect to τ. The action of
the D8-=D8-branes can be obtained as

SD8=D8 ∝
Z
d4xdUH0ðUÞU4

�
fðUÞ þ

�
R
U

�
3 H0

fðUÞU
02
�
1=2

:

ð3:2Þ

Then, the equation of motion for UðτÞ can be derived as

d
dτ

�
H0ðUÞU4fðUÞ

½fðUÞ þ ðRUÞ3 H0

fðUÞU
02�1=2

�
¼ 0; ð3:3Þ

which can be interpreted as the conservation of energy.
With the initial conditions Uðτ ¼ 0Þ ¼ U0 and
U0ðτ ¼ 0Þ ¼ 0, the generic formula of the embedding
function τðUÞ can be solved as

τðUÞ ¼ EðU0Þ
Z

U

U0

dU
H1=2

0 ðUÞðRUÞ3=2
fðUÞ½H2

0ðUÞU8fðUÞ − E2ðU0Þ�1=2
;

ð3:4Þ

where EðU0Þ ¼ H0ðU0ÞU4
0f

1=2ðU0Þ and U0 denotes the
connected position of the D8-=D8-branes. Following
Refs. [31,48], we introduce the new coordinates ðr;ΘÞ
and ðy; zÞ, which satisfy

y ¼ r cosΘ; z ¼ r sinΘ; U3 ¼ U3
KK þ UKKr2;

Θ ¼ 2π

β
τ ¼ 3

2

U1=2
KK

R3=2H1=2
0 ðUKKÞ

: ð3:5Þ

In this manuscript, we will consider the following con-
figuration for the various flavor branes: the light-flavor
branes live at the antipodal position (as in Refs. [31,48,49]),
which means that they (the D8-=D8-branes) are embedded
at Θ ¼ � 1

2
π, respectively, i.e., y ¼ 0. The embedding

function of the light-flavor branes is τLðUÞ ¼ 1
4
β, so that

we haveU3 ¼ U3
KK þUKKz2 on the light D8-=D8-branes.

3

Therefore, the induced metric on them becomes

ds2
Light−D8=D8

¼ H1=2
0

�
U
R

�
3=2

ημνdxμdxν

þ 4

9

UKK

U

�
U
R

�
3=2

H1=2
0 dz2

þH1=2
0

�
R
U

�
3=2

U2dΩ2
4: ð3:6Þ

For the heavy-flavor branes, we have to choose another
solution as τHðUÞ from Eq. (3.4) with U0 ¼ UH ≠ UKK
since they must live at the nonantipodal position of the

TABLE I. The brane configurations: “¼” denotes the smeared
directions, while “−” denotes the worldvolume directions.

0 1 2 3 4ðτÞ 5ðUÞ 6 7 8 9

Smeared D0-branes ¼ ¼ ¼ ¼ −
Nc D4-branes − − − − −
Nf D8-=D8-branes − − − − − − − − −
Baryon vertex D40-branes − − − − −

3With suitable boundary conditions, τLðUÞ ¼ 1
4
β is indeed a

solution of Eq. (3.3), as discussed in Refs. [31,48,49].
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background.4 Thus, the heavy-flavor brane is separated
from the light-flavor branes with a finite separation at
τHðU0Þ ¼ 0, as shown in Fig. 1. With the approach
presented in Refs. [44,50,64], the light baryon spectrum
in the D0-D4/D8 system was studied in Refs. [50,51,
54,55]. In this paper, we extend our previous work by
following Refs. [59–61] to study the heavy-light interaction
and baryon spectrum with heavy flavors in the D0-D4/D8
system. Thus, we consider Nf ¼ 2 light-flavor D8-=D8-
branes and one pair of heavy flavor branes as a probe in the
bubble D0-D4 geometry (2.4) that spontaneously breaks
chiral symmetry. The massive states on the light D8-=D8-
branes are produced by the heavy-light (HL) strings
connecting heavy-light branes.

B. Yang-Mills and Chern-Simons action
of the flavor branes

Since the baryonvertex lives inside the light-flavor branes,
the concern of this section is to study the effective dynamics
of the baryons ormesons on the light-flavor branes involving
the heavy-light interaction. The lowest modes of the open
string stretched between the heavy and light branes are
attached to the baryon vertex, as shown in Fig. 1. In our
D0-D4/D8 system, these stringmodes consist of longitudinal
modes Φa and transverse modes Ψ near the light brane
worldvolume. These fields acquire a nonzero VEV at finite
brane separation, which introduces the mass to the vector
field [65]. These fields are always called “bilocal”; however,
we will approximate them near the light-flavor branes by
local vector fields, and hence they are described by the
standard DBI action. Thus, this construction is distinct from
the approaches presented in Refs. [66–72].
Keeping these points in mind, let us consider the action

of the light-flavor branes. For the D8-branes, the generic
expansion of the DBI action at the leading order can be
written as

SD8=D8DBI ¼ −
T8ð2πα0Þ2

4

Z
d9ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
e−Φ

× TrfF abF ab − 2Daφ
IDaφ

J þ ½φI;φJ�2g;
ð3:7Þ

where φI is the transverse mode of the flavor branes and the
indices a and b run over the flavor brane. Notice that only
one coordinate is transverse to the D8-brane, and thus we
define φI ≡Ψ to omit the index. The scalar field Ψ is
traceless in adjoint representation, in addition to the adjoint

gauge fieldAa. Since the one pair of heavy-flavor branes is
separated from the Nf ¼ 2 light-flavor branes with a string
stretched between them, in string theory the worldvolume
field can be combined in a superconnection. For the gauge
field, we can use the following matrix-valued 1-form:

Aa ¼
�

Aa Φa

−Φ†
a 0

�
; ð3:8Þ

where Aa is ðNf þ 1Þ × ðNf þ 1Þ matrix-valued while Ψ
and Aa are Nf × Nf valued. If all of the flavor branes are
coincident, the Φa multiplet is massless; otherwise, Φa
could be a massive field. The corresponding gauge field
strength of Eq. (3.8) is

F ab ¼
 

F ab −Φ½aΦ
†
b� ∂ ½aΦb� þA½aΦb�

∂ ½aΦ†
b� þΦ†

½aAb� −Φ†
½aΦb�

!
: ð3:9Þ

Inserting the induced metric (3.6) with Eq. (2.5) into
Eq. (3.7), we can write the DBI action in two parts,

SD8=D8DBI ¼ SD8=D8YM þ SΨ: ð3:10Þ
The Yang-Mills part is calculated as

SYM ¼ −2 ~TU−1
KK

Z
d4xdzH1=2

0

× Tr

�
1

4

R3

U
F μνF

μν þ 9

8

U3

UKK
F μzF

μz

�
; ð3:11Þ

where μ, ν run over 0,1,2,3, and

~T ¼ ð2πα0Þ2
3gs

T8ω4U
3=2
KKR

3=2 ¼ M2
KKλNcb3=2

486π3
: ð3:12Þ

In order to work with the dimensionless variables, we
introduce the replacements z → zUKK, xμ → xμ=MKK ,
Az → Az=UKK, and Aμ → AμMKK .

5 Then, Eq. (3.11)
takes the following form:

SD8=D8YM ¼ − ~TM−2
KK

9

4b

Z
d4xdzH1=2

0 ðUÞ

× Tr

�
1

2

UKK

U
F 2

μν þ
U3

U3
KK

bF 2
μz

�
;

¼ −aλNcb1=2
Z

d4xdzH1=2
0 ðUÞ

× Tr

�
1

2
KðzÞ−1=3ημνηρσF μρF νσ

þ KðzÞbημνF μzF νz

�
; ð3:13Þ

4Since we are going to discuss the limit UH , zH → ∞ in
the next section, an analytical solution for the embedding
function of the heavy-flavor brane could be τHðUÞ ¼
− 2

9
ðRUÞ3=2 UH

U3 2F1ð12 ; 9
16
; 25
16
; U

8
H

U8 Þ þ 2
ffiffi
π

p
9

R3=2

U1=2
H

Γð25
16
Þ

Γð17
16
Þ, where 2F1 is the

hypergeometric function. In this limit, the integral region on
the heavy-flavor brane is U > UH → ∞, so we have f;H0 ∼ 1 to
get this solution with Eq. (3.4).

5Working with this replacement is equivalent to working in
units of UKK ¼ MKK ¼ 1 in this model, as in Ref. [44].
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where a ¼ 1
216π3

and KðzÞ ¼ 1þ z2. To see the dependence
of λ, it would be convenient to employ the rescaling used in
Ref. [44], which is

ðx0; xMÞ → ðx0; λ−1=2xMÞ;
ðA0;Φ0Þ → ðA0;Φ0Þ;
ðAM;ΦMÞ → ðλ1=2AM; λ1=2ΦMÞ; ð3:14Þ

where M, N run over 1; 2; 3; z and i, j ¼ 1, 2, 3. Using
Eq. (3.14) in the large-λ limit, Eq. (3.13) becomes

LD8=D8
YM ¼ −aNcb3=2Tr

�
λ

2
F 2

MN − bz2
�
5

12
−

1

4b

�
F 2

ij

þ bz2

2

�
1þ 1

b

�
F 2

iz −F 2
0M

�
≡ aNcb3=2LL

YM þ aNcb3=2λLH
0

þ aNcb3=2LH
1 þOðλ−1Þ; ð3:15Þ

where LL
YM represents the Lagrangian for the light hadrons

(which was derived in Ref. [50]), and the explicit form of
LL
YM can be found in Eqs. (A1)–(A2) in the Appendix.

Substituting Eq. (3.15) for Eq. (3.9), we obtain

LH
0 ¼ −ðDMΦ

†
N −DNΦ

†
MÞðDMΦN −DNΦMÞ

þ 2Φ†
MF

MNΦN;

LH
1 ¼ 2ðD0Φ

†
M −DMΦ

†
0ÞðD0ΦM −DMΦ0Þ

− 2Φ†
0F

0MΦM − 2Φ†
0F

0MΦM þ ~LH
1 ; ð3:16Þ

where DMΦN ¼ ∂MΦN þA½MΦN� and

~LH
1 ¼ bz2

�
5

6
−

1

2b

�
ðDiΦj −DjΦiÞ†ðDiΦj −DjΦiÞ

− bz2
�
1þ 1

b

�
ðDiΦz −DzΦiÞ†ðDiΦz −DzΦiÞ

− bz2
�
5

3
−
1

b

�
Φ†

iF
ijΦj þ bz2

�
1þ 1

b

�
× ðΦ†

zF ziΦi þ c:c:Þ: ð3:17Þ

The action SΨ in Eq. (3.10) is

SΨ ¼ −
T8ð2πα0Þ2

4

Z
d9ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
e−Φ

× Trf−2Daφ
iDaφ

i þ ½φi;φj�2g

¼ ~T8

Z
d4xdz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
e−Φ

× Tr

	
1

2
DaΨDaΨ −

1

4
½Ψ;Ψ�2



; ð3:18Þ

with DaΨ ¼ ∂aΨþ i½Aa;Ψ�. According to Ref. [73], one
can define the moduli by the extrema of the potential
contribution or ½Ψ; ½Ψ;Ψ�� ¼ 0 in Eq. (3.18). So the moduli
solution of Ψ for Nf light branes separated from one heavy
brane can be defined with a finite VEV v as

Ψ ¼
�− v

Nf
1Nf

0

0 v

�
: ð3:19Þ

With the solution (3.19), we have

SΨ ¼ − ~TU−1
KKv

2
2ðNf þ 1Þ2

N2
f

×
Z

d4xdzH3=2
0 U2ðgzzΦ†

zΦz þ gμνΦ†
μΦνÞ: ð3:20Þ

Again, we introduce the dimensionless variable Φa by
imposing z → zUKK, xμ → xμ=MKK ,Az → Az=UKK, and
Aμ → AμMKK , which means that we require an additional

replacement v → M1=2
KK

U1=2
KK

v. Then, using the λ rescaling as in

Eq. (3.14), we finally obtain

SΨ ¼ −aNcb3=2
Z

d4xdz2m2
HΦ

†
MΦM þOðλ−1Þ; ð3:21Þ

where mH ¼ 1ffiffi
6

p Nfþ1

Nf
vb1=4.

For a Dp-brane, there is a CS term in the total action
whose standard form is

S
Dp

CS ¼ μp

Z
Dp

X
q

Cqþ1 ∧ Tre2πα
0F

¼ μp

Z
Dp

X
n

Cp−2nþ1 ∧ 1

n!
ð2πα0ÞnTrF n: ð3:22Þ

In our D0-D4 background, the nonvanishing terms for the
probe D8-=D8-branes are

SD8=D8CS ¼ 1

3!
ð2πα0Þ3μ8

Z
D8=D8

C3 ∧ Tr½F 3�

þ 2πα0μ8

Z
D8=D8

C7 ∧ Tr½F �: ð3:23Þ

The first term in Eq. (3.23) can be integrated out by using
dC3 ¼ f4 [given in Eq. (2.2)], which yields a CS 5-form,

SD8=D8CS ¼ Nc

24π2

Z
R4þ1

AF 2 −
1

2
A3F þ 1

10
A5; ð3:24Þ

and this term is invariant under the λ rescaling (3.14).
However, explicit calculations show that the second term in
Eq. (3.23) becomes Oðλ−1Þ in the large-λ limit. So on the
light-flavor branes, only Eq. (3.24) in the CS term survives
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in the strong-coupling limit. Inserting Eqs. (3.8) and (3.9)
into Eq. (3.24) with the dimensionless variables, Eq. (3.24)
becomes

LD8=D8
CS ¼ LL

CSðAÞ þ LH
CS; ð3:25Þ

where LL
CSðAÞ represents the CS term for the light

hadrons given in Eqs. (A1)–(A2) (which was studied in
Refs. [44,50]), and

LH
CS ¼ −

iNc

24π2
ðdΦ†AdΦþ dΦ†dAΦþΦ†dAdΦÞ

−
iNc

16π2
ðdΦ†A2ΦþΦ†A2dΦþΦ†AdAΦ

þΦ†dAAΦÞ − 5iNc

48π2
Φ†A3ΦþOðΦ4;AÞ:

ð3:26Þ

Therefore, the action for the light-heavy interaction can be
collected from Eqs. (3.16), (3.17), (3.21), and (3.26) on the
light-flavor branes.

IV. THE ZERO MODES

In the limit λ → ∞ followed by mH → ∞, the heavy
meson in the bulk can be treated as the instanton configu-
ration on the flavor branes, which can be effectively treated
as a spinor. It forms a four-dimensional flavored zero mode
which can be interpreted as a bound of either the heavy
flavor or anti-heavy flavor in the spacetime of fxμg.
However, in the Skyrme model, the Wess-Zumino-
Witten term is time-odd, which carries opposite signs for
heavy particles and antiparticles. While this is difficult for
antiparticles using holography, it is remarkable.

A. Equations of motion

Let us consider the solution of the heavy meson field
ΦM. Notice that ΦM is independent of Φ0, so the equations
of motion from the action (3.16), (3.17), (3.21), and (3.26)
read

DMDMΦN −DNDMΦM þ 2FNMΦM þOðλ−1Þ ¼ 0;

ð4:1Þ

and the equation of motion for Φ0 is

DMðD0ΦM −DMΦ0Þ − F 0MΦM

−
1

64π2ab3=2
ϵMNPQKMNPQ þOðλ−1Þ ¼ 0; ð4:2Þ

where the 4-form KMNPQ is given as

KMNPQ ¼ ∂MAN∂PΦQ þAMAN∂PΦQ þ ∂MANAPΦQ

þ 5

6
AMANAPΦQ: ð4:3Þ

In the heavy-quark limit, we follow Ref. [61] to redefine
ΦM ¼ ϕMe−imHx0 for particles, with the replacement
mH → −mH for antiparticles.

B. The double limit

It is very difficult to calculate all of the contributions
from the heavy meson field ΦM. Hence, we consider the
limit λ → ∞ followed by mH → ∞, which is called the
“double limit”. So the leading contributions come from
the light effective action presented in Ref. (2.5), which is of
the order of λm0

H, while the next-to-leading contributions
come from the heavy-light interaction Lagrangian LH

1 in
Eq. (3.16) and LH

CS in Eq. (3.26), which is of the order of
λ0mH. The double limit is valid if we assume that the heavy
meson field ΦM is very massive, which means that the
separation of the heavy and light branes is very large, as
shown in Fig. 1. So the straight string takes a value at
z ¼ zH which satisfies

mH ¼ 1

πl2s
lim

zH→∞

Z
zH

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00gzz

p

≃ 1

πl2s
U1=3

KKz
2=3
H þOðz0HÞ: ð4:4Þ

It would be convenient to rewrite Eq. (4.4) with the
dimensionless variables by the replacements mH →
mHMKK and zH → zHUKK . Then, using Eq. (2.13), we
have

mH

λ
¼ 2b

9π
z2=3H : ð4:5Þ

According to the above discussion, the derivative of ΦM
can be replaced by D0ΦM → ðD0 � imHÞΦM, with “−” for
particles and “þ” for antiparticles. Then we collect the
order λ0mH from our heavy-light action, which is

LmH
¼ L1;m þ LCS;m;

L1;m ¼ ab3=2Nc½4imHϕ
†
MD0ϕM

− 2imHðϕ†
0DMϕM − c:c:Þ�;

LCS;m ¼ mHNc

16π2
ϵMNPQϕ

†
MFNPϕQ

¼ mHNc

8π2
ϕ†
MFMNϕN: ð4:6Þ

The equation of motion (4.2) suggests a considerable
simplification (DMΦM ¼ 0), which implies that ΦM is a
covariantly transverse mode.
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C. Vector to spinor

In the Nf ¼ 2 case of the D0-D4/D8 system, the small
instanton is described by a flat-space four-dimensional
instanton solution of SUð2Þ Yang-mills theory [50] in the
large-λ limit, which is

Acl
M ¼ −σ̄MN

xN

x2 þ ρ2
;

Acl
0 ¼ −

i

8π2ab3=2x2

�
1 −

ρ4

ðx2 þ ρ2Þ2
�
; ð4:7Þ

where x2 ¼ ðxM − XMÞ2 and XM is a constant. Notice that
in Eq. (4.7) Acl

0 is Abelian, while Acl
M is non-Abelian. It

carries a field strength

FMN ¼ 2σ̄MNρ
2

ðx2 þ ρ2Þ2 : ð4:8Þ

By defining fMN ¼ ∂ ½MϕN� þA½MϕN�, LH
0 in Eq. (3.16)

can be rewritten as follows:

LH
0 ¼ −f†MNfMN þ 2ϕ†

MFMNϕN

¼ −f†MNfMN þ 2ϵMNPQϕ
†
MDNDPϕQ

¼ −f†MNfMN þ f†MN⋆fMN

¼ −
1

2
ðfMN − ⋆fMNÞ†ðfMN − ⋆fMNÞ; ð4:9Þ

where ⋆ represents the Hodge dual. Therefore, the equa-
tions of motion (4.1) can be replaced by

fMN − ⋆fMN ¼ 0;

DMϕM ¼ 0; ð4:10Þ

which is equivalent to

σMDMψ ¼ 0; with ψ ¼ σ̄MϕM: ð4:11Þ

So, ϕM can be solved from Eq. (4.10) as

ϕM ¼ σ̄Mξ
ρ

ðx2 þ ρ2Þ3=2 ≡ σ̄MfðxÞξ; ð4:12Þ

which is in agreement with Ref. [61]. As ξ is a two-
component spinor, Eq. (4.11) is remarkable since it shows
that a heavy vector meson holographically binds to an
instantonic configuration in the bulk, and thus a vector zero
mode is equivalently described by a spinor.

V. QUANTIZATION

The classical moduli of the bound instanton zero mode
should be quantized by slowly rotating and translating the
bound state, since it breaks rotational and translational

symmetry. The instantonic and standard quantization of the
leading λNc contribution can be found in Ref. [50], while
the quantization of the subleading λ0mH contribution
involving zero modes in the D0-D4/D8 system is new.
We will employ the quantization applied on D4/D8 as
in Ref. [61].

A. Collectivization

As in Refs. [5,9], we assume that the zero modes slowly
rotate, translate, and deform through

ΦM → V½aIðtÞ�ΦM½X0ðtÞ; ZðtÞ; ρðtÞ; χðtÞ�;
Φ0 → 0þ δϕ0; ð5:1Þ

where X0 and Z are the centers in the xi and z directions,
respectively. aI is the SUð2Þ gauge rotation. They are
represented by Xα ¼ ðXi; Z; ρÞ, with

−iV†∂0V ¼ Φ ¼ −∂tXMAM þ χiΦi;

χi ¼ −iTrðτia−1I ∂taIÞ: ð5:2Þ

Here, the aI’s carry the quantum numbers of isospin and
angular momentum, and the τi’s are Pauli matrices. Since
Eq. (4.2) has to be satisfied, δϕ0 is fixed at the next-to-
leading order,

−D2
Mδϕ0 þDMσ̄M

�
∂tXi ∂ðfχÞ

∂Xi þ ∂tχ

�
þ ið∂tXα∂αΦM −DMΦÞσ̄Mχ þ δSCS ¼ 0: ð5:3Þ

For a general quantization of the ensuing moduli, we can
solve Eq. (5.3) and then insert the solution back into the
action.

B. Leading order of the heavy mass term

The heavy mass terms in the double limit are given in
Eq. (4.6). Imposing Eqs. (5.1) and (5.2) on Eq. (4.6), the
contributions to order λ0mH in L1;m come from three terms,
which are

L1;m ¼ ab3=2Ncð16imHξ
†∂tξf2 þ 16imHξ

†ξA0f2

− 16mHf2ξ†σμΦσ̄μξÞ; ð5:4Þ

where A0 is the rescaled Uð1Þ gauge field. With the
gauge field strength (4.8), the CS term in Eq. (4.6) can be
written as

LCS;m ¼ 3mHNc

π2
f2ρ2

ðx2 þ ρ2Þ2 ξ
†ξ: ð5:5Þ

Notice that the third term in Eq. (5.4) vanishes owing to the
identity σμτ

iσ̄μ ¼ 0.

SI-WEN LI PHYSICAL REVIEW D 96, 106018 (2017)

106018-8



There is a Coulomb-like backreaction according to the
coupling ξ†ξA0 in Eq. (5.4). To clarify this, let us introduce
a Coulomb-like potential defined as φ ¼ −iA0. We collect
all of the Uð1Þ couplings from Eq. (4.6) up to Oðλ0mHÞ as

LUð1Þ ¼ −ab3=2Nc

�
1

2
ð∇φÞ2 þ φðρ0 − 16mHf2ξ†ξÞ

�
;

ð5:6Þ

where ρ0 is the Uð1Þ “charge,” which is given as

ρ0 ¼
1

64π2ab3=2
ϵMNPQFMNFPQ: ð5:7Þ

Solving the equation of motion from Eq. (5.6) for φ, one
obtains its on-shell action as

LUð1Þ ¼ LUð1Þ½ρ0� þ 16ab3=2NcmHf2ξ†ξð−iAcl
0 Þ

−
ab3=2Nc

24π2ρ2
ð16mHξ

†ξÞ2: ð5:8Þ

The last term is the Coulomb-like self-interaction, which is
repulsive and tantamount to fermion number repulsion in
holography.

C. Moduli effective action

All of the contributions up to Oðλ0mHÞ in the effective
moduli action can be collected from Eqs. (5.4), (5.6), and
(5.8). Let us summarize them as follows:

L ¼ LL½aI; Xα� þ 16imHab3=2Ncξ
†∂tξ

Z
d4xf2

− 16mHab3=2Ncξ
†ξ

×
Z

d4x

�
iAcl

0 f
2 −

3

16π2ab3=2
f2ρ2

ðx2 þ ρ2Þ2
�

−
ab3=2Nc

24π2ρ2
ð16mHξ

†ξÞ2: ð5:9Þ

Here LL refers to the effective action on the moduli space
from the contribution of the light hadrons, which is
identical to the derivation in Ref. [50]. Equation (5.9),
explicitly shows the new contribution due to the bound
heavy meson. At the leading order, the coupling of the light
collective degrees of freedom should be a general reflection
of heavy quark symmetry. However, in Eq. (5.9) there is no
such coupling on the order ofOðλ0mHÞ to the heavy spinor
degree of freedom ξ. Notice that the coupling to the
instanton size ρ does not upset this symmetry. In order
to calculate Eq. (5.9), we follow the steps in Ref. [12], i.e.,
we use the normalization

R
d4xf2 ¼ 1, insert the explicit

form of Acl
0 , and rescale ξ → ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ab3=2NcmH

p
. Finally,

we obtain

L ¼ LL½aI; Xα� þ iξ†∂tξþ
3

32π2ab3=2ρ2
ξ†ξ

−
ðξ†ξÞ2

24π2ab3=2ρ2Nc
: ð5:10Þ

This shows the zero mode of the vector to the instanton
transmutation of a massive spinor with a repulsively
Coulomb-like self-interaction in the presence of the D0
charge. A negative mass term also means that the energy of
the heavy meson decreases, so the preceding arguments are
also suitable for an anti-heavy meson in the presence of an
instanton with a positive mass term, leading to Eq. (5.10).
The energy of this meson increases in the presence of the
instanton to order λ0. It originates from the Chern-Simons
term in the holographical action which is the analogue of
the effects due to the Wess-Zumino-Witten term in the
Skyrme model.

D. Heavy-light spectrum

The steps to quantize the Lagrangian (5.9) are the same
as those presented in Ref. [50] for LL½aI; Xα�. We use
HL½aI; Xα� to represent the Hamiltonian associated to
LL½aI; Xα�; then, the Hamiltonian for Eq. (5.10) takes
the form

H ¼ HL½aI; Xα� − 3

32π2ab3=2ρ2
ξ†ξþ ðξ†ξÞ2

24π2ab3=2ρ2Nc
:

ð5:11Þ
The quantization rule for the spinor ξ should be chosen as

ξiξ
†
j þ ξ†jξi ¼ δij: ð5:12Þ

So the rotation of the spinor ξ is equivalent to a spatial
rotation of the heavy vector meson field ϕM since
U−1σ̄MU ¼ ΛMN σ̄M, where U and Λ represent the rotation
of a spinor and a vector, respectively, e.g., ξ → Uξ;
ϕM → ΛMNϕN . The parity of ξ is positive, which is
opposite to ϕM.
The spectrum of Eq. (5.11) is the same as that in

Ref. [50]. Since Eq. (5.11) contains only two terms
proportional to ρ−2, by comparing Eq. (5.11) with the
HL½aI; Xα� presented in Ref. [50] the heavy-light spectrum
can be obtained by modifying Q as

Q ¼ Nc

40ab3=2π2
→

Nc

40ab3=2π2

�
1 −

15

4Nc
ξ†ξþ 5

3N2
c
ðξ†ξÞ2

�
:

ð5:13Þ

Let us use J and I to represent the spin and isospin; they are
related by

J⃗ ¼ −I⃗þ S⃗ ¼ −I⃗þ ξ†
τ⃗

2
ξ: ð5:14Þ
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We notice that we have Jþ I ¼ 0 in the absence of the
heavy-light meson, as expected from the spin-flavor hedge-
hog character. The quantum states for a single bound state,
i.e., NQ ≡ ξ†ξ ¼ 1 and IJπ assignments are labeled by

jNQ; JM; lm; nz; nρ > with IJπ ¼ l
2

�
l
2
� 1

2

�
π

: ð5:15Þ

Here nz, nρ ¼ 0; 1; 2… represent the number of quanta
associated to the collective motion and the radial breathing
of the instanton core, respectively. Following Refs. [44,50],
the spectrum of the bound heavy-light state in the
D0-D4/D8 system is

MNQ
¼ M0 þ NQmH þMKK

ffiffiffiffiffiffiffiffiffiffiffi
3 − b
3

r
ðnρ þ nz þ 1Þ

þMKK

�ðlþ 1Þ2ð3 − bÞ
12

þ 3 − b
15

N2
c

×

�
1 −

15

4Nc
NQ þ 5

3N2
c
N2

Q

��
1=2

; ð5:16Þ

whereMKK is theKaluza-Kleinmass andM0 ¼ λNcb3=2

27π MKK .

1. Single heavy-baryon spectrum

The lowest heavy states with one heavy quark are
characterized by NQ ¼ 1, l ¼ even, Nc ¼ 3 and nz,
nρ ¼ 0, 1. So the mass spectrum is given as

Msingle ¼ M0 þmH þMKKðnρ þ nz þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
3 − b
3

r

þMKK

�ðlþ 1Þ2ð3 − bÞ
12

−
7

180
ð3 − bÞ

�
1=2

:

ð5:17Þ
Let us consider the states with nz ¼ nρ ¼ 0 and identify the
statewith l ¼ 0 and the assignments IJπ ¼ 01

2
þ as the heavy-

light isosinglet ΛQ. Then, we identify the state with l ¼ 2

and the assignments IJπ ¼ 11
2
þ; 13

2
þ as the heavy-light

isotriplets ΣQ;Σ�
Q, respectively. Subtracting the nucleon

mass MN (which is identified as the state with l ¼ 0 of
the light-baryon spectrum) from Eq. (5.17), we have

MΛQ
−MN −mH ≃ −0.76

ffiffiffiffiffiffiffiffiffiffiffi
3 − b

p
MKK;

MΣQ
−MN −mH ≃ −0.12

ffiffiffiffiffiffiffiffiffiffiffi
3 − b

p
MKK;

MΣ�
Q
−MN −mH ≃ −0.12

ffiffiffiffiffiffiffiffiffiffiffi
3 − b

p
MKK: ð5:18Þ

Thus we see the explicit dependence on the D0 charge in the
baryon spectrum in this model. Next, we can study the
excited heavy baryons with Eq. (5.17). Let us consider
the low-lying breathing modes R (nρ ¼ 1) with the even
assignments IJπ ¼ 01

2
þ; 11

2
þ; 13

2
þ, and the odd-parity excited

states O (nz ¼ 1) with the even assignments
IJπ ¼ 01

2
−; 11

2
−; 13

2
−. Using Eq. (5.17), we have (E ¼ O, R)

MΛEQ0 ðbÞ ¼ þ0.23MΛQ
ðbÞ þ 0.77MNðbÞ − 0.23mH þm0

H;

MΣEQ0 ðbÞ ¼ −0.59MΛQ
ðbÞ þ 1.59MNðbÞ þ 0.59mH þm0

H;

ð5:19Þ
where the holographically model-independent relations
from Ref. [61],

MΛQ0 ¼ MΛQ
þmH0 −mH;

MΣQ0 ¼ 0.84MN þmH0 þ 0.16ðMΛQ
−mHÞ; ð5:20Þ

have been imposed.

2. Double-heavy baryons

Since heavy baryons also contain anti-heavy quarks, let
us return to the preceding arguments using the reduction
ΦM ¼ ϕMeþimHx0 , in order to consider an anti-heavy-light
meson. Most of the calculations are similar except for
pertinent minus signs in the effective Lagrangian. In the
form of a zero mode, if we bind one heavy-light and one
anti-heavy-light meson, the effective Lagrangian now reads

L ¼ LL½aI; Xα� þ iξ†Q∂tξQ þ 3

32π2ab3=2ρ2
ξ†QξQ

− iξ†Q̄∂tξQ̄ −
3

32π2ab3=2ρ2
ξ†Q̄ξQ̄ þ

ðξ†QξQ − ξ†Q̄ξQ̄Þ2
24π2ab3=2ρ2Nc

:

ð5:21Þ
The contributions of the mass from a heavy-light and anti-
heavy-light mesons are opposite, as we have indicated.
So the mass spectrum for baryons with NQ heavy quarks
and NQ̄ anti-heavy quarks can be calculated as

MQQ̄¼M0þðNQþNQ̄ÞmH

þMKK

ffiffiffiffiffiffiffiffiffiffi
3−b
3

r
ðnρþnzþ1Þ

þMKK

	ðlþ1Þ2ð3−bÞ
12

þ3−b
15

N2
c

×
�
1−

15ðNQ−NQ̄Þ
4Nc

þ5ðNQ−NQ̄Þ2
3N2

c

�

1=2

: ð5:22Þ

The lowest state (NQ ¼ NQ̄ ¼ 1; nρ ¼ nz ¼ 0; l ¼ 1) with
the assignments IJπ ¼ 1

2
1
2
−; 1

2
3
2
− can be identified as penta-

quark baryonic states, and the masses are given as

MQQ̄ðbÞ −MNðbÞ − 2mH ¼ 0; ð5:23Þ
which obviously does not depend on the D0 charge.
For the excited pentaquark states, we identify the lowest

state asOwith odd parity, assignments IJπ ¼ 1
2
1
2
þ; 1

2
3
2
þ, and

quantum numbers NQ ¼ NQ̄ ¼ 1; nρ ¼ 0; nz ¼ 1; l ¼ 1.
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The state with quantum numbers NQ ¼ NQ̄ ¼ 1; nρ ¼
1; nz ¼ 0; l ¼ 1 and the same assignments identifies breath-
ing or Roper R pentaquarks as the ground state. So the mass
relations for these states are given as (E ¼ O, R)

MEQQ̄ðbÞ −MNðbÞ − 2mH ≃ 0.58
ffiffiffiffiffiffiffiffiffiffiffi
3 − b

p
MKK: ð5:24Þ

On the other hand, the delta-type pentaquarks can be
identified as the states with quantum numbers NQ ¼
NQ̄ ¼ 1; nρ ¼ nz ¼ 0; l ¼ 3. Altogether, we have one
IJπ ¼ 3

2
1
2
−, two IJπ ¼ 3

2
3
2
−, and one IJπ ¼ 3

2
5
2
− state, so

the masses with heavy flavors are given as

MΔQQ̄ðbÞ −MNðbÞ − 2mH ≃ 0.42
ffiffiffiffiffiffiffiffiffiffiffi
3 − b

p
MKK: ð5:25Þ

VI. SUMMARY

Using the Witten-Sakai-Sugimoto model in the D0-D4
background [48,49] and the mechanism proposed in
Refs. [59–61], we have extended the analysis in
Refs. [50,51] to involve the heavy flavors using a top-
down holographic approach to the single- and double-
heavy baryon spectra. The heavy-light interaction was
introduced into this model by considering a pair of
heavy-flavor branes which are separated from the light-
flavor branes. The heavy baryon emerges from the zero
mode of the reduced vector meson field to order λm0

H. The
binding of the heavy and anti-heavy mesons is equivalent to
the instanton configurations of the gauge field on the flavor
branes at leading order in λ, even in the presence of the
Chern-Simons term. The smeared D0 charge was turned on
in theD4-soliton background, so our calculation contains the
excited states with nonzero Tr½F ∧ F � or a nonzero θ angle
in the dual field theory. The θ dependence is through a
parameter b (or ~κ) which is monotonically increasing with θ.
Following the quantization in Ref. [61], the bound state

moduli gives a rich spectrum. It contains the coupled
rotational, vibrational, and translational modes. There are
also some newly excited states in the spectrum which have
yet to be observed. The charmed pentaquark can be
naturally identified as a pair of degenerate heavy isodoub-
lets with IJπ ¼ 1

2
1
2
−; 1

2
3
2
− in the spectra when it is extended

to the double-heavy baryon case. Our calculation also
shows the D0 charge moduli in some new pentaquarks with
hidden charm and bottom, and five delta-like pentaquarks
with hidden charm in the spectra. Notice that our discussion
returns to that in Ref. [61] if b ¼ 1, i.e., there is no D0
charge. Particularly for the b > 3 case, we notice that the
spectrum becomes complex which indicates that baryons
cannot be stable, and this is in agreement with the previous
study [50,51] of the holographic baryons in this model.
As in most applications of gauge/gravity duality, our

analysis was done in the large-Nc and large ’t Hooft
coupling λ limits, but now with large mH. Since the baryon
spectrum demonstrates the behavior of light baryons shown

in Refs. [50,51], we expect that this model will also capture
the qualitative ~κ (or θ angle) behavior, at least for small ~κ
(or θ angle) in a QCD-like theory when the heavy-light
interaction is involved. Although we have compared our
results with the real-world nuclei or quark states by setting
Nc ¼ 3 (as in Refs. [50,51]), there is still a long way to go
before we can obtain a realistic baryon spectrum.
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APPENDIX: THE QUATIZATION
OF THE LIGHT FLAVORS

In this appendix, we collect the essential steps to
quantize the light-baryon Lagrangian LL presented in this
manuscript. The details can be systematically reviewed in
Refs. [44,50]. With the dimensionless variables, the explicit
formula of LL½aI; Xα� is given as

LL ¼ LL
YM þ LL

CS; ðA1Þ
where

LL
YM¼−aλNcb1=2

Z
d4xdzH1=2

0 ðUÞ

×Tr

�
1

2

UKK

U
F μνF μνþ U3

U3
KK

bF μzF μz

�
;

LL
CS¼

Nc

24π2
Tr

�
A∧F ∧F −

1

2
A3∧F þ 1

10
A5

�
: ðA2Þ

For the two-flavor case, the Uð2Þ gauge field A can be
decomposed into a SUð2Þ part A and a Uð1Þ part Â as

A ¼ Aþ 1

2
Â; ðA3Þ

whose gauge field strength is

F ¼ F þ 1

2
F̂: ðA4Þ

In the large-λ limit, imposing the λ rescale (3.14), the
equation of motion from Eq. (A2) can be obtained as

DMFMN þOðλ−1Þ

¼ 0; DMF0M þ 1

64π2ab3=2
ϵMNPQF̂MNFPQ þOðλ−1Þ ¼ 0;

∂MF̂0M þOðλ−1Þ

¼ 0; ∂MF̂0M þ 1

64π2ab3=2
ϵMNPQTr½FMNFPQ�

þOðλ−1Þ ¼ 0; ðA5Þ
and the solution is given in Eq. (4.7).
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In order to obtain the spectrum, we require the moduli of
the solution to be time dependent, i.e.,

Xα; aI → XαðtÞ; aIðtÞ: ðA6Þ

Here aIðtÞ refers to the SUð2Þ orientation. So the SUð2Þ
gauge transformation also becomes time dependent,

AM → VðAcl
M − i∂MÞV−1;

FMN → VF cl
MNV

−1;

F0M → Vð _Xα∂αAcl
M −Dcl

MΦÞV−1; ðA7Þ

where Φ ¼ −iV†∂0V; V† ¼ V−1.
The motion of the collective coordinates could be

characterized by the effective Lagrangian in the moduli
space. Up to Oðλ−1Þ, it is

L ¼ 1

2
mXgαβ _X

α _Xβ −UðXαÞ þOðλ−1Þ

¼ 1

2
mX

_⃗X
2 þ 1

2
mZ

_Z2 þ 1

2
my _yI _yI −UðXαÞ; ðA8Þ

where a dot represents a derivative with respect to t, gαβ
is the metric of the moduli space parametrized by Xα

which satisfies ds2¼gαβdXαdXβ¼dX⃗2þdZ2þ2dyIdyI ,
and

P
4
I¼1 yIyI ¼ ρ2. UðXαÞ is the effective potential

associated to the on-shell Lagrangian with the instanton
solution (4.7), i.e.,Z

d3xdzLL½aI; Xα�onshell ¼ −UðXαÞ: ðA9Þ

The baryon spectrum can be obtained by quantizing
Eq. (A8) (soliton) at rest. The quantization procedure
simply replaces the momenta in the Lagrangian with the
corresponding differential operators, which can act on the

wave function of baryon states. So the quantized
Hamiltonian associated to Eq. (A8) is

H ¼ HX þHZ þHy;

HX ¼ 1

2mX
P2
X þM0 ¼ −

1

2mX

X3
i¼1

∂2

∂X2
i
þM0;

HZ ¼ 1

2mZ
P2
Z þ 1

2
mZω

2
ZZ

2 ¼ −
1

2mZ

∂2

∂Z2
þ 1

2
mZω

2
ZZ

2;

Hy ¼
1

2my
P2
y þ

1

2
myω

2
yρ

2 þ Q
ρ2

¼ −
1

2my

X4
I¼1

∂2

∂y2I þ
1

2
myω

2
yρ

2 þ Q
ρ2

: ðA10Þ

In units of UKK ¼ MKK ¼ 1, or equivalently with the
replacements z→ zUKK , xμ → xμ=MKK , Az → Az=UKK ,
and Aμ → AμMKK , we have the following dimensionless
values:

M0 ¼ 8π2λab3=2Nc; ωZ ¼ 1

3
ð3 − bÞ;

ωy ¼
1

12
ð3 − bÞ; Q ¼ Nc

40π2ab3=2
: ðA11Þ

The eigenstates of HZ are nothing but harmonic-oscillator
states. The eigenfunctions of Hy are represented by
TlðaIÞRl;nρðρÞ, where TlðaIÞ are the spherical harmonic

functions on S3. They are in the representations of ðl
2
; l
2
Þ

under the transformation of SOð4Þ ¼ SUð2Þ × SUð2Þ=Z2.
The former SUð2Þ corresponds to the isometric rotation,
while the latter is the space rotation in fxig. The states with
I ¼ J ¼ l

2
are described by this quantization, so the nucleon

state is realized as the lowest state with l ¼ 1; nρ ¼ nz ¼ 0

of the Hamiltonian (A10).
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