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In a holographic probe-brane model exhibiting a spontaneously spatially modulated ground state, we
introduce explicit sources of symmetry breaking in the form of ionic and antiferromagnetic lattices. For the
first time in a holographic model, we demonstrate pinning, in which the translational Goldstone mode is
lifted by the introduction of explicit sources of translational symmetry breaking. The numerically computed
optical conductivity fits very well to a Drude-Lorentz model with a small residual metallicity, precisely
matching analytic formulas for the DC conductivity. We also find an instability of the striped phase in the
presence of a large-amplitude ionic lattice.
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I. INTRODUCTION

Electronic systems at low temperature exhibit a range of
phases with spontaneously broken translation symmetries.
A charge density wave (CDW) is a typical example, in
which continuous translation symmetry is broken in one
direction, leading to stripes of modulated charge density.1

Other order parameters can become spatially modulated,
such as spin density waves (SDW) or persistent circulating
currents. Complex combinations of intertwined orders can
occur, such as the pair-density waves (PDW) found in
certain underdoped cuprates, featuring spatially modulated
charge, spin, and superconducting phase.
Spontaneously striped phases have interesting properties

and rich dynamics. The charge conductivity, in particular,
can feature striking behavior. Because the symmetry break-
ing is spontaneous, striped phases feature a Goldstone mode
which is the translation zero-mode. An applied electric field
can easily cause the stripes to slide, resulting in collective
charge transport.
In practice, however, additional sources of explicit

symmetry breaking, such as impurities or the underlying
lattice, typically generate a spatially varying potential for
the stripes and lift the Goldstone mode. The stripes are then
pinned in place and can only slide if the potential barrier is
overcome by a sufficiently large electric field. This depin-
ning transition results in a highly nonlinear conductivity.
Spontaneous striped order is a common feature of many

condensed matter systems. In some cases, the underlying
physics can be understood in a weakly interacting,

quasiparticle description. However, other examples are
found in strongly coupled materials, such as the pseudogap
regime of cuprate superconductors [2,3], and are more
amenable to a holographic approach.
Holographicmodeling of striped phases has been a subject

of much attention in recent years. In most of the examples,
translation symmetry is broken explicitly. A spatially modu-
lated chemical potential can represent an ionic lattice [4,5],
and a sum of such potentials with different frequencies and
random phases can model disorder [6].
Comparatively less attention has focused on the more

interesting case of spontaneous symmetry breaking. Striped
phases of several holographic models featuring nonpertur-
bative spontaneous striped order have been constructed; see
e.g., [7–23]. In a few cases, phases with spontaneous order
in two directions have been found [24–26]. However, the
unique transport properties of these states are just begin-
ning to be studied.
In [27], we initiated the analysis of the conductivity of a

spontaneously striped state. We focused on the D3-D7’
probe-brane model, a well-studied holographic model
featuring a spontaneously striped phase with modulated
magnetization, persistent transverse currents, and modu-
lated charge density. Phases with such complex intertwined
orders appear in, for example, cuprate [28] and ferrous
superconductors [29], and have recently also been modeled
holographically, for example, in [23]. We found that the
stripes slide with a velocity proportional to the applied
electric field and carry a significant fraction of the current.
In experimental systems, spontaneous breaking coexists

with disorder or an underlying lattice. Several recent
studies have investigated how explicit symmetry breaking
affects the formation of holographic striped phases. In
[23,30], background linear scalars were shown to impact
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the modulated instability of the homogeneous phase and
wavelength of the resulting stripes. Even more interest-
ingly, [31] demonstrated that an explicit ionic lattice of
sufficient amplitude can force the wavelength of the
modulated instability to be half-integer multiples of the
lattice wavelength, indicating a commensurate lock-in
between the lattice and the stripes. However, the effects
of an explicit lattice on the conductivity, especially the
pinning of holographic stripes, the focus of this paper, have
not previously been investigated.2

In this paper, we analyze the linear conductivity of the
D3-D7’ model with the addition of explicit translation
symmetry breaking, either in the form of an modulated
chemical potential (ionic lattice) or a background antifer-
romagnetic field (magnetic lattice). This explicit breaking
lifts the Goldstone mode and pins the stripes. The resulting
longitudinal conductivity is well fit by a Drude-Lorentz
model. We find a small residual DC conductivity, computed
semianalytically in terms of background horizon data,
which represents the current of charge carriers flowing
across both the stripes and the lattice.
The transverse conductivity is relatively unaffected by

the addition of the explicit lattice and is still well fit by a
Drude-like form. As a result, the surprising approximate
symmetry between the longitudinal and transverse DC
conductivities found in [27] is strongly broken. The DC
conductivity across the stripes is now an order of magnitude
smaller than along the stripes.
The DC Hall conductivity in the absence of a lattice [27]

features a delta peak due to the persistent transverse current
oscillating as stripes slide. Adding a lattice pins the stripes
and regulates this delta peak into a modified Lorentzian
form, with the same resonance frequency and relaxation
time as seen in the longitudinal conductivity.
In many respects the ionic and magnetic lattices have

qualitatively similar effects. However, because the charge
modulation of the stripes is subleading, the potential well
due to the ionic lattice is shallower. As a result, the resonant
frequency is an order of magnitude smaller than for the
magnetic case.
However, one surprising result is that an ionic lattice of

sufficient amplitude leads to an instability. We find that, as
the lattice amplitude is increased, at a certain point the
resonant frequency goes to zero and then becomes imaginary.
This is a sign that a pole in the current-current correlator has
acquired a positive imaginary part, corresponding to an
exponentially growing pseudo-Goldstone mode.
The rest of this paper is organized as follows. In Sec. II,

we will review the construction of the D3-D7’ model and
the spontaneously spatially modulated phase. Sec. II B

introduces the explicit modulation. Then, in Sec. III, we
recompute the conductivities, first for the magnetic lattice
in Sec. III B and then ionic lattice in Sec. III C. We
conclude with a summary and open questions in Sec. IV.

II. SETUP

The D3-D7’ model is a holographic model of strongly
interacting fermions on a (2þ 1)-dimensional defect [32],
which in many ways resembles graphene [33–35]. The
construction consists of a probe D7-brane embedded in a
D3-brane background such that supersymmetry is com-
pletely broken and stabilized by internal magnetic fluxes
wrapping 2-cycles in the S5. We will only briefly review the
relevant aspects of the model here; for more details, see [27].
It is noteworthy to mention other closely related holographic
constructions [36–44], which have significantly contributed
to the understanding of the current setting.
The probe D7-brane is embedded so that it spans the t, x,

and yMinkowski directions, is extended in the holographic
radial direction r, and wraps both of the 2-spheres. The
bulk solutions are specified by the embedding functions z
and ψ and the world volume gauge field aμ. The D7-brane
action consists of a Dirac-Born-Infeld term and a Chern-
Simons term:

S ¼ −T7

Z
d8xe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ 2πα0FμνÞ

q

−
ð2πα0Þ2T7

2

Z
P½C4� ∧ F ∧ F: ð1Þ

From this action, we obtain equations of motion for the
embedding fields ψ and z as well as the world volume
gauge fields at, ax, and ay.

3

We scale out the temperature T by rescaling the spatial
coordinates xμ and gauge field aμ by the horizon radius rT .
We furthermore work with a compact radial coordinate

u ¼ rT
r
; ð2Þ

which sets the location of the horizon at u ¼ 1 and the anti-
de Sitter (AdS) boundary at u ¼ 0.
We can include a chemical potential μ and magnetic field

b by turning on appropriate components of the bulk gauge
field aμ. For a particular ratio of charge density to magnetic
field, the D7-brane can take a Minkowski embedding,
which is holographically dual to a gapped, quantum Hall
phase [32,45–47]. However, we will concentrate in this
paper on the generic black hole embedding, which is dual
to a gapless quantum fluid. We will further restrict to
embeddings with zero fermion mass.2Pinning in a holographic CDW was reported in [19]. How-

ever, as the model lacks an explicit source of symmetry breaking
to lift the Goldstone mode, we disagree with the identification of
the reported conductivity as being due to pinning.

3The equation for the radial component au gives a constraint
enforcing the radial gauge condition au ¼ 0.
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A. Spontaneous stripes

At large chemical potential and small magnetic field, the
homogeneous solution of the D3-D7’ model was found to
exhibit an instability at nonzero momentum [48,49]. In
[20], this instability was shown to lead to a striped ground
state, featuring spatially modulated charge density, mag-
netization, and persistent current along the stripes. Rotation
invariance allows us to choose the modulation to be in the x
direction, while translation symmetry is preserved in the y
direction.
The spontaneous modulation has a dynamically deter-

mined spatial frequency k0, which is an increasing function
of μ and a decreasing function of b. The transverse gauge
field ay and the embedding ψ exhibit the leading modu-
lation. Because all the bulk fields are nontrivially coupled,
these induce a subleading modulation with a frequency 2k0
in the temporal gauge field at and embedding scalar z. The
spatial period of the solution is L ¼ 2π=k0.
In [27], we analyzed the electrical conductivity for this

striped state at zero magnetic field. We computed the DC
conductivity σDC semianalytically in terms of horizon data
using the procedure of [50–53], and the AC conductivity
σðωÞ was computed numerically. As expected, the con-
ductivity of both the homogenous and striped phases fit
very well to a Drude-like form.
Our most significant result was that the stripes move as a

result of an electric field Ex applied across the stripes. The
stripes have a sliding mode which is the Goldstone mode of
the spontaneously broken translation symmetry. In the
absence of an underlying lattice or localized impurities
explicitly breaking translation invariance, the stripes are not
pinned to any particular location. The D3-brane sector acts
as a momentum sink, analogous to uniformly smeared
impurities, providing friction to the sliding stripes. This
results in a sliding velocity vs proportional to Ex and a
finite σDCxx .
The optical conductivity in both the x and y directions

exhibits a Drude-like form at low frequency. Surprisingly,
the conductivity across the stripes and along the stripes is
equal to within a few percent, despite the anisotropy of the
background and very different mechanisms for charge
transport in the two directions.
The Hall conductivity σyx illustrates the effect of the

sliding stripes. The striped ground state features a modu-
lated transverse persistent current jyðxÞ, which slides along
with the stripes. The transverse current at a fixed location
therefore oscillates in time as the stripes slide past. This
results in a delta peak in the DC Hall conductivity with a
modulated strength.

B. Introducing lattices

In this paper, we add explicit translation symmetry
breaking on top of the nonlinear spontaneous striping.
As the striped background consists of both modulated

magnetization and charge density, there are two interesting
ways we can introduce explicit translation symmetry
breaking. We can consider modulation either in the back-
ground magnetic field or in the chemical potential. We refer
to the resulting field theory configurations as magnetic and
ionic lattices, respectively. And, note that we only introduce
one type of lattice at a time, not both simultaneously.
In a sufficiently strong periodic potential, striped states

will typically adjust their wavelength to be commensurate
with that of the potential. Such commensurate lock-in has
been observed in a holographic context in [31], and we
expect such an effect to occur in this model. However, we
leave this investigation for future work.
In the meantime, we set the wavelength of the lattice

equal to the wavelength dynamically preferred by the
stripes in the absence of a lattice. The spatial frequency
of the magnetic lattice is then k0 to match the spontaneous
magnetization of the stripes, and the ionic lattice is given a
frequency 2k0 to match the stripes’ charge density modu-
lation. We furthermore choose the phase of the lattice such
that the discrete symmetries of the striped solution are
respected. Essentially, we impose commensurability of the
lattice and the stripes by hand.
These lattices are dual in the bulk to modulated boundary

conditions for the dual components of the world volume
gauge field. For the two lattices, the boundary conditions
that we introduce are then as follows:

Magnetic lattice∶ ayðx; u ¼ 0Þ ¼ bxþ αb sinðk0xÞ ð3Þ

Ionic lattice∶ atðx; u ¼ 0Þ ¼ μþ αμ cosð2k0xÞ: ð4Þ

The parameters αb and αμ measure the amplitude of the
lattices and will play a major role in the subsequent
analysis.4

In this paper, we will restrict our attention to solutions for
which the spatially averaged background magnetic field
vanishes, b ¼ 0. We further set the chemical potential to be
μ ¼ 4, which is sufficiently large that the system is in the
spontaneously striped phase [20].5

Before moving on to study the conductivity, we note that
the lattices have a significant effect on the striped background
itself and not just on its excitations. We show in Fig. 1 the
difference between the striped solution with a magnetic
lattice αb ¼ 1 and without αb ¼ 0. Not surprisingly, the

4We restrict to positive α. Notice that the sign of both α’s can
be changed by choosing the phase of the modulation differently,
so formally the boundary conditions with opposite signs are
equivalent. Separate branches of solutions obtained by a defor-
mation of the α ¼ 0 solution towards negative α do exist,
however, but only for jαj ≪ 1. We expect that they are subdomi-
nant even in the narrow range where they exist.

5In fact, we only know definitively that the system is in the
striped phase for μ ¼ 4 when αb ¼ αμ ¼ 0. We postpone a
detailed analysis of the phase diagram in the presence of explicit
lattices to future work.
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magnetic lattice directly and strongly enhances the modu-
lation of ay. The various couplings between all the fields
induce smaller enhanced modulations in ψ , z, and at. Just as
the spontaneousmodulationof z andat is twice the frequency
of ay and ψ , so too is the enhanced modulation generated by
the lattice. Also note that, although Δat is substantial, one
should recall that, since the boundary condition sets
atðu ¼ 0Þ ¼ μ ¼ 4, the fractional effect Δat=at is actually
smaller than for ψ.
In Fig. 2, we show the analogous plot for an ionic lattice,

the difference between the striped solutions with αμ ¼ 1 and
αμ ¼ 0. Here, the lattice directly generates a sizable increase
in themodulation of at, which is then transmitted to the other
fields. Even thoughwehave in both cases chosen the smallest
wave number for the source which preserves all discrete
symmetries, there are also clear differences in the shapeof the
response between Fig. 1 and Fig. 2. In particular, for ψ and
ay, the ionic lattice primarily enhances the amplitude of the
mode with frequency 3k0 rather than k0.
One important effect of the lattices is that, even though

the added modulation does not change the average chemi-
cal potential, the charge density is strongly impacted. As
shown in Fig. 3, both the average charge density hdi and the

amplitude at which the charge density is modulated,
Δd ¼ max jdðxÞ − hdij, increase with both αb and αμ. In
particular, the ionic lattice induces a strong modulation of
the charge density.

III. CONDUCTIVITIES

We now turn to our main topic, the linear electric
conductivity of the striped state in the presence of an
explicit lattice. We first present formulas for the DC
conductivities in terms of the horizon data of the back-
ground solution. Then we present numerical computations
of the optical conductivity, first for the magnetic lattice and
then for the ionic case.

A. DC conductivities

We computed in [27] the DC conductivities of the striped
solution in the absence of a lattice. This computation
involved the method developed in Refs. [50–53] using
conserved bulk quantities to express the currents in terms of
quantities which depend only on background fields at the
horizon. To describe a system with spontaneous symmetry
breaking, we generalized this method to include the

FIG. 1. The difference between the bulk stripe solution with a magnetic lattice αb ¼ 1 solution and without αb ¼ 0. Top left: Δψ , top
right: Δz, bottom left: Δay, and bottom right: Δat.
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translational Goldstone mode. The stripes then slide at a
velocity vs proportional to the applied electric field Ex. The
value of vs was fixed in [27] by comparing numerically the
zero-frequency limit of the fluctuations sourced by the
electric field to the profile of the Goldstone mode.6

Introducing a lattice does not alter the computation of
[27] except that, because the Goldstone mode is lifted, the
stripes can no longer slide. The averaged7 DC conductiv-
ities are therefore given by nearly the same expressions as
in [27]:

FIG. 2. The difference between αμ ¼ 1 solution and αμ ¼ 0. Top left: Δψ , top right: Δz, bottom left: Δay, and bottom right: Δat.

FIG. 3. The spatial average of the charge density hdi and its modulation amplitude Δd ¼ max jdðxÞ − hdij. Left: magnetic lattice.
Right: ionic lattice.

6The fact that vs cannot be fixed analytically is likely an
artifact of working only to linear order when computing the
conductivity. In a fully nonlinear sliding solution, we believe vs
will be fixed. 7Spatial averages are denoted by h…i ¼ R

L
0 dxð…Þ=L.
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hσxxi ¼ hσ̂−1i−1 þ δαb;αμ;0
vs
Ex

½
ffiffiffi
2

p
hcðψ0Þa0y;0i − hat;0σ̂ða02y;0 þ ψ 02

0 þ z020 Þi þ hat;0ihσ̂−1i−1 − hat;0σ̂i� ð5Þ

hσyyi ¼
�
σ̂ð1þ z020 þ ψ 02

0 Þ þ
1

σ̂
ð

ffiffiffi
2

p
cðψ0Þ − σ̂at;0a0y;0Þ2

�
ð6Þ

hσxyi ¼ hσyxi ¼ 0; ð7Þ

where

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 8sin4ψ0ðxÞÞð1þ 8cos4ψ0ðxÞÞ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − at;0ðxÞ2Þð1þ a0y;0ðxÞ2 þ ψ 0

0ðxÞ þ z020 ðxÞÞ
q

ð8Þ

and the subscript 0 denotes values of the background
fields evaluated at the horizon, with the exception
of atðx; uÞ ¼ at;0ðxÞðu − 1Þ þOðð1 − uÞÞ.8
We have introduced a Kronecker delta in the last term

of (5), signaling an abrupt change of physics in the absence
of explicit translation symmetry breaking α ¼ 0. This
discontinuity is a result of computing the conductivity to
linear order. Because the finite modulation α is parametri-
cally larger than the infinitesimal electric field Ex, there is
no way to overcome the pinning potential and cause the
stripes to slide across the lattice. We hope in future work to
compute the nonlinear conductivity in response to finite Ex.
Although the addition of this Kronecker delta may seem

ad hoc, we verify that it is correct in Secs. III B and III C by
matching σDCxx from Eq. (5) to the zero-frequency limit of
the optical conductivity.

B. Magnetic lattice

We now focus our attention on the specific case of the
magnetic lattice and impose the boundary condition (3) on
ay. We construct the modulated background numerically
as in Ref. [20]. The DC conductivities can directly be
computed from Eqs. (5) and (6) using the horizon values of
the numerical solution.
To compute the optical conductivity, we consider linear

fluctuations on top of the striped backgrounds with the
form:

f ¼ f̄ðx; uÞ þ e−iωtð1 − uÞ−iω=4δfðx; uÞ; ð9Þ

where f represents each of the bulk fields ψ , z, at, ay, and
ax. To turn on electric fields ex or ey, we choose one of the
following boundary conditions:

iωδaxðx; 0Þ þ ∂xδatðx; 0Þ ¼ iωex ð10Þ

δayðx; 0Þ ¼ ey: ð11Þ

As usual, an extra factor of ω was included in the
definitions of ex and ey so that the physical electric fields
are ∝ iωex;ye−iωt. No other sources are turned on, so that

∂uδψðx; 0Þ ¼ 0 ¼ δzðx; 0Þ: ð12Þ

In addition, we require infalling conditions, i.e., that δf are
regular at the horizon, and that δatðx; 1Þ ¼ 0. We then solve
the linearized equations of motion numerically and extract
the conductivities as follows:

�
jxðω; xÞ
jyðω; xÞ

�
¼

� ∂uδâxðx; u ¼ 0Þ
∂uδâyðx; u ¼ 0Þ

�

¼
�
σxxðω; xÞ σxyðω; xÞ
σyxðω; xÞ σyyðω; xÞ

��
iωex
iωey

�
: ð13Þ

For further details, we refer the reader to [27], and
for a similar computation with complementary discussion,
see [53].
Our first goal is to match the ω → 0 limit of the optical

conductivities computed numerically with the DC conduc-
tivities computed from Eqs. (5) and (6). We plot these in
Fig. 4, and they match to excellent accuracy.9

Turning now to nonzero ω, our results for the optical
conductivity hσxxðωÞi for the magnetic lattice are shown for
various values of αb in Fig. 5 (left). As αb increases, the
peak in RehσxxðωÞi, located at ω ¼ 0 for αb ¼ 0, shifts to
higher frequencies. In addition, the height of the peak
shrinks and the width broadens. Notably, the conductivity
at small ω immediately drops by an order of magnitude
when αb becomes nonzero, as is demonstrated more clearly
in the right hand plot of Fig. 5.
This result can be fit very well with a Drude-Lorentz

model of the following form:

8For x-dependent expressions, we refer the reader to Ref. [27].

9The zero-frequency limit of the optical conductivity (red dots
in Fig. 4) is extracted as follows. For conductivity in the x
direction, the dependence of the hσxxi on ω was so weak that we
simply take the data at lowest available ω. For hσyyi in y direction,
we fit the data at low ω to a Drude-like form (see Fig. 9 below)
because the peak at small ω becomes so narrow, in particular at
large αb, that extrapolation to ω ¼ 0 is needed.
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hσxxðωÞi ¼
hσDCxx i

1 − iτxxω
þ Kxxτxx

1 − iτxxωð1 − ω2
xx

ω2 Þ

¼ hσDCxx i
1 − iτxxω

þ iKxxω

ω2 − ω2
xx þ iω=τxx

: ð14Þ

There are three parameters Kxx, τxx, and ωxx which we fit
to the data,10 and the results are plotted in Fig. 6. In the left-
hand plot we show examples of the fit compared to the data
at two values for the amplitude of modulation, αb ¼ 0.1
and αb ¼ 4. The conductivity (14) is a sum of two terms.
The first term is the Drude-like form and describes the
residual metallicity of charge carriers flowing across the
stripes. Since we already demonstrated above that the zero-
frequency limit of the optical conductivity matches with the
result of Eq. (5), we fix hσDCxx i by using this formula.
The second term is a Lorentzian which describes pinned

stripes [1,54] and results from modeling the motion of the
stripes in the lattice potential as a driven, damped harmonic

oscillator. The resonance frequency ωxx is related to the
lattice potential. The harmonic oscillator model predicts
ωxx ∼ α1=2b , which roughly fits the data for small αb.
Notice that the second term vanishes as ω → 0, and the

stripes do not contribute to the DC conductivity. The
exception is when ωxx ¼ 0, in which case there is an extra
contribution to the DC conductivity is given by Kxxτxx. In
fact, ωxx vanishes precisely is the absence of the lattice
potential. Then the stripes can slide [27], and the result
agrees with the DC formula (5), which similarly has an
extra term which is nonzero when αb ¼ 0.
The fit of the data to Eq. (14) is generally quite good.

Notice that we simultaneously fit both the real part and the
imaginary part of the conductivity with the same parameter
values. At small αb, it is best for ω≲ 1. The fit is worse at
larger ω because there is a “continuum” contribution to the
conductivity which is not captured by the formula (14). The
quality of the fit also drops with increasing αb, as the peak
moves to higher frequencies and interferes with the
continuum part. For αb ≳ 6 (not shown) the fit fails to
reproduce the ω-dependence of the data.
We made the assumption in Eq. (14) that the decay times

of the Drude-like contribution and the Lorentzian are the

FIG. 4. Comparison of the numerical ω → 0 limit of the optical conductivities (red dots) to the formula (5) for the DC conductivities
(blue curves), plotted against the amplitude of the magnetic lattice αb. Left: hσDCxx i. Right: hσDCyy i.

FIG. 5. Left: The averaged optical conductivity hσxxi for a magnetic lattice. The real part is shown in thick, blue curves and imaginary
part in thin, red curves. Solid, dashed, dotted, and dot-dashed curves correspond to αb ¼ 0.1, 1, 4, and 10, respectively. For comparison,
we also show the result at αb ¼ 0 as thin, long-dashed black curves. Right: A zoom into the region with low ω, showing the optical
conductivities at αb ¼ 0 and at αb ¼ 0.1. The circles are the values of the DC conductivities from Eq. (5) (The higher value includes the
contribution from the sliding stripes [27]).

10The fit for σxx (as well as the fit for σyx below) was done
using a least-squares method, using the data within a range of
about two half-widths around the peak.
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same, which does not necessarily need to be the case.
However, recall that the DC conductivity of the pinned
system is highly suppressed, so consequently the contri-
bution from Drude peak is subleading by roughly an order
of magnitude with respect to the Lorentzian. Therefore, our
fit is not sensitive to the details of the Drude peak, and
because of this, we have chosen not to fit its decay time
independently. Instead, we have tested that replacing the
first term in (14) by a different formula, e.g., a constant [55]
does not improve the fit significantly. If we had an access to
the quasinormal mode spectrum, we could systematically
include higher order poles contributing to the optical
conductivities [56].
We now turn to the Hall conductivity σyx. As discussed in

Sec. II A, in the absence of a lattice, σyx contains a delta
peak at ω ¼ 0. As the stripes slide due to an infinitesimal
electric field, the finite persistent transverse current at any
fixed location varies, leading to an infinite DC Hall
conductivity [27].
As we turn on nonzero αb, the delta peak is regulated,

becoming lower, broader, and moving to larger ω. Our
numerical results are shown in Fig. 7. Although the Hall
conductivity is nonzero, its spatial average vanishes. So,
instead of hσyxi, we plot the σyx at a specific point, x ¼ 0.
And, the result oscillates as x is varied.
We fit the Hall conductivity at nonzero αb to the

following modified Lorentzian form11:

σyxðω; xÞ ¼
KyxðxÞ=τyx

ω2 − ω2
yx þ iω=τyx

; ð15Þ

with three parameters Kyx, ωyx, and τyx which we fit to the
numerical data. The results are shown in Fig. 8. As we saw
for σxx above, the fit is very good at small αb but
deteriorates as αb grows. All the x dependence is in Kyx,

which to good accuracy varies as cosð2πx=LÞ. We observe
that, to within the precision of the fits, ωxx ¼ ωyx and
τxx ¼ τyx, which is expected since the peaks in the two
components of the conductivity are due to the same resonant
physics.
The modified Lorentzian form of (15) comes from the

same driven, damped harmonic oscillator model of the
stripes as in (14). The difference between (15) and (14) can
be understood by their different relationship to the motion
of the stripes. The Hall current depends on the location of
the stripes, in particular, the local value of the persistent
current, while the longitudinal current depends on the
velocity of the stripes. The difference in the conductivities
then amounts to an extra time derivative in σxx, which
yields an extra factor of iω in (14) compared to (15).
Moreover, notice that as ωyx → 0, the modified

Lorentzian (15) can be written as a sum of a delta peak
and a Drude-like form,

σyxðω;x;α¼ 0Þ¼ τyxKyxðxÞ
1− iτyxω

−KyxðxÞ
�
i
ω
þπδðωÞ

�
; ð16Þ

FIG. 7. The optical conductivity σyxðωÞ at x ¼ 0 for small ω
and small lattice amplitude αb. The real parts are denoted by
thick, blue curves, and the imaginary parts are shown by thin, red
curves. Solid, dashed, dotted, and dot-dashed curves correspond
to αb ¼ 0.05, 0.1, 0.25, and 0.5, respectively, and the results for
αb ¼ 0 are shown as thin, long-dashed, black curves.

FIG. 6. The averaged optical conductivity hσxxðωÞi. Left: The dots show the numerical data, and the curves are the results of the fit.
Real parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves and round
dots are at αb ¼ 0.1, whereas dashed curves and boxes are for αb ¼ 4. Right: The three fit parameters Kxx, τxx, and ωxx as
functions of αb.

11Notice that the parameters ωyx and τyx, which determine the
location of the resonance on the complex ω-plane, do not depend
on x.
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which correctly describes the Hall conductivity at small ω
in the absence of pinning [27]. This result requires that the
modified Lorentzian (15) is constant at small ω, which is
not the case for the Lorentzian form in (14).
Finally, we consider the conductivity parallel to the

stripes. Because translation invariance in the y direction is
preserved, we do not expect to see any pinning effects in
σyy. Indeed, we observe instead that the conductivity, is
well described in terms of a single Drude peak,

hσyyi ¼
hσDCyy i

1 − iτyyω
¼ τyyKyy

1 − iτyyω
: ð17Þ

The results of fitting the data to this form are shown in
Fig. 9. The width of the Drude peak decreases and the DC
conductivity increases with αb, so that the area of the peak
(which is proportional to Kyy) stays roughly constant. The
increase in the conductivity with αb is in accordance with
the increase in charge density demonstrated in Fig. 3 (left).
We do not, however, find a direct proportionality between
the two observables, which might be due to a nonlinear
contribution from the induced charge density related to the
enhanced amplitude of the stripes.

C. Ionic lattice

We now replace the magnetic lattice with an ionic lattice
by imposing the spatially modulated boundary condition
(4) on at. We repeat the numerical construction of the
background and analysis of the fluctuations, as discussed in
Sec. III B. Many of the effects of the ionic lattice are
qualitatively similar to the magnetic lattice, but we will
highlight several relevant differences.
As with the magnetic lattice, the zero-frequency limit of

the optical conductivity matches the DC computation using
Eqs. (5) and (6), as shown in Fig. 10. For hσDCxx i, the slight
mismatch is due to numerical error in the fitting of hσxxðωÞi
at small ω. The sharp peak in hσxxðωÞi at small ω, which is
evident in Fig. 11, makes fitting the ω → 0 limit challeng-
ing. We fitted a polynomial to the data (for ω ≪ 1) in order
to extrapolate to ω ¼ 0.
The optical conductivity σDCxx perpendicular to the

stripes can be analyzed as in the case of the magnetic
lattice. We again fit the data12 for the averaged conductivity

FIG. 8. The Hall conductivity σyxðωÞ at x ¼ 0. Left: The dots show the numerical data, and the curves are the results of the fit. Real
parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves and round dots
show αb ¼ 0.1, whereas dashed curves and boxes shown αb ¼ 4. Right: The three fit parameters Kyx, τyx, and ωyx as functions of αb.

FIG. 9. The averaged optical conductivity hσyyðωÞi. Left: The dots show the numerical data, and the curves are the results of the fit.
Real parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves and round
dots are at αb ¼ 0.1, whereas dashed curves and boxes are for αb ¼ 4. Right: The fit parameters τyy and Kyy as functions of αb.

12As the resonant peaks lie at low ω, we choose the data points
with ω < 0.5 for the least-squares fits.
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to a combination of a Drude peak and a Lorentzian
form

hσxxðωÞi ¼
hσDCxx i

1 − iτxxω
þ iKxxω

ω2 − ω2
xx þ iω=τxx

: ð18Þ

In particular, since Fig. 10 shows that the ω → 0 limit of the
conductivity agrees with the analytic expression (5), we fix
the coefficient of the Drude term by using this formula, as
we did for the magnetic lattice. The results are shown in
Fig. 11. Thanks to the small size of ωxx, the quality of the fit
is clearly better than in the case of magnetic lattice, as one
can see by comparing the left hand plots in Fig. 6
and Fig. 11.
However, there are some key differences between these

results and the magnetic lattice results of Sec. III B. First,
the magnitude of the pinning frequency ωxx is suppressed
by an order of magnitude with respect to Fig. 6. In Fig. 11
(right), we multiplied the result by a factor of 10 in order to
make its structure visible. This is consistent with sublead-
ing charge modulation of the striped phase; explicit

breaking in at only weakly pins the stripes because the
leading modulation is in ay and ψ and the modulation of at
is two orders of magnitude smaller.
Second, ωxx hits zero and becomes imaginary for αμ ≳ 6,

which signals that the striped state has become unstable.
The frequency of the pseudo-Goldstone mode, given by the
poles in the second term of (18) are located at

ω ¼ −
i

2τxx
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4τ2xx
− ω2

xx

s
: ð19Þ

For positive finite τxx, one of the poles lies in the upper
complex ω half plane if and only if ω2

xx < 0. The conduc-
tivity is given by a current-current correlator, of which
poles represent quasinormal modes. If such as mode
acquires a frequency with a positive imaginary part, it will
be exponentially growing and lead to an instability.
However, it is not completely clear to what state this
instability leads; we speculate on possibilities in Sec. IV.

FIG. 10. Comparison of numerical data for the ω → 0 limit of the optical conductivities (red dots) to the formulas (5) and (6) for the
DC conductivities (blue curves). Left: hσDCxx i. Right: hσDCyy i.

FIG. 11. Fit results for the averaged optical conductivity hσxxðωÞiwith ionic lattice. Left: Numerical data (dots) compared to fit results
(curves). Real parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves
and round dots are at αμ ¼ 2, whereas dashed curves and boxes are for αμ ¼ 7. Right: The three fit parameters Kxx, τxx, and ωxx as
functions of αμ. The resonance frequency ωxx is real for αμ ≲ 6, and the real part is shown as a solid curve. For αμ ≳ 6, it is purely
imaginary, and the imaginary part is plotted with a dashed curve. In addition, the value of ωxx has been multiplied by 10 to make it
visible on the same scale as the other parameters.
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Like the magnetic case, our data for the Hall conductivity
σyx can be fitted to the expression (15), and the results for
the fit at x ¼ 0 are given in Fig. 12. We observe that the
same mode and the same instability as in σxx also appears
here: ωxx ¼ ωyx, and τxx ¼ τyx, to within the precision of
the fit.13 The overall coefficient Kyx has a strong x
dependence, which is ∝ cosð2πx=LÞ at small αμ, as was
the case for the magnetic lattice. When αμ increases,
however, higher Fourier modes set in, which is not
surprising in view of the structure seen in Fig. 2.
As in the case of the magnetic lattice, the conductivity

σyy parallel to the stripes fits well the standard Drude-like

format smallω for all values ofαμ. The fit results for the ionic
lattice are shown in Fig. 13. Essentially the only difference
with respect to the results for the magnetic lattice is that
the increase in τyy and the DC conductivity appears to be
quadratic in the amplitude αμ of the source modulation.

IV. SUMMARY AND FUTURE DIRECTIONS

In previous work [27], we thoroughly analyzed the
electric conductivities of the spontaneous striped phase.
In particular, we emphasized the relevance of the sliding
behavior of the stripes under an applied external electric
field Ex perpendicular to the modulation.
In this paper, we introduced explicit translational sym-

metry breaking in the form of magnetic and ionic lattices.
An immediate consequence for both types of lattices was
the generation of mass for the Goldstone mode, pinning the
stripes and causing an order-of-magnitude drop in the
longitudinal DC conductivity σDCxx and regulating the delta
peak in the Hall DC conductivity σDCyx . The zero-frequency

FIG. 12. Fit results for the optical conductivity σyxðωÞ at x ¼ 0 for ionic lattice. Left: Numerical data (dots) compared to fit results
(curves). Real parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves
and round dots are at αμ ¼ 2, whereas dashed curves and boxes are for αμ ¼ 7. Right: The three fit parameters Kyx, τyx, and ωyx as
functions of αμ. The resonance frequency ωyx is real for αμ ≲ 6, and the real part is shown as a solid curve. For αμ ≳ 6, it is purely
imaginary, and the imaginary part is plotted with a dashed curve. In addition, the value of ωyx has been multiplied by 10 to make it
visible on the same scale as the other parameters.

FIG. 13. The averaged optical conductivity hσyyðωÞi. Left: The dots show the numerical data, and the curves are the results of the fit.
Real parts are the thick, blue curves and larger dots, and imaginary parts are the thin, red curves and smaller dots. Solid curves and round
dots are at αμ ¼ 2, whereas dashed curves and boxes are for αμ ¼ 7. Right: The fit parameters τyy and Kyy as functions of αμ.

13The quality of the fit is slightly worse than for σxx because,
due to the smallness of ωyx, the conductivity is strongly peaked
near ω ¼ 0 and the peaks are not very well reproduced by our
numerical data. In particular near αμ ¼ 0 and αμ ¼ 6, where ωyx
becomes zero, the fit contains sizable errors. This explains the
bumps in τyx and Kyx at the latter location, which are therefore
identified as numerical effects.
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limits of all optical conductivities, both for weak and strong
lattices, precisely matched the analytic results derived
previously in [27]. The form of the optical conductivity
σxxðωÞ changed from a Drude peak to a Lorentzian, with a
resonant peak at nonzero ω, further reflecting the pinning
of the stripes.
Because we only computed the linear conductivities, our

calculation was not able to capture the expected depinning
transition at finite electric field. To do so, we would have to
treat not only the lattice nonlinearly but the electric field as
well. Our expectation is that upon constructing time-
dependent solutions with finite electric field, the
Knonecker delta currently in the conductivity (5) will be
rendered into a transition between the pinned and sliding
regimes at some nonzero threshold electric field.
To a large extent, our expectations for the magnetic

lattice were met. Not only did we observe the pinning of the
stripes and the suppression of σDCxx , but we also found that
σyy was enhanced as a function of the amplitude of the
magnetic lattice αb. As shown in Fig. 3, an increase of αb
adds more charge to the system, and the increase in charge
carriers leads to an increase in σyy.
A striking surprise was the instability associated with the

ionic lattice. For weak explicit symmetry breaking, the
situation was qualitatively similar to the magnetic lattice.
However, for a lattice with amplitude αμ ∼ 6, we observed a
novel instability, which was signaled by a tachyonic mode:
the frequency of the pseudo-Goldstone mode entered the
upper-half of the complex ω-plane. The fact that the
unstable mode appears in the current-current correlator
suggests that the charges would like to redistribute them-
selves. In fact, already for values of αμ ≳ 1, there are
regions of both positive and negative charges, which may
be an unstable configuration; an analysis along the lines of
[57] might resolve this issue.
The question remains, what does this instability signal?

One possibility is that the instability is due to a change in
the lock-in structure: the charges would prefer to redis-
tribute in x direction so that the ground state would be
modified in the IR and could be characterized by a wave
number different from k0. Such an instability could also be
related to the appearance of higher Fourier modes in the
background solution, which was seen in Fig. 2. Another
possibility is that the charges would prefer to redistribute in
the y direction, so that the translational symmetry in the y
direction is spontaneously broken. In this case, the endpoint
of the instability could be bubbles, i.e., coexistence of
phases with different charge densities in the y-direction
with phase boundaries, or a phase with stripes also in the
y-direction, i.e., a checkerboard or d-wave structure.

The former have been seen in fractional quantum Hall
fluids [58], which very strongly resemble the system
studied here.
Given the instability, it is important to extend our work to

find the true ground state beyond the commensurate case
studied here. We plan to investigate the phase structure with
lattices of incommensuratewave number. In addition,we aim
to analyze fluctuations of the spontaneous stripes relevant for
the breakdown of translational symmetry in the y direction.
There are a number of other interesting directions for

further research. One involves turning on a constant
external magnetic field and studying the electric transport
properties of the parity-broken metallic gapless quantum
fluid. Another potential avenue would be to investigate how
the striped order vanishes in the vicinity of the gapped
quantum Hall state.
Generalizing the model by an SLð2;ZÞ transformation

[46,47,59–62]14 allows us to address the transport of striped
anyonic fluids [67], which are notoriously difficult to tackle
with perturbative methods.
Finally, it would be interesting to try to include 1=N

effects to model quantum phase fluctuations in order to see
the transition to the bad metal phase and to connect to the
recent interesting work in [55].
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Note added.—Two papers on closely related topics are
appearing concurrently with this one. Reference [68] inves-
tigates the conductivity and pinning of a spontaneously
striped phase of a holographic Bianchi VII construction in
the presence of an explicit lattice. Reference [69] studies
transverse, gapped pseudophonons in the context of a
holographic massive gravity model.

14Anyonization of other D-brane models have also recently
been considered [63–66].
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