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We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors, the quartic
interactions of which are such that the perturbative expansion is dominated by the melonic diagrams.
We use the Schwinger-Dyson equations to determine the scaling dimensions of the bilinear operators of
arbitrary spin. Using the fact that the theory is renormalizable in d ¼ 4, we compare some of these results
with the 4 − ϵ expansion, finding perfect agreement. This helps elucidate why the dimension of operator
ϕabcϕabc is complex for d < 4: the largeN fixed point in d ¼ 4 − ϵ has complex values of the couplings for
some of the OðNÞ3 invariant operators. We show that a similar phenomenon holds in theOðNÞ2 symmetric
theory of a matrix field ϕab, where the double-trace operator has a complex coupling in 4 − ϵ dimensions.
We also study the spectra of bosonic theories of rank-q − 1 tensors with ϕq interactions. In dimensions
d > 1.93, there is a critical value of q, above which we have not found any complex scaling dimensions.
The critical value is a decreasing function of d, and it becomes 6 in d ≈ 2.97. This raises a possibility
that the large N theory of rank-5 tensors with sextic potential has an IR fixed point which is free of
perturbative instabilities for 2.97 < d < 3. This theory may be studied using renormalized perturbation
theory in d ¼ 3 − ϵ.
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I. INTRODUCTION AND SUMMARY

A remarkable feature of some theories with tensor
degrees of freedom of rank 3 and higher is that they
possess large N limits dominated by the so-called melonic
Feynman diagrams. This was discovered and proven for a
variety of theories where the different indices of a tensor are
not equivalent but rather transform under different OðNÞ
or UðNÞ symmetry groups [1–8]. Recent work [12,13] has
provided evidence, that even for the symmetric traceless
tensor theories which have only OðNÞ symmetry and are
similar to the tensor models introduced in the 1990s [9–11],
the melonic dominance continues to apply.
One of the reasons for the renewed interest in the large N

theories with tensor degrees of freedom is their connection
[14,15] with the Sachdev-Ye-Kitaev (SYK)-like quantum
mechanical models of fermions with disordered couplings
[16–23].1 In the large N limit, these models have a
conformally invariant sector but also have the special
operators of which the correlators are not fixed by the
conformal invariance.
It is of obvious interest to extend the SYK and tensor

models to dimensions higher than d ¼ 1. Such extensions
were considered in Refs. [15,26–29]. Some of our work in
this paper will be following the observation that, in a theory
of a rank-3 bosonic tensor field, one may introduce quartic
interactions withOðNÞ3 symmetry [15]. Although the action

is typically unbounded from below, such a Quantum field
theory is perturbatively renormalizable in d ¼ 4, so it may
be studied using the 4 − ϵ expansion [30,31].
In this paper, we further explore the 4 − ϵ expansion and

compare it with the large N Schwinger-Dyson equations,
finding perfect agreement. We present results on the large
N scaling dimensions of two-particle operators of arbitrary
spin as a function of d, found using the Schwinger-Dyson
equations. A salient feature of the large N spectrum of this
theory in d < 4 is that the lowest scalar operator has a
complex dimension of the form d

2
þ iαðdÞ.2 We confirm this

using the 4 − ϵ expansion in Sec. III. In that calculation, it
is necessary to include the mixing of the basic “tetrahe-
dron” interaction term,

OtðxÞ ¼ ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1 ; ð1:1Þ
with two additional OðNÞ3 invariant terms: the so-called
pillow and double-sum invariants (3.2). The coefficients
of these additional terms turn out to be complex at the
“melonic” large N IR fixed point; as a result, the scaling
dimension of the leading operator ϕabcϕabc is complex. A
similar phenomenon for the OðNÞ2 symmetric theory of a
matrix ϕab is discussed in the Appendix. In that case, it is
necessary to include the OðNÞ2 invariant double-trace
operator ðϕabϕabÞ2 of which the coefficient is complex
at the IR fixed point; as a result, the scaling dimension of
operator ϕabϕab is complex.

1Recent work on the operator spectra and the thermal phase
transitions [24,25] points also to some differences between the
tensor and SYK models.

2However, the scaling dimension of the lowest scalar operator
is real for 4 < d < 4.155.
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We also extend our results to rank-(q − 1) tensors with ϕq

interactions. In each dimension d, it is found that the two-
particle mode with complex scaling dimension disappears
for q greater than some critical value qcrit (for example, in
d ¼ 2, qcrit ≈ 64.3 [29]). We study the spectrum of bilinear
operators in the large N bosonic theory with q ¼ 6 in 3 − ϵ
dimensions and point out that it is free of the problem with
the complex dimension of ϕ2 for ϵ < 0.03. Thus, this theory
is a candidate for a stable large N Conformal field theory
(CFT), albeit in a noninteger dimension. However, an
obvious danger, which we have not investigated, is that
the coupling constants for some of the OðNÞ5 invariant
sextic operators may be complex in d ¼ 3 − ϵ.
A more promising direction toward finding melonic CFTs

in d ≥ 2 is to explore the supersymmetric versions of tensor
or SYK-like models [15,29], and a successful construction
of such theory in d ¼ 2was achieved recently [29].We hope
to consider supersymmetric theories in the future.

II. BOSONIC 3-TENSOR MODEL

In this section, we consider the bosonic 3-tensor model
with the OðNÞ3 symmetric action [15]

S ¼
Z

ddx

�
1

2
∂μϕ

abc∂μϕabc

þ 1

4
gϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1

�
; ð2:1Þ

where each index runs from 1 to N. At the free UV fixed
point, the quartic interaction term has dimension 2d − 4.
For d < 4, it is relevant, and the large N theory may flow to
an IR fixed point. However, the fact that the interaction
term is not positive definite may cause problems with
unitarity. Also, for d < 2, the dimension of the interaction
term lies below the unitarity bound. Nevertheless, we will
see that the large N Schwinger-Dyson equations have
formal solutions corresponding to the IR fixed point.
At large N in the IR limit, the two-point function is a

solution of the Schwinger-Dyson equation [15,32]

G−1ðxÞ ¼ −λ2GðxÞ3; ð2:2Þ

where λ2 ¼ g2N3. Using the Fourier transformation

Z
ddx

eikx

ðx2Þα ¼
πd=2Γðd=2 − αÞ

22α−dΓðαÞ
1

ðk2Þd2−α ; ð2:3Þ

we find the solution to Eq. (2.2):

GðxÞ ¼ Cϕ

λ1=2
1

ðx2Þd4 ;

Cϕ ¼
�
−

Γð3d
4
Þ

πdΓð− d
4
Þ
�

1=4
: ð2:4Þ

A. Spectrum of two-particle operators

The OðNÞ3 invariant two-particle operators of spin 0
have the form ϕabcð∂μ∂μÞnϕabc, where n ¼ 0; 1; 2;…. At
the quantum level, these operators mix with each other,
although this mixing rapidly decreases as n increases, and
the eigenvalues approach 2nþ d

2
.

Let us denote the conformal three-point function of a
general spin-0 operator Oh with two scalar fields ϕabc by

vðx1; x2; x3Þ ¼ hOhðx1Þϕabcðx2Þϕabcðx3Þi

¼ COϕϕ

ðx212x213Þ
h
2ðx223Þ

1
2
ðd=2−hÞ ; ð2:5Þ

where h and Δϕ ¼ d=4 are the scaling dimensions.
In the large N limit, one can write the Schwinger-Dyson

equation for the three-point function [23],

vðx0; x1; x2Þ ¼
Z

ddx3ddx4Kðx1; x2; x3; x4Þvðx0; x3; x4Þ;

ð2:6Þ

where the kernel is given by the formula

Kðx1; x2; x3; x4Þ ¼ 3λ2Gðx13ÞGðx24ÞGðx34Þ2: ð2:7Þ

This equation determines the possible values of scaling
dimension h of the operator Oh. Now, using the general
conformal integral [33]

Z
ddx0

1

ðx201Þα1ðx202Þα2ðx203Þα3
¼ Ldðα1;α2Þ

ðx212Þ
d
2
−α3ðx213Þ

d
2
−α2ðx223Þ

d
2
−α1

;

ð2:8Þ

where α1 þ α2 þ α3 ¼ d and

Ldðα1; α2Þ ¼ π
d
2

Γðd
2
− α1ÞΓðd2 − α2ÞΓðd2 − α3Þ
Γðα1ÞΓðα2ÞΓðα3Þ

; ð2:9Þ

one can find that [15]

Z
ddx3ddx4Kðx1; x2; x3; x4Þvðx0; x3; x4Þ

¼ gðhÞvðx0; x1; x2Þ;

gðhÞ ¼ 3ðCϕÞ4Ld

�
d
4
;
h
2

�
Ld

�
d − h
2

;
d
4

�

¼ −
3Γð3d

4
ÞΓðd

4
− h

2
ÞΓðh

2
− d

4
Þ

Γð− d
4
ÞΓð3d

4
− h

2
ÞΓðd

4
þ h

2
Þ : ð2:10Þ

The dimensions of the spin-0 operators in the large N limit
are determined by gðhÞ ¼ 1. In d ¼ 4 − ϵ, this equation has
solutions
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h0 ¼ 2� i
ffiffiffiffiffi
6ϵ

p
−
1

2
ϵþOðϵ3=2Þ;

h1 ¼ 4þ ϵ −
15ϵ2

4
þOðϵ3Þ;

hn ¼ 2ðnþ 1Þ − ϵ

2
þ 3ϵ2

2n2ðn2 − 1Þ þOðϵ3Þ; for n > 1:

ð2:11Þ

Since the quartic field theory with action (2.1) becomes
weakly interacting as ϵ → 0, the leading terms in these
scaling dimensions agree with the classical dimensions
of the spin-0 operators ϕabcð∂μ∂μÞnϕabc. In particular, the
operator corresponding to h0 is ϕabcϕabc, and in Sec. III,
we reproduce the result (2.11) for h0 using standard
perturbation theory. This provides a perturbative check
of the solution of the Schwinger-Dyson equation, as well as
of the identification of the operator of which the dimension
is complex.
The fact that h0 is complex means that the critical point

is unstable.3 From the Anti-de Sitter (AdS5−ϵ) side, the
relation between mass and scaling dimension

h ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2

r
ð2:12Þ

gives

m2 ¼ −4 − 4ϵþ 11ϵ2 þOðϵ3Þ; ð2:13Þ

which is slightly below the Breitenlohner-Freedman [35]
bound m2 > −d2=4.
More generally, for d < 4, the first solution of gðhÞ ¼ 1

has the form

h0 ¼
d
2
� iαðdÞ; ð2:14Þ

where αðdÞ is real. This is in agreement with (2.12) for
m2 < −d2=4. On the other hand, for 4 < d < 4.155, h0 is
real, and the large N theory is free of this instability, at least
formally. However, Cϕ from (2.4) is complex for d > 4,
which may signal nonunitarity of the theory.

B. Spectrum of higher-spin operators

Consider a higher-spin operator JsðxÞ ¼ zμ1…zμsJμ1…μs,
where we introduced an auxiliary null vector zμ, satisfying

z2 ¼ zμzνδμν ¼ 0: ð2:15Þ

The three-point function hJsϕabcϕabci is completely fixed
by conformal invariance,

hJsðx1Þϕabcðx2Þϕabcðx3Þi ¼ Cs00

ðz·x12x2
12

− z·x13
x2
13

Þs

ðx212Þ
τs
2 ðx223ÞΔϕ−

τs
2 ðx231Þ

τs
2

;

ð2:16Þ

where Δϕ¼ d=4 and τs¼ΔJs − s and ΔJs ¼ 2Δϕ þ sþ γs.
If we set the Js momentum to 0 or equivalently integrate
over the position of Js, we get

vsðx2; x3Þ ¼
Z

ddx1hJsðx1Þϕabcðx2Þϕabcðx3Þi

¼ Cs00
ðz · x23Þs

ðx223Þ
τs
2
þs−d

2
þΔϕ

: ð2:17Þ

In the large N limit, one can again write the Schwinger-
Dyson equation for the three-point function:

vsðx1; x2Þ ¼
Z

ddx3ddx4Kðx1; x2; x3; x4Þvsðx3; x4Þ:

ð2:18Þ
To perform the integral on the rhs of (2.18), we use the
well-known integral
Z

ddx
ðz ·xÞs

x2αðx−yÞ2β ¼Ld;sðα;βÞ
ðz ·yÞs

ðy2Þαþβ−d=2 ;

Ld;sðα;βÞ¼ πd=2
Γðd

2
−αþ sÞΓðd

2
−βÞΓðαþβ− d

2
Þ

ΓðαÞΓðβÞΓðdþ s−α−βÞ :

ð2:19Þ
Using (2.19), we find

Z
ddx3ddx4Kðx1; x2; x3; x4Þvsðx3; x4Þ

¼ gðτs; sÞvsðx1; x2Þ;

gðτs; sÞ ¼ 3ðCϕÞ4Ld;s

�
d
4
þ sþ τs

2
;
d
4

�
Ld;s

�
sþ τs

2
;
d
4

�

¼ −
3Γð3d

4
ÞΓðd−2τs

4
ÞΓð4sþ2τs−d

4
Þ

Γð− d
4
ÞΓð3d−2τs

4
ÞΓðdþ4sþ2τs

4
Þ ; ð2:20Þ

and to find the spectrum, we have to solve the equation
gðτs; sÞ ¼ 1. Note that for any d, there is a solution with
s ¼ 2 and τs ¼ d − 2. This corresponds to the conserved
stress tensor, consistently with the conformal invariance.
For general fixed spin s, the dimensions should

approach, at large n,

ΔJs ¼ 2Δϕ þ sþ 2n; n ¼ 0; 1; 2;…; ð2:21Þ
where n is interpreted as the number of contracted
derivatives. Alternatively, one can also study the behavior
for large spin s, and fixed n (say n ¼ 0), where the
dimensions should approach ΔJs ≈ 2Δϕ þ sþ c=sτmin ,

3There are other indications that the melonic large N limit of
bosonic tensor models is unstable [29,34].
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where τmin is the lowest twist (excluding the identity)
appearing in the operator product expansion (OPE) of the ϕ
four-point function [36–38].
For n ¼ 0, we have in d ¼ 4 − ϵ

τs ¼ d − 2þ ðs − 2Þðsþ 3Þ
2sðsþ 1Þ ϵþ…: ð2:22Þ

Note that the correction to d − 2 vanishes for s ¼ 2, as it
should since the stress tensor is conserved. The fact that this
correction for s ≠ 2 is ∼ϵ also makes sense, because for
nearly conserved currents, the anomalous dimension starts
at ∼g2 on general grounds (like γϕ). The spin dependence in
the above result is the expected one for an almost conserved
current near d ¼ 4; see e.g. Refs. [39,40].
In d ¼ 2, the equation determining the dimensions

becomes elementary and reads

3

ð1 − τsÞð2sþ τs − 1Þ ¼ 1 ð2:23Þ

with solutions

τs ¼ 1 − s�
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 3

p
: ð2:24Þ

Surprisingly, this gives only one solution with h > d=2
for each spin, rather than the infinite number of solutions
which are present in d > 2 (already in d ¼ 2þ ϵ, there are
towers of real solutions). For s ¼ 0 in d ¼ 2, the solution
(2.24) is complex

h ≈ 1þ 1.5235i: ð2:25Þ

In d ¼ 2þ ϵ, there is also a tower of real solutions4:

τs ¼ 2nþ d
2
þ 3

3þ 4nðnþ sÞ ϵþOðϵ2Þ: ð2:26Þ

In d ¼ 1, the primary two-particle operators have the
form ϕabc∂2n

t ϕabc, where n ¼ 0; 1; 2;…. The graphical
solution of the eigenvalue equation is shown in Fig. 1.
The equation has a symmetry under h → 1 − h. The first
real solution greater than 1=2 is the exact solution h ¼ 2. It
corresponds to the n ¼ 1 operator, which through the use
of equations of motion is proportional to the potential
ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1 . The first eigenvalue is com-
plex, h0 ¼ 1

2
þ 1.525i. Since it is of the form 1

2
þ is, it is a

normalizable mode which needs to be integrated over,
similarly to the h ¼ 2 mode.

III. COMPLEX LARGE N FIXED POINT IN d = 4 − ϵ
In this section, we study the renormalizable theory in

4 − ϵ dimensions with a 3-tensor degree of freedom and
OðNÞ3 symmetric quartic interactions,

S ¼
Z

ddx

�
1

2
∂μϕ

abc∂μϕabc þ 1

4
ðg1OtðxÞ

þ g2OpðxÞ þ g3OdsðxÞÞ
�
; ð3:1Þ

where g1, g2, g3 are the bare couplings which correspond to
the three possible invariant quartic interaction terms. The
perturbative renormalizability of the theory requires that,
in addition to the tetrahedron interaction term (1.1), we
introduce the “pillow” and “double-sum” terms

OpðxÞ ¼
1

3
ðϕa1b1c1ϕa1b1c2ϕa2b2c2ϕa2b2c1

þ ϕa1b1c1ϕa2b1c1ϕa2b2c2ϕa1b2c2

þ ϕa1b1c1ϕa1b2c1ϕa2b1c2ϕa2b2c2Þ;
OdsðxÞ ¼ ϕa1b1c1ϕa1b1c1ϕa2b2c2ϕa2b2c2 : ð3:2Þ

To find the beta functions, we use a well-known result [41]
for a general ϕ4-model with the interaction term
V ¼ 1

4
gijklϕiϕjϕkϕl. In our case, we can write the inter-

action as

V ¼ 1

4
gκ1κ2κ3κ4ϕ

κ1ϕκ2ϕκ4ϕκ4 ; ð3:3Þ

where κi ¼ ðaibiciÞ is a set of three indices and gκ1κ2κ3κ4 is a
sum of three structures,

gκ1κ2κ3κ4 ¼ g1Tt
κ1κ2κ3κ4 þ g2T

p
κ1κ2κ3κ4 þ g3Tds

κ1κ2κ3κ4 : ð3:4Þ

Each structure is a sum of a product of Kronecker-delta
terms, which after contraction with ϕκ1ϕκ2ϕκ4ϕκ4 reproduce
(1.1) and (3.2). For example,

y=g(h)

y=1

h=2 h=4.26 h=6.34 h=8.38

2 4 6 8 10
h

–2

–1

1

2

3

g(h)

FIG. 1. The graphical solution of the eigenvalue equation
gðhÞ ¼ 1 in d ¼ 1. This method works for finding the real
solutions only; it misses the complex solution h0 ¼ 1

2
þ 1.525i.

4In the ϵ → 0 limit, it appears to give additional states in d ¼ 2
which are missed by the degenerate d ¼ 2 Eq. (2.23).
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Tt
κ1κ2κ3κ4 ¼

1

4!
ðδa1a2δb1b3δc1c4δb2b4δc2c3δa3a4 þ symðκ1;…; κ4ÞÞ; ð3:5Þ

where the last term means that we have to add all terms corresponding to permutations of κ1;…; κ4. Using the explicit
formulas in Ref. [41], we find the beta functions up to two loops:

βt ¼ −ϵg1 þ
4

3ð4πÞ2 ð3g1g2ðN þ 1Þ þ 18g1g3 þ 2g22Þ þ
2

9ð4πÞ4 ð9ðN
3 − 15N − 10Þg31 − 36g21ððN2 þ 4N þ 13Þg2

þ 15Ng3Þ − 3g1ððN3 þ 15N2 þ 93N þ 101Þg22 þ 12ð5N2 þ 17N þ 17Þg2g3 þ 6ð5N3 þ 82Þg23Þ
− 4g22ðð2N2 þ 13N þ 24Þg2 þ 72g3ÞÞ; ð3:6Þ

βp ¼ −ϵg2 þ
2

3ð4πÞ2 ð9g
2
1ðN þ 2Þ þ 12g2g1ðN þ 2Þ þ g22ðN2 þ 5N þ 12Þ þ 36g2g3Þ

−
2

9ð4πÞ4 ð108ðN
2 þ N þ 4Þg31 þ 9g21ððN3 þ 12N2 þ 99N þ 98Þg2 þ 72ðN þ 2Þg3Þ

þ 36g1g2ðð4N2 þ 18N þ 29Þg2 þ 3ð13N þ 16Þg3Þ þ g2ðð5N3 þ 45N2 þ 243N þ 343Þg22
þ 36ð7N2 þ 15N þ 29Þg2g3 þ 18ð5N3 þ 82Þg23ÞÞ; ð3:7Þ

and

βds ¼ −ϵg3 þ
2

3ð4πÞ2 ð3g
2
3ðN3 þ 8Þ þ 6g3g2ðN2 þ N þ 1Þ þ g22ð2N þ 3Þ þ 18g1g3N þ 6g1g2Þ

−
2

9ð4πÞ4 ð54Ng31 þ 9g21ð4ðN2 þ N þ 4Þg2 þ 5ðN3 þ 3N þ 2Þg3Þ

þ 36g1ð4ðN þ 1Þg22 þ ð5N2 þ 5N þ 17Þg2g3 þ 33Ng23Þ þ 14ðN2 þ 3N þ 5Þg32
þ 3ð5N3 þ 15N2 þ 93N þ 97Þg22g3 þ 396ðN2 þ N þ 1Þg2g23 þ 54ð3N3 þ 14Þg33Þ: ð3:8Þ

For the anomalous dimension, we obtain

γϕ ¼ 1

6ð4πÞ4 ð3g
2
1ðN3 þ 3N þ 2Þ þ 6g23ðN3 þ 2Þ

þ 12g1ðg2ðN2 þ N þ 1Þ þ 3g3NÞ
þ 12g2g3ðN2 þ N þ 1Þ
þ g22ðN3 þ 3N2 þ 9N þ 5ÞÞ: ð3:9Þ

Now, using the large N scaling

g1 ¼
ð4πÞ2 ~g1
N3=2 ; g2 ¼

ð4πÞ2 ~g2
N2

; g3 ¼
ð4πÞ2 ~g3
N3

;

ð3:10Þ

where ~gi are held fixed, we find that the anomalous
dimension

γϕ ¼ ~g21
2
þOð1=NÞ ð3:11Þ

and the beta functions

~βt ¼ −ϵ~g1 þ 2~g31;

~βp ¼ −ϵ~g2 þ
�
6~g21 þ

2

3
~g22

�
− 2~g21 ~g2;

~βds ¼ −ϵ~g3 þ
�
4

3
~g22 þ 4~g2 ~g3 þ 2~g23

�
− 2~g21ð4~g2 þ 5~g3Þ:

ð3:12Þ

We note that ~βt depends only on the tetrahedron coupling
~g1, while the beta functions for pillow and double sum also
contain ~g1. This is a feature of the large N limit. Similarly,
in the large N limit of the quartic matrix theory, the double-
trace coupling does not affect the beta function of the
single-trace coupling (see the Appendix).
The large N critical point with a nonvanishing tetrahe-

dron coupling is

~g�1 ¼ ðϵ=2Þ1=2; ~g�2 ¼ �3iðϵ=2Þ1=2;
~g�3 ¼∓ ið3�

ffiffiffi
3

p
Þðϵ=2Þ1=2: ð3:13Þ

For the dimension of theO ¼ ϕabcϕabc operator at large N,
we find
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ΔO ¼ d − 2þ 2ð~g�2 þ ~g�3Þ ¼ 2� i
ffiffiffiffiffi
6ϵ

p
þOðϵÞ: ð3:14Þ

This exactly coincides with the large N solution (2.11),
providing a nice perturbative check of the fact that the
scaling dimension is complex. We note that the imaginary
part originates from the complex pillow and double-sum
couplings.
Now, if we look for the dimension of the tetrahedron

operator, then using the derivative of the beta function,
we find

Δtetra ¼ dþ β0tðg�1Þ ¼ 4þ ϵþOðϵ2Þ; ð3:15Þ

which coincides with the scaling dimension h1 of operator
ϕabc∇2ϕabc found in (2.11).

IV. GENERALIZATION TO HIGHER q

The construction of theories for a single rank-3 tensor
field with the quartic interaction (2.1) may be generalized to
a single rank-q − 1 tensor with the OðNÞq−1 symmetric
interaction of order q. Since the indices of eachOðNÞ group
must be contracted pairwise, q has to be even. The rank-
q − 1 tensor theories have a large N limit with λ2 ¼
g2Nðq−1Þðq−2Þ=2 held fixed, which is dominated by the
melonic diagrams (this follows from the method of “for-
getting” all but two colors in the graphs made out of q − 1
strands by analogy with the derivation [5,8,14,15] for
q ¼ 4). For example, for q ¼ 6, the explicit form of the
interaction of a real rank-5 tensor is [15]

V int ¼
g
6
ϕa1b1c1d1e1ϕa1b2c2d2e2ϕa2b2c3d3e1ϕa2b3c2d1e3ϕa3b3c1d3e2ϕa3b1c3d2e3 : ð4:1Þ

Since every pair of fields has one index in common, this
interaction may be represented by a 5-simplex.
The two-point Schwinger-Dyson equation has the form

G−1ðxÞ ¼ −λ2GðxÞq−1: ð4:2Þ
The general d solution to this equation is

GðxÞ ¼ Cϕ

λ2=q
1

ðx2Þdq
;

Cϕ ¼

0
B@−

π−dΓðdqÞΓ
�
dðq−1Þ

q

�

Γ
�
dð2−qÞ
2q

�
Γ
�
dðq−2Þ
2q

�
1
CA

1=q

: ð4:3Þ

In analogy to Sec. II A, one can find a spectrum of spin-0
operators by solving Schwinger-Dyson equation for the
three-point function,

vðx0; x1; x2Þ ¼
Z

ddx3ddx4Kðx1; x2; x3; x4Þvðx0; x3; x4Þ;

ð4:4Þ
where the kernel is given by the formula

Kðx1; x2; x3; x4Þ ¼ ðq − 1Þλ2Gðx13ÞGðx24ÞGðx34Þq−2:
ð4:5Þ

Using the integral (2.8) and expression (4.3), we find

gqðhÞ ¼ ðq − 1ÞðCϕÞqLd

�
d
q
;
h
2

�
Ld

�
d − h
2

;
d
q

�

¼ −
ðq − 1ÞΓðdðq−2Þ

2q ÞΓðdðq−1Þq ÞΓðh
2
− dðq−2Þ

2q ÞΓðdq − h
2
Þ

Γðdð2−qÞ
2q ÞΓðdqÞΓðh2 þ dðq−2Þ

2q ÞΓðdðq−1Þq − h
2
Þ

;

ð4:6Þ
where Cϕ is given in (4.3).

By solving gqðhÞ ¼ 1, we find the spectrum of dimen-
sions of spin-0 two-particle operators. As we already noticed
in Sec. II A, for q¼4, the lowest operator O¼ϕ2 has
complex dimension, which signals an instability of the
theory. However, for d greater than the critical value dcr,
there exists qcrit such that for q > qcrit, the solutions of
gqðhÞ ¼ 1 are real, and the two-particle operators do not
cause instabilities. Taking the large q limit of (4.6) and
setting h ¼ d=2, we observe that dcr is determined by

UNSTABLE
qqqqqqqqqqqqqqq

2.0 2.5 3.0 3.5 4.0

10

20

30

40

50

60

70

d

q

FIG. 2. Plot of qcrit as a function of d. The orange region
corresponds to q > qcrit, where Δϕ2 is real, and the theory is
not obviously unstable. For integer dimensions, we obtained
qcritð2Þ ≈ 64.3, qcritð3Þ ≈ 5.9, and qcritð4Þ ¼ 4.
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Γð−dcr=4Þ2Γðdcr=2ÞΓðdcr þ 1Þ
Γð−dcr=2ÞΓð3dcr=4Þ2

¼ −1; ð4:7Þ

and we find dcr ≈ 1.93427. Interestingly, qcrit diverges at dcr
as qcrit ≈ 4.092

d−dcr
. The plot for qcrit as a function of d is shown

in Fig. 2.
In d ¼ 2, the critical value of q is still large, qcrit ≈ 64.3

[29], but it drops to ≈5.9 in d ¼ 3. For d < dcr, the lowest

eigenvalue is complex for any q. In d ¼ 1, in the large q
limit,

h0 ¼
1

2
þ i

ffiffiffi
7

p

2
þOð1=qÞ: ð4:8Þ

A. Higher spin operators

Similarly to the case q ¼ 4, we may generalize the
discussionofq > 4 to the higher spin operators.We find that5

gqðτs; sÞ ¼ ðq − 1ÞðCϕÞqLd;s

�
d
2
−
d
q
þ sþ τs

2
;
d
q

�
Ld;s

�
sþ τs

2
;
d
q

�

¼ −
ðq − 1ÞΓðdðq−2Þ

2q ÞΓðdðq−1Þq ÞΓðdq − τs
2
ÞΓðsþ τs

2
− dðq−2Þ

2q Þ
Γðdð2−qÞ

2q ÞΓðdqÞΓðdðq−1Þq − τs
2
ÞΓðsþ τs

2
þ dðq−2Þ

2q Þ
: ð4:9Þ

As a check of this formula, we note that the equation gqðτs; sÞ ¼ 1 for s ¼ 2 has a solution τs ¼ d − 2 corresponding to the
stress-energy tensor.
Similarly to the case q ¼ 4, which degenerates for d ¼ 2, we find a similar degeneration of (4.9) for q ¼ 8 and d ¼ 4,

gðτs; sÞ ¼
315

ðτs − 5Þðτs − 3Þðτs − 1Þð2sþ τs − 3Þð2sþ τs − 1Þð2sþ τs þ 1Þ ; ð4:10Þ

and the equation g ¼ 1may be solved in terms of the square
and cubic roots. The physically relevant solution for τ has
the large s expansion

τs ¼ 1þ 315

64s3
þ 315

64s5
þ � � � : ð4:11Þ

More generally, we have checked numerically that, in the
large s limit, τ → 2Δϕ, where Δϕ ¼ d=q. For example, for
q ¼ 6 and d ¼ 2, we find

τ4 ¼ 0.456; τ6 ¼ 0.547; τ1000 ≈ 0.666: ð4:12Þ

V. MELONIC ϕ6 THEORY IN 2.99 DIMENSIONS

Using (4.6) for q ¼ 6, we find that the spin-0 spectrum is
free of complex solutions in a small region of dimension
below 3. Working in d ¼ 3 − ϵ, we find that the scaling
dimensions are real for ϵ < 0.02819. Expansions of the first
three solutions of the equation g6ðhÞ ¼ 1 are

h− ¼ 1þ 29ϵ

3
þ 400ϵ2

9
þ 160

27
ð237þ 2π2Þϵ3 þOðϵ4Þ;

hþ ¼ 2 −
32ϵ

3
−
400ϵ2

9
−
160

27
ð237þ 2π2Þϵ3 þOðϵ4Þ;

h1 ¼ 3þ 3ϵ −
220ϵ2

9
þ 40

81
ð503þ 3π2Þϵ3 þOðϵ4Þ;

ð5:1Þ

and the expansion coefficients grow rapidly. It appears that
h− corresponds to operator ϕabcdeϕabcde, hþ corresponds to
a quartic operator which mixes with it due to interactions,
and h1 corresponds to ϕabcde∂μ∂μϕabcde ∼ V int.
As ϵ increases, h− approaches hþ, and at ϵcrit ≈ 0.02819,

they merge and go off to the complex plane (see Fig. 3).
The scaling dimension of operators ϕabcdeð∂μ∂μÞnϕabcde

with n > 1 are found to be

hn ¼ 2nþ 1 −
ϵ

3
þ 20

3ðn − 1Þnð4n2 − 1Þ ϵ
2

þ
80ðH2n−3 − 92n4−128n3þ13n2þ23n−45

12nðn−1Þð4n2−1Þ Þ
9nðn − 1Þð4n2 − 1Þ ϵ3 þOðϵ4Þ;

ð5:2Þ

where Hn is the Harmonic number. For large n, we get

5For d ¼ 2, this equation agrees with Eq. (6.8) of Ref. [29]
after the identifications h ¼ sþ τ

2
; ~h ¼ τ

2
.
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hn ¼ 2nþ 1−
ϵ

3
þ 5ϵ2

3n4
þ 5ϵ3ð12 log ð2neγÞ− 23Þ

27n4
þOðϵ4Þ:

ð5:3Þ

This agrees with the fact that the dimension of operators
ϕabcdeð∂μ∂μÞnϕabcde should approach 2nþ d

3
for large n.

For operators of s > 0, we may use (4.9) to obtain for
n ¼ 0

hðsÞ ¼ d − 2þ sþ 8ðs2 − 4Þ
3ð4s2 − 1Þ ϵ

−
20

3ð4s2 − 1Þ
�
ψ

�
s −

1

2

�
− ψ

�
3

2

�

−
2ðs − 2Þð20s3 þ 4s2 þ 43sþ 5Þ

3ð4s2 − 1Þ2
�
ϵ2 þOðϵ3Þ:

ð5:4Þ

The first term is the dimension of the operator in free field
theory, while the additional terms appear due to the ϕ6

interactions.
It would be interesting to reproduce the 3 − ϵ expan-

sions found in this section using perturbative calculations
in the OðNÞ5 invariant renormalizable ϕ6 theory. This is

technically more complicated than the similar calculation
we carried out in 4 − ϵ dimensions, because there are
several invariant ϕ6 terms. An obvious danger is that the
coupling constants for some of the sextic operators will be
complex in d ¼ 3 − ϵ. We hope to return to these issues in
the future.
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APPENDIX: 4 − ϵ EXPANSION FOR A FIELD
THEORY OF A REAL MATRIX

In this Appendix, we consider renormalizable theory in
4 − ϵ dimensions with a matrix degree of freedom and
OðNÞ2 symmetric quartic interactions,

S ¼
Z

ddx

�
1

2
∂μϕ

ab∂μϕab þ 1

4
g1OstðxÞ þ

1

4
g2OdtðxÞ

�
;

ðA1Þ

where g1, g2 are the bare couplings which correspond to
the two possible invariant quartic interaction terms. The
perturbative renormalizability of the theory requires that, in
addition to the single-trace term

OstðxÞ ¼ ϕabϕcbϕcdϕad ¼ TrϕϕTϕϕT; ðA2Þ

we introduce the double-trace term

OdtðxÞ ¼ ϕabϕabϕcdϕcd ¼ TrϕϕTTrϕϕT: ðA3Þ

In analogy with the Sec. III, we find the beta functions
using a well-known result [41] for a general ϕ4-model with
the interaction vertex V ¼ 1

4
gijklϕiϕjϕkϕl. The beta func-

tions up to two loops are

βst ¼ −ϵg1 þ
g1ðg1ðN þ 2Þ þ 6g2Þ

4π2

−
g1ð3g21ðNðN þ 6Þ þ 17Þ þ 4g1g2ð22N þ 29Þ þ 2g22ð5N2 þ 82ÞÞ

128π4
;

βdt ¼ −ϵg2 þ
3g21 þ 2g1g2ð2N þ 1Þ þ g22ðN2 þ 8Þ

8π2

−
6g31ð2N þ 3Þ þ g21g2ð5NðN þ 2Þ þ 87Þ þ 44g1g22ð2N þ 1Þ þ 6g32ð3N2 þ 14Þ

128π4
: ðA4Þ

h+

h–

cr
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FIG. 3. Plot of the two lowest operator dimensions h− and hþ
as a function of ϵ. As ϵ increases, h− approaches hþ, and at
ϵcrit ≈ 0.02819, they merge and go off to the complex plane.
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Now, using the large N scaling

g1 ¼
ð4πÞ2 ~g1

N
; g2 ¼

ð4πÞ2 ~g2
N2

; ðA5Þ

where ~gi are held fixed, we find the beta functions

~βst ¼ −ϵ~g1 þ 4~g21 − 6~g31;

~βdt ¼ −ϵ~g2 þ ð6~g21 þ 2~g22 þ 8~g1 ~g2Þ − 2~g21ð12~g1 þ 5~g2Þ:
ðA6Þ

We note that ~βst depends only on the single-trace coupling
~g1, while the double-trace beta function depends on both
couplings. This is a familiar phenomenon for beta functions
in large N matrix theories [42]. Comparing with the beta
functions (3.6)–(3.8) of the large N 3-tensor theory, we
observe that the tetrahedron coupling in the tensor model is
analogous to the single-trace coupling in the matrix model,
while the pillow and double-sum couplings in the tensor
model are analogous to the double-trace coupling in the
matrix model.

The large N critical point with a nonvanishing single-
trace coupling is

~g�1 ¼
ϵ

4
þ 3ϵ2

32
;

~g�2 ¼ −
1

4
ð1� i

ffiffiffi
2

p
Þϵ − 1

32
ð1 ∓ 2i

ffiffiffi
2

p
Þϵ2: ðA7Þ

For the dimension of the O ¼ ϕabϕab operator at large N,
we find

ΔO ¼ d − 2þ 4~g�1 þ 2~g�2 ¼ 2 −
1

2
ð1� i

ffiffiffi
2

p
ÞϵþOðϵ2Þ:

ðA8Þ

The imaginary part originates from the double-trace cou-
pling. So, in spite of the positivity of the interaction term
Ost, this large N critical point is unstable due to an operator
dimension being complex. The form of the dimension,
d
2
þ iα, corresponds to a field violating the Breitenlohner-

Freedman bound in the dual AdS space.
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