
Butterfly effect in 3D gravity

Mohammad M. Qaemmaqami*

School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531 Tehran, Iran

(Received 24 July 2017; published 17 November 2017)

We study the butterfly effect by considering shock wave solutions near the horizon of the anti–de Sitter
black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D
gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We
calculate the butterfly velocities of these models and also we consider the critical points and different limits
in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a
correspondence between the butterfly velocities and right-left moving degrees of freedom or the central
charges of the dual 2D conformal field theories.
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I. INTRODUCTION

It was shown [1–4] that chaos in thermal conformal field
theory (CFT) may be described by a shock wave near the
horizon of an anti–de Sitter (AdS) black hole. In other
words, holographically, the propagation of the shock wave
on the horizon provides a description of the butterfly effect
in the dual field theory. In field theory, the side butterfly
effect may be diagnosed by an out-of-time order four point
function between pairs of local operators

hVxð0ÞWyðtÞVxð0ÞWyðtÞiβ; ð1:1Þ

where β is the inverse of the temperature. The butterfly
effect may be seen by a sudden decay after the scrambling
time, t�,

hVxð0ÞWyðtÞVxð0ÞWyðtÞiβ
hVxð0ÞVxð0ÞiβhWyðtÞWyðtÞiβ

∼ 1 − eλLðt−t�−
jx−yj
vB

Þ; ð1:2Þ

where λL is the Lyapunov exponent and vB is the butterfly
velocity. The Lyapunov exponent is λL ¼ 2π

β , where β is the
inverse of Hawking temperature. And also the butterfly
velocity should be identified by the velocity of the shock
wave by which the perturbation spreads in the space.
People have done some work recently on the butterfly
effect and its different aspects [5–17] and also it needs more
investigation and calculation to access a better understand-
ing of this interesting natural phenomenon.
Gravity in three dimensions is special and interesting

because it is a good toy model for the quantum gravity and
by studying 3D gravity we can access a deeper understanding
about gravity in higher dimensions. It is also is a good context
for holography because we are more familiar with conformal
field theories in two dimensions in comparison with other
dimensions. In addition,we can construct theghost free higher

derivative gravity models in three dimensions. The 3D
Einstein gravity does not have propagating degrees of free-
dom or gravitons in the bulk but by adding higher derivative
terms to the action we can have massive propagating degrees
of freedom. For example, by adding a gravitational Chern-
Simons action to the 3D Einstein gravity action we have a
massive graviton in the linearized level of the topologically
massive gravity theory [18].
In this paper, we study the butterfly effect in some of 3D

gravity models; we calculate the butterfly velocities of
these models and also consider the critical points and
different limits in some of them. In Sec. II we study the
butterfly effect in the 3D Einstein gravity and we find that
the butterfly velocity of 3D Einstein gravity is equal to the
velocity of light. In Sec. III we study the butterfly effect in
the minimal massive 3D gravity [19] which is proposed for
resolving the bulk-boundary clash problem in the topo-
logically massive gravity (TMG) [18] and we consider the
TMG limit and the critical point in this model.
In Sec. IV we first review the butterfly effect in the new

massive gravity (NMG) [20] by details. Then we study
the generalized massive gravity (GMG) [20,21] and its
different limits and the critical lines. Then we observe a
correspondence between the butterfly velocities and the
central charges of the dual 2D conformal field theory. In
Sec. V we study the butterfly effect in the Born-Infeld 3D
gravity [22–24] and its critical point and we see that at the
critical point of the model both of the butterfly velocities
vanish. In Sec. VI we study the butterfly effect in the new
bigravity (NBG) [25,26] and consider the causality bound in
this model and also we consider the logarithmic solutions
limit of the new bigravity. The last section is devoted to
conclusions.

II. 3D EINSTEIN GRAVITY

The action of the 3D Einstein gravity with a cosmo-
logical constant is*m.qaemmaqami@ipm.ir
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1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ: ð2:1Þ

If we vary the action with respect to the metric we find the
equations of motion as follows:

Rμν −
1

2
Rgμν þ Λgμν ¼ κTμν: ð2:2Þ

To study the butterfly effect, we must to consider the black
hole solution. The equations of motion of the 3D Einstein
gravity admit this asymptotically AdS black hole solution,
which is similar to a nonrotating Banados-Teitelboim-
Zanelli black hole [27,28]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dφ2;

fðrÞ ¼ r2

l2

�
1 −

r2h
r2

�
; Λ ¼ −

1

l2
; ð2:3Þ

where rh is the radius of horizon and l is the AdS radius.
The φ coordinate is dimensionless and compact;
0 ≤ φ ≤ 2π. Now let us introduce a coordinate with length
dimension x ¼ lφ; then we have dφ ¼ dx

l . Also, x coor-
dinate is compact, 0 ≤ x ≤ 2πl; therefore, the AdS black
hole metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2

l2
dx2: ð2:4Þ

Now the aim is to study the shock wave of this model when
the above black hole solution of this theory is perturbed by
an injection of a small amount of energy. For this aim, it is
better to rewrite the solution in the Kruskal coordinate [1],

u ¼ exp

�
2π

β
ðr� − tÞ

�
;

v ¼ − exp

�
2π

β
ðr� þ tÞ

�
; ð2:5Þ

where β ¼ 4π
f0ðrÞ is the inverse of temperature and dr� ¼ dr

fðrÞ
is the tortoise coordinate.
By making use of this coordinate system, the metric

becomes the following [1,5]:

ds2 ¼ 2AðuvÞdudvþ BðuvÞdx2: ð2:6Þ

Here AðuvÞ and BðuvÞ are two functions, given by fðrÞ,
whose near horizon expansions are

AðuvÞ ¼ −2cl2ð1 − 2cuvþ 3c2u2v2 − 4c3u3v3 þ � � �Þ;

BðuvÞ ¼ r2h
l2
ð1 − 4cuvþ 8c2u2v2 − 12c3u3v3 þ � � �Þ;

ð2:7Þ

where c is an integration constant to be fixed later. Now we
must study the shock wave; for this aim let us consider an
injection of a small amount of energy from the boundary
toward the horizon at time −tw. This will cross the t ¼ 0
time slice while it is red shifted. Therefore the equations of
motion should be deformed as

Eμν ¼ κTs
μν; ð2:8Þ

where κ ¼ 8πGN , the energy-momentum tensor has only
uu component due to the energy injection:

TS
uu ¼ lE

�
exp

�
2πtw
β

�
δðuÞδðxÞ

�
: ð2:9Þ

For solving the equations of motion near the horizon to find
the shock wave solution, we consider this Ansatz for
backreacted geometry

ds2 ¼ 2AðUVÞdUdV þ BðUVÞdx2
− 2AðUVÞhðxÞδðUÞdU2; ð2:10Þ

where the new coordinates U and V are

U ≡ u; V ≡ vþ hðxÞΘðuÞ: ð2:11Þ

Plugging the Ansatz into the equations of motion (2.2) near
the horizon at the leading order, one finds a second order
differential equation for hðxÞ

ðl4∂2
x − r2hÞhðxÞ ¼ −

r2h
2c

ðκlEe2πtw=βÞδðxÞ: ð2:12Þ

We can reduce the equation of motion into the following:

ð∂2
x − a2ÞhðxÞ ¼ ξδðxÞ; a2 ¼ r2h

l4
;

ξ ¼ −
r2h
2cl4

ðκlEe2πtw=βÞ; ð2:13Þ

whose solution is

hðxÞ ¼ −
ξ

2a
e−ajxj: ð2:14Þ

By replacing the values of a and ξ, one can see

hðxÞ ∼ e
2π
β ½ðtw−t�Þ−jxj=vB�, where the scrambling time is

t� ¼ β
2π logðlκÞ, with κ ¼ 8πGN andGN is Newton’s constant

in D ¼ 3, for true value of scrambling time [3]. If we
assume lE ∼ 1, we have to fix the value of integration
constant to c ¼ rh

4l in the above expression. Then one can
read the value of the butterfly velocity [3,5,29]:
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vB ¼ 2π

βa
¼ 1;

2π

β
¼ f0ðrÞ

2
¼ rh

l2
; ð2:15Þ

which is in agreement with [1], where the butterfly velocity

in the Einstein gravity in theD dimension is vB ¼
ffiffiffiffiffiffiffiffiffiffiffi
D−1

2ðD−2Þ
q

.

Note that the largest possible butterfly velocity in the
Einstein gravity is in D ¼ 3 which is equal to light velocity
(vB ¼ 1). It is important to note, although in the 3D
Einstein gravity there is no propagating degrees of freedom
in the bulk, due to boundary degrees of freedom or
boundary gravitons the butterfly velocity is nonzero. It is
a sign of the relationship between butterfly velocities and
boundary degrees of freedom or boundary gravitons. Note
that in contradiction of no propagating degrees of freedom
in the bulk in 3D Einstein gravity, its dual 2D conformal
field theory has a nonzero central charge [30]. In the forth
section we will see a correspondence between butterfly
velocities and central charges of dual 2D conformal field
theory.

III. MINIMAL MASSIVE 3D GRAVITY

TheMMG is a model which is proposed for resolving the
bulk-boundary clash problem in the TMG (we do not have
the positive energy of a graviton and unitary dual 2D
conformal field theory at the same time in TMG) [18] by
adding a new term to the action in the vielbein formalism
[19]. And also we know that the linearized equations of
motion of MMG are equal to linearized equations of motion
of TMG by making use a redefinition of the topological
mass parameter [31–33]. Therefore, the model has a single
local degree of freedom that is realized as a massive
graviton in the linearization as TMG. The Lagrangian of
the minimal massive 3D gravity in the vielbein formalism is

LMMG ¼ −σe:Rþ Λ0

6
e:e × eþ h:TðωÞ

þ 1

2μ

�
ω:dωþ 1

3
ω:ω × ω

�
þ α

2
e:h × h; ð3:1Þ

where e is the vielbein, ω is the spin connection, and h is a
Lagrange multiplier or auxiliary field. Note that the dot and
cross mean internal and external product, respectively, the
dot implies a contraction of Lorenz indices of two fields
with each other, and the cross means a contraction of
Lorenz indices of two fields with two indices of the Levi-
Civita tensor. The equations of motion of the MMG in the
metric formalism is

σ̄Gμν þ Λ̄0gμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ κTμν; ð3:2Þ

where Gμν is the Einstein tensor, Cμν is the 3D Cotton
tensor,

Cμν ¼ ϵμ
αβ∇α

�
Rμν −

1

4
Rgμν

�
; ð3:3Þ

and Jμν is a curvature squared, symmetric tensor:

Jμν ¼ Rμ
λRλν −

3

4
RRμν −

1

2
gμν

�
RρσRρσ −

5

8
R2

�
: ð3:4Þ

Note that the relations between the parameters of the
vielbein and metric formalisms are

γ ¼ α

ð1þ σαÞ2 ; σ̄ ¼ −
�
σ þ αþ α2Λ0

2μ2ð1þ σαÞ2
�
;

Λ̄0 ¼ −Λ0

�
1þ σα −

α3Λ0

4μ2ð1þ σαÞ2
�
: ð3:5Þ

To study the butterfly effect, we must consider the black
hole solution. The equations of motion of the minimal
massive 3D gravity (MMG) admit this asymptotically AdS
black hole solution equation (2.4) with

Λ̄0 ¼ −
γ þ 4l2μ2σ̄

4l4μ2
: ð3:6Þ

Plugging the Ansatz of the Kruskal coordinate equa-
tion (2.10) into equations of motion (3.2) near the horizon
at the leading order, one finds a third order differential
equation for hðxÞ

d3hðxÞ
dx3

þ rh
2μl3

ðγ þ 2μ2l2σ̄Þh00ðxÞ − r2h
l4
h0ðxÞ

−
r3h
2μl7

ðγ þ 2μ2l2σ̄ÞhðxÞ

¼ −
r3hμ
2cl5

ðκlEe2πtw=βÞδðxÞ: ð3:7Þ

We can reduce the differential equation to

ð∂x þ aÞð∂2
x − b2ÞhðxÞ ¼ ξδðxÞ; a¼ rh

2μl3
ðγþ 2μ2l2σ̄Þ;

b¼ rh
l2
; ξ¼ −

r3hμ
2cl5

ðκlEe2πtw=βÞ:
ð3:8Þ

We can decompose the above differential equation into two
differential equation as follows:

q0ðxÞ þ aqðxÞ ¼ ξδðxÞ;
h00ðxÞ − b2hðxÞ ¼ qðxÞ: ð3:9Þ

The solution of first equation is
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qðxÞ ¼ ξΘðxÞe−ax: ð3:10Þ

If we solve the second equation by making use the above
qðxÞ we find.

hðxÞ ¼ −
ξ

2b

�
e−bx

a − b
−

2be−ax

a2 − b2

�
: ð3:11Þ

By replacing the values of a, b, and ξ we can read the
scrambling time and the butterfly velocities [5,34] as
follows:

t� ¼
β

2π
log

l
κ
; vð1ÞB ¼ 2π

βb
¼ 1;

vð2ÞB ¼ 2π

βa
¼ 2μl

γ þ 2μ2l2σ̄
;

2π

β
¼ f0ðrÞ

2
¼ rh

l2
: ð3:12Þ

The butterfly effect in the TMG has been studied in [5] and
they found the butterfly velocities as follows:

vð1ÞB ¼ 1; vð2ÞB ¼ 1

μl
: ð3:13Þ

One can see that the butterfly velocities of MMG in the
TMG limit (γ ¼ 0, σ̄ ¼ 1) are equal to the butterfly
velocities of the TMG equation (3.12).
Now let us consider the critical point of MMG γ ¼

−2μlðμlσ̄ − 1Þ where massive and massless modes degen-
erate and the model has logarithmic solutions [32,33]. At
this point, one can see at the critical point that both
velocities degenerate and are equal to the butterfly velocity
of the 3D Einstein gravity which is equal to the velocity of
light:

vð1ÞB ¼ vð2ÞB ¼ 1: ð3:14Þ

IV. NEW MASSIVE GRAVITY AND
GENERALIZED MASSIVE GRAVITY

The butterfly velocities of the NMG have been obtained
in [5]; here we review it with more details. The action of
NMG is [20]

SNMG¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
R−2Λ−

1

m2

�
RμνRμν−

3

8
R2

��
:

ð4:1Þ

One can obtain the equations of motion by varying the
action with respect to the metric:

Gμν þ Λgμν −
1

2m2
Kμν ¼ κTμν; ð4:2Þ

where

Kμν ¼ 2□Rμν −
1

2
ð∇μ∇νRþ gμν□RÞ − 8Rμ

σRσν þ
9

2
RRμν

þ
�
3RαβRαβ −

13

8
R2

�
gμν: ð4:3Þ

The equations of motion of the new massive gravity
admit this asymptotically AdS black hole solution equa-
tion (2.4) with

Λ ¼ −
�
1

l2
þ 1

4m2l4

�
: ð4:4Þ

Plugging the Ansatz of the Kruskal coordinate
equation (2.10) into the equations of motion, Eq. (4.2),
near the horizon at the leading order, one finds a forth order
differential equation for hðxÞ1:

d4hðxÞ
dx4

−
r2h
2l4

ð3þ 2m2l2Þh00ðxÞ þ r2h
2l8

ð1þ 2m2l2ÞhðxÞ

¼ r4hm
2

2cl6
ðκlEe2πtw=βÞδðxÞ: ð4:5Þ

We can reduce the above differential equation to

ð∂2
x − b21Þð∂2

x − b22ÞhðxÞ ¼ ξδðxÞ; b21 ¼
r2h
l4
;

b22 ¼
r2h
2l4

ð1þ 2m2l2Þ;

ξ ¼ r4hm
2

2cl6
ðκlEe2πtw=βÞ: ð4:6Þ

We can decompose the above differential equation into two
differential equation as follows:

q00ðxÞ − b21qðxÞ ¼ ξδðxÞ;
h00ðxÞ − b22hðxÞ ¼ qðxÞ: ð4:7Þ

By solving the first equation we have

qðxÞ ¼ −
ξ

2b1
e−b1jxj: ð4:8Þ

By replacing the above qðxÞ in the second equation and
solving the equation we find

hðxÞ ¼ ξ

2b1b2ðb21 − b22Þ
ðb1e−b2x − b2e−b1xÞ: ð4:9Þ

Using the expressions for b1, b2, and ξ we can read the
scrambling time and the butterfly velocities as follows:

1The shock wave solution in the Minkowski space background
for TMG (and NMG) is studied in [35].

MOHAMMAD M. QAEMMAQAMI PHYSICAL REVIEW D 96, 106012 (2017)

106012-4



t� ¼
β

2π
log

l
κ
; vð1ÞB ¼ 2π

βb1
¼ 1;

vð2ÞB ¼ 2π

βb2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2l2 þ 1
2

q ;
2π

β
¼ f0ðrÞ

2
¼ rh

l2
: ð4:10Þ

One can see at the critical point of NMG,m2l2 ¼ 1
2
[36], the

two butterfly velocities degenerate into one velocity which
is the velocity of light

m2l2 ¼ 1

2
; vð1ÞB ¼ vð2ÞB ¼ 1: ð4:11Þ

Now let us consider the GMG which is the combination of
TMG and NMG [20,21]. The action of GMG is the action
of NMG plus the gravitational Chern-Simons action:

SGMG ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
R− 2Λ−

1

m2

�
RμνRμν −

3

8
R2

��
þSCS; ð4:12Þ

where the gravitational Chern-Simons action is [37]

SCS ¼
1

32πGμ

Z
d3x

ffiffiffiffiffiffi
−g

p
ϵλμνΓρ

λσ

�
∂μΓσ

ρν þ
2

3
Γσ
μτΓτ

νρ

�
:

ð4:13Þ

One can obtain the equations of motion by varying the
action with respect to the metric:

Gμν þ Λgμν −
1

2m2
Kμν þ

1

μ
Cμν ¼ κTμν; ð4:14Þ

where Kμν is defined by Eq. (4.3) and Cμν is the 3D Cotton
tensor which is defined by Eq. (3.3). The equations of
motion of the generalized massive gravity admit this
asymptotically AdS black hole solution equation (2.4)
with

Λ ¼ −
�
1

l2
þ 1

4m2l4

�
: ð4:15Þ

Plugging the Ansatz of the Kruskal coordinate equa-
tion (2.10) into the equations of motion, Eq. (4.14), near
the horizon at the leading order, one finds a forth order
differential equation for hðxÞ:

d4hðxÞ
dx4

−
rhm2

lμ
d3hðxÞ
dx3

−
r2hm

2

2l2

�
2þ 3

m2l2

�
h00ðxÞþr3hm

2

μl5
h0ðxÞ

þr4hm
2

2l6

�
2þ 1

m2l2

�
hðxÞ¼r4hm

2

2cl6
ðκlEe2πtw=βÞδðxÞ:

ð4:16Þ

We can write the above differential equation in this
form:

ð∂2
x − b22Þð∂2

x − a∂x − b21ÞhðxÞ ¼ ξδðxÞ;

b21 ¼
r2h
2l4

ð1þ 2m2l2Þ;

a ¼ rhm2

lμ
; b22 ¼

r2h
l4
;

ξ ¼ r4hm
2

2cl6
ðκlEe2πtw=βÞ:

ð4:17Þ

Now let us decompose the above differential equation:

q00ðxÞ − b22qðxÞ ¼ ξδðxÞ;
h00ðxÞ − ah0ðxÞ − b21hðxÞ ¼ qðxÞ: ð4:18Þ

The first equation is similar to the first equation of
Eq. (4.7); therefore, we have qðxÞ ¼ − ξ

2b2
e−b2jxj, and if

we put qðxÞ in the above second equation we find

hðxÞ¼ ξ

4b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4b21

p
ðb21−b2ðaþb2ÞÞ

h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4b21

q
e−b2x

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ4b21

q
þ2b2þa

�
e−

1
2
ð−aþ

ffiffiffiffiffiffiffiffiffiffiffi
a2þ4b2

1

p
Þx

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þ4b21

q
−2b2−a

�
e−

1
2
ð−a−

ffiffiffiffiffiffiffiffiffiffiffi
a2þ4b2

1

p
Þx
i
: ð4:19Þ

Using the expressions for a, b1, b2, and ξ we can read the
scrambling time and the butterfly velocities as follows:

t� ¼
β

2π
log

l
κ
; vð1ÞB ¼ 2π

βb2
¼ 1;

vð2ÞB ¼ 2π

βð1
2
ð−aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b21

p
ÞÞ

¼ 2μ

m2l

�
1

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ2

m2 ð2þ 1
m2l2Þ

q �
;

vð3ÞB ¼ 2π

βð1
2
ð−a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b21

p
ÞÞ

¼ 2μ

m2l

�
−1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ2

m2 ð2þ 1
m2l2Þ

q �
;

2π

β
¼ rh

l2
:

ð4:20Þ

Note that for μ2 > 0 and m2 > 0 in a ghost free regime vð3ÞB
is negative, which implies moving in the backward direc-
tion. At the NMG limit of the model, μ → ∞, we have
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vð2ÞB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 þ 1

2

q ; vð3ÞB ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2l2 þ 1
2

q : ð4:21Þ

Note that vð2ÞB is exactly one of the butterfly velocities in
NMG, and also in the TMG limitm2 → ∞ with finite μ one
can see

vð2ÞB ¼ 1

μl
; vð3ÞB ¼ 0: ð4:22Þ

Here vð2ÞB is one of the butterfly velocities in TMG which is
in agreement with the result of [5] for TMG equation (3.12).
In addition, there is a critical line in the parameter space of
GMG at 1

2m2l2 þ 1
μl ¼ 1, [21] which in the TMG limit,

m2 → ∞ is the critical point of TMG, μl ¼ 1 and in the
NMG limit, μ → ∞ is the critical point of NMG, m2l2 ¼ 1

2
.

One can see at the critical line of GMG we have

vð2ÞB ¼ 1; vð3ÞB ¼ −
μl − 1

μl − 1
2

: ð4:23Þ

Note that vð2ÞB is the butterfly velocity of the 3D Einstein

gravity, and also in the NMG limit, μ → ∞, vð3ÞB ¼ −1,
which is the butterfly velocity of the 3D Einstein gravity
with the negative sign, and is in agreement with Eq. (4.21)
at the critical point of NMG,m2l2 ¼ 1

2
. In addition, one can

see at the critical point of TMG, μl ¼ 1, we have vð3ÞB ¼ 0

which is in agreement with Eq. (4.22). Note that in the

TMG limit equation (4.22) for μl ¼ −1 we have vð2ÞB ¼ −1,
which is the butterfly velocity of the 3D Einstein gravity
with the negative sign, it may mean moving in the back-
ward direction, and also here there is an interesting point;
maybe the negative butterfly velocities imply some insta-
bilities in the dual theory; these instabilities might lead to a
phase transition. In [7,17] the authors proposed that the
butterfly velocity vB can be used to diagnose the quantum
phase transition in holographic theories. They provided
evidence for this proposal with a holographic model
exhibiting metal-insulator transitions, in which the deriv-
atives of vB, with respect to system parameters, characterize
quantum critical points with local extremes in the zero
temperature limit [7].
We can consider μl ¼ −1 as the other critical point

of the theory; therefore, the other critical line of GMG
is 1

2m2l2 −
1
μl ¼ 1. We know from the dual 2D CFT of

TMG [38]

cL ¼ 3l
2G

�
1 −

1

μl

�
; cR ¼ 3l

2G

�
1þ 1

μl

�
: ð4:24Þ

One can see at two critical points of TMG, μl ¼ 1 and
μl ¼ −1, that we have two different chiral modes, right
moving and left moving, respectively, as follows:

μl ¼ 1; cL ¼ 0; cR ¼ 3l
G
;

μl ¼ −1; cL ¼ 3l
G
; cR ¼ 0: ð4:25Þ

And also we know that changing the sign of the topological
mass in TMG, μ → −μ, is equivalent to the acting parity
operator on the theory and is going from the left-moving
mode to right-moving mode and vise versa.
Now let us consider the other critical line of GMG at
1

2m2l2 −
1
μl ¼ 1, and at this line the butterfly velocities are

vð3ÞB ¼ −1; vð2ÞB ¼ μlþ 1

μlþ 1
2

: ð4:26Þ

One can see in the NMG limit, μ → ∞, vð2ÞB ¼ 1, which is
the butterfly velocity of the 3D Einstein gravity and is in
agreement with Eq. (4.21) at the critical point of NMG. In
addition, one can see at the other critical point of TMG

μl ¼ −1 that we have vð2ÞB ¼ 0. We can conclude that there
is a correspondence between the butterfly velocities and
right-left moving degrees of freedom or the central charges
of the dual conformal field theories.
We observed that at both of the critical lines at the NMG

limit μ → ∞ we have both right-moving and left-moving
velocities:

vð2ÞB ¼ 1 vð3ÞB ¼ −1: ð4:27Þ

Note that the new massive gravity is a parity-preserving or
even parity model [20]. But at the TMG limits in critical
lines or critical points of TMG, we have just the right-
moving velocity in one branch and just the left-moving
velocity in the other branch; in other words, TMG is a
parity violating or odd parity theory:

μl ¼ 1; vð3ÞB ¼ 0; vð2ÞB ¼ 1;

μl ¼ −1; vð3ÞB ¼ −1; vð2ÞB ¼ 0: ð4:28Þ

In other languages, the theory is chiral at the critical points,
μl ¼ 1 and μl ¼ −1. These relations are so similar to
relations for the central charges of the dual 2D CFT
equation (4.25) at the critical points where the theory is
chiral. Therefore, we observe a correspondence between
the butterfly velocities and the central charges of dual 2D
CFT at the critical points of TMG.
Recently a conjecture has been proposed about the

lower bound on a diffusion coefficient by the “butterfly
velocity” [6,39]:
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D ≥
ℏv2B
kBT

; ð4:29Þ

where D is the diffusion coefficient, kB is the Boltzmann
constant, and T is the temperature. And also in [40], the
authors studied a universality, which determines the shear
viscosity η and electrical conductivity σ in terms of the
corresponding “central charges” and naturally leads to a
conjectured bound on conductivity in physical systems.
And we know the relation between conductivity, charge
susceptibility, and the diffusion coefficient:

D ¼ σ

χ
; ð4:30Þ

where χ is charge susceptibility. These bounds on conduc-
tivity and the diffusion coefficient may be evidence of
correspondence between the butterfly velocities and the
central charges of the dual conformal field theories.

V. BORN-INFELD 3D GRAVITY

In this section we study the butterfly effect in the Born-
Infeld 3D gravity [22–24], which include the AdS3 vacuum

as well as solutions with the AdS2 × S1 symmetry. The
action of the Born-Infeld 3D gravity is

SBI ¼ −
m2

4πG

Z
d3x

ffiffiffiffiffiffi
−g

p
FðR;K; SÞ; ð5:1Þ

where

FðR;K; SÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2m2

�
R −

1

2m2
K −

1

12m4
S

�s

−
�
1þ Λ

2m2

�
; ð5:2Þ

with

K ≡ RμνRμν −
1

2
R2;

S≡ 8RμνRμαRα
ν − 6RRμνRμν þ R3: ð5:3Þ

Using this form of the action, the equations of motion
read [23]

−
κ

4m2
Tμν ¼ −

1

2
Fgμν þ ðgμν□ −∇μ∇νÞFR þ FRRμν þ

1

m2
½2∇α∇μðFRRα

νÞ − gμν∇α∇βðFRRαβÞ −□ðFRRμνÞ
− 2FRRν

αRμα þ gμν□ðFRRÞ −∇μ∇νðFRRÞ þ FRRRμν�

−
1

2m4

�
4FRRρ

μRραRα
ν þ 2gμν∇α∇βðFRRβρRα

ρÞ þ 2□ðFRRν
αRμαÞ − 4∇α∇μðFRRν

ρRα
ρÞ

þ 2∇α∇μðFRRRα
νÞ − gμν∇α∇βðFRRRαβÞ −□ðFRRRμνÞ − 2FRRRν

ρRμρ − gμν□ðFRRαβRαβÞ

þ∇μ∇νðFRRαβRαβÞ − FRRαβRαβRμν þ
1

2
gμν□ðFRR2Þ − 1

2
∇μ∇νðFRR2Þ þ 1

2
FRR2Rμν

�
; ð5:4Þ

where

FR ¼ ∂F
∂R ¼ 1

4m2

�
F þ

�
1þ Λ

2m2

��
−1
: ð5:5Þ

The equations of motion of the Born-Infeld 3D gravity
admit this asymptotically AdS black hole solution
equation (2.4) with

Λ ¼ −2m2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

m2l2

r �
: ð5:6Þ

Plugging the Ansatz of the Kruskal coordinate equa-
tion (2.10) into the equations of motion, Eq. (5.4), near
the horizon at the leading order, one finds a forth order
differential equation for hðxÞ:

d4hðxÞ
dx4

−
r2h
l4
ð4þm2l2Þh00ðxÞ

þ r4h
l8
ð3m2l2 þ 1Þðm2l2 þ 1Þ

m2l2 − 1
hðxÞ

¼ −
r4hm
2cl7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p
ðκlEe2πtw=βÞ: ð5:7Þ

One can write the above differential equation in this form:

ð∂2
x − b21Þð∂2

x − b22ÞhðxÞ ¼ ξδðxÞ;

b21 ¼
r2h
2l4

�
4þm2l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6l6 − 5m4l4 − 8m2l2 − 20

m2l2 − 1

s #
;

b22 ¼
r2h
2l4

�
4þm2l2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6l6 − 5m4l4 − 8m2l2 − 20

m2l2 − 1

s �
;

ξ ¼ −
r4hm
2cl7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p
ðκlEe2πtw=βÞ: ð5:8Þ
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If we decompose the above differential equations, which are similar to Eq. (4.7), the solution of hðxÞ is exactly the same as
Eq. (4.9):

hðxÞ ¼ ξ

2b1b2ðb21 − b22Þ
ðb1e−b2x − b2e−b1xÞ: ð5:9Þ

Using the expressions for b1, b2, and ξ, we can read the scrambling time and the butterfly velocities as follows:

t� ¼
β

2π
log

l
κ
; vð1ÞB ¼ 2π

βb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p

ð4þm2l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6l6 − 5m4l4 − 8m2l2 − 20

p
s

;

vð2ÞB ¼ 2π

βb2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p

ð4þm2l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6l6 − 5m4l4 − 8m2l2 − 20

p
s

;
2π

β
¼ rh

l2
: ð5:10Þ

Now let us consider the critical point of the Born-Infeld 3D
gravity, m2l2 ¼ 1, where the model has logarithmic wave
solutions [24]. One can see that at the critical point, the
above two velocities degenerate and are equal to zero

m2l2 ¼ 1; vð1ÞB ¼ vð2ÞB ¼ 0: ð5:11Þ
In [29] we observed that by adding a higher curvature
correction to the Einstein gravity, the butterfly velocity
decreases at the critical point. It is interesting that the
butterfly velocities in the Born-Infeld 3D gravity vanish
at the critical point, and it is important to note that the Born-
Infeld 3D gravity has an infinite higher derivative in the level
of the action because of the square root form of the action.
And also it is worth noting that at the critical point of the

Born-Infeld gravity, both the central charges of the dual 2D
CFT vanish [23,24]:

m2l2 ¼ 1; cL ¼ cR ¼ 3l
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

m2l2

r
¼ 0: ð5:12Þ

Maybe we can say it is another evidence for correspon-
dence between the butterfly velocities and the central
charges of the dual 2D CFT.

VI. NEW BIGRAVITY

The NBG is a recently proposed 3D gravity model for
resolving the bulk-boundary clash in the new massive
gravity [25,26] if we consider the NMG action by using an
auxiliary field fμν and then promote the auxiliary field to
the dynamical field. The NBG action is

SNBG ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
σR½g� þ fμνGμν½g�

þ 1

4
m2ð ~fμνfμν − ~f2Þ − 2Λg

�

þ 1

16π ~G

Z
d3x

ffiffiffiffiffiffi
−f

p
ðR½f� − 2ΛfÞ; ð6:1Þ

where Λf is a new cosmological constant, ~G is Newton
constant of the new metric, and R½g� and R½f� are Ricci
scalars constructed from gμν and fμν, respectively. Gμν is the
Einstein tensor of the metric gμν. Note that all indices are
raised by gμν except those in the definition of Ricci scalar
R½f� which are raised by the inverse metric fμν.
By varying the above NBG action with respect to

the metrics gμν and fμν one can find the equations of
motion:

G½g�μν þ Λggμν þ
m2

2

�
~fμ

ρfνρ − ~ffμν −
1

4
gμνð ~fρσfρσ − ~f2Þ

�

þ 2~fðμ
ρG½g�νÞρ þ

1

2
fμνR½g� −

1

2
~fRμν½g� −

1

2
gμνfρσG½g�ρσ

þ 1

2
½∇2½g�fμν − 2∇½g�ρ∇½g�ðμfνÞρ þ∇½g�μ∇½g�ν ~f

þ ð∇½g�ρ∇½g�σfρσ −∇2½g� ~fÞgμν� ¼ κTμν; ð6:2Þ

G½f�μν þ Λffμν −
1

k

ffiffiffi
g
f

r �
fαμfβνG½g�αβ

þ 1

2
m2ðgσαgτβ − gστgαβÞðfστfαμfβνÞ

�
¼ κTμν; ð6:3Þ

where G½f�μν is the Einstein tensor of the metric fμν and
k ¼ G

~G
is the relative strength of two Newton constants

associated with two metrics.
The equations of motion of new bigravity admit this

asymptotically AdS black hole solution:

ds2g ¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2

l2
dx2;

fðrÞ ¼ r2

l2

�
1 −

r2h
r2

�
; ds2f ¼ γds2g; ð6:4Þ

with
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4 − γ2l2gm2 þ 2γ þ 4l2gΛg ¼ 0;

1 −m2l2f − k
lg
lf
ð1þ Λfl2fÞ ¼ 0: ð6:5Þ

For solving the equations of motion near the horizon to find
the shock wave solution, we consider these Ansätze in the
Kruskal coordinate for backreacted geometry

ds2g ¼ 2AðUVÞdUdV þ BðUVÞdx2
− 2AðUVÞhðxÞδðUÞdU2;

ds2f ¼ 2AðUVÞdUdV þ BðUVÞdx2
− 2AðUVÞρðxÞδðUÞdU2: ð6:6Þ

Note that here we take γ ¼ 1. In other words, we take same
background for gμν and fμν but the perturbations around the
background are different [25] by the hðxÞ and ρðxÞ

functions. Plugging the Ansatz of the Kruskal coordinate
equation (6.6) into the equations of motion, Eqs. (6.2) and
(6.3), near the horizon at the leading order, one finds two
coupled forth order differential equation for hðxÞ and ρðxÞ:

2ρ00ðxÞ − 5h00ðxÞ − 2
r2h
l4
ðl2m2 − 1ÞρðxÞ

þ r2h
l4
ð2l2m2 þ 1ÞhðxÞ ¼ ξδðxÞ;

kρ00ðxÞ − h00ðxÞ − r2h
l4
ðl2m2 þ k − 2ÞρðxÞ

þ r2h
l4
ðl2m2 − 1ÞhðxÞ ¼ −

k
2
ξδðxÞ; ð6:7Þ

where ξ ¼ r2h
cl4 ðκlEe2πtw=βÞ. The solutions of the above

coupled differential equations are

hðxÞ ¼ ξ

2
4 −ð1þ kÞ
2rhl2ð1þ 2kÞ e

−rh
l2
x þ k2 þ k − 2

2rhl2ð1þ 2kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
5k − 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2ð1þ 2kÞ þ k − 4

p e
−rh

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2ð1þ2kÞþk−4

5k−2

q
x

3
5;

ρðxÞ ¼ ξ

2
4 −ð1þ kÞ
2rhl2ð1þ 2kÞ e

−rh
l2
x −

3ðkþ 2Þ
2rhl2ð1þ 2kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

5k − 2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2m2ð1þ 2kÞ þ k − 4
p e

−rh
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2ð1þ2kÞþk−4

5k−2

q
x

3
5: ð6:8Þ

From the above expressions, one can read the scrambling
time and the butterfly velocities as follows:

t� ¼
β

2π
log

l
κ
; vð1ÞB ¼ 2π

βðrhl2Þ
¼ 1;

vð2ÞB ¼ 2π

βðrhl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2ð1þ2kÞþk−4

5k−2

q
Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5k − 2

l2m2ð1þ 2kÞ þ k − 4

s
;

2π

β
¼ rh

l2
: ð6:9Þ

Now lets consider the k ¼ 1 case which happens when two
Newton constants are equal,

k ¼ 1; vð2ÞB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 − 1

p : ð6:10Þ

For respecting the causality, the butterfly velocity must be
equal or less than the velocity of light, vð2ÞB ≤ 1; therefore,
we have

m2l2 ≥ 2: ð6:11Þ

For m2l2 ¼ 2 the butterfly velocity is equal to the velocity
of light, vð2ÞB ¼ 1, which is the butterfly velocity of the 3D
Einstein gravity.

Finally, it is interesting to consider the logarithmic
solutions limit of the new bigravity [25]:

1 −
γ

2
þ k

ffiffiffi
γ

p ¼ 0: ð6:12Þ

Here we take γ ¼ 1, then k ¼ − 1
2
; therefore, we have

k ¼ −
1

2
; vð1ÞB ¼ vð2ÞB ¼ 1: ð6:13Þ

This situation is similar to critical points of TMG, MMG,
and NMGwhere the models have logarithmic solutions and
the two butterfly velocities degenerate into one and it is
equal to the butterfly velocity of the 3D Einstein gravity,
which is the velocity of light.

VII. CONCLUSIONS

In this paper we study some of three-dimensional gravity
models, we calculate the butterfly velocities of these
models, and also we consider critical points and different
limits in some of them. In Sec. II we study the butterfly
effect in the 3D Einstein gravity by considering the shock
wave in the Kruskal coordinate near the horizon of the AdS
black hole, and we find that the butterfly velocity of the 3D
Einstein gravity is equal to the velocity of light, which is in
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agreement with [1] in D ¼ 3. Although in the 3D Einstein
gravity there is no propagating degree of freedom or
graviton in the bulk, due to boundary degrees of freedom
or boundary gravitons the butterfly velocity is nonzero.
In Sec. III we study the butterfly effect of the minimal

massive 3D gravity, and we consider the TMG limit of the
model which was in agreement with the results of [5]. We
study the critical point of themodel andwe observed that the
two butterfly velocities degenerate at the critical point and
are equal to the butterfly velocity of the 3D Einstein gravity.
In Sec. IV we first review the butterfly effect in the new

massive gravity by details and consider the critical point of
the model where the two butterfly velocities degenerate and
are equal to the butterfly velocity of the 3D Einstein gravity,
then we study the butterfly effect in the generalized massive
gravity and we find three butterfly velocities for this theory.
Then we consider TMG and NMG limits of the theory and
critical lines and critical points of the model and we
observed that there is a correspondence between the
butterfly velocities and right-left moving degrees of free-
dom or the central charges of the dual two-dimensional
conformal field theory.
In Sec. V we study the butterfly effect in the Born-Infeld

3D gravity and we find that at the critical point of the
model, the two butterfly velocities degenerate and are equal
to zero. It is interesting that the butterfly velocities in the
Born-Infeld 3D gravity vanish at the critical point. We

know that the Born-Infeld 3D gravity has an infinite higher
derivative in the level of the action because of the square
root form of the action and also in [29] we observed that by
adding a higher curvature correction to the Einstein gravity,
the butterfly velocity decreases at the critical point. And
also, both of the central charges of the dual 2D CFT vanish
at the critical point of the model, it may be other evidence
for correspondence between the butterfly velocities and the
central charges of the dual 2D CFT.
In Sec. VI we study the butterfly effect in the new

bigravity model and we find a causality bound in the
parameter space of the model and also we consider the
logarithmic solutions limit of the new bigravity and we
observed that in this limit the two butterfly velocities
degenerate into one which is equal to the butterfly velocity
of the 3D Einstein gravity. In following, it is so important
and also interesting to study the butterfly effect in the dual
2D conformal field theories [41–43] of these models and
rederive the obtained results by CFT calculations.
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