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Butterfly effect in 3D gravity
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We study the butterfly effect by considering shock wave solutions near the horizon of the anti—de Sitter
black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D
gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We
calculate the butterfly velocities of these models and also we consider the critical points and different limits
in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a
correspondence between the butterfly velocities and right-left moving degrees of freedom or the central

charges of the dual 2D conformal field theories.
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I. INTRODUCTION

It was shown [1-4] that chaos in thermal conformal field
theory (CFT) may be described by a shock wave near the
horizon of an anti—de Sitter (AdS) black hole. In other
words, holographically, the propagation of the shock wave
on the horizon provides a description of the butterfly effect
in the dual field theory. In field theory, the side butterfly
effect may be diagnosed by an out-of-time order four point
function between pairs of local operators

(1.1)

where f is the inverse of the temperature. The butterfly
effect may be seen by a sudden decay after the scrambling
time, 7.,
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where 4; is the Lyapunov exponent and vp is the butterfly
velocity. The Lyapunov exponent is 1, = 2%, where f3 is the
inverse of Hawking temperature. And a{jso the butterfly
velocity should be identified by the velocity of the shock
wave by which the perturbation spreads in the space.
People have done some work recently on the butterfly
effect and its different aspects [5—17] and also it needs more
investigation and calculation to access a better understand-
ing of this interesting natural phenomenon.

Gravity in three dimensions is special and interesting
because it is a good toy model for the quantum gravity and
by studying 3D gravity we can access a deeper understanding
about gravity in higher dimensions. It is also is a good context
for holography because we are more familiar with conformal
field theories in two dimensions in comparison with other
dimensions. In addition, we can construct the ghost free higher
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derivative gravity models in three dimensions. The 3D
Einstein gravity does not have propagating degrees of free-
dom or gravitons in the bulk but by adding higher derivative
terms to the action we can have massive propagating degrees
of freedom. For example, by adding a gravitational Chern-
Simons action to the 3D Einstein gravity action we have a
massive graviton in the linearized level of the topologically
massive gravity theory [18].

In this paper, we study the butterfly effect in some of 3D
gravity models; we calculate the butterfly velocities of
these models and also consider the critical points and
different limits in some of them. In Sec. II we study the
butterfly effect in the 3D Einstein gravity and we find that
the butterfly velocity of 3D Einstein gravity is equal to the
velocity of light. In Sec. III we study the butterfly effect in
the minimal massive 3D gravity [19] which is proposed for
resolving the bulk-boundary clash problem in the topo-
logically massive gravity (TMG) [18] and we consider the
TMG limit and the critical point in this model.

In Sec. IV we first review the butterfly effect in the new
massive gravity (NMG) [20] by details. Then we study
the generalized massive gravity (GMG) [20,21] and its
different limits and the critical lines. Then we observe a
correspondence between the butterfly velocities and the
central charges of the dual 2D conformal field theory. In
Sec. V we study the butterfly effect in the Born-Infeld 3D
gravity [22-24] and its critical point and we see that at the
critical point of the model both of the butterfly velocities
vanish. In Sec. VI we study the butterfly effect in the new
bigravity (NBG) [25,26] and consider the causality bound in
this model and also we consider the logarithmic solutions
limit of the new bigravity. The last section is devoted to
conclusions.

II. 3D EINSTEIN GRAVITY

The action of the 3D FEinstein gravity with a cosmo-
logical constant is

© 2017 American Physical Society
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1 3
1671'G/d xy/=g(R =2A).

(2.1)

If we vary the action with respect to the metric we find the
equations of motion as follows:

1
R, — ERgm, + Ag =«Ty,.
To study the butterfly effect, we must to consider the black
hole solution. The equations of motion of the 3D Einstein
gravity admit this asymptotically AdS black hole solution,
which is similar to a nonrotating Banados-Teitelboim-
Zanelli black hole [27,28]:

(2.2)

dr?

f(r)
r? r% 1
f(r):l—z(l—p) A=-4.

where ry, is the radius of horizon and / is the AdS radius.
The ¢ coordinate is dimensionless and compact;
0 < ¢ < 2x. Now let us introduce a coordinate with length
dimension x = lp; then we have dgp = % Also, x coor-
dinate is compact, 0 < x < 2x/; therefore, the AdS black
hole metric is

ds> = —f(r)dt* + + r’de?,

(2.3)

drr 2
ds? = — df* + —— + —dx2.
s f(r) +f(r) + 2 X

Now the aim is to study the shock wave of this model when
the above black hole solution of this theory is perturbed by
an injection of a small amount of energy. For this aim, it is
better to rewrite the solution in the Kruskal coordinate [1],

(2.4)

2n
u=-exp|—(r, —t)},
5
2
v = —exp {—” (r, + t)], (2.5)
p
where f§ = % is the inverse of temperature and dr, = %

is the tortoise coordinate.
By making use of this coordinate system, the metric
becomes the following [1,5]:
ds?* = 2A(uv)dudv + B(uv)dx>. (2.6)

Here A(uv) and B(uv) are two functions, given by f(r),
whose near horizon expansions are

A(uv) = =2¢P(1 = 2cuv + 3c*uv? — 43w v + -+ ),
2
B(uv) = % (1 —dcuv + 8c*u*v® — 12¢3uv® + -+ ),

(2.7)
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where c is an integration constant to be fixed later. Now we
must study the shock wave; for this aim let us consider an
injection of a small amount of energy from the boundary
toward the horizon at time —t,,. This will cross the t = 0
time slice while it is red shifted. Therefore the equations of
motion should be deformed as

Ew =«T;

Hv

(2.8)

where k¥ = 87Gy, the energy-momentum tensor has only
uu component due to the energy injection:

TS, = IE <exp (2';; W) 5(u)5(x)> .

For solving the equations of motion near the horizon to find
the shock wave solution, we consider this Ansatz for
backreacted geometry

(2.9)

ds? = 2A(UV)dUdV + B(UV)dx>

—2A(UV)h(x)8(U)dU?, (2.10)
where the new coordinates U and V are
U=u, V=uv+h(x)O(u). (2.11)

Plugging the Ansatz into the equations of motion (2.2) near
the horizon at the leading order, one finds a second order
differential equation for A(x)

2

(02 = r2)h(x) = —;—’; (KIE™/P)5(x).  (2.12)

We can reduce the equation of motion into the following:

2
(@ - a)h(x) = eo(x). @ =7k
”% 2rt, /B
é —W(KZEB T ) (213)
whose solution is
h(x) = —ie_“m. (2.14)

2a

By replacing the values of a and &, one can see

h(x) ~ 7 (v=1)=1l/vs] - \yhere the scrambling time is

t, = f—ﬂlog(ﬁ), with k = 872Gy and G is Newton’s constant

in D =3, for true value of scrambling time [3]. If we

assume [E ~ 1, we have to fix the value of integration
T

constant to ¢ = 74 in the above expression. Then one can

read the value of the butterfly velocity [3,5,29]:
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2 2 !
vp= L1, _”:f(r):r_;’ (2.15)
fa 5 2 1
which is in agreement with [1], where the butterfly velocity
in the Einstein gravity in the D dimension is vy = 2(DD—_—12)'

Note that the largest possible butterfly velocity in the
Einstein gravity is in D = 3 which is equal to light velocity
(vg = 1). It is important to note, although in the 3D
Einstein gravity there is no propagating degrees of freedom
in the bulk, due to boundary degrees of freedom or
boundary gravitons the butterfly velocity is nonzero. It is
a sign of the relationship between butterfly velocities and
boundary degrees of freedom or boundary gravitons. Note
that in contradiction of no propagating degrees of freedom
in the bulk in 3D FEinstein gravity, its dual 2D conformal
field theory has a nonzero central charge [30]. In the forth
section we will see a correspondence between butterfly
velocities and central charges of dual 2D conformal field
theory.

III. MINIMAL MASSIVE 3D GRAVITY

The MMG is a model which is proposed for resolving the
bulk-boundary clash problem in the TMG (we do not have
the positive energy of a graviton and unitary dual 2D
conformal field theory at the same time in TMG) [18] by
adding a new term to the action in the vielbein formalism
[19]. And also we know that the linearized equations of
motion of MMG are equal to linearized equations of motion
of TMG by making use a redefinition of the topological
mass parameter [31-33]. Therefore, the model has a single
local degree of freedom that is realized as a massive
graviton in the linearization as TMG. The Lagrangian of
the minimal massive 3D gravity in the vielbein formalism is

A
Lyvg = —oe.R + Foe.e x e+ h.T(w)

1 1
—Q—Z <a).d(o +§a).w X a)) —i—%e.h x h, (3.1

where e is the vielbein, w is the spin connection, and 4 is a
Lagrange multiplier or auxiliary field. Note that the dot and
cross mean internal and external product, respectively, the
dot implies a contraction of Lorenz indices of two fields
with each other, and the cross means a contraction of
Lorenz indices of two fields with two indices of the Levi-
Civita tensor. The equations of motion of the MMG in the
metric formalism is

_ X 1 Y
O'G,w + Aog/w —l—/—tC,w -+ /7.]”,/ = K'TMD, (32)

where G, is the Einstein tensor, C,, is the 3D Cotton
tensor,
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1
Cp = 6,7, (RW - ZRgW>, (3.3)

and J,, is a curvature squared, symmetric tensor:

3 1 5
Jﬂl/ = RMlRllu - ZRR#V - Eg/w (RDGR/ - SRZ) : (34)

Note that the relations between the parameters of the
vielbein and metric formalisms are

‘ 5 fag T
=, 6=—|ot+at+———"=].
4 (1+ oa)? 2u*(1 + oa)?
- a3A0
Ao =N\ 1 - |- 3.5
o= -to(1 e ) &

To study the butterfly effect, we must consider the black
hole solution. The equations of motion of the minimal
massive 3D gravity (MMG) admit this asymptotically AdS
black hole solution equation (2.4) with

- y + 4P u%G
Ng=——15—. 3.6
0 414”2 ( )

Plugging the Ansatz of the Kruskal coordinate equa-
tion (2.10) into equations of motion (3.2) near the horizon
at the leading order, one finds a third order differential
equation for (x)

&hx)  r, _ ry
" 272
- m (J/ + 2/1 [ 6)h()€)

3
S ;h_;; (KIEe2™/8)5(x).
C

We can reduce the differential equation to

(0, +a) (2= b))h(x) = E8(x),  a==—"(y+24*P5),

~2ub
3
_rh _ M 2nt,,
b—l—z, 5——ﬁ(KlEe t/ﬂ)

(3.8)

We can decompose the above differential equation into two
differential equation as follows:

q'(x) + aq(x) = &5(x),

h'(x) — b*h(x) = q(x). (3.9)

The solution of first equation is
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q(x) = EO(x)e™. (3.10)

If we solve the second equation by making use the above
q(x) we find.

h(x) = _£ (:_bx _ M)

11
2b\a-b da*-0b? (3-11)

By replacing the values of a, b, and £ we can read the
scrambling time and the butterfly velocities [5,34] as
follows:

P l 1 2=n
1 = —= l’
FTR % B TR
2 27 2ul 2 f'(r)
U(>:_:ﬁ’ —_— = :—2_ (3_12)
Pa y+2ul°6 p 2 [

The butterfly effect in the TMG has been studied in [5] and
they found the butterfly velocities as follows:

=1, P == (3.13)

One can see that the butterfly velocities of MMG in the
TMG limit (y =0, 6 =1) are equal to the butterfly
velocities of the TMG equation (3.12).

Now let us consider the critical point of MMG y =
—2ul(ulc — 1) where massive and massless modes degen-
erate and the model has logarithmic solutions [32,33]. At
this point, one can see at the critical point that both
velocities degenerate and are equal to the butterfly velocity
of the 3D Einstein gravity which is equal to the velocity of
light:

(3.14)

IV. NEW MASSIVE GRAVITY AND
GENERALIZED MASSIVE GRAVITY

The butterfly velocities of the NMG have been obtained
in [5]; here we review it with more details. The action of

NMG is [20]
v 3
o (Rare =3 |

(4.1)

3
SNMG 16 G/d Xy/— |:R 2A —

One can obtain the equations of motion by varying the
action with respect to the metric:

K

W:KT

G;u/ + Ag/w - A (42)

1
2m?

where
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9
—8R,°R,, + 5 RR,,

K, =20R,, 5

1
) (V,V,R +g,R)

13
+ <3RaﬂR“ﬂ - §RZ) G- (4.3)

The equations of motion of the new massive gravity
admit this asymptotically AdS black hole solution equa-

tion (2.4) with
1 1
A=—(5+—7+].
<12 + 4mzl4)

Plugging the Ansarz of the Kruskal coordinate
equation (2.10) into the equations of motion, Eq. (4.2),
near the horizon at the leading order, one finds a forth order
differential equation for i (x)":

(4.4)

d4h(x) 2 2
34 2m2 ) (x) + <L (1 + 2m212)
G e (3 2R (x) £ S (1 4+ 2m B ()
4,2
- ’2’1”;6 (KIEe>/)5(x). (4.5)
c
We can reduce the above differential equation to
2
r
(0% - B3) (9% — B)h(x) = &3(x). B ="F,
2 _ T % 202
)
g =" = (kIE*™/P), (4.6)
2clb

We can decompose the above differential equation into two
differential equation as follows:

q"(x) = biq(x) = &5(x).
h"(x) = b3h(x) = g(x). (4.7)
By solving the first equation we have
£ o-bil
=—— . 4.8
q(x) T (4.8)

By replacing the above ¢(x) in the second equation and
solving the equation we find

¢

h(x) = — >
) = by b7 = 12)

(ble_bzx - bze_bl"). (49)

Using the expressions for by, b,, and £ we can read the
scrambling time and the butterfly velocities as follows:

"The shock wave solution in the Minkowski space background
for TMG (and NMG) is studied in [35].
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p l 1y 2=«
2w B B T T
2 1 2 !
e —ﬂ*f(r)*r—é’ (4.10)
pb, m2i2 + % s 2 l
One can see at the critical point of NMG, m? =3 1136], the

two butterfly velocities degenerate into one VClOClty which
is the velocity of light

(4.11)

Now let us consider the GMG which is the combination of
TMG and NMG [20,21]. The action of GMG is the action
of NMG plus the gravitational Chern-Simons action:

1 o3
o (R 52)

(4.12)

1
d3
SomG = 162G XV~ [
+ SCS!
where the gravitational Chern-Simons action is [37]

1 2
Scs = 322G / d3x,/—g€/1ﬂvr‘ﬁ’g |:8 va + = 3 FﬂTFU/1:| .

(4.13)

One can obtain the equations of motion by varying the
action with respect to the metric:

1

1
Gﬂl/ + Ag}w —WK”D +/;Cﬂl/ = KT/”,,

(4.14)
where K, is defined by Eq. (4.3) and C,, is the 3D Cotton
tensor which is defined by Eq. (3.3). The equations of
motion of the generalized massive gravity admit this
asymptotically AdS black hole solution equation (2.4)

with
A 1 N 1
o\ 2  amPr)

Plugging the Anmsatz of the Kruskal coordinate equa-
tion (2.10) into the equations of motion, Eq. (4.14), near
the horizon at the leading order, one finds a forth order
differential equation for A(x):

d*h(x) rym*dh(x) rpm’ at 3 i )+r2m2
dx* Iu dx? 212 22 *

(4.15)

4

4.2 2
rpm 1 _rym nt /B
o6 (2+mzlz>h(x) =5 (kIEe*™/P)5(x).

(4.16)
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We can write the above differential equation in this
form:

(0% = b3)(0% — ady = bY)h(x) = &5(x),
> _ T 2
b = 2 h (14 2m21?),
2 2
rm r
a= W by = l—ff,
A2
5 h (K.lEeZIL'IW//})

2l
(4.17)

Now let us decompose the above differential equation:

— bq(x) = &5(x).
— B2h(x) = q(x).

q"(x)

—ahl'(x)

K" (x) (4.18)

The first equation is similar to the first equation of
Eq. (4.7); therefore, we have g(x) = —%e‘bzm, and if
we put ¢(x) in the above second equation we find

= S [ 24/ a? +4b2e>x
4b2 a +4b1(b b2 a+b2

+ ( /a2+4b%+2b2+a> 6—7(—11—0—\/11 +4b)x
+ (e +4b7 = 2by—a) eV (419)

Using the expressions for a, by, b,, and £ we can read the
scrambling time and the butterfly velocities as follows:

h(x)

ﬂ [ (1) 2w
t, = —log—, =1,
2w B VB T,
(2) o 271'
U 1 2 2
ﬁ(i(_a+ a +4b1>)
_ 2u 1
_% 2/42 1 ’
1+ \/1+552+5)
2
o) = d

JaEa)

< -1 ) 2w ry
ey 2 . =R
I 4 J1+25 2+ L) pod

m2 2

Gz (-a—

(4.20)

Note that for 4> > 0 and m?> > 0 in a ghost free regime vg)

is negative, which implies moving in the backward direc-
tion. At the NMG limit of the model, 4 — o0, we have
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@ _ 1 3) _ 1
= N —————N
,/mzlz—l—% 1/m212+%

Note that vg) is exactly one of the butterfly velocities in
NMG, and also in the TMG limit m? — oo with finite uone
can see

(4.21)

(4.22)

Here 111(92) is one of the butterfly velocities in TMG which is

in agreement with the result of [5] for TMG equation (3.12).
In addition, there is a critical line in the parameter space of
GMG at 57+ =1, [21] which in the TMG limit,

m? — oo is the critical point of TMG, ul = 1 and in the

NMG limit, 4 — oo is the critical point of NMG, m?I* = §
One can see at the critical line of GMG we have

ul—1

2) (3)
= 17 v =

(4.23)

Note that U](? is the butterfly velocity of the 3D Einstein

gravity, and also in the NMG limit, y — oo, vg) = -1,

which is the butterfly velocity of the 3D Einstein gravity
with the negative sign, and is in agreement with Eq. (4.21)
at the critical point of NMG, m?[* = 1. In addition, one can

see at the critical point of TMG, ul = 1, we have vg) =0
which is in agreement with Eq. (4.22). Note that in the

TMG limit equation (4.22) for ul = —1 we have v = —1,
which is the butterfly velocity of the 3D Einstein gravity
with the negative sign, it may mean moving in the back-
ward direction, and also here there is an interesting point;
maybe the negative butterfly velocities imply some insta-
bilities in the dual theory; these instabilities might lead to a
phase transition. In [7,17] the authors proposed that the
butterfly velocity v can be used to diagnose the quantum
phase transition in holographic theories. They provided
evidence for this proposal with a holographic model
exhibiting metal-insulator transitions, in which the deriv-
atives of vp, with respect to system parameters, characterize
quantum critical points with local extremes in the zero
temperature limit [7].

We can consider ul = —1 as the other critical point
of the theory; therefore, the other critical line of GMG

is 2mlzzz ﬁ—l We know from the dual 2D CFT of

TMG [38]

31 1 3] 1
= ([1-= =—(1+—]. 4.24
o 2G< Ml)’ °x 2G< +Ml> 424)
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One can see at two critical points of TMG, ul =1 and
ul = —1, that we have two different chiral modes, right
moving and left moving, respectively, as follows:

(4.25)

And also we know that changing the sign of the topological
mass in TMG, u — —pu, is equivalent to the acting parity
operator on the theory and is going from the left-moving
mode to right-moving mode and vise versa.

Now let us consider the other critical line of GMG at

—}% =1, and at this line the butterfly velocities are

1
2m*2

[+1
vg = —1, 1)532):”—'—1.
/tl+§

(4.26)

One can see in the NMG limit, u — oo, v\ = 1, which is

the butterfly velocity of the 3D Einstein gravity and is in
agreement with Eq. (4.21) at the critical point of NMG. In
addition, one can see at the other critical point of TMG
ul = —1 that we have vg) = 0. We can conclude that there
is a correspondence between the butterfly velocities and
right-left moving degrees of freedom or the central charges
of the dual conformal field theories.

We observed that at both of the critical lines at the NMG
limit 4 — co we have both right-moving and left-moving
velocities:

(4.27)

Note that the new massive gravity is a parity-preserving or
even parity model [20]. But at the TMG limits in critical
lines or critical points of TMG, we have just the right-
moving velocity in one branch and just the left-moving
velocity in the other branch; in other words, TMG is a
parity violating or odd parity theory:

ul = -1, v =—1, vy =0. (4.28)
In other languages, the theory is chiral at the critical points,
ul =1 and ul = —1. These relations are so similar to
relations for the central charges of the dual 2D CFT
equation (4.25) at the critical points where the theory is
chiral. Therefore, we observe a correspondence between
the butterfly velocities and the central charges of dual 2D
CFT at the critical points of TMG.

Recently a conjecture has been proposed about the
lower bound on a diffusion coefficient by the “butterfly
velocity” [6,39]:

106012-6



BUTTERFLY EFFECT IN 3D GRAVITY

hv?
D> kT (4.29)
where D is the diffusion coefficient, kp is the Boltzmann
constant, and 7T is the temperature. And also in [40], the
authors studied a universality, which determines the shear
viscosity n and electrical conductivity ¢ in terms of the
corresponding “central charges” and naturally leads to a
conjectured bound on conductivity in physical systems.
And we know the relation between conductivity, charge
susceptibility, and the diffusion coefficient:

D=1,

P (4.30)

where y is charge susceptibility. These bounds on conduc-
tivity and the diffusion coefficient may be evidence of
correspondence between the butterfly velocities and the
central charges of the dual conformal field theories.

V. BORN-INFELD 3D GRAVITY

In this section we study the butterfly effect in the Born-
Infeld 3D gravity [22-24], which include the AdS; vacuum
|
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as well as solutions with the AdS, x S' symmetry. The
action of the Born-Infeld 3D gravity is

2

Spr = ——— [ &®x/=gF(R,K,S), 5.1
BI 172G X g ( ) ( )
where
F(R,K,S) = 1+1 R 1K 1S
R 2m? 2m? 12m*
A
-1+, 5.2
<+2m2> (5:2)
with
K=R,R" 1R2
fr— MD _5 s
S = 8R"R,,R", — 6RR, R* + R*. (5.3)

Using this form of the action, the equations of motion
read [23]

K 1 1
WTW = _EFg;w + (gwa - VMVD)FR + FRRW + ﬁ [2vavy<FRRab) - gpwvav/)’(FRRaﬂ) - D(FRRMD)
- 2FRR,/“RW + g,wD(FRR) — Vﬂvy(FRR) + FRRRW]
1
- 2—}/’14 4FRR/);4R/)(1R(IU + 2gﬂuv(zvﬂ(FRRﬁpRap) + 2D(FRRU(1R/4(I) - 4vav;4(FRRy/)Ra/))
+ ZVQVI,(FRRR",/) - gﬂyvavﬂ(FRRR“ﬂ) - D(FRRRW) — 2FRRRU/’RW - gWD(FRRaﬂR“ﬂ)
1 1 1
+V,V,(FgR4R?) — FxR4RR,, + 3 9 (FRR?) — 5 V.V, (FgR?) + EFRRZRW , (5.4)
d*h(x) 1
where dx(4 ) _1_11(4 + m2lz)h”(x)
P BmPP +1)(m?? + 1)
oF 1 AN]! + 7 ( h(x)
Fp=—=——|F 1+— . 5.5 8 2 _
RZOR ™ am? { +< +2m2>] (5.5) / myl? —1
rﬁm 272 2t/
=57 V™M 1> — 1(klIEe*™/P), (5.7)

The equations of motion of the Born-Infeld 3D gravity
admit this asymptotically AdS black hole solution
equation (2.4) with

1
A:—2m2<1— 1_W>

Plugging the Anmsatz of the Kruskal coordinate equa-
tion (2.10) into the equations of motion, Eq. (5.4), near
the horizon at the leading order, one finds a forth order
differential equation for A(x):

(5.6)

One can write the above differential equation in this form:

(0% = b})(0% = b3)h(x) = £5(x).

N [4+ 212+\/m616—5m4l4—8m212—201
1 =54 m ,

204 m*2 — 1
r mee —5m*l* — 8m? 2 — 20
b = “h 4 22 _ ,
2 214[ o \/ m2 — 1 ]
rtm
E= ——2’2 7 Vm? = 1(klEe*™™/P). (5.8)
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If we decompose the above differential equations, which are similar to Eq. (4.7), the solution of 4(x) is exactly the same as

Eq. (4.9):

h(x) =

¢ - -
————(bje™* — bye™t¥). 5.9
2,07 - P T >
Using the expressions for by, by, and &, we can read the scrambling time and the butterfly velocities as follows:
P AN gl (1 2= 2vm?lE -1
* v = — =
B Bpby @+ m2P)VmPE =1+ Vmblo = 5m*l* = 8m* 2 — 20
2P -1 2
" o (5.10)

o2 =2 _ 2
Bpby 4+ m2P)VmP =1 = Vm®lP

Now let us consider the critical point of the Born-Infeld 3D
gravity, m*I> = 1, where the model has logarithmic wave
solutions [24]. One can see that at the critical point, the
above two velocities degenerate and are equal to zero
mP=1, V=07 =0. (5.11)
In [29] we observed that by adding a higher curvature
correction to the Einstein gravity, the butterfly velocity
decreases at the critical point. It is interesting that the
butterfly velocities in the Born-Infeld 3D gravity vanish
at the critical point, and it is important to note that the Born-
Infeld 3D gravity has an infinite higher derivative in the level
of the action because of the square root form of the action.
And also it is worth noting that at the critical point of the
Born-Infeld gravity, both the central charges of the dual 2D
CFT vanish [23,24]:

3/ 1
C;, = CRrR ==~ ——:0

G i (5.12)

Maybe we can say it is another evidence for correspon-
dence between the butterfly velocities and the central
charges of the dual 2D CFT.

VI. NEW BIGRAVITY

The NBG is a recently proposed 3D gravity model for
resolving the bulk-boundary clash in the new massive
gravity [25,26] if we consider the NMG action by using an
auxiliary field f,, and then promote the auxiliary field to
the dynamical field. The NBG action is

1
SnBG = 162G dSX\/_<5R{ |+ 9"l
1 - -
v Zmz 7 - 1) - zAg)
&x\/=f(R[f] = 2A;),

16 : (6.1)

ZSmtl — 8m2lE = 20 pE

where A; is a new cosmological constant, G is Newton
constant of the new metric, and R[g] and R[f] are Ricci
scalars constructed from g, and f,, , respectively. G, is the
Einstein tensor of the metric g,,. Note that all indices are
raised by ¢ except those in the definition of Ricci scalar
R[f] which are raised by the inverse metric f**.

By varying the above NBG action with respect to
the metrics g,, and f,, one can find the equations of
motion:

g[ ]m/ + Agg/,w + fypfvp ffm/ - g;w(fpafpa - f )

1

1~
*fR/“, [g] - Eg/wfpag[gym

2
45 (V206 ~ 291Vl oy, + V1, Vo, F
F (VIS e~ T206])g) = AT,

+ 2}‘(/4pg[g]v)p + Ef/u/R[g] -

(6.2)

1 /g
g{f];w + Aff/w - % \/; [fayfﬁbg[g]aﬁ
1
b3 = W) = KT (63
where G[f],, is the Einstein tensor of the metric f,, and

k :% is the relative strength of two Newton constants

associated with two metrics.
The equations of motion of new bigravity admit this
asymptotically AdS black hole solution:

dr* 2
ds? = —f(r)dt* + 70 + l—zdxz,

2 2
f(r) :—(l ——g), ds%:ydsé,

I%

(6.4)

with
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272,.2 2A
4 —ylzm” + 2y + 415N, =0,

!
1—m2z}—ki(1 + A1) =0. (6.5)

For solving the equations of motion near the horizon to find
the shock wave solution, we consider these Ansctze in the
Kruskal coordinate for backreacted geometry

ds? =2A(UV)dUdV + B(UV)dx*
—2A(UV)h(x)8(U)dU?,
dsj = 2A(UV)dUdV + B(UV )dx*

—2A(UV)p(x)8(U)dU>. (6.6)

Note that here we take y = 1. In other words, we take same
background for g,, and f,, but the perturbations around the

background are different [25] by the h(x) and p(x)
|

PHYSICAL REVIEW D 96, 106012 (2017)

functions. Plugging the Ansatz of the Kruskal coordinate
equation (6.6) into the equations of motion, Egs. (6.2) and
(6.3), near the horizon at the leading order, one finds two
coupled forth order differential equation for /(x) and p(x):

r2
2" (x) = 5K" (x) — 21%' (Pm? - 1)p(x)

2
+ 2 (2Pm® + Dh(x) = £6(x).

r2
kp" (x) = h"(x) = l—ff (Pm? + k = 2)p(x)

r2
+l—j;(l2m2 —1)h(x) =

k
—5ew. (6

2
where & = 2 (kIEe¢*™+/F). The solutions of the above
coupled differential equations are

Pm? (142k)+k—4
52

K+ k=2

_n

e’

27y (1 4 2k)V/5k = 24/ Pm2(1 +2k) + k — 4

3(k + 2) i, [ PmP(1420) k-4

2 552

o _(1+k) —%x
h(x) = ¢ 2r, (1 1 2k)
I —(1+k _lhy
P(X):f ( + ) e 2 —

2r, (1 + 2k)

From the above expressions, one can read the scrambling
time and the butterfly velocities as follows:

po 1 W 2%
t.=1log-, WV =—C_=—1,
27 Bk 5T B
o 2 _ Sk—2
5 ry [ Pm(142k)+k—4 Pm?(1+2k) + k-4
BN 5= )
27[ rh

Now lets consider the k = 1 case which happens when two
Newton constants are equal,

(6.10)

m2? -1

For respecting the causality, the butterfly velocity must be
equal or less than the velocity of light, v 32 < 1; therefore,
we have

m?? > 2. (6.11)
For m?I> = 2 the butterfly velocity is equal to the velocity

of light, v} = 1, which is the butterfly velocity of the 3D
Einstein gravity.

e
27,2 (1 + 2k)V/5k — 24/Pm*(1 +2k) + k — 4

(6.8)

Finally, it is interesting to consider the logarithmic
solutions limit of the new bigravity [25]:

1—§+k\/}7:0. (6.12)
Here we take y = 1, then k = —%; therefore, we have
1 m_.®
k:_i’ vy =vy =1 (6.13)

This situation is similar to critical points of TMG, MMG,
and NMG where the models have logarithmic solutions and
the two butterfly velocities degenerate into one and it is
equal to the butterfly velocity of the 3D Einstein gravity,
which is the velocity of light.

VII. CONCLUSIONS

In this paper we study some of three-dimensional gravity
models, we calculate the butterfly velocities of these
models, and also we consider critical points and different
limits in some of them. In Sec. II we study the butterfly
effect in the 3D Einstein gravity by considering the shock
wave in the Kruskal coordinate near the horizon of the AdS
black hole, and we find that the butterfly velocity of the 3D
Einstein gravity is equal to the velocity of light, which is in

106012-9



MOHAMMAD M. QAEMMAQAMI

agreement with [1] in D = 3. Although in the 3D Einstein
gravity there is no propagating degree of freedom or
graviton in the bulk, due to boundary degrees of freedom
or boundary gravitons the butterfly velocity is nonzero.

In Sec. III we study the butterfly effect of the minimal
massive 3D gravity, and we consider the TMG limit of the
model which was in agreement with the results of [5]. We
study the critical point of the model and we observed that the
two butterfly velocities degenerate at the critical point and
are equal to the butterfly velocity of the 3D Einstein gravity.

In Sec. IV we first review the butterfly effect in the new
massive gravity by details and consider the critical point of
the model where the two butterfly velocities degenerate and
are equal to the butterfly velocity of the 3D Einstein gravity,
then we study the butterfly effect in the generalized massive
gravity and we find three butterfly velocities for this theory.
Then we consider TMG and NMG limits of the theory and
critical lines and critical points of the model and we
observed that there is a correspondence between the
butterfly velocities and right-left moving degrees of free-
dom or the central charges of the dual two-dimensional
conformal field theory.

In Sec. V we study the butterfly effect in the Born-Infeld
3D gravity and we find that at the critical point of the
model, the two butterfly velocities degenerate and are equal
to zero. It is interesting that the butterfly velocities in the
Born-Infeld 3D gravity vanish at the critical point. We

PHYSICAL REVIEW D 96, 106012 (2017)

know that the Born-Infeld 3D gravity has an infinite higher
derivative in the level of the action because of the square
root form of the action and also in [29] we observed that by
adding a higher curvature correction to the Einstein gravity,
the butterfly velocity decreases at the critical point. And
also, both of the central charges of the dual 2D CFT vanish
at the critical point of the model, it may be other evidence
for correspondence between the butterfly velocities and the
central charges of the dual 2D CFT.

In Sec. VI we study the butterfly effect in the new
bigravity model and we find a causality bound in the
parameter space of the model and also we consider the
logarithmic solutions limit of the new bigravity and we
observed that in this limit the two butterfly velocities
degenerate into one which is equal to the butterfly velocity
of the 3D Einstein gravity. In following, it is so important
and also interesting to study the butterfly effect in the dual
2D conformal field theories [41-43] of these models and
rederive the obtained results by CFT calculations.
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