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Semiholographic models of non-Fermi liquids have been shown to have generically stable generalized
quasiparticles on the Fermi surface. Although these excitations are broad and exhibit particle-hole
asymmetry, they were argued to be stable from interactions at the Fermi surface. In this work, we use this
observation to compute the density response and collective behaviour in these systems. Compared to the
Fermi liquid case, we find that the boundaries of the particle-hole continuum are blurred by incoherent
contributions. However, there is a region inside this continuum, that we call inner core, within which salient
features of the Fermi liquid case are preserved. A particularly striking prediction of our work is that these
systems support a plasmonic collective excitation which is well-defined at large momenta, has an
approximately linear dispersion relation and is located in the low-energy tail of the particle-hole continuum.
Furthermore, the dynamic screening potential shows deep attractive regions as a function of the distance at
higher frequencies which might lead to long-lived pair formation depending on the behavior of the pair
susceptibility. We also find that Friedel oscillations are present in these systems but are highly suppressed.
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I. INTRODUCTION

There is by now a large amount of experimental evidence
for the existence of systems that have a metallic phase but
manifest an anomalous behavior, in the sense that their
properties are not accounted for by the Landau theory of
Fermi liquids, and for this reason have been called non-
Fermi liquids [1]. The main examples are the 1D Luttinger
liquids [2], heavy fermion metallic systems exhibiting
quantum criticality [3], and the strange metal phase of
cuprate superconductors [4].
Such systems pose a big challenge for theorists, since it

turns out to be difficult to escape the paradigm of Landau.
Several models have been proposed (see e.g. [5] for a
review), but they are either not fully consistent or cannot be
studied in a controlled approximation, and the problem is
far from being settled.
It is commonly believed that the anomalous behavior in

many such systems is a consequence of the vicinity to a

quantum critical point, and could be the result of the
interplay between the fermionic degrees of freedom and the
modes associated with the critical behavior. It can be
argued that the mixing with the long-range fluctuations
turns the ground state into a non-Fermi liquid [6]. A natural
idea is then to couple an ordinary Fermi liquid to a gapless
system. The subject of fermion systems coupled by long
range interactions, mediated either by scalar potential or
transverse gauge fields, has been intensively revisited in the
1990s, thanks to its possible connection with high temper-
ature superconductivity [7,8], and also with the anomalous
Fermi liquid in a strong magnetic field at density corre-
sponding to a half-filled Landau level [9]. Many theoretical
works have, to a large extent, confirmed the validity of the
random phase approximation (RPA) for a large class of
systems whose interactions are singular at small momen-
tum transfer (a detailed review of these works is given by
[10]). A key ingredient here is the fact that the contributions
associated to various orderings of density or current
insertions attached to any fermionic loops in a Feynman
graph tends to cancel, when more than two such insertions
are present, in the limit when all momentum transfers are
small [11,12]. Note that it had been known for two decades
already that this cancellation is exact for the 1D Luttinger
model [13].
It remains to insert this RPA dressing of either the

long range scalar potential interaction or the transverse
gauge field propagator, into a calculation of the fermion
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propagator. This rather difficult task has been addressed by
various methods, including eikonal approximation [14],
Ward identities [15], higher dimensional bosonization [16],
renormalization group approaches [17–19], large and small
N expansions [20,21]. Although some discrepancies exist
at this stage, these works have confirmed the possibility to
destroy the conventional Fermi liquid fixed point in any
dimension, for singular enough interactions.
The holographic correspondence [22] has been

employed extensively in recent years as a tool to study a
variety of strongly-coupled systems. A system has a
holographic description if it can be equivalently described
by a dual theory that lives in a higher dimensional space
and usually contains gravity. In some very particular cases
of theories with extended supersymmetry the equivalence is
well established, though it cannot be rigorously proven. Its
usefulness comes from the fact that it is a weak-strong
coupling duality, so that perturbative calculations on the
dual theory give insight into strong coupling behaviour of
the system. The geometric properties of the dual space
reflect dynamical properties of the system, for instance the
behavior under renormalization group flow is encoded in
the scale factor and one can describe systems that are scale-
invariant (they correspond to an anti-de Sitter space of
constant curvature), as well as systems with Lifshitz
scaling, or hyperscaling violation. One can also easily
introduce a finite temperature and density by looking at
charged black hole solutions in the dual geometry. In
particular, the application to systems at finite density, and
so with potential interest for condensed matter systems, was
pioneered in [23] (see the reviews [24,25]). One can obtain
some nontrivial predictions on the features of systems at a
quantum critical point (e.g. quantum dissipation, charge
fractionalization) that can be matched to those that have
been observed in real materials or in field-theoretic models
[26]. However the dual (gravitational) description typically
hides the information about the microscopic degrees of
freedom and gives access only to a few observables such as
conserved currents or order parameters. Moreover, as a
model building tool, holography is somewhat rigid and
does not easily allow for tweaks to accommodate some
features that one would like to add to a given model (it is of
course, at the same time, part of the strength of the setup, in
that one is arguably always obtaining consistent results,
purely theoretical as they may be).
As a remedy to these drawbacks, Faulkner and

Polchinski [27] (drawing on previous works [28–31]) have
proposed that for many purposes a semiholographic model,
in which free fermions living on the boundary of the space
are coupled with fields living in the bulk, would be
sufficient to capture the low-energy physics of the fully
holographic constructions, and at the same time allows for
some extensions, for instance the interior geometry can be
taken to be AdS4 or AdS2 ×R2 or a geometry with Lifshitz
scaling, corresponding to coupling the fermions to different

types of scale invariant field theories. In all these cases the
model describe an IR fixed point that is expected to encode
the universal properties of a large class of interacting
fermion systems (see also [32]).
In this class of models, the fermions are interacting with

a strongly coupled sector that has a large number N of
degrees of freedom. This can be exploited to obtain a small
expansion parameter. In the geometrical picture, the leading
term corresponds to considering the effect of the strongly
coupled sector on the fermions, but neglecting the back-
reaction of the fermions on the critical modes. In the model
of free fermion coupled to a massless boson, the large-N
expansion is known to break down [33]. In our case we can
argue that the situation is better, so we assume that the
expansion is valid, though this has not been completely
proven yet.
We have then a class of non-Fermi liquids depending on

some parameters: a real number ν depending on the
conformal dimension of the lowest CFT operator that
couples to the fermions, which controls the deviation from
FL behaviour; and a complex coupling constant ζ, whose
absolute value determine a cutoff scale below which the
semi-holographic theory is an effective description, and
whose phase determine the breaking of particle-hole
symmetry. However the phase can only take values in a
bounded range, and we will take it to be close to the upper
limiting value as it can be argued that this will be realized in
the generic case.
In a previous paper [34] two of the present authors (AM

and GP) started to explore the phenomenology of the semi-
holographic model. We attempted to generalize the frame-
work of Landau’s theory, and showed that, in analogy with
the Fermi liquid case, one can describe the properties of the
system in terms of the Landau parameters that essentially
contain the information about four-fermion scattering at the
Fermi surface. We also attempted to solve the generalized
Landau-Silin equations in order to find collective excita-
tions, employing a particular ansatz for the solution which
however we could not completely justify from first prin-
ciples. The key point of the work [34] is that the semi-
holographic non-Fermi liquids preserve the notion of
generalized quasiparticle excitations which are broad and
which exhibit particle-hole asymmetry but are stable from
interactions at the Fermi surface in the low-energy limit.
We elaborate on this in Sec. II A.
In the present paper we continue this exploration. We

consider the Lindhard function, which is nothing but the
density response function, and we consider in particular the
case of 2D systems (although non-Fermi liquids can exist
also in other dimensions, the 2D case is the most interesting
phenomenologically). From this function one obtains
information about the continuum spectrum of particle-hole
excitations (in the Fermi liquid language, though strictly
speaking we do not have quasiparticles), and under the
assumption that an RPA resummation is valid, also about
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the collective modes, the screening of external charges,
and the effective interaction potential. We compute the
function explicitly by numerically performing the corre-
sponding integrals, for several values of the parameters
of the model. In Sec. III, we discuss how to impose the
energy cutoff (beyond which our semiholographic effec-
tive theory cannot be trusted) in the one-loop integrals in a
consistent way.
We summarize here the main results of this paper:
(1) The imaginary part of the Lindhard function is not

supported only in some region of the ðΩ; qÞ plane as
in the FL case. Rather it has a broad distribution.
However, the shape of ImL as a function of the
momentum has features that resemble those appear-
ing in the Fermi liquid and can be traced back to
kinematic/geometric properties and the existence of
a Fermi surface, as we explain in detail in Sec. IV. In
particular, one can show that a part of the continuum
of the Fermi liquid.,1which we refer to as the inner
core is preserved in the semi-holographic non-
Fermi liquids. The features corresponding to the
boundaries of the continuum are also present in
the Lindhard function although they lie outside of
the inner core region. However, these features are
blurred.

(2) The dressed (i.e. RPA-resummed) Lindhard function
describes the response of a system of charged
electrons, when the effect of the Coulomb interac-
tion is taken into account. In the FL case, one finds a
pole corresponding to plasma oscillations, which
becomes damped when it enters the region of the
particle-hole continuum. In our case, we have a
different behavior: the response is very incoherent
for low frequency and momentum, and only after a
threshold we see a well-defined reasonably sharp
peak developing standing out very clearly on top of
the incoherent background with an approximately
linear dispersion relation. The presence of a thresh-
old can be related to the fact that the inner core of the
continuum has conventional FL features disallowing
any well-defined collective excitation to exist. Based
on the behavior of the Lindhard function, we can
give a robust explanation for the existence of these
plasmonic excitations in the relatively low frequency
and high momentum (>2kF) regime.

(3) The effective potential, that is the dressed Coulomb
interaction, is modified and is frequency-dependent.
As a function of the distance, it has attractive regions
and the depth of the well increases with the fre-
quency. This unexpected behavior raises the pos-
sibility of a pairing mechanism that would lead to a
new type of instability, but pairing particles of

different frequencies. Since there is an appreciable
spectral weight even quite far from the Fermi energy,
it is possible that this mechanism is operative and
leads to superconductivity. This is reminiscent of
plasmonic mechanisms for superconductivity [35].
We should note that the role of Coulomb interaction
has been emphasized by Leggett in his phenomeno-
logical scenario for high-temperature superconduc-
tivity in cuprates [36]. According to this scenario,
the main energy gain in crossing the superconduct-
ing transition is due to an improved screening in the
superconducting phase. If the superconducting in-
stability is indeed present in our models, it would be
one possible theoretical realization of Leggett’s
proposal.

We would like to point out that semiholography has been
recently proposed as a general method for constructing an
effective nonperturbative description of some physical
systems in a wide range of energy scales [37–39]. In
particular, in the case of QCD it has been proposed that the
classical gravity theory capturing the strongly coupled
degrees of freedom should be constructed by demanding
that it should cure the absence of Borel resummability of
perturbation theory. A derivation on these lines in the
context of largeN QCD has been discussed in [39]. We will
discuss how these developments are relevant for under-
standing the microscopic origin of the semiholographic
models briefly in Sec. II B.
The plan of the paper is as follows. In Sec. II, we review

a class of semiholographic non-Fermi liquid models and
the arguments why they lead to a generalization of
Landau’s Fermi liquid theory. In Sec. III, we discuss
how we can consistently impose the energy cutoff in the
calculation of the Lindhard function in the semiholographic
non-Fermi liquid models. In Sec. IV, we discuss the
Lindhard function in detail and in Sec. V, we find the
RPA-resummed Lindhard function and discuss the uncon-
ventional plasmonic pole, the possible superconducting
instability and the presence of Freidel oscillations. In
Sec. VI, we end with an outlook. In the Appendix contains
some details on the special case of ν ¼ 1=2, which is a
limiting case for this class of mdoels.

II. SEMIHOLOGRAPHIC MODELS

A. Generalization of Landau’s Fermi liquid theory

The class of models that we consider are constructed
using a fermionic field χ and an additional sector that, as
explained in the Introduction, represents the critical
modes, so we take it to be an emergent infrared conformal
field theory (IR-CFT). We assume that in the spectrum of
the IR-CFT there is a fermionic operator ψ that has the
same quantum numbers as χ and couples to it linearly
leading to tree-level mixing. The most generic form of the
action is then:

1The continuum is the region in Ω-q plane where on-shell
gapless particle-hole excitations can exist on the Fermi surface.
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S ¼
Z

dt

�X
k

ðχ†kði∂t − ϵk þ μÞχk þ N2SCFT

þ N
X
k

ðgkχ†kψk þ c:c:Þ þ 1

2

X
k;k1;q

χ†kχk−qVðqÞχ†k1
χk1−q

þ
X
k;k1;q

λk;k1;qχ
†
kχk−qχ

†
k1
χk1−q þ N

X
k;k0;q

ηk;k0χ†kχk0ϕk−k0

þ N
X
k;k1;k2

ð~gk;k1;k2
χ†kχk1

χ†k2
ψk−k1þk2

þ c:c:Þ
�
:

The first line gives the action for the two decoupled
theories; the second line contains the quadratic coupling,
and a potential interaction term (we will consider a
Coulomb interaction). The last two lines contain higher
order interactions, possibly with other CFT operators
denoted by ϕ; these terms were important in establishing
the generalisation of Landau’s theory in [34], but will not
play a role in the present paper.
We have also included a parameter N that allows us to

have a parametric control of the diagrammatic expansion.
The most important thing to note is that here in the large N
limit (i) all terms in the fermionic sector χ scale as Oð1Þ,
(ii) all terms involving interactions of χ with the IR-CFT
operators (including Ψ) scale asOðNÞ, and (iii) SCFT scales
as OðN2Þ. This large-N scaling, as we will see presently, is
crucial to have a modified propagator at¼ Oð1Þ, as we will
see presently. However, it does not suppresses radiative
corrections, e.g. to the vertex coupling the current to the
electromagnetic field Aμχ̄γ

μχ, which enters in the electro-
magnetic response. In this paper we will ignore such
corrections, adopting what is known as the RPA approxi-
mation, though it would be important to investigate them
as well.
Resumming the quadratic interaction with ψ leads to the

following retarded propagator2:

GRðω;kÞ¼
1

ζων−ϵk
; ϵk¼

k2

2m
−
k2F
2m

; 0< ν<1: ð1Þ

Above, we have ignored the subleading ω term which
arises from the from the free fermionic action. The
exponent ν characterizes the deviation from FL behavior;
apart from it, the model also has some additional param-
eters: the complex number ζ and the Fermi momentum kF.
From the propagator we deduce the spectral function

ρ ¼ −2ImGR:

ImGRðω;kÞ ¼ −
ζIω

ν

ðζRων − ϵkÞ2 þ ζ2Iω
2ν θðωÞ

−
~ζIjωjν

ð~ζRjωjν − ϵkÞ2 þ ~ζ2I jωj2ν
θð−ωÞ; ð2Þ

where ζRðIÞ are the real (imaginary) parts of ζ, and likewise3

~ζRðIÞ are the real (imaginary) parts of ~ζ, with

~ζ ¼ ζeiπν:

Notice that the spectral function manifestly has particle-
hole asymmetry. In order for the spectral function to be
positive we must require ζI > 0, ~ζI > 0, and this implies

0 < ϕ < πð1 − νÞ: ð3Þ

where ϕ ≔ argðζÞ.
When the propagator is derived from a holographic

model, as in [28], the phase of ζ depends on the parameters
of the model and is given by

argðζÞ ¼ argðΓð−νÞðe−iπν − e−2πqÞÞ ð4Þ

where q is the fermion charge in appropriate units; the
relation (3) is then automatically satisfied, and the upper
bound in (3) is saturated when q → ∞. In the other limit
q → 0, which is the probe limit where the backreaction of
the bulk fermion on the bulk gauge field can be ignored, we
obtain ϕ ¼ ðπ=2Þð1 − νÞ, i.e. half of the extremal value. In
this work, we will consider a generic case where ϕ is closer
to the extremal value since otherwise q needs to be very
small.4

The spectral function (2) is not integrable, since it does not
decay sufficiently fast at infinity. This feature is necessary
for the spectral function to satisfy the sum rule and therefore
is an indication that themodel as it stands is not complete—it
requires aUVcompletion. The simplestway to dealwith this
problem is to consider the theory with a UV cutoff. A better
way is to reintroduce the ω term coming from the free
propagator which leads to a crossover to a FL behaviour at
high energies with a propagator of the form

GRðω;kÞ ¼
1

ζων þ ω − ϵk
; ð5Þ

The crossover to FL behavior happens at the scale
ωc ¼ jζj1=ð1−νÞ. Since it will be more difficult to compute

2This propagator is obtained by diagonalizing the quadratic
action and therefore describes the propagation of a superposition
of χ and ψ . However, the component of ψ is Oð1=NÞ. The other
piece in the diagonalized quadratic action involves a propagator
that vanishes on the Fermi surface, and plays no role in the low
energy effective theory.

3Note since GR is analytic in ω in the upper half complex
plane, it follows that ð−ωÞν ¼ eiπνjωjν. This is why ~ζ appears in
ImGR for negative values of ω.

4In practice, choosing the extremal value leads to numerical
instability and qualitative features of our model does not
depend much on the precise value of ϕ as long as we avoid
the extremal value.

DOUÇOT, ECKER, MUKHOPADHYAY, and POLICASTRO PHYSICAL REVIEW D 96, 106011 (2017)

106011-4



using this propagator, wewill instead use the crossover scale
as a cutoff, and argue that this introduces errors that are small
at low energies.
The reasoning behindwhy these semiholographicmodels

lead to a generalization of Landau’s Fermi liquid theory has
been presented in [34]. The crux of this argument is that all
the interaction terms beyond the quadratic part of the action
which lead to the propagator (1) are irrelevant for the low
energy non-Fermi liquid in the sense that both the real and
imaginary parts of self-energy corrections to (1) are smaller
thanων whenω is small. This can also be argued on the basis
of the scaling behavior, extending the argument from the
Fermi liquid case presented e.g. in [26]. The argument given
in [34] started from the model defined by (1), but one can
also start directly from the model corresponding to the
propagator (1); the quadratic action is invariant under the
rescaling fω;k⊥;kjjg → fλ2=νω; λ2k⊥; λkjjg5 where k⊥
denotes the component of the momentum perpendicular
to the Fermi surface and kjj denotes the tangential compo-
nent. With this scaling, it is easy to see that all interaction
terms are irrelevant. For instance, a coupling gχ4 has
dimension 3 − d − 2=ν and is always irrelevant in d ≥ 1.
These arguments were also supported by explicit two-loop
self-energy calculations in the patch approximation, which
give a leading behavior Σ ∼ ω2, as in the Fermi liquid case
and in agreementwith the scaling argument. It would be thus
appropriate to say that the semiholographic non-Fermi
liquid allows the notion of generalized quasiparticle exci-
tations of the Fermi surface in the sense that the interactions
of these generalized quasiparticles are irrelevant in the low-
energy limit.
One fundamental issue is that although the infrared semi-

holographic theory is a generalization of Landau’s Fermi
liquid theory, it is not well-defined in the ultraviolet. Here,
we will merely assume that the semiholographic models
provide an effective nonperturbative infrared description of
an appropriatematerial. The crucial question of what kind of
material physics can lead to such an infrared limit will be left
for future investigations. Nevertheless, it is worth asking
whether the semiholographic models described above are of
the most general kind to be realized in a class of materials
that can be prepared in laboratories. This will be the subject
of discussion of the following subsection.

B. More general constructions

In this subsection we discuss more general constructions
of semiholographic models for both conceptual clarity and

completeness. This discussion is not essential for what
follows, so the reader can skip this subsection on the first
reading.
The arguments presented in the previous subsection

depend on the strong assumption that the critical fermions
to which the perturbative electrons are linearly coupled live
in a dual AdS2 geometry. Naively, one would expect that
the backreaction on the AdS2 geometry can originate only
from perturbative electrons at the boundary and the bulk
critical fermions, and this should be suppressed because
these fermions haveOð1Þ density as opposed to the OðN2Þ
density needed for a significant backreaction effect (see
also footnote 5). In more general constructions however,
this may not be true and then the concept of a stable
generalized quasiparticle at the Fermi surface discussed
earlier would need to be revisited.
The need to generalize our construction originates in the

observation that the background AdS2 geometry represents
nonperturbative dynamical effects of the lattice particu-
larly in generating long-range correlations in the fermionic
sector. Nevertheless, the lattice itself can have degrees of
freedom which must be taken into account perturbatively.
In turn they can affect the nonperturbative long range
correlations which should be generated in the fermionic
sector—implying a modification of the background AdS2
geometry of the bulk fermions. As a concrete example, one
can consider the effect of impurities in the lattice. For this
one can introduce a bulk scalar field which provides a non-
perturbative counterpart to the density of impurities at the
boundary by explicitly coupling to it. In this case, one
would need to solve the lattice and bulk dynamics self-
consistently. This bulk scalar field can not only change the
background AdS2 geometry, but also dynamically modify
the effective mass of the critical bulk fermion through a
bulk Yukawa coupling. Both of these will lead to a
modification of the leading scaling exponent of the self-
energy which has been assumed to be fixed by the choice
of parameters in the previous subsection. Furthermore,
certain interactions at the Fermi surface can now become
relevant.
The generic construction of the semiholographic frame-

work as a generalization of the effective field theory
framework including nonperturbative effects has been
developed recently in [39] where a concrete proposal has
been made to construct it for the case of quantum chromo-
dynamics (QCD). The basic principles of the construction of
the framework are as follows. First, we set the coupling rules
between the perturbative and the nonperturbative (holo-
graphic) sectors such that there exist a local conserved
energy-momentum tensor of the full system [38,39]. Then
we determine the parameters of the holographic gravity
theory dual to the nonperturbative sector and the additional
couplings between the two sectors in terms of the usual
perturbative couplings. This is done by demanding that the
ambiguities generated by the lack of Borel resummability of

5The large N scaling of various terms in the action plays a
subtle but crucial role here. The scaling properties of the effective
fermionic field and hence of the couplings depends on the
quadratic action whose form can be fixed reliably only in the
large N limit provided all couplings have the proposed large N
scalings. Otherwise, the geometry will suffer backreaction and
this will in turn affect the quadratic terms themselves.

DENSITY RESPONSE AND COLLECTIVE MODES OF … PHYSICAL REVIEW D 96, 106011 (2017)

106011-5



the perturbation series vanish. The feasibility of such a
construction has been demonstrated in a toy example [39].
It is not clear to us at this stage how such a semiholo-

graphic framework can be derived from first principles in
case of a specific class of strongly correlated materials.
Nevertheless, some natural generalizations discussed above
should be worth pursuing in the future particularly for
investigating general consequences for the low energy
dynamics at the Fermi surface.

III. HOW TO COMPUTE THE GENERALIZED
LINDHARD FUNCTION

The main object of this paper is the generalized Lindhard
function LðΩ;qÞ, defined as the time-ordered density-
density correlation function.6 It also gives the medium-
induced correction to the photon self-energy at one-loop
order. Explicitly, it is given by:

LðΩ;qÞ ¼ −2i
Z
k

Z
ω
GFðωþ;kþÞGFðω−;k−Þ; ð6Þ

where

ω� ¼ ω�Ω
2
; k� ¼ k� q

2
: ð7Þ

Also, GF denotes the fermionic Feynman propagator.
We will establish a few properties that will be useful later.
First, it is easy to see that LðΩ;qÞ ¼ Lð−Ω;qÞ, so we can
takeΩ > 0. Wewill only consider isotropic systems, soL it
is only a function of jqj≡ q.
In order to preserve analytic properties of correlation

functions in the Schwinger-Keldysh contour, it is convenient
to rewrite the Feynman propagator in terms of the retarded
propagator as follows7:

GFðω;kÞ¼ReGRðω;kÞþ iImGRðω;kÞð1−2nFðωÞÞ: ð8Þ

with nF denoting the Fermi-Dirac distribution function at
finite temperature. Using this it is easy to show that:

LðΩ;qÞ¼2

Z
k

Z
ω
ðReGRðω−;k−ÞImGRðωþ;kþÞð1−2nFðωþÞÞþReGRðωþ;kþÞImGRðω−;k−Þð1−2nFðω−ÞÞÞ

−2i
Z
k

Z
ω
ðReGRðω−;k−ÞReGRðωþ;kþÞ− ImGRðωþ;kþÞImGRðω−;k−Þð1−2nFðωþÞÞð1−2nFðω−ÞÞÞ: ð9Þ

For reasons to be clear soon, it is convenient to note that
since GRðω;kÞ is analytic in ω in UHP, assuming that
GRðω;kÞ decays sufficiently fast at large values of ω, we
should have Z

ω
GRðω−;k−ÞGRðωþ;kþÞ ¼ 0: ð10Þ

The real part of the above identity impliesZ
ω
ReGRðω−;k−ÞReGRðωþ;kþÞ

¼
Z
ω
ImGRðω−;k−ÞImGRðωþ;kþÞ: ð11Þ

Combining the above with (9), we obtain

ReLðΩ;qÞ¼2

Z
k

Z
ω
ðReGRðω−;k−ÞImGRðωþ;kþÞ

×ð1−2nFðωþÞÞ
þReGRðωþ;kþÞImGRðω−;k−Þð1−2nFðω−ÞÞÞ;

ð12aÞ

ImLðΩ; qÞ ¼ −2
Z
k

Z
ω
ImGRðω−;k−ÞImGRðωþ;kþÞ

× ð1 − ð1 − 2nFðωþÞÞð1 − 2nFðω−ÞÞÞ:
ð12bÞ

In order to go to zero temperature, we need to note that
limT→0nFðωÞ ¼ θð−ωÞ and therefore

lim
T→0

ð1 − 2nFðωÞÞ ¼ sgnðωÞ: ð13Þ

It then follows from (8) that at zero temperature,

ReGFðω;kÞ ¼ ReGRðω;kÞ;
ImGFðω;kÞ ¼ ImGRðω;kÞsgnðωÞ: ð14Þ

Furthermore, for Ω > 0, the real and imaginary parts of the
generalized Lindhard function given by (12a) and (12b)
respectively reduce to

6We call this the generalized Lindhard function from now on,
because the term Lindhard function is used in literature in the
context of Fermi liquids.

7To derive the relation below, we recall that GFðx−x0;t−t0Þ¼
−iG>ðx−x0;t−t0Þθðt−t0Þ−iG<ðx−x0;t−t0Þθðt0−tÞ. To go to Fou-
rier space,we canuse the convolution theorem, and thatG>ðω;kÞ¼
ImGRðω;kÞð1−nFðωÞÞ and G<ðω;kÞ¼−ImGRðω;kÞnFðωÞ. We
also use the Kramers-Kronig relation between ReGRðω;kÞ and
ImGRðω;kÞ.
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ReLðΩ; qÞ ¼ −2
Z
k

Z
−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

þ ReGRðωþ;kþÞImGRðω−;k−ÞÞ

þ 2

Z
k

Z
−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

− ReGRðωþ;kþÞImGRðω−;k−ÞÞ

þ 2

Z
k

Z
−Ω

2

−ωc

ðReGRðω−;k−ÞImGRðωþ;kþÞ

þ ReGRðωþ;kþÞImGRðω−;k−ÞÞ; ð15aÞ

ImLðΩ; qÞ ¼ −4
Z
k

Z Ω
2

−Ω
2

ImGRðωþ;kþÞImGRðω−;k−Þ:

ð15bÞ

Above we have also implemented the cutoff ωc in the loop
integral as should be done in an effective field theory.
Furthermore, we have assumed that the external frequency
Ω is less than the cutoff ωc. We find that ImLðΩ; qÞ gets
contribution only from −Ω=2 < ω < Ω=2 and is therefore
independent of the cutoff both in the exact theory (where
ωc ¼ ∞) and in the effective theory. This justifies the
manipulation of the imaginary part of ImLðΩ; qÞ in the
form (12) from (9) using the identity (11).
Note that if we impose a cutoff ωc on both sides of (11),

the identity will not be strictly valid. Nevertheless, if the
effective theory can be interpolated to the right material
physics in the UV, the violation should be suppressed by
powers of Ω=ωc as argued before. Here we will simply
assume this to be the case and therefore the Kramers-
Kronig relations between the imaginary and retarded parts
of the retarded propagator should be satisfied in the same

spirit. It is not hard to show that the retarded self-energy
LRðΩ; qÞ is related to LðΩ; qÞ just as the retarded propa-
gator is related to the Feynman propagator, i.e.

ReLðΩ;qÞ¼ReLRðΩ;qÞ; ImLðΩ;qÞ¼ ImLRðΩ;qÞsgnðΩÞ
ð16Þ

at zero temperature.
Since the retarded correlator does not decay sufficiently

fast for large ω when 0 ≤ ν ≤ 1=2, the identity (10) and
hence the identity (11) is not even approximately valid in
the effective theory up to positive powers of Ω=ωc (for
ν ¼ 1=2 the identities are violated by logðΩÞ terms as for
instance). This leads to a problem in arriving at a consistent
prescription where ImL is independent of ωc for Ω < ωc.
The case of ν ¼ 1=2 is discussed in the Appendix in detail.
In particular, we suspect that for ν < 1=2 the infrared
theory does not make sense as it does not decouple from the
UV physics. This seems to contradict the intuition from the
scaling argument where the value ν ¼ 1=2 does not appear
be special. This issue deserves further investigation. In this
paper we will restrict ourselves to ν > 1=2.
From (15) we can read many things: the imaginary part of

the generalized Lindhard function gets contribution only
from a bounded interval of length proportional to Ω, so in
particular it is a convergent integral. Furthermore, in the limit
Ω → 0, the region of integration shrinks away, so LðΩ ¼
0;qÞ is purely real. It is also clear that ImLðΩ; qÞ < 0 since
ImGRðω;kÞ < 0. Note that L refers to the bosonic (pho-
tonic) self-energy correction. Therefore ImLRðΩ;qÞΩ<0
should be satisfied. This is indeed the case as is clear from
Eq. (16) and that ImLðΩ; qÞ < 0.
For our specific case:

ImLðΩ;qÞ ¼ −4
Z

d2k
Z jΩj

2

−jΩj
2

dω
ζI ~ζIðωþ jΩj

2
ÞνðjΩj

2
− ωÞν

ðjζj2ðωþ jΩj
2
Þ2ν − 2ζRϵkþq

2
ðωþ jΩj

2
Þν þ ϵ2kþq

2

Þðjζj2ðjΩj
2
− ωÞ2ν − 2~ζRϵk−q

2
ðjΩj
2
− ωÞν þ ϵ2k−q

2

; Þ
ð17Þ

where ζR ¼ Reζ, ζI ¼ Imζ, etc. We can change to following dimensionless variables:

x ¼ ω

jΩj ; y ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjζjjΩjνp ð18Þ

and define the following dimensionless parameters

yF ¼ kFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjζjjΩjνp ; q̂ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjζjjΩjνp ; ζ̂ ¼ ζ

jζj ¼ eiϕ; ~̂ζ ¼ ζ̂eiπν ¼ eiðϕþπνÞ: ð19Þ

Then,

ImLðΩ; qÞ ¼ 2m
jΩj1−ν
jζj Kðq̂; yF; ν;ϕÞ; ð20Þ
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with K being the dimensionless integral

Kðq̂; yF; ζ̂;νÞ ¼ −4
Z

∞

0

dyy
Z

2π

0

dθ
Z 1

2

−1
2

dx
sinðϕÞ sinðϕþ πνÞðxþ 1

2
Þνð1

2
− xÞν

ððxþ 1
2
Þ2ν − 2 cosðϕÞϵ1ðxþ 1

2
Þν þ ϵ21Þðð12− xÞ2ν − 2 cosðϕþ πνÞϵ2ð12− xÞν þ ϵ22Þ

;

with ϵ1 ¼ y2 þ q̂2

4
þ yq̂cosθ− y2F;ϵ2 ¼ y2 þ q̂2

4
− yq̂ cosθ− y2F: ð21Þ

The above shows that to study ImLðΩ; qÞ qualitatively we
can set jζj ¼ 1 and m ¼ 1=2 without loss of generality. We
will see that as long we keep ϕ within holographic bounds,
the qualitative features of ImLðΩ; qÞ do not change much
unless ϕ is extremal. Therefore, qualitative features of
ImLðΩ; qÞ will depend only on yF, q̂ and ν if ωc > Ω.
Similar conclusions will also hold for ReLðΩ; qÞ except
that it should also depend on Ω=ωc as mentioned before.
For practical purposes we will choose other dimensionless
variables in the next section.
Let us understand ImLðΩ; qÞ in the limit of small Ω. In

this limit, q̂, yF → ∞ with q̂=yF held fixed. The y-integral
in (21) then will get its contribution maximally from 0 <
y < yF and the integrand behaves as y−4F .
Therefore,

lim
q̂;yF→∞;q̂=yF¼constant

Kðq̂; yF; ζ̂; νÞ

≈
y2F
y4F

Z
1=2

−1=2
dx

�
xþ 1

2

�
ν
�
1

2
− x

�
ν

: ð22Þ

So, in this limit

lim
q̂;yF→∞;q̂=yF¼constant

Kðq̂; yF; ζ̂; νÞ ≈
1

y2F
ð23Þ

Combining above with Eq. (20) implies that for small Ω,

lim
Ω→0

1

Ω
ImLðΩ; qÞ ¼ Mðq; kF; ζ; νÞ: ð24Þ

Therefore for small Ω, ImLðΩ; qÞ has to be proportional
to Ω.

IV. GENERALIZED LINDHARD FUNCTION AND
COMPARISON WITH THE FERMI LIQUID

A. Imaginary part of the generalized Lindhard function

a. The case of the Fermi liquid: Let us begin with the
Fermi liquid. The density response function (aka Lindhard
function) in case of the D-dimensional Fermi liquid takes
the form:

LFLðΩ; qÞ ¼ 2

Z
dDk
ð2πÞD nk−q=2ð1 − nkþq=2Þ ×

�
1

Ω − ϵkþq=2 þ ϵk−q=2 þ iη
−

1

Ωþ ϵkþq=2 − ϵk−q=2 − iη

�
; ð25Þ

where

nk ¼ θðkF − kÞ; ϵk ¼ k2

2m
− ϵF; ϵF ¼ k2F

2m
: ð26Þ

The explicit integrations can be done for D ¼ 1, 2 and 3—
the exact results can be found in [40]. Our case of interest is
D ¼ 2 specifically. Instead of reproducing the exact forms
here, we present the key features and necessary plots for the
sake of comparison with the semiholographic non-Fermi
liquid.
Let us first examine ImLðΩ; qÞ, the imaginary part of the

Lindhard function. In the Ω-q plane, ImLðΩ; qÞ is sup-
ported in the green and red regions of the plots presented in
Fig. 1. These regions combined form the particle-hole
continuum, i.e. the range of allowed values of Ω and q for
which an on-shell particle-hole pair can have total energyΩ
and carry total momentum of magnitude q. The red region
in Fig. 1, which we will refer to as the inner core, will be of
special significance for us because we will see that only in
this region the semiholographic non-Fermi liquid preserves
Fermi-liquid like features.

In case of the Fermi liquid, the boundaries of the
kinematic region can be understood geometrically. For a
fixed value of q, the allowed values of Ω (for Ω > 0) is
simply the total energy of an on-shell particle-hole pair
carrying total momentum q:

Ω ¼ ϵkþq=2 − ϵk−q=2 ¼
q · k
m

with

k ∈ fϵk−q=2 < 0 & ϵkþq=2 > 0g: ð27Þ
Without loss of generality, we can choose q along the
(positive) x-axis. Then q · k ¼ qkx. Therefore, for a fixed
value of q, the total energy of the particle-hole pair is given
by Ω ¼ qkx=m when the hole carries momentum fkx −
q=2; kyg and the particle carries momentum fkx þ q=2; kyg.
For q < 2kF, the allowed values of Ω can be readily

inferred from the allowed values of kx and ky as shown in
Fig. 2. The smallest possible value of Ω is 0, corresponding
to kx ¼ 0, and the largest is

ΩmaxðqÞ ¼
q2

2m
þ qkF

m
ð28Þ
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corresponding to kx ¼ kF þ q=2. Furthermore, when

kF − q=2 ≤ kx ≤ kF þ q=2; ð29Þ
i.e.

ΩintðqÞ ≤ Ω ≤ ΩmaxðqÞ; with ΩintðqÞ ¼ −
q2

2m
þ qkF

m
ð30Þ

then the allowed values of ky form a single connected line
segment instead of two disconnected short line segments as

evident from Fig. 2. Thus Ω ¼ ΩintðqÞ represents a change
in topology of the allowed ky region with fixed kx (i.e. Ω)
and q. The region 0 < Ω < ΩintðqÞ forms the inner core
of the particle-hole continuum (marked in red in Fig. 1).
As evident from Figs. 1 and 2, the inner core corre-
sponds to the region of kinematically allowed values of Ω
and q for which kx and ky lie close to the particle Fermi
surface.
For q > 2kF, the allowed values of kx and ky are shown

in Fig. 3. The smallest allowed value of Ω is

–3 –2 –1 0 1 2 3
–2

–1

0

1

2

kx/kF

k y
/k

F

FIG. 2. The allowed values of kx=kF and ky=kF when q ¼
0.6kF < 2kF is shown above in dark blue. This dark blue region
is simply the intersection of the complement of the region outside
the circle of unit radius centred at f−0.3kF; 0g (representing the
on-shell particle in the pair) and the region bounded by the circle
of unit radius centred at f0.3kF; 0g (representing the on-shell hole
in the pair). The allowed values of Ω are simply those for which
Ω ¼ qkx=m with kx lying within in the dark blue region. Clearly,
the smallest possible value of Ω is 0 which is realized when
kx ¼ 0 (the brown line) and the largest possible value of Ω is
Ωmax given by Eq. (28) which is realized when kx ¼ kF þ q=2.
When kF þ q=2 ≥ kx ≥ kF − q=2, i.e. Ωmax ≥ Ω ≥ Ωint with Ωint
latter given by Eq. (30), the allowed values of ky forms a
continuous line instead of disconnected segments. The red
vertical line represents kx ¼ kF − q=2 for which Ω ¼ Ωint.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
q

5

10

15

20
(kF = 1, m = 0.5)

max[q] = q2

2 m
+ qkF

m

min[q] = ( q2

2 m
- qkF

m
) (q- 2)

int[q] = (- q2

2 m
+ qkF

m
) (2- q)

FIG. 1. The kinematic region in Ω-q plane where ImLðΩ; qÞ is nonzero for the Fermi liquid is the combined green and red regions in
the plot shown above. For convenience, we have chosen kF ¼ 1 andm ¼ 0.5. This region is essentially the particle-hole continuum. The
boundaries of this region are given by ΩmaxðqÞ and ΩminðqÞ. The red region is what we will call as the inner core of the particle-hole
continuum and is bounded by the curve ΩintðqÞ.

–3 –2 –1 0 1 2 3
–2

–1

0

1

2

kx/kF

k y
/k

F

FIG. 3. The allowed values of kx=kF and ky=kF when q ¼
2.4kF > 2kF is shown above in dark blue. The region bounded
by the unit circle centred at f1.2kF; 0g (representing the hole-
like excitation) now lies entirely in the complement of the unit
circle centred at f−1.2kF; 0g (representing the particle-like
excitation)—the dark blue region simply then coincides with
the first region representing the hole excitations. The allowed
values of Ω are simply those for which Ω ¼ qkx=m with kx lying
within the dark blue region. The smallest allowed value of Ω ¼
Ωmin is given by Eq. (31) for which kx ¼ q=2 − kF (the brown
vertical line) and the largest allowed value ofΩ ¼ Ωmax is given by
Eq. (28) for which kx ¼ q=2þ kF (the blue vertical line). There is
no analogue of Ωint because the allowed values of ky for fixed kx
(i.e. Ω) and q always form a continuous line segment.
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ΩminðqÞ ¼
q2

2m
−
qkF
m

ð31Þ

for which kx ¼ q=2 − kF and the largest allowed value ofΩ
is ΩmaxðqÞ given by Eq. (28) for which kx ¼ kF þ q=2.
There is no analogue of ΩintðqÞ because the allowed values
of ky for a fixed value of kx (i.e. Ω) and q always form a
continuous line segment.
The geometric structure of the particle-hole continuum

governs the behavior of ImLFL as a function of q andΩ. For
reasons to become clear later, it is instructive to look first at
ImLFLðqÞ of the Fermi liquid at fixed values ofΩ. The plots
are shown in Fig. 4. Referring to Fig. 1, we can readily see
that a horizontal line at fixed Ω, for Ω=ϵF < 1, will have
four special points: when it intersects ΩmaxðqÞ at q ¼ q1,
Ωmin at q ¼ q4, and ΩintðqÞ at q ¼ q2, q ¼ q3. These four
special values of q can be readily recognized in each of the
plots in Fig. 4 for Ω=ϵF ¼ 0.1, 0.3 and 0.6. First, ImL
vanishes for q < q1 and q > q4. At the intermediate points
q ¼ q2 and q ¼ q3, ImL has peaks where also the
derivative ∂ImL=∂q becomes discontinuous. In the region
q2 ≤ q ≤ q3, ImLðqÞ is quite flat after a sharp ascent near
q ¼ q3—this is a very specific characteristic which will be
remarkably preserved in case of the semiholographic non-
Fermi liquid. This intermediate region corresponding to the
inner core shrinks continuously with increasing Ω and
disappears when Ω=ϵF ¼ 1. For Ω=ϵF > 1, ImLðqÞ does
not have any kink or flat regions within its domain of
support which is bounded by values of q for which Ω
coincides with Ωmax and Ωmin as evident from Fig. 4.
Similarly, ImL as a function of Ω for fixed values of q

shows a transition in its behavior as q crosses 2kF. This can
be readily understood by drawing vertical lines correspond-
ing to fixed values of q through the particle-hole continuum
depicted in Fig. 1. When q < 2kF, the vertical line will
have two special points Ω1 and Ω2 corresponding to

intersections with ΩintðqÞ, the boundary of the inner core,
andΩmaxðqÞ respectively. On the other hand, for q > 2kF, a
vertical line at fixed q still has two special points corre-
sponding to intersections with Ωmin and Ωmax, however it
does not intersect the inner core. The plots in Fig. 5 clearly
show that there is a maximum with discontinuous deriva-
tive atΩ ¼ Ω1, but when q=kF > 2 the kink disappears and
the curves have support only for Ω > Ω1.
The features of ImLFL Fermi liquid mentioned above

will be of particular importance for us to understand the
semiholographic non-Fermi liquid case to be discussed
below in relation to both—the features which are kept intact
and also the features which are blurred out via incoherent
quasinormal mode fermionic excitations of the AdS2
black hole.
b. The case of the semiholographic non-Fermi liquid: In

the case of the semiholographic non-Fermi liquid, appa-
rently Lðq;ΩÞ depends on many parameters, namely ν, jζj,
ϕ ¼ argðζÞ, m and kF. Nevertheless, we can easily show
from Eq. (6) that Lðq;ΩÞ takes the form:

Lðq;ΩÞ ¼ mf

�
Ω

jζj1−ν ;
q
kF

;
ϵF

jζj1−ν ; ν;ϕ
�
; ð32Þ

with ϵF ¼ k2F=ð2mÞ being the Fermi energy. However, as
discussed earlier we must choose ϕ ¼ πð1 − νÞ − ϵ, where
ϵ is a small non-negative number in order to represent a
generic case. Therefore, the relevant parameters of the
generalized Lindhard function Lðq;ΩÞ of our low energy
effective theory are

~ϵF ¼ ϵF
jζj1−ν and ν: ð33Þ

It turns out that if we fix ν and vary ~ϵF (by varying kF as for
instance) the features of Lðq;ΩÞ and the phenomenology to
be discussed later do not change qualitatively. Therefore,
the parameter of interest is actually ν which for reasons

0.5 1.0 1.5 2.0 2.5 3.0 3.5

q
kF
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m
Im[L( 2 m

kF
2 , q

kF
)]

2 m
kF

2 =0.1

2 m
kF

2 =0.3

2 m
kF

2 =0.6

2 m
kF

2 =0.8

2 m
kF

2 =1.0

2 m
kF

2 =1.5

2 m
kF

2 =2.0

2 m
kF

2 =2.5

FIG. 4. Plots of ImLFLðqÞ for various fixed values of Ω are
shown above. Note LFLðq;ΩÞ ¼ ðm=πÞfðq=kF;Ω=ϵFÞ with
ϵF ¼ k2F=2m. Therefore, we have used the dimensionless vari-
ables q=kF,Ω=ϵF and ðπ=mÞImL in the plots above. Note that the
intermediate plateau and the two intermediate kinks where
∂ImLFLðqÞ=∂q is discontinuous appear for Ω=ϵF < 1 and dis-
appears when Ω=ϵF ≥ 1.

2 4 6 8 10 12 14
2 m

kF
2
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Im[L( 2 m

kF
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FIG. 5. Plots of ImLFLðΩÞ for various fixed values of q are
shown above. We have used dimensionless variables for plotting
as in Fig. 4. Note the behavior for q < 2kF is different from that
for q > 2kF. In particular, the minimum value of Ω for the latter
case for which ImLFLðΩÞ is nonvanishing is shifted from the
origin. Also the intermediate kink where ∂ImLFLðqÞ=∂Ω is
discontinuous appears only for q < 2kF.
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described before should lie between 1=2 and 1. We will see
that ν acts the parameter which dials a systematic defor-
mation from the Fermi liquid theory.
From the above discussion, it is clear that we can choose

m ¼ 0.5 and jζj ¼ 1 without loss of generality. We recall
that our effective theory breaks down at energiesΩ > ωc ¼
jζj1−ν (i.e. for Ω > 1 with our choice jζj ¼ 1), therefore we
choose kF ¼ 0.4 conveniently so that ~ϵF ≪ 1 and we can
explore the regime Ω=jζj1−ν ≫ ~ϵF. Note that with kF ¼ 0.4
and m ¼ 0.5, ϵF ¼ ~ϵF ¼ 0.16 ≈ 0.2. Let us first study
ImLðqÞ for various fixed values of Ω for the case ν ¼
2=3 and ϕ ¼ π=4 with the above choice of parameters. The
plots are shown in Fig. 6. The trivial result is that we find that
ImLðqÞ vanishes at Ω ¼ 0 as expected on general grounds
(see Sec. III). We find the following nontrivial features:
(1) For Ω < ϵF, i.e. Ω < 0.2, we find a sharp descent

and a plateau type region squeezed between two
peaks/kinks remarkably similar to the features in the
Fermi liquid case governed by the inner core of the
particle hole continuum (particle-hole excitations
lying close to the particle Fermi surface) which also
appears when Ω=ϵF < 1. To see this distinctly, one
can readily compare the curves in Fig. 6 for Ω < 0.1
to those in Fig. 4 for Ω=ϵF < 0.8. Just like in the
Fermi liquid case, this region between the twin peaks
(kinks) shrinks with increasing Ω and disappears
at Ω ¼ ϵF.

(2) Just like in the Fermi liquid case, the extent of the
inner core features is governed by kinematics (see
Figs. 1 and 2). For small Ω, the extent of this region
starts close to q ¼ 0 and ends just short of q ¼ 2kF
(i.e. q ¼ 0.8). The two end points move away from
q ¼ 0 and q ¼ 2kF with increasing Ω merging at
q ¼ kF (i.e. q ¼ 0.4) when Ω ≈ ϵF (i.e. Ω ≈ 0.16).8

(3) Unlike the Fermi liquid case, the plots in Fig. 6
demonstrate no special values of q corresponding to
Ωmax and Ωmin (see Figs. 1, 2 and 3) where ImLðqÞ
vanishes at fixed values of Ω as visible clearly in
Fig. 4. Nevertheless, these values of q corresponding
to Ωmax and Ωmin get replaced by regions where
∂2ImLðqÞ=∂q2 varies rapidly as happens near in-
flexion points. There are indeed two such regions for
any value of Ω in the plots in Fig. 6, one centred at
the value of qwhereΩmaxðqÞ is supposed to be in the
Fermi liquid case and similarly another centered at
the value of q where ΩminðqÞ is supposed to be.

To summarize,we can conclude that the Fermi liquid features
arising from the inner core of the particle-hole continuum
remain sharply defined in the semiholographic non-Fermi
liquid case in the same ranges ofΩ andq.However, the rest of
the continuum including the boundaries ΩmaxðqÞ and
ΩminðqÞ are blurred out—in particular these boundaries
get replaced by regions where ∂2ImLðqÞ=∂q2 varies rapidly
at fixed values ofΩ. The size of these regions (and hence the
degree of blurring of the boundaries) increases with increas-
ing Ω. Physically the blurring out of the particle-hole
continuum away from the inner core (i.e. the part of the
continuum away from the particle Fermi surface) arises from
the incoherent fermionic quasinormal mode excitations of
the black hole geometry with which the electron hybridizes
and which also leads to particle-hole asymmetry.
Our conclusions are also validated by the plots of

ImLðΩÞ at various fixed values of q with the same choice
of parameters as presented in Fig. 7. Nevertheless some of
these features are complicated by the presence of the energy
cutoff ωc. First, as expected on general grounds (see
Sec. III), we find that ImLðΩÞ ≈Ω, for small Ω and small
fixed values of q. The slope atΩ ¼ 0, i.e. ImLðΩÞ=Ω in the
limit Ω → 0 grows with decreasing q as in the Fermi liquid
case which is evident from comparison with Fig. 5. The
other features are
(1) For fixed value of q < kF (i.e. q < 0.4), we find a

peak forΩ ¼ ΩintðqÞ, corresponding to the inner core
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FIG. 6. Plots of ImLðqÞ of the semiholographic non-Fermi
liquid for ν ¼ 2=3 and ϕ ¼ π=4 for various fixed values of Ω. In
order to compare with plots of ImLFLðqÞ shown in Fig. 4, we
need to take into account that for the above plots we have chosen
kF ¼ 0.4, m ¼ 0.5 (i.e. ϵF ¼ 0.16) and jζj ¼ 1.
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FIG. 7. Plots of ImLðΩÞ of the semiholographic non-Fermi
liquid for ν ¼ 2=3 and ϕ ¼ π=4 for various fixed values of q. In
order to compare with plots of ImLFLðΩÞ shown in Fig. 5, we
need to take into account that for the above plots we have chosen
kF ¼ 0.4, m ¼ 0.5 (i.e. ϵF ¼ 0.16) and jζj ¼ 1.

8Here and elsewhere one must resist exact comparisons with
Fermi liquid because there is some inherent ambiguity in deter-
mining the locations of q corresponding to Ωint, etc. Nevertheless
the comparisons do hold approximately even quantitatively.
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boundary—this peak also involves a sharp change in
∂ImLðΩÞ=∂Ω for small q as in the Fermi liquid case
(see Fig. 5). When q ¼ kF ¼ 0.4, the peak appears
close to ϵF ¼ 0.16 as expected. This inner core feature
however is not so prominent for q > kF perhaps due
to the presence of the energy cutoffωc ¼ 1 although it
is expected to persist for kF < q < 2kF.

(2) For fixed values of q < kFð¼ 0.4Þ, we find another
region centered at the place where ΩmaxðqÞ is
supposed to be where ∂2ImLðΩÞ=∂Ω2 changes
rapidly. Unlike the Fermi liquid case ImLðΩÞ does
not vanish for larger values of Ω indicating presence
of spectral weight arising from fermionic quasinor-
mal mode excitations of the black hole. The pres-
ence of the energy cutoff ωc ¼ 1 perhaps makes this
region less prominent for q > kF.

(3) For q slightly greater than 2kF (see the plots for
q ¼ 0.9 and 1.0 in Fig. 7), we find another region
appearing close toΩ ¼ 0whereΩminðqÞ is supposed
to be and where ∂2ImLðΩÞ=∂Ω2 changes rapidly.

Especially for fixed q > kF, the presence of the energy
cutoff complicates some of the features of ImL as a
function of Ω. The comparison with the Fermi liquid is
therefore best revealed when we study ImL as function of q
for fixed Ω rather than the other way round.
As mentioned before, changing ~ϵF of the two effective

parameters in Eq. (33) of the low energy theory does not
change the qualitative features discussed above. Therefore,
we report specifically on how the features of ImLðq;ΩÞ
change when we increase ν while keeping ϕ near-extremal
[i.e. ϕ ¼ πð1 − νÞ − ϵ with ϵ being a small non-negative
number] for reasons described before and other parameters
the same.9 To do this, we can choose ν ¼ n=ðnþ 1Þ and
ϕ ¼ π=ðnþ 2Þ, and study the cases ν ¼ 4, 5, 6 and 7. The
plots of ImLðqÞ are presented in Fig. 8 for a representative
value of Ω ¼ 0.01 (we recall that we have set kF ¼ 0.4,
m ¼ 0.5 and jζj ¼ 1).
It is clear from Fig. 8 that as we increase ν, the spectral

weight in the inner core region squeezed between the two
peaks increases—therefore the spectral weight of the
coherent particle-hole continuum is enhanced compared
to that of the incoherent quasinormal mode excitations. The
extent of the inner core region is given by the kinematics of
k-space and is therefore independent of ν. However the
decay of the spectral weight away from this core inner
regions occurs faster as ν becomes closer to 1—in par-
ticular the regions centered around the values of q where
Ωmin and Ωmax become more prominent so that the spectral
weights away from these boundaries become more and
more insignificant thus approaching Fermi liquid type

behavior. Similar features are seen particularly for
Ω < ϵF. Therefore, ν can be thought of as a deformation
parameter—by decreasing ν from 1 towards 1=2 keeping ϕ
near-extremal, we can interpolate between Fermi-liquid-
like behavior and non-Fermi liquid behaviour particularly
for Ω < ϵF (which is needed for the inner core region to
exist).10 It is remarkable that the features governed by the
inner core of the particle-hole continuum corresponding to
the pair excitations closer to the particle Fermi surface
remain sharply defined as we change ν.

B. Real part of the generalized Lindhard function

The real part of the Lindhard function is related to the
imaginary part of the Lindhard function via the Kramers-
Kronig relations11 as discussed in Sec. III. Since we need to
impose a frequency cutoff ωc in our effective semi-holo-
graphic non-Fermi liquid framework for reasons discussed
before, the Kramers-Kronig relations will be valid only up
to corrections involving Ω=ωc, where Ω is the frequency at
which we are observing the response.12
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FIG. 8. Plots of ImLðqÞ for Ω ¼ 0.01 for ν ¼ n=ðnþ 1Þ and
ϕ ¼ π=ðnþ 2Þ with n ¼ 4, 5, 6 and 7. The other parameters are
kept the same as in previous plots, i.e. kF ¼ 0.4, m ¼ 0.5 and
jζj ¼ 1. We see that as we increase ν keeping ϕ near-extremal,
ImLðqÞ becomes closer to the Fermi liquid. The inlay plots
demonstrate the behavior near q� for which Ω ¼ Ωminðq�Þ ¼
0.01 (corresponding to the second boundary of the particle-hole
continuum)where ∂2ImLðqÞ∂q2 varies very rapidly. It is clear that
with increasing ν the decay of ImLðqÞ for q > q� occurs faster.

9As mentioned before, choosing ϕ to be the extremal value
exactly (i.e. imposing ϕ ¼ πð1 − νÞÞ gives rise to numerical noise
because the singularities in the propagators approach the real
axis, so we avoid doing this.

10We believe that this interpolation to Fermi liquid as ν → 1
can be made perfectly if we keep the phase strictly extremal;
however as discussed before, it is not easy to achieve this
numerically.

11The Kramers-Kronig relations for the retarded propagator
imposes similar relations for the Feynman propagator.

12Recall that to do this we need to find the right type of UV
completion, i.e. the right type of material properties that ensures
appropriate large frequency behavior of the fermionic Green’s
functions. Since the exact Kramers-Kronig relations dictate that
UV (i.e. large Ω) behavior of the imaginary part of the Lindhard
function can affect the real part in the IR (i.e. small Ω), we need
to ensure appropriate UV behavior of the fermionic propagators
in order that the effective semiholographic theory results hold in
the IR.
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Examining ReLFLðΩ; qÞ as a function of Ω for various
fixed values of q (see Fig. 9), we can readily see how it
correlates with ImLFLðΩ; qÞ (see Fig. 5).
(1) For fixed q < 2kF, ReLFLðΩ=ϵFÞ is almost constant

and negative for Ω < ΩintðqÞ (see plots for
q=kF ¼ 0.1, 0.3, 0.6, 1.0 and 1.5 in Fig. 9). Note
that ΩintðqÞ attains its maximal value ϵF when
q=kF ¼ 1, so the (negative) plateau has the largest
extension for q ¼ kF. In the domain ΩintðqÞ < Ω <
ΩmaxðqÞ, ReLFLðΩ=ϵFÞ is monotonically increasing
for increasing values of Ω and changes sign at an
intermediate point. ReLFLðΩ=ϵFÞ peaks at Ω ¼
ΩmaxðqÞ. ForΩ > ΩmaxðqÞ, ReLFLðΩ=ϵFÞmonoton-
ically decreases to zero for increasing values of Ω
while staying positive definite in sign. Recall that
ImLðΩÞ vanishes in this domain.

(2) For fixed q > 2kF, ReLFLðΩ=ϵFÞ does not have any
plateau-like flat region for small values of Ω (see
plots for q=kF ¼ 2.01 and 2.5 in Fig. 9). We recall
that for q > 2kF, there is noΩintðqÞ because the inner
core of the particle-hole continuum does not extend
here. Furthermore, ImLðΩ; qÞ is supported only
between ΩminðqÞ<Ω<ΩmaxðqÞ. For Ω < ΩminðqÞ,
ReLFLðΩ=ϵFÞ stays negative and decreases mono-
tonically reaching a minima at Ω ¼ ΩminðqÞ. In
the domain ΩminðqÞ<Ω<ΩmaxðqÞ, ReLFLðΩ=ϵFÞ
monotonically increases changing sign at an inter-
mediate point and reaching a maxima at Ω ¼
ΩmaxðqÞ. ReLFLðΩ=ϵFÞ again decreases monotoni-
cally to zero for Ω > ΩmaxðqÞ staying positive
definite in sign.

We study features of ReLðq;ΩÞ of the semiholographic
non-Fermi liquid as a function of Ω for fixed values of q.
The plots are presented in Fig. 10 for the same choices of
parameters as for ImLðq;ΩÞ in Fig. 7, i.e. for ν ¼ 2=3,
ϕ ¼ π=4, kF ¼ 0.4, m ¼ 0.5 and jζj ¼ 1.
(1) We note that for fixed q < 2kF (i.e. for q < 0.8)

there is a small flat region of ReLðΩÞ for small
values of Ω which is reminiscent of the Fermi liquid
features appearing when Ω < ΩintðqÞ corresponding
to the inner core of the particle-hole continuum. As

in the case of the Fermi liquid, when Ω < ΩmaxðqÞ,
ReLðΩÞ monotonically increases for increasing
values of Ω and changes sign at an intermediate
value of Ω. Furthermore, ∂2ReLðΩÞ=∂Ω2 varies
rapidly near the value Ω corresponding to where
ΩmaxðqÞ is supposed to be. However, instead of
peaking at Ω ¼ ΩmaxðqÞ and then decreasing for
increasing Ω as in the case of the Fermi liquid,
ReLðΩÞ increases and saturates to its maximal value
at the cut-off Ω ¼ ωc ≈ 1.

(2) For fixed q > 2kF (i.e. for q > 0.8), ReLðΩÞ has no
flat region for small values of Ω as in the case of the
Fermi liquid. The features corresponding to the
boundaries of the particle-hole continuum, i.e. Ω ¼
ΩminðqÞ and Ω ¼ ΩmaxðqÞ which are sharply visible
in the Fermi liquid case are also blurred out and
replaced by an approximate linear growth in the
entire regions 0 < Ω < ωc. Nevertheless, the change
in sign of ReLðΩÞ occurs at an intermediate point
between ΩminðqÞ and ΩmaxðqÞ as in the case of the
Fermi liquid.

As we have observed in the case of ImLðΩÞ for fixed
values of q, the comparisons between the Fermi liquid and
the semiholographic non-Fermi liquid are complicated by
the presence of the frequency cutoff ωc. Nevertheless, as in
the case of ImLðΩ; qÞ, we will find the comparisons with
the Fermi liquid are easier to do when we study ReLðΩ; qÞ
as a function of q for fixed values of Ω.
We can readily compare the Fermi liquid ReLFLðΩ; qÞ

(see Fig. 11) with ReLðΩ; qÞ of the semiholographic non-
Fermi liquid (see Fig. 12) as a function of q for various
fixed values of Ω. We set the values of all parameters of the
semiholographic non-Fermi liquid as just above.
Let us first consider the case of Ω < ϵF (i.e. Ω < 0.16 in

the case of the semiholographic non-Fermi liquid). We
recall that when Ω < ϵF, a horizontal line corresponding to
a fixed value of Ω passing through the particle-hole
continuum has four special points, namely those which
hit the boundaries ΩminðqÞ and ΩmaxðqÞ at q1 and q4
respectively, and the two points q2 and q3 where it
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FIG. 9. Plots of ReLFLðΩÞ for various fixed values of q are
shown above.
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FIG. 10. Plots of ReLðΩÞ for various fixed values of q are
shown above. We have made the same choices of parameters as
for ImLðq;ΩÞ in Fig. 7, i.e. for ν ¼ 2=3, ϕ ¼ π=4, kF ¼ 0.4,
m ¼ 0.5 and jζj ¼ 1.
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intersects the boundary of the inner core ΩintðqÞ such that
q1 < q2 < q3 < q4. In the domain Ω < ϵF, the compar-
isons between the Fermi liquid and the semiholographic
non-Fermi liquid can be based on the following points.13

(1) In the range q < q1 at fixed Ω, ReLFLðqÞ increases
dramatically in the Fermi liquid case from zero to a
large positive value peaking sharply at q ¼ q1 (see
Fig. 11). In the semiholographic case, the behavior is
somewhat flat, however ∂2ReLðqÞ=∂q2 varies rap-
idly around q ¼ q1 as reflected by change in the
curvatures of the plots in Fig. 12. Furthermore, if we
increase ν keeping ϕ near-extremal and all other
parameters the same as in Fig. 8, even the semi-
holographic behaviour becomes more Fermi-liquid-
like. This is evident from Fig. 13 where we have
plotted ReLðqÞ for various values of ν at a fixed
representative value of Ω set to 0.01. For ν ¼ 5=6,
6=7 and 7=8 particularly, ReLðqÞ at Ω ¼ 0.01
increases sharply with q for q < q1 staying positive
definite in sign and at q ¼ q1 there is a peak as in the
Fermi liquid case, although it is slightly blurred by
the incoherent nature of the quasinormal mode
excitations.

(2) In the region q1 < q < q2, both in the cases of the
Fermi liquid and semiholographic non-Fermi liquid
ReLðqÞ is monotonically decreasing as we can find
from Figs. 11 and 12. Note that the point q ¼ q2 is
slightly blurred by the incoherent nature of the
quasinormal mode excitations in the semiholo-
graphic case. If we increase ν toward 1 keeping ϕ
near-extremal, ReLðqÞ also changes sign as in the
Fermi liquid case at an intermediate value of q as
evident from Fig. 13.

(3) In the inner core region q2 < q < q3, the behaviour
of ReLðqÞ is relatively flat as in the case of the
Fermi liquid ReLFLðqÞ. This flat behavior is also

conserved as we increase ν keeping ϕ near-extremal
as evident from Fig. 13. Note that at Ω ¼ 0, q2
coincides with q1 and q3 coincides with q4 making
the flat region prominent. As we increase Ω toward
ϵF (which equals 0.16 in the semiholographic case),
this flat region corresponding to the inner core
shrinks to zero.

(4) For q > q3, both ReLðqÞ and ReLFLðqÞ increase
monotonically with increasing q from a negative
value towards 0 (see Figs. 11 and 12). However, in
case of the Fermi liquid, there is a sharp kink at
q ¼ q4 corresponding to the other boundary of the
particle-hole continuum. This kink is replaced by a
region where ∂2ReLðqÞ=∂q2 varies rapidly in the
semiholographic case. This feature is also preserved
as we increase ν toward 1 keeping ϕ near-extremal
and all other parameters the same as evident
from Fig. 13.

To summarize, one can conclude that the features of the
Fermi liquid corresponding to the inner core region are
preserved in the semiholographic case but the boundaries of
the particle-hole continuum are blurred out with peaks/
kinks replaced by small regions where ∂2ReLðqÞ=∂q2
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FIG. 12. Plots of ReLðqÞ for various fixed values of Ω are
shown above. We have made the same choices of parameters as
for ImLðq;ΩÞ in Fig. 6, i.e. for ν ¼ 2=3, ϕ ¼ π=4, kF ¼ 0.4,
m ¼ 0.5 and jζj ¼ 1.
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FIG. 11. Plots of ReLFLðqÞ for various fixed values of Ω are
shown above.
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FIG. 13. Plots of ReLðqÞ for Ω ¼ 0.01 for ν ¼ n=ðnþ 1Þ and
ϕ ¼ π=ðnþ 2Þ with n ¼ 4, 5, 6 and 7. The other parameters
are kept the same as in previous plots, i.e. kF ¼ 0.4, m ¼ 0.5
and jζj ¼ 1.

13We again remind the reader that the comparisons can only be
approximate because there is an inherent ambiguity in defining
q1, q2, q3 and q4 exactly in the case of the semiholographic non-
Fermi liquid.
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varies rapidly particularly for values of ν closer to 1=2
(eg:ν ¼ 2=3). Increasing ν keeping ϕ near-extremal and all
other parameters the same, makes the first boundary Ω ¼
Ωmaxðq1Þ more visible as a peak with a positive value as in
the Fermi liquid case, but the other boundaryΩ ¼ Ωminðq4Þ
remains blur in the above sense. These conclusions are thus
very similar to those we made for ImLðqÞ at fixed values
of Ω.
Finally, we can compare ReLFLðqÞ (see Fig. 11) with

ReLðqÞ of the semiholographic non-Fermi liquid (see
Fig. 12) for various fixed values of Ω > ϵF where the inner
core region is absent. In the case of the Fermi liquid, there are
two sharp kinks corresponding to values of q where Ω ¼
Ωmaxðq1Þ andΩ ¼ Ωminðq2Þ, i.e. where the horizontal line at
fixed Ω intersects the boundaries of the particle-hole
continuum (see Fig. 11). These sharp kinks are replaced
by regions where ∂2ReLðqÞ=∂q2 varies rapidly in the
semiholographic case (see Fig. 12) as near inflexion points.
However, ReLðqÞ changes sign at an intermediate value of q
like the Fermi liquid ReLFLðqÞ only if Ω is not much larger
than ϵF. ReLðqÞ stays positive definite for fixed Ω ≫ ϵF
retaining the features of the particle-hole continuum boun-
daries in the blurred form of small regions where
∂2ReLðqÞ=∂q2 varies rapidly. Once again, our conclusions
here agree with those we made for the case of ImLðqÞ at
fixed values of Ω > ϵF.

V. RANDOM PHASE APPROXIMATION FOR
EFFECTIVE COULOMB INTERACTIONS

The medium modifications of the Coulomb interactions
between the electrons can be understood via the random
phase approximation which actually stands for summing
over ring diagrams involving the bare Coulomb interaction.
The RPA has been extensively used in many-body physics

since the 1950s. In metals, it is justified by the long range
character of the bare Coulomb repulsion, which makes it
possible to treat the response of the electronic fluid to a slowly
varying perturbation by a self-consistent field approach. A
detailed discussion of RPA in this context can be found in
chapter 5 of the book by Pines and Nozières [41].
Two objects of interest here are (i) the improved

generalized Lindhard function which we will denote as
Limp and (ii) the dynamically screened Coulomb potential
which we will denote as Vs. Both of these objects can be
obtained by summing over ring diagrams shown in Figs. 14
and 15 respectively. The bubbles in these diagrams stand
for the one-loop generalized Lindhard function which we
have studied in the previous section and the wavy lines
denote the Coulomb potential.
It is clear from Figs. 14 and 15 that summing over the

ring diagrams we obtain

Limpðq;ΩÞ ¼ Lðq;ΩÞ
1 − VðqÞLðq;ΩÞ ; ð34Þ

Vsðq;ΩÞ ¼
VðqÞ

1 − VðqÞLðq;ΩÞ : ð35Þ

Since we are interested in particular in 2D non-Fermi
liquids, we consider a potential VðqÞ ¼ e2=ð2ϵbqÞ.14
In order to investigate collective response it will be

useful to define the retarded Limp
R as below:

Limp
R ðq;ΩÞ ¼ LRðq;ΩÞ

1 − VðqÞLRðq;ΩÞ
: ð36Þ

It follows that analogous to LR, L
imp
R also satisfies:

ReLimp
R ðq;ΩÞ ¼ ReLimpðq;ΩÞ;

ImLimp
R ðq;ΩÞ ¼ ImLimpðq;ΩÞsgnðΩÞ ð37Þ

at zero temperature. Once again given that
Lðq;ΩÞ¼Lðq;−ΩÞ, we obtain Limpðq;ΩÞ ¼ Limpðq;−ΩÞ,
ReLimp

R ðq;ΩÞ ¼ ReLimp
R ðq;−ΩÞ and ImLimp

R ðq;ΩÞ ¼
−ImLimp

R ðq;−ΩÞ.
Below we will study the effective electronic interactions

and collective behavior of our semiholographic model and
compare them to Fermi-liquid behavior. We will find

++

+ +  .. . .

FIG. 14. The ring diagrams summing which we obtain
Limpðq;ΩÞ.

+

+ +  .. . .

FIG. 15. The ring diagrams summing which we obtain
Vsðq;ΩÞ.

14In the cuprates, for example, the electrons are mechanically
confined in a 2D plane. Although the electric field lines are not
confined to this plane, we need to do a 2D Fourier transform of
the Coulomb potential e2=ð4πϵbjrjÞ. This gives the 1=q potential
with a prefactor determined by the dielectric constant ϵb of the
material.
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striking and unexpected contrasts, and we will argue that
these contrasts result from the character of the continuum
outside of the inner core region.

A. Plasma oscillations

In order to trigger plasma oscillations in an electronic
system, we consider a kick to the system with a

time-dependent inhomogeneous external electric potential
of the form:

ϕextðx; tÞ ¼ ð2πÞ2ϕ0 cosðq · xÞδðtÞ: ð38Þ

The above perturbation induces a time-dependent change in
the charge density δρðx; tÞ which can be obtained from:

δρðx; tÞ ¼ −e
Z

d2k
ð2πÞ2

Z
∞

−∞

dΩ
ð2πÞ e

iðk·x−ΩtÞLimp
R ðk;ΩÞϕextðk;ΩÞ

¼ −eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

−∞
dΩe−iΩtLimp

R ðq;ΩÞ

¼ −eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

−∞
dΩðReLimp

R ðq;ΩÞ cosðΩtÞ − ImLimp
R ðq;ΩÞ sinðΩtÞÞ

¼ −2eϕ0ð2πÞ−1 cosðq · xÞ
Z

∞

0

dΩðReLimpðq;ΩÞ cosðΩtÞ − ImLimpðq;ΩÞ sinðΩtÞÞ: ð39Þ

Due to the translational symmetry of the system, the spatial
variation of the response δρðx; tÞ at a fixed moment of time
t is the same as that of the external driving ϕext, i.e. of the
form cosðq · xÞ. Therefore, in order to study the time-
dependent response, we can set x ¼ 0 for any fixed value of
q and study

δρðx¼ 0; tÞ¼−2eϕ0ð2πÞ−1
Z

∞

0

dΩðReLimpðq;ΩÞcosðΩtÞ

− ImLimpðq;ΩÞsinðΩtÞÞ: ð40Þ

It is clear from the above expression that poles in Limp
R ðΩÞ

at a fixed value of q will lead to a characteristic oscillation
in the induced δρðx ¼ 0; tÞ—this will be damped if the pole
lies far from the imaginary axis. Also it is clear from the
definition of Limp provided in Eq. (34) that a pole of Limp

can arise only from the vanishing of the denominator, i.e. at
ΩðqÞ ¼ Ωq − iγq where

1 ¼ VðqÞLRðq;Ωq − iγqÞ: ð41Þ

When γq ≪ Ωq, we will call the pole a proper pole. In this
case, the real and imaginary parts of the above equation can
be separated so that, expanding in γq, we can demand

1 ¼ VðqÞReLRðq;ΩqÞ ¼ VðqÞReLðq;ΩqÞ;

γq ¼
ImLRðq;ΩqÞ
∂ReLRðq;ΩÞ∂Ω jΩq

¼ sgnðΩqÞImLðq;ΩqÞ
∂ReLðq;ΩÞ

∂Ω jΩq

: ð42Þ

A proper pole leads to an easily discernible oscillation
pattern of δρðx ¼ 0; tÞ with small damping. When γq ≠ 0,
Ωq can be identified numerically as the value of Ω at which

−ImLimpðΩÞ has a narrow (Lorentzian) peak that also
coincides with a zero of ReLimpðΩÞ at a fixed value of q.
When γq ¼ 0, ReLimpðΩÞ diverges at Ω ¼ Ωq while
ImLimpðΩÞ becomes a Delta function. For numerical pur-
poses however, ImLimpðΩÞ becomes a vanishing function.
Let us first study the case of the Fermi liquid. We set

e2=ð2ϵbÞ ¼ 1 for convenience so that for the case of
Coulombic interactions VðqÞ ¼ 1=q. To locate proper
poles, we need to study first the zeroes of XðqÞ ¼ q −
ReLimpðΩ; qÞ as clear from Eq. (42). As shown in Fig. 16,
we find that for q < qcrit ≈ 0.25kF, for each value of q there
exist two zeroes of XðqÞ.
However, at the smaller zero −ImLimpðΩÞ turns out to be

large giving a large γq > Ωq [note Eq. (42) then is strictly
not valid here], and at the larger zero ImLimpðΩÞ vanishes
so that γq ¼ 0 unless q is very near qcrit. Therefore, the
smaller zero of XðqÞ is not a proper pole, but the larger zero
of XðqÞ is one with γq ¼ 0 and lies mostly outside of the
particle-hole continuum except when q ≈ qcrit. This is also
vindicated in plots shown in Figs. 17 and 18 where one sees
that ReLimpðΩÞ diverges at Ωq corresponding to the second
zero of XðqÞ for each q ≪ qcrit. Furthermore, Ωq lies
outside the domain (the particle-hole continuum) where
−ImLimpðΩÞ has a support implying γq ¼ 0. Although
−ImLimpðΩÞ is a delta function at Ωq when γq ¼ 0,
numerically however it appears as a vanishing function
outside the continuum. This pole Ωq which is nondissipa-
tive (since γq ¼ 0) in the RPA approximation is also called
the plasmon pole and can be shown to have a dispersion
relation ∝ ffiffiffi

q
p

for small q. Near q ¼ qcrit, γq is nonzero and
leads to Landau damping. Here, however γq is not small
and therefore the corresponding peak in −ImLimpðΩÞ is
also non-Lorentzian.
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These features are expected at weak coupling where
typically the collective excitation pole does not coexist with
the continuum. The gapless on-shell particle-hole excita-
tions of the Fermi surface constituting the continuum lead
to significant broadening of the collective excitation whose
presence becomes hard to detect.

Remarkably, the case of the semiholographic non-Fermi
liquid presents a somewhat different scenario. Naively,
since the spectral weight never vanishes for Ω ≠ 0 due to
presence of incoherent excitations, we do not expect any
sharply defined collective excitation of the system to exist.
Nevertheless, we have seen in the previous sections that
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FIG. 17. ReLimpðΩ; qÞ for the Fermi liquid as a function of Ω for various values of q.
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FIG. 18. −ImLimpðΩ; qÞ for the Fermi liquid as a function of Ω for various values of q. Note that −ImLimpðΩ; qÞ never diverges in the
continuum. The delta function peaks outside the continuum corresponding to the plasmonic poles where ReLimpðΩ; qÞ also diverges are
not shown in the above plots due to numerical limitations.
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FIG. 16. We see that in the case of the Fermi liquid, q − ReLimpðΩ; qÞ has two zeroes for each value of q < qcrit ≈ 0.25kF.
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although the continuum in the semiholographic non-Fermi
liquid cannot be thought of as particle-hole type excitations
outside of the inner core region, the kinematically deter-
mined boundaries denoted as ΩmaxðqÞ and ΩminðqÞ (see
Fig. 1) are preserved despite blurring of the sharp Fermi
liquid features. We will see below that the plasmonic
excitations arise in the semiholographic non-Fermi liquid
because both the real and imaginary parts of the generalized
Lindhard functions behave in the right way in the low
frequency tail of the continuum for q > 2kF.
Following our earlier discussion, we can readily identify

the proper poles of Limp in the three-dimensional plots of its
real and imaginary parts presented in Fig. 19 from the
Lorentzian peaks of −ImLimp which coincide with zeroes
of ReLimp. We have chosen e2=ð2ϵbÞ ¼ 1, ν ¼ 2=3,
kF ¼ 0.4, argðζÞ ¼ π=4 and all other parameters as in
the previous section. We find that we can clearly identify a
proper pole (with narrow width) for each value of q >
qcrit ≈ 1.4 which lies away from the inner core region.
For a better understanding of the plasmonic pole, we can

refer back to Fig. 12 where ReLðΩ; qÞ has been plotted as a
function of q respectively for various fixed values of
Ω < ωc. Firstly, it is not hard to see from Fig. 12 that
for Ω < 0.2, ReLðΩ; qÞ is not appreciably positive in a
sufficiently large range of q and that a solution for XðqÞ ¼
q − ReLðΩ; qÞ ¼ 0 cannot exist. However, for sufficiently
large Ω, it is also clear from Fig. 12 that ReLðΩ; qÞ is
positive definite and a solution toXðqÞ ¼ q − ReLðΩ; qÞ ¼
0 does exist.15 The contour plot of−ImLimpðΩ; qÞwherewe
havemarked the peakswith black dots is shown in Fig. 20. It
is clear from this plot that well-defined plasmonic poles can
be found only above a threshold energy of about Ω ¼ 0.2
corresponding to what we have just inferred from Fig. 12.

Obviously this also implies that plasmonic poles exist only
for q > qcrit with qcrit ≈ 1.4.
We can also understandwhy the plasmonic poles arewell-

defined by referring back to Fig. 6 where ImLðΩ; qÞ has
been plotted as a function of q respectively for various fixed
values of Ω < ωc. First for a fixed Ω > 0.2, it is easy to
identify from Fig. 20 the value qpðΩÞ corresponding to
awell defined plasmonic polewhereΩ ¼ Ωqp . As discussed
above qp > qcrit ≈ 1.4 for any Ω. One can verify from
Fig. 6 that ImLðΩ; qpðΩÞÞ is small, and furthermore
qpðΩÞ > qminðΩÞ, where qmin denotes the value of q for
which Ω ¼ ΩminðqminÞ, the (blurred) outer edge of the
kinematically determined continuum where ImLðqÞ

FIG. 19. Three-dimensional plots of real and imaginary parts ofLimpðq;ΩÞ for e2=ð2ϵbÞ ¼ 1, ν ¼ 2=3, kF ¼ 0.4, argðζÞ ¼ π=4 and all
other parameters as in the previous section.

FIG. 20. A contour plot of ImLimpðq;ΩÞ is shown with the
black dots indicating the maxima.

15The reader can readily see that the line y ¼ q will intersect
the curves ReLðΩ; qÞ.
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changes its curvature rapidly and becomes a rapidly
decaying function. We can readily conclude from here that
the plasmonic poles Ωq should satisfy Ωq < ΩminðqÞ, i.e.
they must lie in the low frequency tail of the blurred outer
edge of the continuum (please refer to Fig. 1 for quick
visualisation). Since ΩminðqÞ exists only for q > 2kF,
clearly the threshold qcrit should also satisfy qcrit > 2kF
as indeed is the case16

The plasmonic poles are thus a a relatively low frequency
and high momentum feature of the dynamics and our
arguments above indicate that they should exist in generic
semiholographic non-Fermi liquid models. This contrasts
with the 2D Fermi liquid case where the plasmons are low
momentum (but also low energy) features of the dynamics.
From Fig. 20, we also see that these poles (corresponding to
the well-defined peaks in this figure) satisfy an approx-
imately linear dispersion relation.
It is also clear from Fig. 20 that for q < 1.4, the peaks of

−ImLimpðΩÞ are very broad and reminiscent of Landau
damping features of the Fermi liquid. For q < 1.4, we
cannot really solve Eq. (41) but we identify the peaks by
minimising the modulus of the denominator of Limp, i.e.

jXðqÞj ¼ ðq − ReLRðq;ΩÞÞ2 þ ðImLRðq;ΩÞÞ2

We also note that for q < 1.4, the peaks of −ImLimp are
nondispersive meaning that ∂Ωq=∂q is small compared to
the average width of the peaks.
The corresponding plots for δρðtÞ in Fig. 21 at x ¼ 0

clearly demonstrate the behavior of the plasma oscillations
that result from these features of Limp; one can see that for
q < 1.4, the oscillation frequencies are nearly independent
of q (for q < 1 they appear to be decaying but this is a

cutoff dependent effect). For q > 1, the oscillations are
damped only slightly over the time-scale of oscillation with
the oscillation frequency growing with q approximately in a
linear fashion. It is to be noted that ImLimpðΩ; qÞ can be
measured separately via electron energy-loss spectroscopy
[42]. Therefore, one can also confirm the existence of the
unusual semiholographic plasmonic poles through this
method.

B. Dynamic screening and possible pairing instability

Dynamic screening can be studied via the effective
screened potential Vsðq;ΩÞ defined in (35). For a better
physical understanding, it is more useful to study VsðΩ; rÞ
defined as the 2-D Fourier transform of Vsðq;ΩÞ, i.e.

VsðΩ;rÞ¼ ð2πÞ−2
Z

2π

0

dθ
Z

∞

0

dqqeiqrcosðθÞVsðq;ΩÞ: ð43Þ

The plots in Fig. 22 and 23 present the real and
imaginary parts of VsðΩ; rÞ for ν ¼ 2=3 and other param-
eters exactly the same as in the above subsection. Note we
cannot trust the computations for small values of r because
of our semi-holographic effective model is an effective
infrared description.
The above plots show that for large values of Ω,

ReVsðΩ; rÞ develops substantially deep wells where it
becomes attractive—thesewells become deeper as the value
ofΩ increases. Note although ImVsðΩ; qÞ < 0 for all values
of Ω and q implying we cannot have a runaway linear
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FIG. 21. The response of the induced δρðtÞ at x ¼ 0 for the
semi-holographic non-Fermi liquid.
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FIG. 22. ReVsðΩ; rÞ shown as a function of r for various fixed
values of Ω.
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FIG. 23. ImVsðΩ; rÞ shown as a function of r for various fixed
values of Ω.

16By looking at Fig. 13 we can see that there is some value of ν,
between 2=3 and 7=8, at which ReLðΩ ¼ 0.01; qÞ is close to zero
around q ¼ 0. In this cases there will be another solution to
XðqÞ ¼ 0 at small q and Ω, so there can be another plasmonic
mode at low frequency. However this is much more damped than
the one we have discussed.
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response of the system to the influence of externally
introduced moving charges, ImVsðΩ; rÞ also alternate in
sign not exactly in phase with ReVsðΩ; rÞ. The latter implies
that somepart of the attractive regions ofReVsðΩ; rÞmaynot
decay and can lead to production of sufficiently long-lived
pairs. Therefore, the system can have a nonlinear instability
particularly in the large Ω region, i.e. when the externally
introduced charges are subjected to oscillations at time-scales
comparable to those of the system. We will study the static
limit soon where we will find usual but suppressed Friedel
oscillations.
The above features of VsðΩ; rÞ are unexpected and they

also point towards a novel dynamical mechanism of pair
formation from pure effective electronic interactions (for
electrons living in a constrained environment imposed by
the lattice) without the need for mediation via phonons (i.e.
excitations of the lattice itself). Since the quasi-particle type
excitations in our semiholographic effective framework are
not sharply defined, they can have substantial spectral
weight in large Ω region for the stable attractive nature of
VsðΩ; rÞ to lead to pair formation with long lifetimes. For
this mechanism to work, there needs to be sufficient
spectral weight of each member in the pair in the large
Ω region whilst the attractive wells of VsðΩ; rÞ need to be
sufficiently deep. Therefore, to see whether this mechanism
can lead to an unconventional superconducting instability
of the system, we need to first examine the dynamical pair
susceptibility and then how it is modified by the effective
dynamical Coulomb interactions as examined carefully in
[35] in the context of Fermi liquid. We leave this study for
the future. At this point, we merely observe that just as in
case of induced plasma oscillations via Limp, the break-
down of quasiparticle picture and the presence of particle-
hole asymmetry can together contribute to a novel mecha-
nism of pair formation which cannot exist in a weakly
coupled system. A similar argument for a mid-infrared
scenario where the plasmonic pole can play an important
dynamical role has been presented by Leggett earlier in
order to explain experimental data [36].

C. Static limit and Friedel-like oscillation

Consider the introduction of a static impurity charge
−Ze into the system. The change in the electronic density
induced by this charge is given by:

δρðrÞ ¼ −ð2πÞ−2Z
Z

∞

0

dq

×
Z

2π

0

dθqeiqr cosðθÞLimpðq;Ω ¼ 0Þ e2

2ϵbq

¼ −ð8π2ϵbÞ−1Ze2
Z

∞

0

dq

×
Z

2π

0

dθeiqr cosðθÞLimpðq;Ω ¼ 0Þ; ð44Þ

where r denotes the radial distance from the external static
charge impurity. We have plotted δρðrÞ n Fig. 24 in the case
of the semiholographic non-Fermi liquid with ν ¼ 2=3
kF ¼ 0.4, Z ¼ 1 and all other parameters the same as in the
previous subsections.
It is clear that δρðrÞ shows a Friedel type oscilla-

tion although we do not have a Kohn singularity in
Lðq;Ω ¼ 0Þ or Limpðq;Ω ¼ 0Þ at q ¼ 2kF—in our case
the q-derivative of Lðq;Ω ¼ 0Þ is large but not diver-
gent. However, the reasonably sharp transition in
Lðq;Ω ¼ 0Þ at q ¼ 2kF as visible clearly in Fig. 12
does lead to oscillations in δρðrÞ as in a Fermi liquid
although these are very suppressed. It is worthwhile to
note that δρðrÞ is always greater than zero signifying
that the oscillations in sign in Vsðq;Ω ¼ 0Þ shown in
Fig. 22 do not have sufficiently high amplitude to
change the sign of δρðrÞ in the static limit.

VI. CONCLUSIONS AND OUTLOOK

To conclude, we find that although the semiholo-
graphic non-Fermi liquids retain many features of the
Fermi liquid particularly in the inner core of the con-
tinuum, the phenomenological manifestations are differ-
ent. The most unexpected finding is the appearance of a
well-defined plasmonic collective excitation above a
energy (and momentum) threshold set by the boundary
of the inner core region and the universal character of the
continuum. Furthermore, it has an approximately linear
dispersion relation. Such a type of behavior can arise
from a fundamentally new nature of the continuum
outside of the inner core region.
We have also observed that at higher frequencies the

dynamic screened potential can lead to formation of pairs
with long lifetimes and therefore trigger a superconducting
instability. We plan to investigate this in detail in a
forthcoming publication.
Our calculation of the generalized Lindhard function has

some similarities with the computation of the DC and
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FIG. 24. The induced charge density as a result of the
introduction of static charge shows suppressed Friedel oscillation.
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optical conductivities presented in [43]. In this work, the
authors have used a purely holographic model and have
considered the effect of the bulk fermionic loop with bulk
fermionic propagators that produce non-Fermi-liquid like
spectral functions in the dual theory. Even though the bulk
loop contribution is 1=N2 suppressed compared to the tree
level contribution (given by a single photon propagator in
the bulk), it turns out that it is responsible for the leading
low temperature and low frequency behavior which is
nonanalytic and also of a non-Fermi-liquid type. There are
several technical differences with our calculations never-
theless: first of all, our computation is at zero temperature
and finite momentum, whereas the computation of [43] has
been performed at finite temperature and zero momentum.
Furthermore, not only the fermionic propagators but also
the bulk vertex plays a crucial role in determining the low
temperature and low frequency behavior in the computa-
tion of [43]. In our case, the result has been obtained
without including the vertex corrections as discussed
before. Finally, a certain ad-hoc prescription for the
analytic continuation from the Euclidean signature has
been utilized in order to derive the real-time bulk loop
contribution since it is not known how to compute the bulk
loop in the Lorentzian signature directly. In our case we
have been able to perform the loop computation employing
standard techniques without any need for a specific
prescription. Despite all these differences, it would be
interesting to see if the subleading 1=N2 effects in our
semiholographic models arising from bulk loops and
vertices can give significant contributions at low temper-
atures and low frequencies as in case of the holographic
computation of [43].
Another interesting subject for future investigations is

the nonequilibrium spectral function and statistical func-
tion of the fermionic excitations particularly because the
time-evolution of these following a global quench/energy
injection can be measured experimentally via a variety of
methods. In a recent work, it has been found that the gross
features of the non-equilibrium evolution of the holo-
graphic spectral function are universal being determined
just by the difference between the final and initial
temperatures and the quenching/energy-injection time
[44]. This leads to the exciting possibility that one can
construct a very general quantum kinetic theory of the
generalized quasiparticles of the semiholographic non-
Fermi liquid which are stable from interactions at the
Fermi surface.17 This quantum kinetic theory can readily
include the nonequilibrium evolution of the background

geometry representing the holographic IR-CFT degrees of
freedom.
The main message of our work is that semiholographic

systems have remarkable features which cannot be
obtained purely from a weak coupling kinetic picture or
from a strong coupling holographic picture exclusively.
Furthermore, these features are robust, generic and surpris-
ing. In the context of non-Fermi liquids, we hope that the
semiholographic picture with suitable modifications dis-
cussed here can be subjected to experimental confrontation
in the near future.
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APPENDIX: SPECTRAL REPRESENTATION

In this appendix we consider some issues that arise
because of the lack of integrability of the spectral function;
these issues can make the model sensitive to the UV
completion, but we could not perform a complete analysis;
for this reason we mostly restricted our investigation to the
case ν > 1=2.
In Sec. III we derived the representation (15) for

the imaginary part of the Lindhard function as a convo-
lution of spectral functions; the textbook derivation of this
relation starts from the spectral representation of the
propagator:

GRðω; ϵÞ ¼
Z

AðE; ϵÞ
ω − Eþ iη

dE; ðA1aÞ

AðE; ϵÞ ¼ −ImGR ¼ jEj1=2
�
θðEÞ ζ2

ðζ1E1=2 − ϵÞ2 þ ζ22EÞ

þ θð−EÞ ζ1
ðζ2jEj1=2 þ ϵÞ2 þ ζ21jEjÞ

�
: ðA1bÞ

Inserting this expression in the loop integral, and
performing the integration over ω first, one finds again
(15). However, the exchange of the ω and the E integral is
not always legitimate; in the case ν ¼ 1=2, one can perform
the ω integration analytically and the difference can be seen
explicitly.
It is simplest to consider the case Ω ¼ 0; the loop

integral gives (notice that ~ζ ¼ iζ�)

17Note at strong coupling the statistical and spectral func-
tions evolve in a nontrivial fashion. The evolution of both of
these have to be evaluated separately. For this we need to find
a general prescription for obtaining the nonequilibrium stat-
istical function too—some of the authors are working in this
direction.

DENSITY RESPONSE AND COLLECTIVE MODES OF … PHYSICAL REVIEW D 96, 106011 (2017)

106011-21



Z
dωGFðω; ϵ1ÞGFðω; ϵ2Þ ¼ −2i

Z
∞

0

dω

�
1

ðζ ffiffiffiffi
ω

p
− ϵ1Þðζ

ffiffiffiffi
ω

p
− ϵ2Þ

þ 1

ðiζ� ffiffiffiffi
ω

p þ ϵ1Þðiζ�
ffiffiffiffi
ω

p þ ϵ2Þ
�

¼ −
4i

ϵ1 − ϵ2

Z
∞

0

du

�
u

ζu − ϵ1
−

u
ζu − ϵ2

−
u

iζ�uþ ϵ1
þ u
iζ�uþ ϵ2

�

¼ −
4

ϵ1 − ϵ2
ðϵ1fðϵ1Þ − ϵ2fðϵ2ÞÞ ðA2Þ

where in the middle line we changed the integration
variable to u ¼ ffiffiffiffi

ω
p

, and we have defined in the last line

fðϵÞ ¼ 1

jζj2
Z

∞

0

du

�
iζ�

ζu − ϵ
þ ζ

iζ�uþ ϵ

�
: ðA3Þ

The divergence of the integral in fðϵÞ is purely real. The
imaginary part is convergent and well-defined, and one
can easily see that it is in fact independent of ϵ, so that
the energy dependence cancels in (A2). It can be
evaluated:

Imf ¼
Z

∞

0

du
ðζ1 − ζ2Þðζ21 þ 4ζ1ζ2 þ ζ22Þu2 − 4ζ1ζ2u − ðζ1 − ζ2Þ

jζj2ðjζj2u2 − 2ζ1uþ 1Þðjζj2u2 þ 2ζ2uþ 1Þ ¼ π

2jζj2 sinð2ϕÞ:

Clearly this constant will create an infrared divergence
when inserted in the momentum integral, whereas there is
no divergence if the ω integral is exchanged with the E
integral.
This problem appears only for ν ≤ 1=2; given

the simplicity of the result, it is possible that for
ν ¼ 1=2 case one could devise a simple subtraction
procedure, but it is not clear if it possible to deal with
the ν < 1=2 case.
The problem disappears if we regularize the high-

frequency behavior by taking a crossover to a normal
Fermi liquid. This is achieved by taking the retarded
propagator as follows:

GRðω;kÞ ¼
1

ζω
1
2 þ ω − ϵk

: ðA4Þ

In this case, again at Ω ¼ 0 we find an expression like
(A2) but with f replaced by

FðϵÞ ¼
Z

∞

0

du

�
iu

ζuþ u2 − ϵ
−

iu
iζ�uþ u2 þ ϵ

�

¼ −
π

2
þ 2Re

Z
∞

0

du
iu

ζuþ u2 − ϵ
; ðA5Þ

This is finite, and the imaginary part is zero, as evident from
the last expression. The same considerations apply at
Ω ≠ 0, we refrain from giving the expressions that do
not add any new insight.
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