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We consider the generalization of the S-duality transformation previously investigated in the context of the
fractional quantum Hall effect (FQHE) and s-wave superconductivity to p-wave superconductivity in 2þ 1

dimensions in the framework of the AdS=CFT correspondence. The vector Cooper condensate transforms
under the S-duality action to the pseudovector condensate at the dual side. The 3þ 1-dimensional Einstein-
Yang-Mills theory, the holographic dual to p-wave superconductivity, is used to investigate the S-duality
action via the AdS=CFT correspondence. It is shown that, in order to implement the duality transformation,
chemical potentials on both the electric andmagnetic sides of the duality have to be introduced. A relation for
the product of the non-Abelian conductivities in the dual models is derived. We also conjecture a flavor S-
duality transformation in the holographic dual to 3þ 1-dimensionalQCD low-energyQCDwith non-Abelian
flavor gauge groups. The conjectured S-duality interchanges isospin and baryonic chemical potentials.
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I. INTRODUCTION

The AdS=CFT correspondence opens a new route to
studying strongly correlated systems with bosonic and
fermionic degrees of freedoms at finite chemical potential
and density. In gauge/gravity duality, the charge density ρ
conjugate to the chemical potential is dual to an electric
flux emanating from the boundary of a space-time which is
asymptotically anti-de Sitter (AdS). Due to flux conserva-
tion, this charge has to reside behind the horizon of a black
hole in the interior of the AdS space-time. A magnetic field
in the dual field theory corresponds to switching on a
magnetic flux component in the bulk space-time.
The S-duality transformation, which exchanges electric

with magnetic field strengths, is a well-studied symmetry
for the U(1) Einstein-Maxwell theory in 3þ 1-dimensional
asymptotically AdS space-times. It acts nontrivially on the
boundary conditions of the U(1) gauge fields, exchanging
Neumann to Dirichlet boundary conditions [1], in this way
exchanging electrically charged with magnetically charged
black holes and hence charge density with magnetic field in
the dual field theory. It corresponds to particle-vortex duality
in the 2þ 1-dimensional dual field theory, and also acts in
this way on the conductivities in the field theory.
S-duality together with the T-duality transformation

generates the group of modular transformations SLð2; ZÞ.
The bulk S-duality acts naturally on the conserved U(1)
currents of 2þ 1-dimensional conformal field theories [1]
and corresponds to three-dimensional mirror symmetry [2].
The most studied example of subgroups of the SLð2; ZÞ
symmetry in 2þ 1 dimensions is in the framework of the
FQHE. It was observed long ago [3] that a combination of

the conductivities σ ¼ σxy þ iσxx transforms fractionally
linear under modular transformations, as does the filling
fraction ν ¼ ρ

B, where ρ is the density and B is the magnetic
field. Themodular subgroupsΓ0ð2Þ ⊂ SLð2; ZÞ andΓθð2Þ ⊂
SLð2; ZÞ act as flux attachment transformations on, respec-
tively, the odd-denominator and even-denominator filling
fractions states. The full SLð2; ZÞ was argued to be relevant
for certain N ¼ 2 supersymmetric field theories [4]. The
generator of the S-duality transformation ν → 1

ν interchanges
the density and magnetic field and can be understood as
particle-hole transformation [1,5]. The nontrivial modular
properties of the complex conductivity σ ¼ σxy þ iσxx can
be argued to hold along the renormalization group (RG) flow
for energies sufficiently low such that higher derivative
operators in the external electromagnetic field can be
neglected [3] and the RG flow itself happens on the two-
dimensional submanifold in coupling space parametrized
by σ. The SLð2; ZÞ (subgroup) action in the FQHE was
implemented as the S-duality transformation in several
3þ 1-dimensional holographic dual systems [6–8], where
the dual gravitational theory used was an Einstein-Maxwell-
dilaton-axionmodel. The state parametersρ,B aremapped to
the charge andmagnetic field emanating from the bulk black
hole solution, and the modular transformation of σxy þ iσxx
is related to the transformation of the bulk axiodilaton
field and the boundary two-point correlators for the con-
ductivities via the Kubo formula, where the axiodilaton
encodes coupling constants σxy and σxx governing the two-
dimensional low-energy RG flow.
Having understood the holographic S-duality action in

the simplest case of a single conserved Uð1Þ current in the
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presence of charge density and magnetic field, the next
natural step is to allow for charged scalar operators to
condense in the context of s-wave holographic super-
conductivity1 in the ðμ; BÞ space of the grand-canonical
ensemble. The new feature introduced by superconductiv-
ity is the presence of the condensate and the mass gap and,
since holographic superconductors are type II, Abrikosov
vortices in the presence of an external magnetic field. The
natural guess for the duality mapping of the S-duality
action, which exchanges finite density and zero magnetic
field with finite magnetic field and zero density, is that the
superconducting state with the charged order parameter
condensate is mapped to the magnetic catalysis problem
triggered by the finite magnetic field and which admits a
neutral excitonic condensate. Indeed, such a mapping
between the BCS and magnetic catalysis (MC) models
has been discussed in (1þ 1) dimensions (here, DOS
stands for the density of states, h is the magnetic field
strength, and μ is the chemical potential) [9].
Effectively one-dimensional dynamics in both cases le-

ads to similarities in formulas for the pairing gap Δ and the
gain in thermodynamic potential δΩ as compared to the
normal unpaired state. The parameters in the two systems
at a nonzero density and at a nonzero magnetic field are
mapped onto each other as follows: The last line expresses a

MC ↔ BCS

hψ̄ψi ≠ 0 ↔ hψψi ≠ 0

finite h ↔ finite ρ

small μ ↔ small δμ

h ≫ μ ↔ μ ≫ δμ

hierarchy of scales. A similar mapping has been obtained in
case of the Gross-Neveu and the BCSmodel [10], where the
magnetic field hmaps to the chemical potentialmismatch δμ
and is relevant for the inhomogeneous superconductors in
the incommensurate phase. In the Sakai-Sugimoto model of
holographicQCD [9], analytical formulas for the free energy
difference between condensed and normal states have been
obtained, proving the stability of both condensed states. In
the strong magnetic field regime (“direct” magnetic cataly-
sis), the free energy difference takes a remarkably simple
form [9],

δΩ ∼ −h
�
ΔðhÞ2
2

− μ2
�
; ð1Þ

which exactly maps to the result obtained in the field theory,
Table I.

In the gravity dual description, the duality mapping
between the two setups, superconductivity and MC [11],
is as follows. Some explicit examples for the S-duality
transformation between the 2þ 1-dimensional field theo-
ries at finite density are known in the literature. In Ref. [12],
the mapping between the XY model and the Abelian Higgs
model was studied. The superfluid phase corresponds to the
condensate of the scalar, while the solid phase is generated
via the condensate of the monopole operator [12]. The solid
state is a kind of Abrikosov lattice of vortices. Similar
considerations have been made in the context of the CP1

model [13], in which the form of the action is identical for
the S-dual theory however the global U(1) and topological
U(1) currents are interchanged. Some analysis of the
corresponding holographic model which involves the
electrically and magnetically charged black holes can be
found in Ref. [12,14]. The instabilities which yield the
bulk condensates were identified. In particular, the crys-
talline phase at the boundary corresponds to the nontrivial
magnetic condensate in the bulk. Another example con-
cerns the mapping between the BCS model at large
chemical potentials and Gross-Neveu model in strong
external magnetic field [15], Table II.
In this paper, we go one step further and consider the S-

duality action on a holographic p-wave superconductor. In
a p-wave superconductor, the order parameter is vectorlike
since Cooper pairing occurs in the L ¼ 1 state. There are
two different holographic models of p-wave superconduc-
tivity [16–20]: a model with the SU(2) gauge group
[16–19] and an Abelian bulk model with additional vector
mesons [20]. We shall discuss the bulk SU(2) approach [16]
and search for the S-duality action in the bulk theory and
what it implies in the dual 2þ 1-dimensional boundary
theory. We shall argue that, looking at the particular
solutions to the bulk equation of motion for the condensate

TABLE I. Mapping between the BCS and magnetic catalysis
models.

MC BCS

ð3þ 1Þd → ð1þ 1Þd inx − space ð1þ 1Þd inp − space

LLL and ε ¼ 0 surface Fermi surface ε ¼ μ

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2jehjn

p
ε ¼ p − pF, p ¼

ffiffiffiffiffi
p⃗2

p
Excitonic∶ Δ ∼Ghψ̄ψi SC∶ Δ ∼ Ghψψi
Δ ∼

ffiffiffiffiffi
eh
p

expð− const
Gν0
Þ Δ ∼ μ expð− const

GνF
Þ

ν0 is DOS at ε ¼ 0 νF is DOS at ε ¼ μ

h enhances, μ destroysΔ μ enhances, h destroysΔ
δΩ ∼ hðμ2 − Δ2

2
Þ δΩ ∼ μ2ðδμ2 − Δ2

2
Þ

h ≫ μ;Δ μ ≫ δμ;Δ
It can have μ ¼ 0 It can have h ¼ 0

Tc grows with h ðMCÞ Tc decreases with h

Tc decreases with μ Tc grows with μ ðSCÞ

1In most holographic systems, the Uð1Þ symmetry, which gets
broken in the superconducting phase, is actually a global Uð1Þ
which was ungauged during the process of holographic renorm-
alization. During this process, the UV cutoff is taken to infinity,
and gauge symmetries become global. Nevertheless, the physics
of the broken state more closely resembles a superconductor than
a superfluid, as it e.g. admits a dynamically generated gap.
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and the U(1) part of the SU(2) gauge field in the back-
ground of the charged black hole (BH) in AdS4, some
general claims concerning the S-duality for the p-wave
superconductor can be made. In particular, we will show
that in order to define the S-duality a dual “magnetic”
chemical potential has to be introduced. It will also be
demonstrated that there is a relation between the conduc-
tivities in the S-dual theories similar to the one found in
holographic models with Abelian bulk fields [6–8]. The
vector order parameter is mapped onto the pseudovector of
the dual SU(2) field strength under the S-duality transform.
In low-energy QCD, the analog of p-wave supercon-

ductivity occurs at nonvanishing isotopic chemical
potential [21–24] where the vector mesons condense.
Holographic QCD models like [25] include a non-
Abelian flavor gauge theory in the dual 4þ 1 bulk
geometry, and hence it is natural to ask whether it is
possible to define a kind of S-duality transform in the dual
bulk theory which then induces an S-duality action in the

dual low-energy QCD at the boundary. To this aim, we
conjecture that the proper S-dual pair in 4þ 1 bulk is the
isotopic U(1) and the topological U(1) symmetries gen-
erated by the topologically conserved current. At the 3þ 1
boundary, this pair corresponds to the isotopic and baryonic
global charges. Therefore, it is natural to conjecture that
the flavor S-duality interchanges the low-energy QCD with
isotopic and baryonic chemical potentials correspondingly.
We give several consistency arguments in favor of this
conjecture.
The paper is organized as follows. In Sec. II, we consider

the holographic p-wave superconductor and construct its
S-dual in the dual asymptotically AdS4 space-time. In
Sec. III, we solve the equations of motion numerically and
check that the solutions satisfy the duality relations close to
the phase transition. In Sec. IV, we speculate on a possible
S-duality relation for low-energy QCD with isotopic and
baryonic chemical potentials. We conclude and discuss our
findings in Sec. V. In the Appendixes, we prove SLð2; ZÞ
invariance of the SU(2) symmetric axiodilaton-Yang-Mills
action and review the p-wave superconductor in the
five-dimensional setting.

II. p-WAVE SUPERCONDUCTOR
AND ITS S-DUAL

A. Equations of motion

We base our consideration of the p-wave superconductor
on the electric-magnetic duality for the non-Abelian gauge
fields in four dimensions [18]. In full analogy to the U(1)
gauge field case, we show the SL(2,Z) invariance of the
Einstein-Maxwell action with the SU(2) gauge fields which
are coupled to an axion and a dilaton field in Appendix A.
The gauge-gravity action coupled to an axiodilaton is

Sϕ;χ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g
p �

1

2κ2

�
R − 2Λþ 1

2
ð∂μϕ∂μϕþ e2ϕ∂μχ∂μχÞ

�
þ 1

4
e−ϕFμνFμν −

1

4
χFμν � Fμν

�
; ð2Þ

where the scalar fields are dilaton ϕ and axion χ and the
field strength Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν� with SU(2)
gauge field Aμ ¼ Aa

μτa. The dual field strength is obtained
by applying the Hodge star operation �Fμν ≔ 1

2
ϵμνλρFλρ,

where a completely antisymmetric Levi-Cività tensor ϵμνρλ
has a factor of

ffiffiffiffiffiffi−gp
with g ¼ det gμν extracted and trans-

forms as a tensor and not as a tensor density, and indices are
freely raised and lowered using the metric gμν of which the
signature is Lorentzian ð−þþþÞ. The constant Λ ¼ 3=L2

is the AdS cosmological constant, and κ2 ¼ 8πG is New-
ton’s constant. The weak curvature means κ2=L2 ≪ 1. The
relation to the gauge coupling g and the θ-angle is

e−ϕ ¼ 1

g2E
¼ 1

g2
; χ ¼ 1

g2B
¼ θ; ð3Þ

where subscripts E and B stand for the electric and
magnetic parts. Therefore, weak coupling corresponds to
eϕ ≪ 1. The S-operator acts on the axiodilaton as

τ → ~τ ¼ −
1

τ
: ð4Þ

We restrict ourselves to the vanishing axion field

χ ¼ 0: ð5Þ
According to Eq. (4) and the definition of τ ¼ χ þ ie−ϕ, the
axion field is not generated by the S-duality transformation. In
this case, the S-operator acts on the gauge field strength as

Fa
μν → ~Fa

μν ¼ −e−ϕ � Fa
μν: ð6Þ

TABLE II. Mapping between the BCS and magnetic catalysis
models in the gravity dual description.

Holographic MC Holographic SC

dyonic AdS RN BH, AdS RN BH

Schwarzschild BH

jHj > jQj jQj > jHj
it can beQ ¼ 0 it can beH ¼ 0

Z2ðchiral SBÞ broken Uð1Þ broken
magnetic field enhances it magnetic field destroys it

electric field destroys it electric field enhances it

Callan − Rubakov effect dual Callan − Rubakov effect
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Equations (4), (6) express a familiar electric-magnetic duality
where the field strength transforms into a Hodge-dual one and
the coupling transformation is g2 → 1

g2 and therefore theweak-
strong coupling regimes are interchanged. Electric-magnetic
duality exists only in (3þ 1) dimensions where a 2-form Fμν

is dual to a two form again ⋆Fμν, as opposed for example
to (4þ 1) dimensions where a 2-form is dual to a 3-form.
In (3þ 1) dimensions, the Hodge-dual is defined as
⋆F ¼ ffiffiffiffi−gp

4
ϵμνρσFρσdxμ ∧ dxν [26,27].

We start with the holographic p-wave superconductor
introduced by Gubser et al. [16]. It constitutes the electric
side (E side) of the duality. We will work in the four-
dimensional space, in the background of a Reissner-
Nordström black hole with asymptotic AdS4 in the UV,
but for now, we write a general metric,

ds2 ¼ −gttðzÞdt2 þ gzzðzÞdz2 þ gxxðzÞdx2 þ gyyðzÞdy2;
ð7Þ

without off-diagonal terms because we restrict ourselves to
the probe limit. The non-Abelian SU(2) gauge field has the
following components [16],

AðzÞ ¼ A3
t ðzÞτ3dtþ A1

xðzÞτ1dx; ð8Þ

where A3
t plays the role of the chemical potential and A1

x
is the component which condenses at Tc and leads to
spontaneous symmetry breaking and superconductivity.
The field strengths obtained with these two components
of vector potential (15) are

F3
zt ¼ ∂zA3

t ; ð9Þ

F1
zx ¼ ∂zA1

x; ð10Þ

F2
tx ¼ A3

t A1
x; ð11Þ

and we do not write other components such as F3
zt ¼ −F3

tz.
Performing the S-duality transformation (4) and (6), we
obtain the magnetic side (B side) of the duality,

~F3
xy ¼ −

1

g2

ffiffiffiffiffiffi−gp
gttgzz

F3
zt; ð12Þ

~F1
ty ¼ −

1

g2

ffiffiffiffiffiffi−gp
gzzgxx

F1
zx; ð13Þ

~F2
zy ¼ −

1

g2

ffiffiffiffiffiffi−gp
gttgxx

F2
tx: ð14Þ

If we add the magnetic field to the p-wave superconductor

AðzÞ ¼ A3
t ðzÞτ3dtþ ðA1

xðzÞτ1 þ A3
xðy; zÞτ3Þdx; ð15Þ

one more duality relation can be written,

~F3
zt ¼ −

1

g2

ffiffiffiffiffiffi−gp
gxxgyy

F3
xy; ð16Þ

that makes the system of Eqs. (12)–(14) and (16) closed and
symmetric in terms of the gauge field components on the
two sides of the duality. Here, the tilde field strength on
the B side (12)–(14), (16) has complimentary components
to the one on the E side, g ¼ 1

~g, and the Yang-Mills coupling
g should not be confused with the determinant of the metricffiffiffiffiffiffi−gp

. The metric factor arises from using the following
convention for Levi-Cività tensor ϵ1234 ¼ 1ffiffiffiffi−gp , ϵ1234 ¼
− ffiffiffiffiffiffi−gp

with g≡ det gμν, where the lifting/lowering of
indices is done as usual, for example ϵijklg1ig2jg3kg4l ¼
−ϵ1234 and ϵ1234ϵ1234 ¼ −4! ¼ −24; therefore, for exam-
ple ϵxyzt ∼

ffiffiffiffiffiffi−gp
=

ffiffiffiffiffiffiffiffiffiffiffi
gttgzz
p

.
In order to find the field content in the S-dual frame, we

need to use explicit solutions of Yang-Mills equations in
the electric frame. We do not know these solutions in the
condensed phase. However, we can look at two asymptotic
behaviors of the fields: AdS4 expansion in the UV and
AdS2 expansion in the IR throat of the Reissner-Nordström
(RN)-AdS geometry. As a result, we obtain the following
field components on the magnetic side,

~Aðx; zÞ ¼ ~A3
t ðzÞτ3dtþ ð ~A2

yðzÞτ2 þ ~A3
yðx; zÞτ3Þdy; ð17Þ

that we explain further. Therefore, the field strengths are
given by

~F3
xy ¼ ∂x

~A3
y; ð18Þ

~F1
ty ¼ − ~A3

t
~A2
y; ð19Þ

~F2
zy ¼ ∂z

~A2
y; ð20Þ

that we use in the duality relations (12)–(14). Performing
the necessary substitutions, the duality relations can be
written as

∂x
~A3
y ¼

1

g2

ffiffiffiffiffiffi−gp
gttgzz

∂zA3
t ; ð21Þ

∂zA1
x ¼

1

~g2
gzzgxxffiffiffiffiffiffi−gp ~A3

t
~A2
y; ð22Þ

∂z
~A2
y ¼ −

1

g2

ffiffiffiffiffiffi−gp
gttgxx

A3
t A1

x; ð23Þ

where g ¼ 1=~g. When the magnetic field is added to the
p-wave superconductor (15), an additional duality relation
is written:
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∂yA3
x ¼ −

1

~g2
gxxgyyffiffiffiffiffiffi−gp ∂z

~A3
t : ð24Þ

In what follows, we show that Eqs. (21) and (24) map the
magnetic field to the charge density on the opposite side of
duality and Eqs. (22) and ((23) relate the v.e.v.s and the
sources on the electric and magnetic sides. Therefore,
Eqs. (22) and (23) are the duality relations for the
condensates in the electric and magnetic systems.
The gauge fields which satisfy the equations of motion

(EOM) should also satisfy the duality relations. EOM are
invariant under the S-duality transformations. Next, we
summarize the equations of motion on the electric and
magnetic sides of the duality. The Yang-Mills equation for
the non-Abelian SU(2) gauge fields is

∇μFaμν ¼ −ϵabcAb
μFcμν; ð25Þ

which becomes for the gauge field components A3
t ðzÞ and

A1
xðzÞ from Eq. (15) on the electric side,

1ffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgtt

F3
zt

�
¼ −

1

gttgxx
A1
xF2

xt; ð26Þ

1ffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgxx

F1
zx

�
¼ 1

gttgxx
A3
t F2

tx; ð27Þ

respectively, with g≡ det g, and the metric notation is
given by Eq. (7). Equations of motion on the electric side,
Eqs. (27), are written explicitly:

∂2
zA3

t þ
gzzgttffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgtt

�
∂zA3

t −
gzz
gxx
ðA1

xÞ2A3
t ¼ 0; ð28Þ

∂2
zA1

x þ
gzzgxxffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgxx

�
∂zA1

x −
gzz
gtt
ðA3

t Þ2A1
x ¼ 0: ð29Þ

The Yang-Mills equations (25) are written for the gauge
field components ~A3

yðz; xÞ, ~A3
t ðzÞ, and ~A2

yðzÞ (17) on the
magnetic side,

1ffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgyy

~F3
zy

�
¼ 0; ð30Þ

1ffiffiffiffiffiffi−gp ∂x

� ffiffiffiffiffiffi−gp
gxxgyy

~F3
xy

�
¼ 0; ð31Þ

1ffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gttgzz

~F3
zt

�
¼ 1

gttgyy
~A2
y
~F1
yt; ð32Þ

1ffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgyy

~F2
zy

�
¼ −

1

gttgyy
~A3
t
~F1
ty; ð33Þ

with the metric given by Eq. (7). Equations of motion on
the magnetic side become

∂2
z
~A3
y þ

gzzgyyffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgyy

�
∂z

~A3
y ¼ 0; ð34Þ

∂2
x
~A3
y þ

gxxgyyffiffiffiffiffiffi−gp ∂x

� ffiffiffiffiffiffi−gp
gxxgyy

�
∂x

~A3
y ¼ 0; ð35Þ

∂2
z
~A3
t þ

gttgzzffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gttgzz

�
∂z

~A3
t −

gzz
gyy
ð ~A2

yÞ2 ~A3
t ¼ 0; ð36Þ

∂2
z
~A2
y þ

gzzgyyffiffiffiffiffiffi−gp ∂z

� ffiffiffiffiffiffi−gp
gzzgyy

�
∂z

~A2
y −

gzz
gtt
ð ~A3

t Þ2 ~A2
y ¼ 0: ð37Þ

We are able to find analytic solutions of the equations of
motion in the two limiting cases, near the boundary and
around the horizon of the black hole at small temperatures.
Then, we verify that the duality relations are satisfied by
these solutions. In what follows, we outline the asymptotic
behavior of the AdS-Reissner-Nordström black hole met-
ric. The AdS-RN black hole in (3þ 1) dimensions is

ds2 ¼ r2

R2
ð−fdt2 þ dx2 þ dy2Þ þ R2

r2
dr2

f
; ð38Þ

f ¼ 1þ 3r4⋆
r4

−
r30 þ 3r4⋆=r0

r3
; ð39Þ

where the electric charge of the black hole is q ¼ ffiffiffi
3
p

r2⋆,
and At ¼ μ

r with μ ∼ q, and the radius of the black hole
horizon is r0, fðr0Þ ¼ 0.
In the UV, r → ∞, the redshift factor f ≈ 1, and the

metric becomes asymptotically AdS4,

ds2 ¼ r2

R2
ð−dt2 þ dx2 þ dy2Þ þ R2

r2
dr2; ð40Þ

with the radius R. Introducing z ¼ R2

r , we have

ds2 ¼ R2

z2
ð−dt2 þ dx2 þ dy2 þ dz2Þ: ð41Þ

In the IR, near the black hole horizon r → r0, and at low
enough temperatures T=μ ≪ 1, the redshift factor has the
double zero,

f ≈ 6
ðr − r⋆Þ2

r2⋆

�
1 −
ðr0 − r⋆Þ2
ðr − r⋆Þ2

�
; ð42Þ

where the expansion is carried out in two small parameters
ðr − r⋆Þ=r⋆ ≪ 1 and ðr0 − r⋆Þ=r⋆ ≪ 1. Due to the double
zero, the metric has the AdS2 behavior with a small
correction ∼ðr0 − r⋆Þ2,
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ds2 ¼−
ðr− r⋆Þ2

R2
2

�
1−
ðr0− r⋆Þ2
ðr− r⋆Þ2

�
dt2

þ R2
2

ðr− r⋆Þ2ð1− ðr0−r⋆Þ
2

ðr−r⋆Þ2 Þ
dr2þ r2⋆

R2
ðdx2þdy2Þ; ð43Þ

with the radius R2 ¼ Rffiffi
6
p . In extremal case, T ¼ 0, the

two radii coincide r0 ¼ r⋆, and the correction ∼ðr0 − r⋆Þ2
vanishes. Introducing z ¼ R2

2

r−r⋆ and z0 ¼ R2
2

r0−r⋆, we have the
leading AdS2 behavior near the horizon at small temper-
atures T ¼ 1

2πz0
≪ 1,

ds2 ¼−
R2
2

z2

�
1−

z2

z20

�
dt2þ R2

2

z2ð1− z2

z2
0

Þdz
2þ r2⋆

R2
ðdx2þdy2Þ;

ð44Þ

where the correction ∼z2=z20 to the AdS2 geometry is due to
the small but nonzero temperature. In what follows, we use
the two limiting cases with the metric given by Eqs. (41)
and (44) to solve EOM for the gauge fields and to test the
duality conditions.

B. UV asymptotics: AdS4

First, we consider the UV limit with pure AdS4 metric
(41) at small z ∼ 0,

ds2 ¼ R2

z2
ð−dt2 þ dz2 þ dx2 þ dy2Þ; ð45Þ

where R is the AdS radius.
A known analytic solution of Einstein and Yang-Mills

equations is the AdS RN black hole with the electric charge
q, where the vector field is A3

t ¼ μ − qz and A1
x ¼ 0. There

is another solution, a hairy RN black hole, which describes
a condensed phase and becomes preferable in some
parameter range. There, the metric and the behavior of
the scalar potential A3

t are modified mainly in the IR region
by the vector potential A1

x which acquires a radial profile.
However, an asymptotic form of the solutions near the AdS
boundary remains unchanged to the leading order. Yang-
Mills equations in the AdS4 are

∂2
zA3

t þ ðA1
xÞ2A3

t ¼ 0; ð46Þ
∂2
zA1

x þ ðA3
t Þ2A1

x ¼ 0: ð47Þ
Therefore, we can write the following asymptotic behavior
near the AdS boundary in the probe limit,

A3
t ¼ μ − qzþOðz2Þ; ð48Þ

A1
x ¼ að0Þx þ að1Þx zþOðz2Þ; ð49Þ

where we can read off according to the AdS=CFT dic-
tionary the physical terms of the boundary conformal field

theory (CFT). In CFT terms, μ is the Uð1Þ3 chemical
potential, and q is the electric charge density. From the
asymptotic expansion of the vector potential, the AdS=CFT
dictionary says that in the condensed phase where Uð1Þ3 is
spontaneously broken, the source term is zero að0Þx ¼ 0 and

the condensate is given by the v.e.v. að1Þx ≠ 0, and in the

normal phase, að1Þx ¼ 0 and að0Þx ≠ 0.

In the normal phase, að1Þx ¼ 0, from Eqs. (12)–(14), the
only nonvanishing component of the field strength ~Fμν in
the magnetic frame is

~F3
xy ¼ −q ¼ const; ð50Þ

where we absorbed the coupling into redefining the
solution A3

t . Therefore, the S-dual of the Uð1Þ3 charged
black hole is a state with Uð1Þ3 magnetic field,

~A3
y ¼ −qx: ð51Þ

This result probably holds for a backreacted solution.

In the condensed phase, að1Þx ≠ 0, the dual field strengths
are from Eqs. (12)–(14):

~F3
xy ¼ −qþOðzÞ; ð52Þ

~F1
ty ¼ ~g2að1Þx þOðzÞ; ð53Þ

~F2
zy ¼ ~g2að1Þx μzþOðz2Þ: ð54Þ

In order to see which operators are switched on in the
S-dual frame, we need to find the gauge field ~Aa

μ corre-
sponding to the field strength given by Eqs. (52)–(54). We
work in the radial gauge

~Aa
z ¼ 0; ð55Þ

with a ¼ 1, 2, 3. In Eq. (52), the field strength ~F3
xy,

~F3
xy ¼ ∂x

~A3
y ¼ −q ~A3

y ¼ −qx; ð56Þ
is easily integrated to give

~A3
y ¼ −qx; ð57Þ

which yields the magnetic field perpendicular to the ðx; yÞ-
plane with CFT. In order to integrate ~F1

ty, we assume a
stationary condition, ∂tð…Þ ¼ 0, and no breaking of
homogeneity in ðx; yÞ directions: no 1=x, 1=y terms in
the potential ~Aa

μ. This yields

~F1
ty ¼ ∂t

~A1
y − ∂y

~A1
t þ ð ~A2

t
~A3
y − ~A3

t
~A2
yÞ ¼ ~g2að1Þx ¼ const:

ð58Þ
Here, the first term is forbidden by stationarity. The second
term is zero; otherwise, ~A1

t ∼ y and the field strength
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~F2
ty ∼ − ~A1

t
~A3
y ∼ xy will be induced. Solving for the third

term, it would need ~A2
t ∼ −~g2að1Þx =qx, and hence it would

break homogeneity, ~F2
tx ∼ 1=x2. Therefore, only the fourth

term is left:

~A3
t
~A2
y ¼ −~g2að1Þx : ð59Þ

Equation (59) can be solved if a new chemical potential ~μ is
introduced,

~A3
t ¼ ~μþOðzÞ; ð60Þ

~A2
y ¼ −

~g2að1Þx

~μ
: ð61Þ

We see that ~A2
y explicitly breaks Uð1Þ3 and SOð2Þ spacial

rotations. Integrating the last field strength in Eq. (54) gives

~F2
zy ¼ ∂z

~A2
y − ∂y

~A2
z − ð ~A1

z
~A3
y − ~A3

z
~A1
yÞ ¼ ~g2að1Þx μz: ð62Þ

Here, only the first term is nonzero; three other terms are
zero due to the gauge condition ~Aa

z ¼ 0 (55). Therefore, the
duality condition is

∂z
~A2
y ¼ ~g2að1Þx μz; ð63Þ

that means the small z expansion of ~A2
y starts with ∼z2 and

there is no linear term ∼z.
Summarizing the duality conditions, we have

∂x
~A3
y ¼ ~g2∂zA3

t ; ð64Þ

∂zA1
x ¼ −

1

~g2
~A3
t
~A2
y; ð65Þ

∂z
~A2
y ¼

1

g2
A3
t A1

x; ð66Þ

and when the magnetic field is added to the E side,

∂yA3
x ¼ −g2∂z

~A3
t : ð67Þ

Here, Eqs. (64) and (67) relate magnetic fields and charge
densities, and Eqs. (65) and (66) relate condensates and
sources between the two sides of the duality. To see the
latter, we write an expansion for the gauge fields:

A1
x ¼ að0Þx þ að1Þx zþ � � � ; ð68Þ

~A2
y ¼ ~að0Þy þ ~að1Þy zþ � � � : ð69Þ

From the duality condition in Eqs. (59) and (65), we obtain
the relation between the condensates, which are the v.e.v.s,

~að0Þy ¼ −
~g2að1Þx

~μ
; ð70Þ

with ~g ¼ 1=g. From the duality condition in Eqs. (63) and
(66), we obtain the relation for the sources

að0Þx ¼ ~að1Þy ¼ 0; ð71Þ

which are switched off. The duality relations (70) and (71)
confirm that the source and the v.e.v. are interchanged
by the S-duality transformation. In the expansion (69), the
source is the leading and the v.e.v. is the subleading term on
the electric side, while the source is the subleading and the
v.e.v. is the leading term on the magnetic side. Note that the
duality relations for the condensates and v.e.v.s, as well as
for the magnetic fields generated by the charge densities,
can be obtained from one another by replacing tilde
variables to nontilde ones and vice versa. They are direct
and inverse S-duality transformations. The minus sign
reflects that the matrix S2 ¼ −1; when the S-duality is
applied twice, it gives a minus sign.
We summarize the components of the vector potential for

the p-wave superconductor and its S-dual in the asymptotic
AdS4 space (small z) in Table III. The left panel represents
the standard p-wave superconductor, and the right panel is
for the case when a magnetic field is added.
In Table III, the Uð1Þ3 charge density in the p-wave

superconductor maps to the magnetic field in the S-dual
frame (left panel) and vice versa the magnetic field in the
p-wave superconductor setting maps to the charge density
in the dual frame (right panel).
As discussed in Refs. [1,28], performing the S-dual

transformation on the Abelian gauge theory in the AdS4
bulk corresponds to imposing two boundary conditions:
Dirichlet (standard) on the electric side and Neumann
(modified) on the magnetic side. There is some additional
effort in extrapolating the results for the Abelian theory,
where the Dirichlet and Neumann boundary conditions are
simply exchanged under S-duality, to the non-Abelian case

TABLE III. Components of the gauge field for the p-wave
superconductor and its S-dual in the AdS4. The left table
represents the standard holographic p-wave superconductor,
and the right panel is when a magnetic field is added.

E side B side

~A3
y ¼ −qx

A3
t ¼ μ − qz ~A3

t ¼ ~μ − ~qz

A1
x ¼ að1Þx z ~A2

y ¼ − ~g2að1Þx
~μ

E side B side

A3
x ¼ ~qy ~A3

y ¼ −qx
A3
t ¼ μ − qz ~A3

t ¼ ~μ − ~qz

A1
x ¼ að1Þx z ~A2

y ¼ − ~g2að1Þx
~μ
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[28]. However, in the p-wave superconductor and in its
S-dual, the SUð2Þ symmetry is broken down to Uð1Þ3 by
the chemical potential in the third color direction, and
formation of condensates happens in the Abelian subgroup.
The two boundary conditions are characterized in terms of
the fall-off conditions of the gauge field near the boundary:
when the leading/subleading term is fixed while the
subleading/leading term is allowed to fluctuate gives
Dirichlet/Neumann boundary conditions [28]. As is famil-
iar from AdS=CFT, in the standard quantization (Dirichlet
b.c.), the leading behavior acts as a source for the conserved
current operator, and the subleading behavior gives a v.e.v.
provided the source is switched off. In the modified
(alternative) quantization (Neumann b.c.), the roles of
the source and v.e.v. are interchanged [29]. Therefore, as

the expectation value hað1Þx i is the superconducting con-

densate, in the S-dual frame, we associate h~g2að1Þx =~μi with
the magnetic condensate, Table III.
We can speculate about the physical meaning of a new

chemical potential ~μ in the S-dual frame. Depending on the
context, it may reflect the density of magnetic monopoles.
On the electric side, the conserved quantity of the boundary
theory (conserved current Jμ) corresponds to electric
charge in the bulk. On the S-dual side, the net magnetic
charge corresponds to a conserved quantity in the boundary
theory [1] (while the corresponding current vanishes at
every point hJμi ¼ 0). The difference also arises in CFTs
that there are states charged under the global gauge group
on the E side and therefore the Goldstone modes are
produces as this symmetry is broken, while on the B side,
there is a Gauss law instead, and no Goldstone modes arise.
There is the following pattern of breaking the non-

Abelian gauge group and the spacial ðx; yÞ rotational
symmetry in the p-wave superconductor,

SUð2Þ!A
3
t Uð1Þ3!

A1
x nothing; ð72Þ

SOð2Þ!A
3
t SOð2Þ!A

1
x nothing; ð73Þ

where the chemical potential μ, which is introduced by the
boundary value of the component A3

t , breaks the SUð2Þ
symmetry down to the diagonal subgroup Uð1Þ which is
generated by τ3. In order to study the transition to the
superconducting state, we allow solutions with nonzero
hJ1xi and therefore the nonzero dual gauge field A1

x. This
solution breaks not only color Uð1Þ but also the spacial
rotations SOð2Þ. The symmetry breaking pattern for the
S-dual of a p-wave superconductor is

SUð2Þ !
~A3
y; ~A

3
t
Uð1Þ3!

~A2
y
nothingðup to discreteÞ; ð74Þ

SOð2Þ !
~A3
y; ~A

3
t
SOð2Þ!

~A2
y
nothingðup to discreteÞ; ð75Þ

where the magnetic field present through the gauge field
~A3
y ∼ x breaks the non-Abelian gauge group SUð2Þ down to

the diagonal subgroup Uð1Þ, but it does not break (2þ 1)-
dimensional rotations SOð2Þ. The superconducting phase
with Ax

1 maps to the S-dual state with a nonzero v.e.v. of an
operator with gravity dual ~A2

y, while normal phases describe
CFTs at nonzero density and nonzero magnetic field.
There is a spontaneous breaking of Uð1Þ3 symmetry by

the corresponding v.e.v. in both the p-wave SC and its
S-dual.
We can consider properties of the condensate with

respect to discrete symmetries. In the parity transformation,
either one or three coordinates change the sign. We adopt
the former:

P∶ x → −x; y → y; z → z; t → t: ð76Þ

We summarize properties of the p-wave superconductor
and its S-dual with respect to the parity transformation in
Table IV.
From Eq. (76), the components of the vector potential

A3
t ; ~A

3
t ; ~A

2
y; ~A

3
y are P even, and only A1

x is P odd. Also, the
ϵ-symbol in the S-duality transformation changes the
parity, that should be taken into account for the components
~A2
y; ~A

3
y calculated as the S-dual, as opposed to introducing

~A3
t . Indeed, the magnetic field in the S-dual frame is B ∼ ϵq

which is P odd and C odd.
On the E side, the p-wave superconducting condensate

is a vector, while on the B side, the condensate is a
pseudovector.
Next, we check that the gauge fields given in Table III,

which are solutions of equations of motion, satisfy the
duality relations (64)–(66). Equations of motion on the
electric side are given in Eqs. (46) and (47). Equations of
motion on the magnetic side are

∂2
z
~A3
y ¼ ∂2

x
~A3
y ¼ 0; ð77Þ

∂2
z
~A3
t þ ð ~A2

yÞ2 ~A3
t ¼ 0; ð78Þ

∂2
z
~A2
y þ ð ~A3

t Þ2 ~A2
y ¼ 0: ð79Þ

To the leading order in small z, the gauge field components

A3
t , ~A

3
t (chemical potentials) and ~A3

y (magnetic field) satisfy
EOM and the first duality condition (64). For the gauge

TABLE IV. Properties of the p-wave superconductor and its
S-dual under the parity transformation.

E side B side

μ q að1Þx ~μ ~q ~g2að1Þx
~μþ þ − þ þ þ
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field components A1
x, ~A2

y (condensates), we have the
following EOM in the probe limit,

A00 þ μ2A ¼ 0; ð80Þ
~A00 þ ~μ2 ~A ¼ 0; ð81Þ

and the duality conditions (65) and (66),

1

g2
A0 ¼ ~μ ~A; ð82Þ

1

~g2
~A0 ¼ −μA; ð83Þ

where we omitted the spacial and the SUð2Þ gauge group
indices, A1

x ≡ A and ~A2
y ≡ ~A, and ∂zA≡ A0. Solutions of

the EOM are

A ∼ sin μz; ~A ∼ cos ~μz; ð84Þ
because A and ~A satisfy the Dirichlet and Neumann
boundary conditions, respectively, and the sources are
switched off; Að0Þ ¼ 0 and ~A0ð0Þ ¼ 0. Indeed, the solu-
tions sinðμzÞ and cosð~μzÞ with the appropriate choice of
constants of integration satisfy the duality conditions (82)
and (83). These constants of integration define the con-
densates on electric and magnetic sides.

C. IR asymptotics: AdS2

Next, we consider the IR limit with AdS2 × R2 metric
(44) at large z → ∞,

ds2¼R2
2

z2

�
−
�
1−

z2

z20

�
dt2þ dz2

1− z2

z2
0

�
þ r2⋆
R2
ðdx2þdy2Þ; ð85Þ

where z is large. Again, we check that the gauge field
solutions of EOM satisfy the duality constraints. Equations
of motion on the electric side are

∂2
zA3

t þ
2

z
∂zA3

t −
R4

6r2⋆
ðA1

xÞ2A3
t

z2ð1 − z2

z2
0

Þ ¼ 0; ð86Þ

∂2
zA1

x −
2z

z20ð1 − z2

z2
0

Þ ∂zA1
x þ
ðA3

t Þ2A1
x

ð1 − z2

z2
0

Þ2 ¼ 0; ð87Þ

and EOM on the magnetic side are

∂2
z
~A3
y −

2z

z20ð1 − z2

z2
0

Þ ∂z
~A3
y ¼ 0; ð88Þ

∂2
x
~A3
y ¼ 0; ð89Þ

∂2
z
~A3
t þ

2

z
∂z

~A3
t −

R4

6r2⋆
ð ~A2

yÞ2 ~A3
t

z2ð1 − z2

z2
0

Þ ¼ 0; ð90Þ

∂2
z
~A2
y −

2z

z20ð1 − z2

z2
0

Þ ∂z
~A2
y þ
ð ~A3

t Þ2 ~A2
y

ð1 − z2

z2
0

Þ2 ¼ 0; ð91Þ

where z=z0 ≪ 1 is a small correction due to a small but
nonzero temperature T ¼ 1

2πz0
. The EOM for the condensate

components A1
x and ~A2

y are the same. We look for the two
solutions of EOM which satisfy different boundary con-
ditions. The duality relations that connect the electric and
magnetic sides are

∂x
~A3
y ¼ −

1

g2
6r2⋆
R4

z2∂zA3
t ; ð92Þ

∂zA1
x ¼ −

1

~g2ð1 − z2

z2
0

Þ
~A3
t
~A2
y; ð93Þ

∂z
~A2
y ¼ −

1

g2ð1 − z2

z2
0

ÞA
3
t A1

x: ð94Þ

To the leading order in Oð1=zÞ, solutions for the temporal
components in the probe limit are

A3
t ¼

μ

6z

�
1 −

z
z0

�
; ~A3

t ¼
~μ

6z

�
1 −

z
z0

�
; ð95Þ

with ∂zA3
t ¼ − μ

6z2. It produces the duality relation (92)

∂x
~A3
y ¼

r2⋆
g2R4

μ; ð96Þ

that gives the magnetic field perpendicular to the ðx; yÞ
plane,

~A3
y ¼

r2⋆
g2R4

μx: ð97Þ

Using solutions for the temporal components (95), EOM
for the condensate components are

A00 −
2zA0

z20ð1 − z2

z2
0

Þ þ
�
μ

6

�
2 A
z2ð1þ z

z0
Þ2 ¼ 0; ð98Þ

~A00 −
2z ~A0

z20ð1 − z2

z2
0

Þ þ
�
~μ

6

�
2 ~A
z2ð1þ z

z0
Þ2 ¼ 0; ð99Þ

and the duality relations (93) and (94) are

A0 ¼ 1

~g2
~μ

6zð1þ z
z0
Þ
~A; ð100Þ
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~A0 ¼ 1

g2
μ

6zð1þ z
z0
ÞA; ð101Þ

where we omitted the space and group indices, A1
x ≡ A and

~A2
y ≡ ~A, and ∂zA≡ A0. Solutions of EOM in the leading

order of Oð1=zÞ and Oðz=z0Þ are

A ∼
1

z

�
1þ z

z0

�
þO

�
1

z2

�
; ð102Þ

~A ∼
1

z

�
1þ z

z0

�
þO

�
1

z2

�
: ð103Þ

Because A0 ∼ − 1
z2, these solutions satisfy the duality

relations (100) and (101) in each order of perturbation
theory in 1=z.
Thus, we showed analytically that in the UV and IR

limits, solutions of the EOM on electric and magnetic sides
are related by the duality conditions. In the next section, we
solve the EOM and check the duality constraint in the
holographic bulk numerically.

III. NUMERICAL SOLUTIONS AND DUALITY
MAPPING BETWEEN THEM

In Sec. II, we demonstrated the SLð2; ZÞ invariance
on the level of the non-Abelian SUð2Þ action. Also, we
demonstrated the S-duality for the equations of motion
in the asymptotic UV and IR regimes. In general, the
S-duality cannot be traced at the EOM level due to the
covariant derivative that introduces the gauge field instead
of the field strength for which the duality relation is written.
Therefore, we solve the EOM directly and show that the
physical solutions on different sides are connected by the
S-duality relation.
We look for the nontrivial solutions of EOM describing

the condensates: A1
x in Eq. (29) on the electric side and ~A2

y

in Eq. (37) on the magnetic side. The gauge fields A1
x and

~A2
y satisfy the same equations. Therefore, we will be

looking for two nontrivial condensate solutions of one
EOM. As shown in Sec. II, one imposes for the solutions on
the E and B sides two different UV boundary conditions,
Dirichlet and Neumann b.c., respectively. This situation is
known to arise in the holographic superconductor that is
built using the bulk scalar field (the s-wave holographic
superconductivity) [30–33] and in the Sakai-Sugimoto
model [34]. In the former case, one obtains a “standard”
hairy solution at a threshold charge density, i.e. for μ ≥ μc,
using the Dirichlet b.c. (standard quantization). Also a
“new” instability occurs at small charge density—scalar
hair, with Neumann b.c. (alternative quantization) [30,31].
In the literature, different explanations are given to
what causes a new instability [30–33]. Here, we will find
two types of instabilities in the holographic p-wave

superconductor. However, contrary to AdS5 where the
analytic solution for the standard p-wave superconductor
is known [35], there is no analytic solution in AdS4, and we
solve it numerically.
We use the metric

ds2 ¼ 1

z2

�
−fdt2 þ dz2

f
þ dx21 þ dx22

�
; ð104Þ

where the redshift factor for the AdS4-Reissner-Nordström
black hole is

f ¼ 1þ q2z4 − ð1þ q2Þz3
¼ ð1 − zÞð1þ zþ z2 − z3q2Þ; ð105Þ

where q is the charge of the black hole, q ¼ ffiffiffi
3
p

r2⋆.
Equation (105) can be obtained from Eq. (39) by rescaling
to make r0 ¼ 1 and R ¼ 1 and changing the variable
r ¼ 1=z. For the extremal black hole T ¼ 0, the redshift
factor develops a double zero near the horizon,

f ¼ 6ð1 − zÞ2; ð106Þ

and the metric reduces to AdS2 × R2. As q ¼ 0, we have
the known metric of the AdS4-Schwarzschild black hole
with the redshift factor [16]

f ¼ 1 − z3 ¼ ð1 − zÞð1þ zþ z2Þ: ð107Þ

In both cases (105), (107), the black hole horizon is at
z ¼ 1, fðz ¼ 1Þ ¼ 0, and the boundary is at z ¼ 0. In this
metric (104), the EOM for the magnetic field component
~A3
y are

∂2
z
~A3
y þ

f0

f
∂z

~A3
y ¼ 0; ð108Þ

∂2
x
~A3
y ¼ 0; ð109Þ

and the duality relation takes the form

∂x
~A3
y ¼

1

g2
∂zA3

t : ð110Þ

EOM and the duality constraint are solved in the probe
limit, A3

t ¼ μð1 − zÞ, and the constant magnetic field
~A3
y ¼ −μx. A nontrivial task is to solve the EOM and

check the duality for the condensate components. In the
metric given by Eq. (104), the EOM for the temporal A3

t

and condensate A1
x gauge field components on the electric

side are

A00t −
ðAxÞ2At

f
¼ 0; ð111Þ
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A00x þ
f0A0x
f
þ ðAtÞ2Ax

f2
¼ 0: ð112Þ

The same system of equations is obtained for the temporal
~A3
t and the condensate ~A2

y components on the magnetic
side. For now, we omit the group indices by the gauge fields
and denote ∂zA≡ A0. In the UV at z ¼ 0, the asymptotic
behavior of the solution is

A ¼ Að0Þ þ zAð1Þ þ � � � : ð113Þ

To obtain a nontrivial condensate solution, we need to
switch off the source. The Dirichlet boundary condition
implies that the leading source term is Að0Þ and the
subleading term Að1Þ is a condensate. For the Neumann
boundary condition, the roles of the source and the v.e.v.
are interchanged; i.e. Að1Þ is the source, and Að0Þ is the
v.e.v.. Therefore, the UV behavior of the two solutions is

Dirichlet ðE sideÞ∶ Að0Þ ¼ 0; A0ðz ¼ 0Þ ¼ Að1Þ ¼ v:e:v:;

ð114Þ

Neumann ðB sideÞ∶ ~Að1Þ ¼ 0; ~Aðz ¼ 0Þ ¼ ~Að0Þ ¼ v:e:v:;

ð115Þ

where we read off the condensates as v.e.v.s on both
sides of duality. The duality conditions for the condensate
components read

A0x ¼
~At
~Ay

~g2f
; ð116Þ

~A0y ¼ −
AtAx

g2f
; ð117Þ

that relates the solutions of the EOM on the electric and
magnetic sides A1

x and ~A2
y with each other. In what follows,

we consider the probe limit, where solutions for the
temporal gauge components read

At ¼ μð1 − zÞ; ~At ¼ ~μð1 − zÞ: ð118Þ

Next, we check the asymptotic regimes in the UV and IR
analytically. In the UV, at z ¼ 0, the redshift factor is f ¼ 1
for the AdS-RN and the Schwarzschild black holes, and
thus it is asymptotically an AdS4 metric. Therefore, the
asymptotic EOM and the asymptotic duality relations are

z ∼ 0∶ A00x þ μ2Ax ¼ 0; ~A00y þ ~μ2 ~Ay ¼ 0; ð119Þ

A0x ¼
~μ

~g2
~Ay; ~A0y ¼ −

μ

g2
Ax; ð120Þ

solved by

Ax ∼ sinðμzÞ; ~Ay ∼ cosð ~μzÞ: ð121Þ

One can also express, using the duality relation, the dual
field ~A on the B side through the original one A on the E
side and substitute it in the EOM, to make sure that the
EOM are satisfied. In the IR, at z ¼ 1, and at small
temperatures, the redshift factor for an AdS-RN black hole
is f ¼ 6ð1 − zÞ2. In the AdS2 × R2 metric, the EOM and
the duality relations are

z ∼ 1∶ A00x −
2

1 − z
A0x þ

μ2

36ð1 − zÞ2 Ax ¼ 0; ð122Þ

~A00y −
2

1 − z
~A0y þ

~μ2

36ð1 − zÞ2
~Ay ¼ 0; ð123Þ

A0x ¼
~μ

~g2
~Ay

6ð1 − zÞ ; ð124Þ

~A0y ¼ −
μ

g2
Ax

6ð1 − zÞ : ð125Þ

Because of the second term A0=ð1 − zÞ in the EOM, an
expansion of the solution starts from ð1 − zÞ2 to ensure the
regularity,

Ax ∼ ð1 − zÞ2 þOðð1 − zÞ3Þ; ð126Þ

~Ay∼ð1 − zÞ2 þOðð1 − zÞ3Þ; ð127Þ

that satisfies the duality relations in each order of the
expansion. It happens due to the double zero in the redshift
factor f ∼ ð1 − zÞ2 that leads to the duality relation having
structure A0 ∼ ~A=ð1 − zÞ. Therefore, the S-duality holds in
the IR for an AdS-RN black hole for small enough
temperatures where the metric reduces to an AdS2 throat.
To show that the solutions of the EOM satisfy the duality

relations in the holographic bulk, we resort to a numerical
study. It is convenient to rewrite the EOM for the
condensate component in the form of the Riccati equation
[36], that transforms the linear ordinary differential equa-
tion (ODE) of the second order into a nonlinear ODE of
the first order.2 In this way, one needs to specify only one
boundary condition instead of two. Introducing w ¼ A0x=Ax

and ~w ¼ ~A0y= ~Ay in Eq. (112), we obtain the following EOM
and the duality relation,

2In the second order equation αðxÞy00 þ βðxÞy0 þ γðxÞy ¼ 0,
we make the substitution w ¼ − y0

αðxÞy. Then, the Riccati equation

is given by w0 ¼ αðxÞw2 þ α0ðxÞ−βðxÞ
αðxÞ wþ γðxÞ

α2ðxÞ.
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w0 þ w2 þ f0

f
wþ A2

t

f2
¼ 0; ð128Þ

~w0 þ ~w2 þ f0

f
~wþ

~A2
t

f2
¼ 0; ð129Þ

w ~w ¼ −
At

~At

f2
; ð130Þ

where the metric is given by Eq. (105) with fðzÞ specified
for the AdS-RN/Schwarzschild BH and the probe limit
solutions At ¼ μð1 − zÞ and ~At ¼ ~μð1 − zÞ are used. The
EOM are supplemented by the IR boundary condition

z ∼ 1∶ wðz ∼ 1Þ ¼ w1ð1 − zÞ; ð131Þ

~wðz ∼ 1Þ ¼ −
2

1 − z
; ð132Þ

where w1 ¼ w0ðz ¼ 1Þ is a constant. Note that at z ¼ 1, the
redshift factor is f ¼ ð1 − zÞð3 − q2Þ ¼ 3ð1 − zÞð1 − r4⋆Þ
for the AdS-RN BH and f ¼ 3ð1 − zÞ for the
Schwarzschild BH. This boundary condition ensures that
the condensate gauge field solutions are regular in the IR. It
corresponds to the following behavior of the condensate
fields in the IR:

Ax ¼ að0Þ þ að2Þð1 − zÞ2 þ � � � ; ð133Þ

~Ay ¼ ~að2Þð1 − zÞ2 þ � � � : ð134Þ

There is no boundary condition in the IR apart from the
regularity condition. A regular solution is obtained when
A0ðz ¼ 1Þ ¼ 0 in Eq. (112); that is, there is no (1 − z) term
in the gauge field solution at z ¼ 1. To obtain the duality for
w’s, the original duality conditions (116) and (117) are Z2

reflected (the no-tilde variables interchange with the tilde
variables), and the relation ~g ¼ 1=g is used.
In the IR, the duality relation (130) gives

wðz ¼ 1Þ ~wðz ¼ 1Þ ¼ μ~μ

ð3 − q2Þ2 ; ð135Þ

for the AdS-RN and Schwarzschild black holes. Due to
Eqs. (131) and (132), the IR duality condition (135) gives

w0ðz ¼ 1Þ ¼ −
μ~μ

2ð3 − q2Þ2 : ð136Þ

This equation fixes a constant w1 ¼ w0ðz ¼ 1Þ in the IR
boundary condition (131).
The UV behavior of the solutions of the Riccati

equations is

z ∼ 0∶ Dirichlet b:c: ðE sideÞ wðz ∼ 0Þ ¼ 1

z
→ ∞; ð137Þ

Neumann b:c: ðB sideÞ ~wðz ∼ 0Þ ¼ ~w0z → 0; ð138Þ

where ~w0 ¼ w0ðz ¼ 0Þ is a constant. It translates into the
following behavior of the gauge fields in the UV,

Ax ¼ Að1Þzþ � � � ; ð139Þ

~Ay ¼ ~Að0Þ þ ~Að2Þz2 þ � � � ; ð140Þ

with the sources being switched off on both sides of the
duality. In the UV, the duality relation (130) amounts to

wðz ¼ 0Þ ~wðz ¼ 0Þ ¼ −μ~μ: ð141Þ

Due to Eqs. (137) and (138), the UV duality condition
(141) gives

~w0ðz ¼ 0Þ ¼ −μ ~μ: ð142Þ

We rewrite the S-duality equation (141) in the UV using
the connection between the Riccati variable w calculated at
the boundary and the Green function

wðz ¼ 0Þ ¼ A0x
Ax

����
UV

∼G11
xxðω ¼ k ¼ 0Þ

~wðz ¼ 0Þ ¼
~A0y
Ay

����
UV

∼ ~G22
yyðω ¼ k ¼ 0Þ; ð143Þ

where the retarded Green function is GijðωÞ ¼
−i

R
d2xdte−iωtθðtÞh½JiðtÞ; Jjð0Þ�i and Ji is the current.

The duality relation (141) reads

G11
xx
~G22
yy ¼ μ~μ: ð144Þ

Therefore, in 2þ 1 theory at nonzero density, the S-duality

transformation E!S B acts as follows,

Gðω ¼ k ¼ 0Þ
μ

!S
�
Gðω ¼ k ¼ 0Þ

μ

�
−1
; ð145Þ

where the Green function is associated with the boundary
directions, i.e. Gxx. Formally identifying the real part of the
retarded Green function at zero frequency with the super-
fluid density ns ¼ Re½GRðω ¼ k ¼ 0Þ� [16,37–41], we can
rewrite Eq. (145),

ns=μ!S
1

ns=μ
; ð146Þ

when the duality transformation is performed. However,
the meaning of Eq. (146) may be obscure because the
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superfluid density should be identified with the direction in
the isospin space of the conserved charge which is Uð1Þ3.
We leave Eq. (146) as a speculative suggestion that can be
realized in other models at nonzero charge densities where
the change of transport coefficients with duality trans-
formation is considered.
To this end, we consider the duality relations for the

electrical conductivity which arises from the non-Abelian
current J3x;y generated by the τ3 component. The electrical
conductivity is defined through Ohm’s law,

Ji ¼ σijEj; ð147Þ

where Ej is an external electric field and Ji is the current
generated. The current J3x;y is dual to fluctuations of the
δA3

x;y fields. Because of the non-Abelian Yang-Mills action,
the fluctuations in δA3

x;y will source other field components.
We will keep all the modes which couple at a linear-
ized level.
The gauge field includes the background and fluctuation

components Ai þ δAi. We summarize the background
gauge fields on the two sides of the duality:

ðA3
t ; A1

x;A3
xÞ!S ð ~A3

t ; ~A
2
y; ~A

3
yÞ: ð148Þ

We consider fluctuations that have the same charge as δA3
x;y

under Uð1Þ3 action. There will be decoupled equations
involving the following fluctuation fields on the two sides
of the duality:

ðδA3
x; δA2

t ; δA1
xÞ!S ðδ ~A3

y; δ ~A
1
t ; δ ~A

2
yÞ: ð149Þ

In Eqs. (148) and (149), a semicolon separates the gauge
fields responsible for the magnetic fields. Additionally, the
fluctuations δA1;2

z arise in coupled equations of motion.
We use a background field gauge transformation to set
δA1;2

z ¼ 0 [42]. All fluctuation fields are taken to have an
overall time dependence of e−iωt.
Integrating the fields to the UV, we can read off the dual

currents and external electric fields. The current and charge
densities are obtained from

Fa
zμ ¼ hJaμi þ � � � ; ð150Þ

where μ runs over the boundary directions t, x, y. The
background equilibrium values are hJ1xi ¼ J, h~J2yi ¼ ~J and
hJ3t i ¼ ρ, h~J3t i ¼ ~ρ. The external electric fields are obtained
from

Fa
ti ¼ −Ea

i þ � � � : ð151Þ
We summarize the duality relations for the background
fields in the UV (i.e. omitting the metric factors and the
Yang-Mills coupling constant),

~F2
zy ∼ F2

tx; ð152Þ

~F1
ty ∼ F1

zx; ð153Þ

~F3
xy ∼ F3

zt; ð154Þ

~F3
zt ∼ F3

xy; ð155Þ

where the field strengths are

~F2
zy ¼ ∂z

~A2
y; F2

tx ¼ A3
t A1

x; ð156Þ

~F1
ty ¼ − ~A3

t
~A2
y; F1

zx ¼ ∂zA1
x; ð157Þ

~F3
xy ¼ ∂x

~A3
y; F3

zt ¼ ∂zA3
t ; ð158Þ

~F3
zt ¼ ∂z

~A3
t ; F3

xy ¼ ∂yA3
x: ð159Þ

The first two equations (152) and (153) provide the
relation in the symmetric form for the Green functions
when the duality transformation is done, while in
Eqs. (154) and (155), the charge density generates the
magnetic field on the other side of the duality.
The duality relations for the gauge field fluctuations are

written (again omitting the metric factors and the coupling
constant) as follows,

~F3
ty ∼ F3

zx; ð160Þ

~F3
zy ∼ F3

tx; ð161Þ

~F2
xy ∼ F2

zt; ð162Þ

~F1
zt ∼ F1

xy; ð163Þ

where the field strengths on the linearized level are

~F3
ty ¼ − ~E3

y ¼ ∂tδ ~A
3
y þ ~A2

yδ ~A
1
t ;

F3
zx ¼ J3x ¼ ∂zδA3

x; ð164Þ

~F3
zy ¼ ~J3y ¼ ∂zδ ~A

3
y;

F3
tx ¼ −E3

x ¼ ∂tδA3
x − A1

xδA2
t ; ð165Þ

~F2
xy ¼ ∂xδ ~A

2
y; F2

zt ¼ ∂zδA2
t ; ð166Þ

~F1
zt ¼ ∂zδ ~A

1
t ; F1

xy ¼ ∂yδA1
x; ð167Þ

where we simplified hJ3xi ¼ J3x and h ~J3yi ¼ ~J3y.
We are interested in the electrical conductivity of the

Uð1Þ subgroup of SUð2Þ generated by τ3. Therefore, we
consider currents J3x;y that result from external sources in
the τ3 direction only. Therefore, we read off the linearized
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electric response to a time varying external electric field
E3
i only. However, if we integrate equations of motion to

the boundary, we would not obtain electric fields E1;2
i ; we

would obtain a source δA1;2
t . Therefore, a gauge trans-

formation in the bulk should be done that sets the boundary
value of δA2

t , δ ~A
1
t to zero [42], which results in the new

scalar potentials and the new field strengths. In what
follows, the specific form of the field strengths is not
important for us. The first two duality equations (160),
(161) give relation between the electric conductivities

σ3xx ¼
J3x
E3
x
¼ lim

z→0

F3
zx

F3
tx
; ð168Þ

~σ3yy ¼
~J3y
~E3
y

¼ lim
z→0

~F3
zy

~F3
ty

; ð169Þ

when written in the symmetric form is

σ3xx ~σ
3
yy ¼ 1: ð170Þ

This relation holds when all the metric factors and coupling
constant are restored. Alternatively, this equation shows
how the electric conductivity transforms when the S-duality

transformation E!S B is done,

σ!S 1

σ
: ð171Þ

The relation for conductivities was first established for the
self-dual CFTs in Ref. [43] and then in Ref. [44] for the
CFTs where the EM self-duality was lost. Later, it was
shown by W. Witczak-Krempa and S. Sachdev in Ref. [44]
that the particle vortex or S-duality interchanges the
locations of the conductivity zeros and poles.
Specifically, the poles of the dual conductivity ~σ ∼ 1=σ
correspond to the zeros of the conductivity σ in the ω
complex plane and vice versa. It was also shown that the S-
duality transformation corresponds to the metal-insulator

transition. We consider Eq. (171) as a generalization of the
duality relation for conductivities obtained by W. Witczak-
Krempa and S. Sachdev to theories at nonzero densities.
The last two duality equations (162) and (163) relate the

charge density and the magnetic field on the two sides of
the duality.
We solve the Riccati equation (128) numerically using

the adaptive algorithm with the chemical potential as a
parameter. First, we adjust ~μ to obtain the required UV
behavior of the dual solution (138): ~w is a straight line
going through the origin (138). It corresponds to switching
off the source ~að1Þ ¼ 0 on the magnetic side. Then, solving
the Riccati equation numerically, we adjust μ to obtain the
required UV behavior of the solution on the electric side
(137): A is a straight line going through the origin (139),
that corresponds to switching off the source að0Þ ¼ 0 on the
electric side. This step is done provided that a constant w1

in the IR boundary condition satisfies the duality relation
(136). The gauge fields A are obtained from the solutions of
the Riccati equation w imposing the IR boundary con-
ditions that provides proper normalization: Aðz ¼ 1Þ ¼ 1

on electric side, and ~Aðz ¼ 1Þ satisfies the duality con-
dition. We find that in the Schwarzschild metric, we satisfy
the required UV boundary conditions for the following
chemical potentials:

E side∶ μ ≥ 3.656; ð172Þ

B side∶ ~μ ≈ 1.05: ð173Þ

The two solutions of the Riccati equations have the UV
asymptotic behavior w ∼ 1=z (“threshold” solution) and
w ∼ z (new solution) as depicted in Fig. 1. They are the
gauge field solutions of the equations of motion with UV
behavior A ∼ z (the threshold solution)—Dirichlet b.c. and
A → const (the new solution)—Neumann b.c. shown
in Fig. 2.
Using the adaptive algorithm for a range of AdS-RN BH

charges, we find the mapping between the two chemical
potentials ~μðμÞ, Fig. 6. In other words, we find that for each

0.2 0.4 0.6 0.8 1.0
z
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1.0

0.5

w

FIG. 1. Two solutions w of the Riccati equation in the AdS4-Schwarzschild metric: a standard solution for μ ¼ 3.66, w1 ¼ 0.21 (left)
and a new solution for μ ¼ 1.05, ~w1 ¼ −2 (right).
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solution of Riccati equation w ¼ A10
x =A1

x at μ with Dirichlet
b.c., there exists a solution of the Riccati equation
w ¼ ~A20

y = ~A
2
y at ~μ with Neumann b.c. These two solutions

are related by the duality equations (116) and (117), and
there is a duality mapping μ → ~μ described by a function

μð ~μÞ. The S-duality transformation E!S B acts on the gauge
field solution as

electric side!S “magnetic” side ð174Þ

large μ!S small μ ð175Þ

Dirichlet b:c:!S Neumann b:c: ð176Þ

source!S v:e:v: ð177Þ
and on the superfluid density and the conductivity as

ns=μ!S
1

ns=μ
ð178Þ

σ!S 1

σ
ð179Þ

poles σ!S zeros 1
σ

ð180Þ

metal!S insulator; ð181Þ
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FIG. 2. Two solutions for the gauge field A of the equation of motion in the AdS4-Schwarzschild metric: a standard solution for
μ ¼ 3.656, w1 ¼ 0.21 (left) and a new solution for ~μ ¼ 1.05, ~w1 ¼ −2 (right).
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FIG. 3. Combination RðzÞ ¼ −wðzÞ ~wðzÞð1þ zþ z2 − z3q2Þ2
for the two solutions of the Riccati equation in the Schwarzschild
metric q ¼ 0. Combination R being constant means that the
duality relation (130) is satisfied in the AdS-RN space.
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FIG. 4. The duality relation for the RN-AdS BH metric in the IR and the UV asymptotics with the charge increased from q ¼ 0 to
q ¼ 1.5. The duality in the IR is −w0ðz ¼ 1Þ vs μ ~μ=2ð3 − q2Þ2 (left). The duality in the UV is − ~w0ðz ¼ 0Þ vs μ ~μ (right). Both are straight
lines, which verifies the duality conditions (136) and (142).
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and the reverse transformation “ S ” is also true. It was
shown for Abelian Uð1Þ gauge fields in Ref. [1] and for
non-Abelian gauge fields in Ref. [28] that the generator S of
SLð2; ZÞ exchanges electric and magnetic fields. Further,
the “electric” side with B ¼ 0 b.c. for the gauge fields
corresponds to the Dirichlet b.c. (standard quantization),
vector potential A vanishing at the boundary. While the
magnetic side with E ¼ 0 b.c. corresponds to the Neumann
b.c. (alternative quantization), boundary values of A
remaining unrestricted. This means that swapping between
the Dirichlet and the Neumann b.c. leads to swapping the
identification of the source and the v.e.v. [29].

The transformation !S corresponds to a superconduc-
tor-insulator quantum critical point of bosons in (2þ 1)
dimensions [44]. Thus, we have demonstrated that the
duality relations (116) and (117) are satisfied for the AdS-
RN and Schwarzschild black holes in the bulk for all z,
see Fig. 3, and in the IR/UV asymptotics, Fig. 4. We
checked the duality condition for the original gauge fields
A; ~A in the UV, Fig. 5, while the duality relation in the IR
serves as boundary conditions to normalize the solutions.
Therefore, we can state that S-duality acts on the Riccati

equation and its physically relevant solutions in a
known way.

IV. FLAVOR S-DUALITY IN HOLOGRAPHIC
QCD WITH ISOTOPIC AND BARYONIC

CHEMICAL POTENTIALS

Let us briefly discuss the possible counterpart of the
S-duality for the p-wave superconductor in holographic
QCD. First, let us remind the reader what kind of
phenomenon is relevant for this issue. For low-energy
QCD, the flavor group UðNfÞL ×UðNfÞR plays the role of
the gauge group in the holographic dual which is broken to
the diagonal one by the chiral condensate. To fit with the
previous discussion, we restrict ourselves by Nf ¼ 2. The
Abelian Uð1ÞB; Uð1ÞA factors correspond to the baryon
charge and axial singlet symmetry broken by the anomaly.
The most popular holographic models for QCD are the
Sakai-Sugimoto models and D3/D7 models which can be
thought of as the chiral Lagrangian supplemented by the
infinite tower of the massive vector mesons.
In the chirally broken phase, the symmetry involves

global Uð1ÞB × SUð2ÞI . We would like to have dopped
system. Therefore we introduce the isotopic and baryonic
chemical potentials μI , μB. If μB ≠ 0 at small μI, the pion
condensate gets emerged, and there is a kind of rotation
between chiral and pion condensates discussed in details in
Ref. [45]. The pion condensate yields the nontrivial super-
current and the superfluid component. If μI increases, the
new phase with the vector condensate appears which is the
analog of p-wave superconductor. This ρ-meson conden-
sate has been identified both in the Sakai-Sugimoto model
[23] and D3/D7 model [24]. The physics of this phase is
quite clear—the mass of the vector meson decreases with
μI , and at some critical value of the chemical potential, it
vanishes, allowing the condensation. The appearance of the
vector condensate can be seen geometrically in the D3/D7
model as follows [24]. At small isotopic chemical potential,
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FIG. 5. The duality relation for the RN-AdS BH metric in the UV asymptotics with the charge increased from q ¼ 0 to q ¼ 1.5:
A0ðz ¼ 0Þ= ~Aðz ¼ 0Þ vs ~μ (left) and − ~A0ðz ¼ 0Þ=Aðz ¼ 0Þ vs μ (right). Linear behavior confirms the duality conditions for the gauge
fields (120).
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FIG. 6. The mapping between the chemical potentials, ~μ vs μ,
as the charge is increased from q ¼ 0 to q ¼ 1.5.
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the strings from D7-branes are attracted to the horizon
making it isotopically charged. However, increasing the μI
leads that the strings rearrange and form 7-7 strings which
are vector mesons. The vector condensate is formed from
the flow of 7-7 strings in the bulk.
One more relevant phenomenon concerns the effects of

the external magnetic field. The electromagnetic charge is
included in the isotopic group as Q ¼ diagð2=3;−1=3Þ,
and therefore the magnetic field Bem has the baryonic and
isotopic components QB ¼ BbarI þ Bisoτ3. The magnetic
field changes the critical values of the chemical potential
for the pion condensate formation. Moreover, there are
arguments in favor of formation of the vector meson
condensate above some critical Bcrit [46,47]. This is the
analog of the p-wave superconductivity once again; how-
ever, this phenomenon is still questionable.
Turn now to our conjecture concerning the flavor

S-duality in low-energy QCD. Since the S-duality is
expected to be a generalization of particle-vortex duality
in 2þ 1 dimensions, we have to identify what “particle”
and “vortex” mean in the 3þ 1 case and in its 4þ 1 dual.
In 4þ 1 dual non-Abelian gauge theory, there are two
pointlike objects with different charges—gauge bosons and
instantons. The corresponding global symmetry group
generated by conserved currents is Uð1Þtop ×Uð1Þel where
the topologically conserved current is defined as

jβ ¼ ϵνμγδβTrFμνFγδ: ð182Þ

These Abelian groups are the 4þ 1-dimensional counter-
part of the pair of Abelian groups involved in S-duality
transformation in the 2þ 1 case. In boundary low-energy
QCD, particle and vortex are identified as charged vector
mesons and baryons which are the instantons in the flavor
group in 4þ 1 dimensions and realize Skyrmions in 3þ 1
dimensions [48]. There is, however, some subtlety con-
cerning the identification of the baryon as the instanton in
4þ 1 dimensions, and there are serious arguments for its
treatment not as the instanton but as the dyonic instanton
[49]. Such interpretation fits better with the effects of the
chiral condensate on the baryon state.
Let us emphasize that we consider the analog of S-

duality in QCD for the flavor and not color group.
Therefore instead of “W-bosons” and monopoles which
represent S-dual pair in color gauge group in 3þ 1
dimensions we consider the vector mesons and baryons.
One could wonder if such S-duality is natural from the
stringy viewpoint. To this aim, it is useful to remind the
reader that non-Abelian five-dimensional gauge theory in
the IIB picture is represented by the (p,q) 5-brane web. In
the brane language, vector gauge bosons and instantons in
five-dimensional gauge theory indeed form the S-dual pair
being represented by the F1 nd D1 strings attached to the
5-brane web. In the IIA picture, the vector mesons and
baryons are presented more asymmetrically.

Remark that in the 4þ 1 dual theory, there is natural
“flux attachment” procedure via the five-dimensional
Witten effect. Indeed, due to the five-dimensional Chern-
Simons term (Nf > 2) at level Nc, the state with the
topological charge Qtop gets the electric charge

Qe ¼ NcQtop; ð183Þ

where Nc is the rank of the color group. This is a familiar
picture for the strings attachment to the baryonic vertex in
the bulk [50].
Hence, our candidates for the S-dual pair are the
ðρ; baryonÞ, and therefore we can assume that ðμI; μBÞ play
the same role as the ðμ; ~μÞ in the rest of the paper. What kind
of condensates are available? As was mentioned, at large
enough μI, the electric p-wave condensate gets formed. The
same p-wave condensate presumably gets formed at large
magnetic field. In this respect, the situation resembles the
quantumHall effect (QHE) case ifwe treat ðμI; BÞ as the dual
pair. More interestingly, if we consider ðμI; μBÞ as the dual
pair, we have nontrivial phase structure in this plane when
the pion condensate gets substituted by the condensate of
the vector mesons. At large enough μB, the pion condensate
gets formed; hence, we could attempt to treat h∂iπi as the
pseudovector dual required by the S-duality.
Could we present more arguments supporting duality

between QCD with isotopic and baryonic chemical poten-
tials? A bit surprisingly, the orbifold equivalence provides
some supporting evidence [51–53]. The orbifold equiv-
alence relates the theories with the different groups sup-
plemented to the projection to the particular sector of the
theory. It is well established in the perturbation theory,
while its status at the nonperturbative level is more subtle.
Nevertheless, assuming its validity at the nonperturbative
level, it was argued in Refs. [51–53] that there is the large
N-duality between QCD with isotopic chemical potential
and QCD with baryonic chemical potential at some regions
in the ðμI; μBÞ plane. Our interpretation of these orbifold
equivalences as the version of S-duality is new. We could
also speculate that the experimentally observed equal
intercepts of meson and baryon Regge trajectories could
be related to our duality conjecture. Usually, this observa-
tion is treated differently as the consequence of the large
diquark component inside the baryon.
Our consideration suggests that there could be the

relation between the superfluid/superconducting densities
in the dual descriptions that is the superconducting com-
ponents of densities for isotopic and the baryonic charge
carriers in the chirally broken phase. Their product
presumably can be proportional to μIμB,

nsIn
s
B ∼ μIμB: ð184Þ

The special attention is to the large μB limit when the chiral
symmetry is restored and QCD is in the color-flavor
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locking phase supporting the color superconductivity. This
issue deserves further investigation, and we hope to discuss
it elsewhere.
In conclusion we note that the S-duality followed from

five-dimensional dual which we conjecture as flavor
S-duality in low-energy QCD could have clear-cut
counterpart in 1þ 1 dimensionals case. Indeed, we
could start with the 2þ 1 gauge dual involving the
Yang-Mills and Chern-Simons terms. In the bulk, we
can define the electric U(1) and topologically conserved
U(1) current

jμ ¼ ϵμ;ναFνα: ð185Þ

We have gauge bosons and instanton particles in the bulk
theory which carry the topological charge. They form the
S-dual pair in the bulk. In the boundary theory, the
instantons become the Skyrmions. The boundary S-duality
presumably exchanges the 1þ 1 theory with chemical
potentials for vector mesons and for Skyrmions.

V. CONCLUSIONS

Recently, there has been a considerable effort made
to establish duality in (2þ 1)-dimensional theories [13,
54–57]. In Ref. [54], a particle-vortex duality used to study
bosonic systems has been proposed to find duality for Dirac
fermions in (2þ 1) dimensions. There is also an alternative
description of this duality which is accessed via an
electromagnetic duality in the topological superconductor.
In Refs. [13,57], a whole class of (2þ 1)-dimensional
dualities is derived from an elemental duality between a
bosonic field theory and a fermionic field theory, where the
duality between the two fermion theories appears as one
particular case. There is also a connection with duality
between (2þ 1)-dimensional Chern-Simons theories [58].
Duality for the Dirac fermion in (2þ 1) dimensions relates
fermionic theories at nonzero density and in the magnetic
field, that gives a powerful tool to study the fractional
quantum Hall effect, in particular particle-hole symmetric
quantum Hall states [59].
In this paper, we suggest a duality between fermion

theories in (2þ 1) dimensions where the charge density
and the magnetic field are interchanged on the two sides of
the duality. We establish this duality via electromagnetic
duality in a holographic dual theory in (3þ 1) dimensions.
Specifically, we suggested some version of the generali-
zation of S-duality in the holographic theories involving
non-Abelian SUð2Þ gauge field in the bulk. This permits
considering a class of theories which includes the con-
densates and exhibit phase transitions. Using the p-wave
holographic superconductor, we construct the electric and
magnetic sides of the electric-magnetic duality (EM)
duality, where the holographic gauge fields are solutions
of the EOM and they are related by the S-duality trans-
formation. As in the Abelian case, for the non-Abelian

gauge fields, the generator S exchanges the electric and
magnetic fields. The electric side has B ¼ 0 b.c. for the
gauge fields which are equivalent to Dirichlet b.c., where
the vector potential vanishes on the boundary, while the
magnetic side has E ¼ 0 b.c. which are equivalent to
Neumann b.c., that leave the boundary value of the vector
potential unrestricted. The action of the S transformation
leads to the exchange between the source and v.e.v. in the
solution.
We found analytically the gauge field components and

asymptotics of the solutions, while we solved numerically
for the solutions in the AdS bulk on both sides of
the duality. The electric side is characterized by a standard
p-wave superconductor solution which persists from a
critical chemical potentials μc ≈ 3.656—a threshold solu-
tion. The magnetic side exhibits a new type of instability for
very small chemical potentials—a new superconductor
solution. A “neutral” superconductor was found in different
AdS gravitational theories in Refs. [30–33], but always
at small μ and with Neumann b.c. Assuming the
EM-duality condition between the bulk solutions, we
obtain the mapping between the chemical potentials of
the threshold and new solutions which is a functional
dependence μ vs ~μ. It would be interesting to extend the
S-duality transformation by the T-duality to get the
SLð2; ZÞ group.
We find the indication for the S-duality relation between

superfluid densities which is similar to the relation for
conductivities. Specifically, we observe that the dimen-
sionless ratio ns=μ and its S-dual CFT pair ~ns= ~μ are the
inverses of each other ns=μ · ~ns= ~μ ∼ 1. The relation
for conductivities is σ ~σ ∼ 1. It is consistent with the
fact that S-duality corresponds to the metal-insulator
transition [44].
We made a conjecture on the possible S-duality in the

SU(2) flavor sector in large Nc QCD based on the holo-
graphic picture. On the holographic side, S-duality maps
electrically and topologically charged states in 4þ 1 bulk
non-Abelian gauge theory which substitute the electric and
magnetic frames in 3þ 1 dimensions. Physically, at the
boundary, the topological sector corresponds to baryons,
while the electric sector corresponds to the vector mesons.
The corresponding chemical potentials are isotopic and
baryonic ones, and the large isotopic chemical potential
yields the p-wave superconductor for the chirally broken
phase. On the other hand, the baryonic chemical potential
yields a pion condensate in the chirally broken phase and
the Cooper condensates in the color-flavor locking phase.
Therefore, it would be interesting to explore further the
interplay between the isotopic and baryonic sectors at the
chirally broken phase treated as the version of S-duality and
on the other hand the interplay between the chirally broken
phase supplemented by the magnetic field and the phase
with the color superconductivity.
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APPENDIX A: SL(2,Z) INVARIANCE OF THE
AXIODILATON SU(2) GAUGE ACTION

The Einstein-Maxwell action coupled to an axion and a
dilaton field in 3þ 1 dimensions has been considered in
Refs. [3,60]. We generalize their action to the case of
SU(2) non-Abelian gauge fields. The gauge-gravity action
coupled to an axiodilaton is given by

Sϕ;χ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g
p �

1

2κ2

�
R − 2Λþ 1

2
ð∂μϕ∂μϕþ e2ϕ∂μχ∂μχÞ

�
þ 1

4
e−ϕFμνFμν −

1

4
χFμν � Fμν;

�
ðA1Þ

where Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�, with non-Abelian
gauge field Aμ ¼ Aa

μτa, and τa are generators of the
SUð2Þ group, ½τa; τb� ¼ iϵabcτc, related to the Pauli ma-
trices by τa ¼ σa=2i. We introduce the covariant derivative
Dμ ¼ I∂μ − igτaAa

μ; therefore, the field strength is
½Dμ; Dν� ¼ −igτaFa

μν where the coupling g is defined
further. The dual field strength is obtained by applying
the Hodge star operation �Fμν ≔ 1

2
ϵμνλρFλρ, where the

completely antisymmetric Levi-Cività tensor ϵμνρλ has a
factor of

ffiffiffiffiffiffi−gp
with g ¼ det gμν extracted and transforms as

a tensor and not as a tensor density, and indices are freely
raised and lowered using the metric gμν of which the
signature is Lorentzian ð−þþþÞ. Since we are working in
four dimensions transforming 2-form Fμν, the Hodge dual
applied twice results in �� ¼ s ¼ −1 where s is the
signature of the inner product on the manifold. In Eq. (A1),
two scalar fields are the dilaton ϕ and axion χ. The constant
Λ ¼ 3=L2 is the AdS cosmological constant, and κ2 ¼ 8πG
is Newton’s constant. The weak curvature means
κ2=L2 ≪ 1. The relation to the gauge coupling g and the
θ-angle is

e−ϕ ¼ 1

g2E
¼ 1

g2
; χ ¼ 1

g2B
¼ θ; ðA2Þ

where subscripts E and B stand for the electric and
magnetic part. Therefore, weak coupling corresponds to
eϕ ≪ 1.
The matter fields, dilaton and axion, provide couplings

of the gauge field action. They are added to ensure the
existence of a duality group. The SL(2,Z) duality of
Maxwell U(1) gauge fields in gravity-dual four dimen-
sions has been shown by Witten in Ref. [1]. He also
suggested that generalization to non-Abelian gauge fields
is possible when “special collections of matter fields are
included.”
As in Ref. [3], we define the axiodilaton by a complex

variable

τ ≔ χ þ ie−ϕ ¼ θ þ i
g2

; ðA3Þ

[not to be confused with the SU(2) generator], and the
axiodilaton action is rewritten

Lϕ;χ ∼ ∂μϕ∂μϕþ e2ϕ∂μχ∂μχ ¼ ∂μτ∂μτ̄

ðImτÞ2 : ðA4Þ

We define the matrix of SLð2; RÞ transformation

M ¼
�
p q

r s

�
∈ SLð2;RÞ; ðA5Þ

where p, q, r, s are real numbers and detM ¼ 1, that is
sp − qr ¼ 1. The SL(2,R) transformation acts on a
axiodilaton and on the metric as [3]

τ → ~τ ¼ pτ þ q
rτ þ s

; gμν → ~gμν ¼ gμν; ðA6Þ

where the tilde distinguishes the variables which underwent
the SL(2, R) transformation. We rewrite Eq. (A6),

τ →
pr∥τ∥2 þ qsþ ps2Reτ − τ̄

∥rτ þ s∥2
; ðA7Þ

where we used sp − qr ¼ 1. Therefore,

∂μτ∂μτ̄ →
∂μτ∂μτ̄

∥rτ þ s∥4
; Imτ →

Imτ

∥rτ þ s∥2
; ðA8Þ

and the axiodilaton action Sϕ;χ (A4) is SLð2; RÞ invariant.
To see the SLð2; RÞ action on the gauge field, we define, as
in Ref. [3,60],

Gμν ≔ −
2ffiffiffiffiffiffi−gp δS

δFμν
ðA9Þ

and obtain
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Gμν ¼ e−ϕFμν − χ � Fμν: ðA10Þ

Written in terms of complex quantities [3]

F μν ≔ Fμν þ i � Fμν; ðA11Þ

Gμν ≔ �Gμν − iGμν; ðA12Þ

Eq. (A10) takes a compact form,

Gμν ¼ τ̄F μν: ðA13Þ

The SLð2; ZÞ acts on the gauge fields as [3]

�
Gμν

F μν

�
→

� ~Gμν

~F μν

�
¼

�
p q

r s

��
Gμν

F μν

�
; ðA14Þ

where the tilde denotes the transformed variables. Relation
(A13) is invariant under SL(2,R). Indeed, after transforma-
tion, we have

pGþ qF ¼ pτ̄ þ q
rτ̄ þ s

ðrGþ sF Þ; ðA15Þ

which is reduced to Eq. (A13) provided sp − qr ¼ 1. From
Eq. (A14) follows SL(2,R) transformation for the field
strengths

Fa
μν → ~Fa

μν ¼ sFa
μν þ r �Ga

μν; ðA16Þ

Ga
μν → ~Ga

μν ¼ pGa
μν − q � Fa

μν; ðA17Þ

where we used for the double Hodge duality �� ¼ −1.
Using the definition forG (A10) and Eqs. (A16) and (A17),
the SL(2,R)-dual field strength Fμν is

Fa
μν → ~Fa

μν ¼ re−ϕ � Fa
μν þ ðsþ rχÞFa

μν: ðA18Þ

The gauge action

LF;�F ∼ FμνGμν → ðsFμν þ r �GμνÞðpGμν − q � FμνÞ
¼ ðsp − qrÞFμνGμν ¼ FμνGμν ðA19Þ

is invariant under SL(2,R) transformation. We used �Gμν �
Fμν ¼ FμνGμν and sp − qr ¼ 1, and the Lagrangian sat-
isfies a differential constraint �GμνGμν ¼ Fμν � Fμν with
Gμν given by Eq. (A10) and ∥τ∥2 ¼ 1 [60].
The SL(2,R) invariance can be shown using the electric

and magnetic fields. We define the electric intensity Ea
i ¼

Fa
i0 and magnetic induction Ba

i ¼ 1
2
ϵijkFjka, with �E ¼ −B

and �B ¼ E, and the electric induction Da
i ¼ Ga

i0 and
magnetic intensity Ha

i ¼ 1
2
ϵijkGjka where Gμν is given by

Eq. (A10),

D ¼ 1ffiffiffiffiffiffi−gp ∂S
∂E ¼ e−ϕEþ χB; ðA20Þ

H ¼ −
1ffiffiffiffiffiffi−gp ∂S

∂B ¼ e−ϕB − χE; ðA21Þ

where E ¼ Eaτa with τa ∈ SUð2Þ and the same is true for
other vector fields. From Eq. (A14), SL(2,R) transforma-
tion for the fields is

Ea → sEa − rHa; Ba → sBa þ rDa; ðA22Þ

and

Da → pDa þ qBa; Ha → pHa − qEa: ðA23Þ

Therefore, the action

LE;B ∼ E ·DþB ·H → ðsE − rHÞðpDþ qBÞ
þ ðsBþ rDÞðpH − qEÞ
¼ ðsp − qrÞðEDþBHÞ
¼ E · DþB ·H ðA24Þ

is invariant under SL(2,R).
In general, only Abelian Uð1Þ gauge action and the

corresponding Maxwell equations are invariant under
the SLð2; RÞ-duality [60,61]. Indeed, performing the
SLð2; RÞ transform (A16), (A17) in the Yang-Mills equa-
tion D � G ¼ 0,

ðDμ �GμνÞa ¼ 0; ðA25Þ

and the Bianchi identity DF ¼ 0,

ðDμFνκÞa þ ðDκFμνÞa þ ðDνFκμÞa ¼ 0; ðA26Þ

the problem is caused by a covariant derivative, where the
SLð2; RÞ transformation should be written for the gauge
field and not for the field strength; therefore, this trans-
formation has an integral, nonlocal character. However,
there exist solutions which are S invariant in all the space or
in the asymptotic regions. One example is an AdS instanton
solution which is self-dual in the whole space. Further, we
show that the p-wave superconductor is S invariant in the
UV and IR. Equations of motion for axion and dilaton are
SL(2,R) invariant.
Also, one should have in mind the following remark. In

string theory, the SLð2; RÞ group generally holds in the
classical approximation and is broken down to a discrete
subgroup by the quantum effects [3]. Specifically, the
symmetry is broken by the presence of objects of which
the charges are quantized; for example, the ðm; nÞ-string
breaks SLð2; RÞ down to SLð2; ZÞ [3]. In what follows, we
consider SLð2; ZÞ for our applications.
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SLð2; ZÞ is generated by the two matrices [1], S is the
analog of electric-magnetic duality

S ¼
�

0 1

−1 0

�
; ðA27Þ

and T acts on a topological term θ
R
d4xF � F by shifting

θ → θ þ 2π,

T ¼
�
1 1

0 1

�
: ðA28Þ

The S2 ¼ −1 is the central element, and ðSTÞ3 ¼ 1, while S
and T do not commute. The action of S and T trans-
formation on the boundary conformal field theories and the
relation to the AdS gravitational theories has been dis-
cussed in Ref. [1]. On the S-operation, gravitational theory
in AdS space has two different CFT duals on the boundary,
depending on which boundary condition one chooses to
impose. It has been shown for the Abelian Uð1Þ gauge
fields [1] that the generator S of SLð2; ZÞ exchanges
electric and magnetic fields, and it corresponds from the
AdS point of view to replacing the boundary condition
B ¼ 0 (generally where B is specified) which is the electric
side with E ¼ 0 (generally where E is specified) which is
the magnetic side of electric-magnetic duality. Further [1],
B ¼ 0 boundary conditions for the gauge fields are the
analogs to Dirichlet boundary conditions. They say that
vector potential A vanishes on the boundary, up to a gauge
transformation. At the same time E ¼ 0 boundary con-
ditions are analogous to free or Neumann boundary
conditions. They leave the boundary values of A unre-
stricted. We will use this fact later to identify the source and
the v.e.v. in the asymptotic behavior of gauge fields at the
AdS boundary.
The S-operator acts on the axiodilaton (A7) as

τ → ~τ ¼ −
1

τ
; ðA29Þ

where we used p ¼ s ¼ 0 and q ¼ −r ¼ 1 in the SL(2,R)
matrix (A5). While the S-duality transformation is inter-
esting to perform on the full gauge and axiodilaton action
(A1), we restrict ourselves to the vanishing axion field

χ ¼ 0: ðA30Þ

According to Eq. (A29) and the definition of τ ¼ χ þ ie−ϕ,
the axion field is not generated by the S-duality trans-
formation. In this case, the S-operator acts on the gauge
field strength (A16) as

Fa
μν → ~Fa

μν ¼ − �Ga
μν; ðA31Þ

or written explicitly,

Fa
μν → ~Fa

μν ¼ −e−ϕ � Fa
μν: ðA32Þ

Equations (A29) and (A32) express a familiar electric-
magnetic duality where the field strength transforms into a
Hodge-dual one and the coupling transformation is g2 → 1

g2;

therefore, the weak-strong coupling regimes are inter-
changed. In (3þ 1) dimensions, the Hodge-dual is defined

as ⋆F ¼ ffiffiffiffi−gp
4

ϵμνρσFρσdxμ ∧ dxν.

APPENDIX B: p-WAVE SUPERCONDUCTOR
IN AdS5

We write the Riccati equation for the AdS5 p-wave
superconductor and obtain the two solutions imposing
Dirichlet and Neumann boundary conditions [17,19,62].
However, these solutions are not related to each other by
the EM duality. We discuss the AdS5 case here, because
there is a known p-wave superconducting solution for it,
and we can test our numerical solution against the ana-
lytical one. As we discuss in the main text, the equations of
motion for the “condensate” components on the E and B
sides of duality transformation, A1

x and A2
y, respectively,

are the same. Also, we substitute for A3
t ¼ μð1 − z2Þ and

~A3
t ¼ ~μð1 − z2Þ. In what follows, we use one letter for

both gauge components A1
x; A2

y → A, and one μ. In the
Schwarzschild metric with the AdS5 asymptotic behavior,
the EOM reads

A00 þ
�
f0

f
þ 1

z

�
A0 þ μ2ð1 − z2Þ2

z4f2
A ¼ 0; ðB1Þ

fðzÞ ¼ 1

z2
− z2; ðB2Þ

and explicitly it is

A00 −
1þ 3z4

zð1 − z4ÞA
0 þ μ2

ð1þ z2Þ2 A ¼ 0 ðB3Þ

Aðz ¼ 1Þ ¼ const; ðB4Þ

A0ðz ¼ 1Þ ¼ 0; ðB5Þ

where we specified the IR boundary conditions, which
mean regularity.
In the UV z ¼ 0, the asymptotic behavior of the gauge

field is

A ¼ Að0Þ þ Að1Þz2 þ � � � : ðB6Þ

In the UV, the Dirichlet and Neumann boundary conditions
for the gauge field and its derivative are given in the main
text. There is one boundary condition (again Dirichlet and
Neumann) in the UV for the Riccati equation. The Riccati
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equation corresponding to Eq. (B1) for the variable
w ¼ A0=A reads

w0 −
1þ 3z4

zð1 − z4ÞA
0 þ μ2

ð1þ z2Þ2 A ¼ 0 ðB7Þ

wðz ¼ 1Þ ¼ w1; ðB8Þ

where we impose regularity at the IR by taking w1 as a
constant.
We vary two parameters μ and w1 to obtain the needed

UV behavior for the Dirichlet and Neumann boundary
conditions:

Dirichlet∶ wðz ¼ 0Þ ¼ 2

z
→ ∞; ðB9Þ

Neumann∶ wðz ¼ 0Þ ¼ 0. ðB10Þ

As noted before, the analytic solution for the p-wave
superconductor satisfying the Dirichlet boundary condition
is known to be [35]

A ¼ 4z2

ð1þ z2Þ2 ; ðB11Þ

μc ¼ 4; ðB12Þ
where μc is the critical chemical potential.
We solve the Riccati equation (B7) in AdS5 numerically

and obtain the two solutions, a threshold solution for μ ¼ 4
and a new solution for μ ¼ 0.001, Fig. 7, which satisfy the
Dirichlet and Neumann b.c. (B9), (B10), respectively. The
corresponding solutions for the gauge fields are depicted
in Fig. 8.
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FIG. 7. Two solutions w of the Riccati equation in the AdS5: a standard threshold solution for μ ¼ 4, w1 ¼ 0 (left) and a new solution
for μ ¼ 0.001, w1 ¼ −0.009 (right). The upper curve in the right plot is w ¼ 2=z. The straight line in the left plot is w ¼ −0.0004z.
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FIG. 8. Two solutions for the gauge field A of the equation of motion in the AdS5: a standard threshold solution for μ ¼ 4 w1 ¼ 0 (left)
and a new solution for μ ¼ 0.001, w1 ¼ −0.009 (right). Two coinciding curves for numerical and analytical solutions 4z2=ð1þ z2Þ2 are
shown in the left panel.
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