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In this paper, considering the linearized Einstein equation with a two-parameter family of linear
covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with
respect to invariance under the de Sitter group SO0ð1; 4Þ. Our calculations explicitly reveal that there exists
no natural de Sitter-invariant vacuum state (the Euclidean or Bunch-Davies state) for the gravitons field.
Indeed, on the foundation of a rigorous group-theoretical reasoning, we prove that if one insists on full
covariance as well as causality for the theory, one has to give up the positivity requirement of the inner
product. However, one may still look for states with as much symmetry as possible, more precisely, a
restrictive version of covariance by considering the gravitons field and the associated vacuum state which
are, respectively, covariant and invariant with respect to some maximal subgroup of the full de Sitter group.
In this regard, we treat the SOð4Þ case and find a family of SOð4Þ-invariant states. The associated
SOð4Þ-covariant quantum field is given, as well.
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I. INTRODUCTION

From the perspective of mathematical physics, de Sitter
(dS) space possesses a privileged status as the unique,
maximally symmetric solution to the Einstein equation with
positive cosmological constant, for which, utilizing coor-
dinates that cover the full dS manifold is needed to describe
its characteristics. Moreover, the progression of observatio-
nal cosmology in recent yearswith experiments of increasing
precision like supernovae observations [1] has revealed that
the Universe is in a stage of accelerated expansion. A good
explanation is postulating the existence of an extra cosmic
fluid, the dark energy (for reviews on the so-called dark
energy andmodified gravity, see, e.g., [2–10]), for which the
simplest and most convincing model is a small positive
cosmological constant. Finally, examining interesting chal-
lenges which already exist at the level of quantum field
theory (QFT) in de Sitter background is essential to under-
standing the full quantum gravity of de Sitter space.
Motivated by all of these reasons, in this work, we deal

with one of the most striking aspects of de Sitter QFT,
which is still a source of contention in the literature, that is,
the question of the existence of a state for free gravitons in
dS spacetime that shares the background symmetries (in
this regard, see, for instance, [11–14]). Let us be more
precise. Technically, the full dS covariance of the theory
implies the following requirements:

(i) The existence of a unitary representationU of the dS
group on the space of states, upon which, the field
hðXÞ verifies

UðgÞhðXÞUðg−1Þ ¼ hðgXÞ;

for any g in the dS group and X in spacetime.
(ii) The existence of an invariant vacuum state j0i under

the representation U,

UðgÞj0i ¼ j0i:

(iii) A local commutativity property for any pair of
points X and X0 which are not causally connected,

½hðXÞ; hðX0Þ� ¼ 0:

On the other side, if one has to apply restricting conditions
on covariance by considering the field which is covariant
with regard to a subgroup of the dS group only, this is
actually the so-called “symmetry breaking”.1 Therefore, the
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1The dS group is ten-dimensional Oð1; 4Þ [here, its connected
component is only considered SO0ð1; 4Þ], and its maximal
subgroups are Oð4Þ, Oð1; 3Þ, and Eð3Þ. The first is compact,
and the other two are noncompact. The three subgroups corre-
spond to transformations of dS space which leave invariant three
different families of hypersurfaces. Those three families of
hypersurfaces can be obtained by foliating dS space with
maximally symmetric spatial surfaces. These are the standard
foliations with closed (k ¼ 1) or open (k ¼ −1) or flat (k ¼ 0)
spatial sections [15].

PHYSICAL REVIEW D 96, 106009 (2017)

2470-0010=2017=96(10)=106009(13) 106009-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.106009
https://doi.org/10.1103/PhysRevD.96.106009
https://doi.org/10.1103/PhysRevD.96.106009
https://doi.org/10.1103/PhysRevD.96.106009


aforementioned scientific dispute about the existence of a
dS-invariant vacuum state for the free gravitons field will be
technically related to the covariance concept of the theory,
which should be understood in terms of the action of the
dS group.
On this basis, in order to examine possible vacuum states

for the gravitons field, in the next section, we describe the
gravitons field equation for a two-parameter family of
linear covariant gauges as an eigenvalue equation of the
Casimir operators of the dS group. The formalism is
precisely introduced. In this regard, it is convenient to
utilize the ambient-space formalism to present the gravitons
field equation in terms of the de Sitter coordinate-inde-
pendent Casimir operators, which carry the group-theo-
retical content of the theory. We briefly discuss how the
occurrences of gauge invariance of the field equation lead
to an indecomposable representation of the de Sitter group.
In Sec. III, we define a Gupta-Bleuler triplet to manage the
covariance and the gauge invariance of the theory. Thanks
to the ambient-space notation, an exhibition of the Gupta-
Bleuler triplet for our considered field occurs in exactly the
same manner as the electromagnetic field in Minkowski
space. Section IV is devoted to constructing an invariant
space of solutions under the action of SO0ð1; 4Þ. The main
output of our calculations is that, if we insist on full dS
invariance of the theory, the positivity requirement of the
inner product must be dropped. On this basis, thanks to a
new representation of the canonical commutation relations,
the fully dS-covariant and causal quantization of the
gravitons field is presented in Sec. V. The construction
is, therefore, free of any infrared divergence. On the other
side, admitting the dS symmetry breaking, we also present
the set of modes of the field equation which is thoroughly
SOð4Þ invariant. The corresponding SOð4Þ-covariant quan-
tum field is then given. Finally, in Sec. VI, we discuss our
result and briefly comment on the apparent conflict of our
result with the proinvariance argument given by the
mathematical physics community maintaining that there
is no physical breaking of de Sitter invariance.

II. PRESENTATION OF THE DE
SITTER MACHINERY

The de Sitter spacetime is a solution of the Einstein
equation with positive cosmological constant Λ. It is
conveniently characterized as a hyperboloid embedded in
a five-dimensional Minkowski spacetime:

MH ¼ fx ∈ R5; x2 ¼ ηαβxαxβ ¼ −H−2g; ð1Þ

where ηαβ ¼ diagð1;−1;−1;−1;−1Þ and H stands for the
Hubble constant. Then, the induced metric on the dS
hyperboloid is as follows:

ds2 ¼ ηαβdxαdxβjx2¼−H−2 ¼ ĝμνdXμdXν; ð2Þ

in which the intrinsic spacetime coordinates are labeled by
Xμ’s and μ, ν ¼ 0, 1, 2, 3.
This notation, namely, characterizing the de Sitter

spacetime as a (pseudo-)sphere in a higher-dimensional
Minkowski spacetime, constitutes the ambient-space
approach that, contrary to a more compact intrinsic notation,
makes apparent the group-theoretical content of the consid-
ered model. The isometry group of the dS background is
Oð1; 4Þ. Here, as already pointed out, only the connected
component of the identity SO0ð1; 4Þ is considered.
In the ambient formalism, a tensor field KαβðxÞ can be

considered as a homogeneous function in the R5-variables
xα,

xα
∂
∂xαKβγðxÞ ¼ x · ∂KβγðxÞ ¼ σKβγðxÞ; ð3Þ

in which σ is an arbitrarily selected degree. For simplicity
reasons,we considerσ ¼ 0; the d’Alembertian operator□≡
∇μ∇μ on de Sitter intrinsic spacetime (∇μ is the covariant
derivative) coincides with its counterpart □5 ≡ ∂2 on
R5 [16].
Due to the fact that not every homogeneous tensor field

KαβðxÞ of R5 represents a physical de Sitter entity, it must,
in addition, verify the transversality condition to ensure that
KαβðxÞ lies in the dS tangent spacetime:

xαKαβðxÞ ¼ xβKαβðxÞð≡x ·KðxÞÞ ¼ 0: ð4Þ
The importance of this transversality property for de Sitter
fields persuades us to define the symmetric, transverse
projector θαβ ¼ ηαβ þH2xαxβ which allows us to construct
transverse entities such as the transverse derivative,

∂̄α ¼ θαβ∂β ¼ ∂α þH2xαx · ∂; x · ∂̄ ¼ 0: ð5Þ
In this notation, θαβ is in fact the transverse form of the dS
metric in the ambient formalism,

ĝμν ¼
∂xα
∂Xμ

∂xβ
∂Xν θαβ:

Similarly, any “intrinsic” tensor field hμνðXÞ can be locally
determined by the “transverse” tensor field KαβðxÞ as
follows:

hμνðXÞ ¼
∂xα
∂Xμ

∂xβ
∂XνKαβðxðXÞÞ: ð6Þ

The dS ambient-space formalism allows us to express the
self-adjoint Lαβ representatives of the Killing vectors in the
following form [17,18]:

Lαβ ¼ Σαβ þMαβ; ð7Þ

in which Σαβ and Mαβ are, respectively, the action of the
orbital and the spinorial parts defined as follows:
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ΣαβKγδ… ≡ −iðηαγKβδ…

− ηβγKαδ… þ ηαδKγβ… − ηβδKγα… þ � � �Þ; ð8Þ

and

Mαβ ≡ −iðxα∂β − xβ∂αÞ: ð9Þ

Note that admitting a system of bounded global coor-
dinate Xμ to present a compactified version of de Sitter
space (S3 × S), namely,

8>>>>>><
>>>>>>:

x0 ¼ H−1 tan ρ;

x1 ¼ ðH cos ρÞ−1ðsin α sin θ cosφÞ;
x2 ¼ ðH cos ρÞ−1ðsin α sin θ sinφÞ;
x3 ¼ ðH cos ρÞ−1ðsin α cos θÞ;
x4 ¼ ðH cos ρÞ−1ðcos αÞ;

ð10Þ

−π=2 < ρ < π=2; 0 ≤ α ≤ π; 0 ≤ θ ≤ π and 0 ≤ φ < 2π
(the coordinate ρ is timelike and acts as the conformal
time), the six generators of Mαβ associated with the
compact SOð4Þ subgroup, contracting to the Lorentz
subalgebra (H → 0), are given by

M12 ¼ −i
∂
∂φ ; ð11Þ

M32 ¼ −i
�
sinφ

∂
∂θ þ cot θ cosφ

∂
∂φ

�
; ð12Þ

M31 ¼ −i
�
cosφ

∂
∂θ þ cot θ sinφ

∂
∂φ

�
; ð13Þ

M41 ¼ −i
�
sin θ cosφ

∂
∂αþ cot α cos θ cosφ

∂
∂θ

− cot α
sinφ
sin θ

∂
∂φ

�
; ð14Þ

M42 ¼ −i
�
sin θ sinφ

∂
∂αþ cot α cos θ sinφ

∂
∂θ

þ cot α
cosφ
sin θ

∂
∂φ

�
; ð15Þ

M43 ¼ −i
�
cos θ

∂
∂α − cot α sin θ

∂
∂θ

�
; ð16Þ

while considering H → 0, the four generators of Mαβ

contracting to the spacetime translations are

M01 ¼ −i
�
cos ρ sin α sin θ cosφ

∂
∂ρþ sin ρ cos α sin θ cosφ

∂
∂αþ sin ρ cos θ cosφ

sin α
∂
∂θ −

sin ρ sinφ
sin α sin θ

∂
∂φ

�
; ð17Þ

M02 ¼ −i
�
cos ρ sin α sin θ sinφ

∂
∂ρþ sin ρ cos α sin θ sinφ

∂
∂αþ sin ρ cos θ sinφ

sin α
∂
∂θ þ

sin ρ cosφ
sin α sin θ

∂
∂φ

�
; ð18Þ

M03 ¼ −i
�
cos ρ sin α cos θ

∂
∂ρþ sin ρ cos α cos θ

∂
∂α −

sin ρ sin θ
sin α

∂
∂θ

�
; ð19Þ

M04 ¼ −i
�
cos ρ cos α

∂
∂ρ − sin ρ sin α

∂
∂α

�
: ð20Þ

This categorization of generators into two sets of six and four members is essential to our investigations, and we will use
it later in determining different invariant vacuum states.
Setting up the mathematical machinery, we can now proceed with the quantization of the gravitons field. We start from

the Lagrangian density of pure gravity with positive cosmological constant in the dS intrinsic space,

Lfull ¼
ffiffiffiffiffiffi
−g

p ðR − 6H2Þ; ð21Þ

in which g is the full metric and R is the corresponding scalar curvature. By splitting the metric into a dS fixed background
ĝμν and a small fluctuation hμν, the expanded Lagrangian to the second order in hμν would be

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∇μhμλ∇νhνλ −

1

4
∇μhνλ∇μhνλ þ 1

4
ð∇μh0 − 2∇νhμνÞ∇μh0 −

1

2
H2

�
hμνhμν þ

1

2
h02

��
; ð22Þ

h0 ≡ hμμ. The indices are raised and lowered by ĝμν. Here, L is invariant (up to a total divergence) under the gauge
transformation
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hμν → hμν þ ð∇μΞν þ∇νΞμÞ; ð23Þ

for any vector field Ξμ. As is well known, we need to break
this gauge invariance for canonical quantization. Therefore,
the following most general linear covariant gauge-fixing
term is added to L,

Lg ¼
ffiffiffiffiffiffi−gp
2a

�
∇μhμν −

1þ b
b

∇νh0
�

×

�
∇λhλν −

1þ b
b

∇νh0
�
; ð24Þ

where a and b are real parameters. Pursuing the least action
principle, the wave equation now reads

□hμν þ ĝμνð∇λ∇ρhλρ −□h0Þ þ∇μ∇νh0

− 2∇ðμ∇λhνÞλ −H2ð2hμν þ ĝμνh0Þ

þ 2

a

�
∇ðμGνÞ −

1þ b
b

ĝμν∇λGλ

�
¼ 0; ð25Þ

where Gν ≡∇λhλν − 1þb
b ∇νh0.

At this stage, using the mathematical machinery pre-
sented thus far allows us to express the field equations in
terms of the coordinate-independent Casimir operators of
the de Sitter group (in theWigner sense) in analogy with the
Minkowskian case [19]:

ðQ2 þ 6ÞKþD2∂2 ·K−
1

a

�
D2∂2 ·K−

�
1þ b
b

�
2

SD1∂̄K0

−
�
1þ b
b

�
ðD2∂̄K0 −SD1∂2 ·KÞ

�
¼ 0; ð26Þ

in which Q2 is the second-order Casimir operator of the dS
group Q2 ¼ − 1

2
LαβLαβ,

2 and ∂2· is the generalized diver-
gence on the dS hyperboloid,

∂2 ·K ¼ ∂ ·K −H2xK0 −
1

2
H2D1K0: ð27Þ

Here, D1 ¼ H−2∂̄, K0 is the trace of Kαβ, S is the
symmetrizer operator (Sξαωβ ¼ ξαωβ þ ξβωα) and

D2K ¼ H−2Sð∂̄ −H2xÞK; ð28Þ

where K ≡ Kα is an arbitrary vector field.
Note that, from now on, we only consider the traceless

part of Kαβ, which satisfies

ðQ2 þ 6ÞKþ
�
1 −

1

a

�
D2∂2 ·K ¼ 0: ð29Þ

It must be emphasized that, in the context of general
relativity, the pure-trace sector of the gravitons field does
not carry any dynamics (for a detailed discussion, see [19]).
The above formula has a clear group-theoretical content.

Indeed, utilizing the representation classification presented
by the eigenvalues of the Casimir operator, one can simply
associate the transverse-traceless Kαβ with a spin-2 unitary
representation of the dS group. Let us make this statement
explicit.

A. Group-theoretical content

The elementary particle fields are classified by their
corresponding unitary irreducible representations (UIRs)
à la Wigner.
Here, we explain that Eq. (29) has a clear group-

theoretical content. The operator Q2 commutes with the
action of the de Sitter group generators, and therefore, it is
constant in the corresponding UIR; the UIR’s are classified
by the use of eigenvalues of Q2, i.e., hQ2i. According to
Takahashi and Dixmier’s notation [20,21], the eigenvalues
of the Casimir operator,

hQpi ¼ −pðpþ 1Þ − ðqþ 1Þðq − 2Þ;
are classified under the following series representations in
the present situation:

(i) For principal series representations ðU2;νÞ (also
called “massive” representations) [22,23],

hQ2i¼ν2−
15

4
; p¼2; q¼1

2
þ iν; ν∈ℜ: ð30Þ

(ii) For complementary series representations ðV2;μÞ,
hQ2i ¼ μ − 4; p ¼ 2;

q ¼ 1

2
þ μ; μ ∈ ℜ; 0 < jμj < 1

2
: ð31Þ

(iii) For discrete series representations ðΠ�
2;qÞ (also called

the “massless” representations) [22,23],

hQ2i ¼−6− ðqþ 1Þðq− 2Þ; p¼ 2; q¼ 1;2:

ð32Þ
For the discrete series, regarding the parameter
q ¼ 1 (hQ2i ¼ −4), it leads to the representation
Π�

2;1, which has no corresponding counterpart in
the Minkowskian limit. The second value, q ¼ 2
(hQ2i ¼ −6), however, leads to the representation
Π�

2;2. They are exactly the unique extensions of
the massless Poincaré group representations with
helicity of �2.

2The subscript “2” stands for the fact that the carrier space is
constituted by second rank tensors.
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On this basis, the field equation for a transverse-traceless
rank-2 tensor (or spin-2) field would be [24]

ðQ2 − hQ2iÞKðxÞ ¼ 0: ð33Þ

Constrained with the condition ∂ ·K ¼ 0, this equation
was solved in Ref. [24], rendering the following solution,

K ¼
�
−
2

3
θZ1 ·þSZ̄1 þ

1

hQ2i þ 6
D2

�
Z1 · ∂̄

−H2xZ1 ·þ3H2x · Z1 −
1

3
H2D1Z1·

��
K; ð34Þ

where Z1ð¼ Z1αÞ is a five-dimensional constant vector
(Z̄1α ¼ θαβZ

β
1) and K is a vector field,

ðQ1 − hQ1iÞK ¼ 0: ð35Þ

Note that for Q1 ¼ − 1
2
LαβLαβ, the subscript “1” (Q1)

reminds us that the carrier space is constituted by vectors,
and hQ1i ¼ hQ2i þ 4; x · K ¼ ∂ · K ¼ 0.
Clearly, for the spin-2 massless field, Eq. (34) reveals

that the value hQ2i ¼ −6 results in a singularity. This
singularity is actually due to the divergencelessness con-
dition needed to associate the tensor field with a specific
UIR of the dS group. Therefore, the subspace specified by
∂ ·K ¼ 0 considered so far is not sufficient for the
construction of the massless tensor field. In order to
suppress this difficulty, the divergencelessness condition
must be dropped [24]. As a result, two consequences follow
immediately:

(i) The appearance of gauge invariance in the field
equation, i.e. K → KþD2Λg is a solution of the
field equation for any vector field Λg as far as K is
[see Eq. (29)].

(ii) The necessity of using an nondecomposable repre-
sentation of the dS group. (More precisely, in this
context, massive elementary systems are associated
with UIRs of the dS group [24], while massless
elementary systems are connected to the nondecom-
posable representations of this group [16,25].)

The quantization of the tensor field, however, necessitates
the fixing of the gauge parameter. This fixing bears the
elimination of the singularity. In the context of the de Sitter
group theory, it is proved that the minimal (or optimal)
choice that restricts the space of solutions to the minimal
content of any massless invariant theory is [16–19]

c

�
¼ a − 1

a

�
¼ 2

2sþ 1
; ð36Þ

where s is the angular momentum, spin, of the field. Any
other choice of c represents logarithmic singularities, which
implies reverberation inside the light cone [25].

III. THE GUPTA-BLEULER TRIPLET

As stated in [26,27], in gauge theories, the appearance of
the Gupta-Bleuler triplet seems to be universal and essential
for quantization. The ambient-space notation interestingly
allows us to exhibit the Gupta-Bleuler triplet for the de
Sitter gravitons field (the transverse-traceless sector) in
precisely the same manner as it occurs for the electromag-
netic field in Minkowski space [28].
Considering the gravitons field Eq. (29), the Gupta-

Bleuler triplet Vg ⊂ V ⊂ Vc carrying the indecomposable
structure of the related dS UIRs is defined in the following
steps. With respect to the system of bounded global intrinsic
coordinates (10) that characterizes a de Sitter compactified
version (i.e., S3 × S1),Vc is defined as the space of all square
integrable solutions of the field equation in terms of the
following indefinite inner product [25]:

hK1;K2i ¼
i
H2

Z
S3;ρ¼0

�
ðK1Þ� · ·∂ρK2 − 2

a − 1

a
ðð∂ρxÞ

· ðK1Þ�Þ · ð∂ ·K2Þ − ð1�⇋2Þ
�
dΩ; ð37Þ

where “··” is a shortened notation for total contraction. This
inner product is invariant under hUgh1; Ugh2i ¼ hh1; h2i, in
whichU is the natural representation of the deSitter group. In
the following sections, the space of all square integrable
solutions of the field equation Vc is given. We construct an
invariant vacuum in a Fock space constructed over the
indefinite inner product space Vc, as well; we refer to this
as a Gupta-Bleuler vacuum.
The physical states verify the divergencelessness con-

dition and belong to an invariant subspace of the solutions,
the space V, for which the inner product is [25]

hK1;K2i ¼
i
H2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2 −K2 · ·∂ρðK1Þ��dΩ:

ð38Þ

Contrary to Vc, it is obviously c (gauge) independent. The
space of gauge solutions, Kg ¼ D2Λg, is denoted by an
invariant subspace Vg of V. These are orthogonal to every
element in V, including themselves. The inner product is
semidefinite in V and is positive definite in the quotient
space V=Vg. The dS group acts on V=Vg through the
massless, helicity �2 unitary representation Πþ

2;2 ⊕ Π−
2;2. It

is indeed the physical states space. Here, we must underline
that all three of these spaces carry representations of the dS
group. Indeed, the physical subspace V is invariant but not
invariantly complemented in Vc. The same feature repeats
in V, where one finds the invariant (but again not
invariantly complemented) subspace of gauge solutions Vg.
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Now, the gauge state space Vg, the vector states ∂2 ·K
belonging to Vc=V, and the physical states space V=Vg

should be characterized.

A. The gauge states space

Considering Kg ¼ D2Λg, the field equation (29)
reduces to

ð1 − cÞD2ðQ1 þ 6ÞΛg ¼ 0: ð39Þ

Therefore, we have the following results:
(i) For c ¼ 1, the vector field Λg is unrestricted and

bears merely the differentiability conditions. Then
the gauge states are determined by D2Λg.

(ii) For c ≠ 1, it is clear that the space of solutions
of Eq. (39), possessing the divergencelessness
(∂ · Λg ¼ 0) and transversality (x · Λg ¼ 0) condi-
tions, carries a vector representation [16,29]. This
vector field can be written as [29]

Λg ¼ Z̄ϕ1 þD1ϕ2; ð40Þ

where Z is a constant five-vector field, and

ðQ0 þ 4Þϕ1 ¼ 0;

ϕ2 ¼ −
1

6
ð2H2x · Zϕ1 þ Z · ∂̄ϕ1Þ:

where ϕ1 is demonstrated by the scalar representa-
tion of the dS group [30].

B. The vector states space

The vector states ∂2 ·K are characterized by

∂2 · ððQ2 þ 6ÞKðxÞ þ cD2∂2 ·KÞ ¼ 0; ð41Þ

and one can easily obtain

ð1 − cÞðQ1 þ 6Þ∂2 ·K ¼ 0: ð42Þ

Thus, we have the following results:
(i) For c ¼ 1, it has no restriction with the exception of

differentiability conditions.
(ii) For c ≠ 1, it corresponds to a vector field similar to

the gauge states.

C. The physical states space

The physical states space, which is c independent, is
given by imposing the divergencelessness condition on
Eq. (26) as follows:

ðQ2 þ 6ÞK ¼ 0: ð43Þ

IV. SPACE OF SOLUTIONS

The general solution to the field equation (29) can be
constructed by a combination of a scalar field and two
vector fields. More exactly, considering a five-dimensional
constant vector Z1ð¼ Z1αÞ, a scalar field ϕ1 and two vector
fields, K and Kg, the most general transverse-traceless
symmetric field Kαβ can be given by [17]

K ¼ θϕ1 þ SZ̄1K þD2Kg;

K0 ¼ 4ϕ1 þ 2Z1 · K þ 2H−2∂̄ · Kg ¼ 0; ð44Þ

where x · K ¼ 0 ¼ x · Kg. Applying Eq. (29) to the above
ansatz, utilizing the commutation rules and algebraic
identities for the various involved operators and fields,
in the case a ¼ 5=3 that corresponds to what we call the
“minimal case” without any logarithmic singularity,3 one
can construct the traceless sector of the field solutionKαβ in
terms of a “massless” minimally coupled scalar field ϕ and
a dS-invariant polarization tensor Dαβ (see [19] for more
details):

Kð5=3Þ
αβ ¼ Dð5=3Þ

αβ ðx; ∂; Z1; Z2Þϕ; ð45Þ

where

Q0ϕ ¼ 0: ð46Þ

Here, Q0 ¼ − 1
2
MαβMαβ ¼ −H−2ð∂̄Þ2 is the scalar part of

the Casimir operator and

Dð5=3Þðx; ∂; Z1; Z2Þ

¼
�
−
2

3
θZ1 ·þSZ̄1 þ

1

3
D2

�
H2ðx · Z1Þ þ

1

9
H2D1ðZ1·Þ

��

×

�
Z̄2 −

1

2
D1½ðZ2 · ∂̄Þ þ 2H2ðx · Z2Þ�

�
: ð47Þ

Note that Z2 is another five-dimensional constant vector.
For the sake of simplicity, from now on, the index 5=3 is
omitted.
Now considering Eq. (6), one can easily convert the field

solution (45) into its counterpart in the bounded global
coordinate ðXμ; μ ¼ 0; 1; 2; 3Þ. In this regard, the field
solution would be

3To see the point that the value a ¼ 5=3 is the minimal case,
one can reconsider the general case (a ≠ 5=3). The general
solution then would be [19]

K ¼ Kð5=3Þ þ ð5 − 3aÞD2ðQ1 þ 6Þ−1ð∂ ·Kð5=3ÞÞ:

The extra term D2ðQ1 þ 6Þ−1ð∂ ·Kð5=3ÞÞ is responsible for the
appearance of a logarithmic singularity in the field solutions.

BAMBA, RAHBARDEHGHAN, and PEJHAN PHYSICAL REVIEW D 96, 106009 (2017)

106009-6



hμνðXÞ ¼
∂xα
∂Xμ

∂xβ
∂XνKαβðxðXÞÞ;

¼ Δλ
μνðρ;Ω; LlmÞϕLlmðρ;ΩÞ≡ hðλLlmÞ

μν ; ð48Þ

in which L ¼ 1; 2;…; 0 ≤ l ≤ L; 0 ≤ jmj ≤ l, the index λ
runs on all possible polarizations4 and

Δλ
μν ¼

∂xα
∂Xμ

∂xβ
∂XνD

λ
αβ:

Note that ϕLlm is the solution satisfying Eq. (46), which,
with respect to the coordinate (10), is given by (see the
Appendix)

ϕLlmðXÞ ¼ ALðLe−iðLþ2Þρ þ ðLþ 2Þe−iLρÞYLlmðΩÞ; ð49Þ

where AL ¼ H
2
½2LðLþ 1ÞðLþ 2Þ�−1=2 and the YLlm are the

spherical harmonics on S3.
The de Sitter spacetime is globally hyperbolic; hence, the

so-called commutator ~Gμνμ0ν0 ¼ GðadvÞ
μνμ0ν0 −GðretÞ

μνμ0ν0 is uniquely
defined [31]. Let us recall that these propagators are
defined by

Eμνλρ
X GðadvÞ

λρμ0ν0 ðX; YÞ ¼ Eμνλρ
X GðretÞ

λρμ0ν0 ðX; YÞ
¼ −δμνμ0ν0 ðX; YÞ; ð50Þ

where the operator Eμνλρ
X actually refers to the Euler-

Lagrange field equations derived from Lþ Lg [see (22)

and (24)], so that Eμνλρ
X hλρ ¼ 0 leads to the wave equa-

tion (25), and the δ function is defined by (for any smooth
symmetric tensor fμν on S4)

Z
δμνμ0ν0 ðX; YÞfμ

0ν0 ðXÞdμðXÞ ¼ fμνðYÞ:

Here, dμðXÞ ¼ ðcos ρÞ−4dρdΩ is the Oð1; 4Þ-invariant
measure on MH. Note that, for fixed Y, the support in X
of GðadvÞ (respectively GðretÞ) lies in the past (respectively
future) cone of Y. In this context, for (at least) any smooth
solution of the field equation with compact support, we
have

hμνðρ;ΩÞ ¼ hð−iÞ ~Gμνμ0ν0 ððρ;ΩÞ; ðρ0;Ω0ÞÞ; hμ0ν0 ðρ0;Ω0Þi:

Remember that h; i denotes the inner product which is
defined for any h, q solutions of the field equation as (37).

We shall finally use the invariant ðL2Þ scalar product on
L2ðMHÞ denoted by parentheses,

ðf; gÞ ¼
Z
MH

f�ðXÞ · ·gðXÞdμðXÞ: ð51Þ

Contrary to h; i, this product is positive definite; moreover,
f and g are not necessary solutions of the field equation.
Now, in order to construct the quantum field, one should

look for a set of modes hðλLlmÞ
μν , which are solutions to the

wave equation satisfying the following properties. First,

hhðλLlmÞ
μν ; hðλ

0L0l0m0Þ
μν i ¼ δλλ0δLL0δll0δmm0 ;

hhðλLlmÞ
μν ; ðhðλ0L0l0m0Þ

μν Þ�i ¼ 0. ð52Þ

This family can be considered to construct the “Euclidean”
vacuum in the usual terminology.
Second, the hðλLlmÞ

μν and the ðhðλLlmÞ
μν Þ� are requested to

span the space of smooth solutions to the wave equation.

Given such hðλLlmÞ
μν , one considers the Hilbert space Hþ

they span and the corresponding bosonic Fock space Hþ.
5

The field hμνðXÞ is then defined by

hμνðXÞ ¼
X
λLlm

aλLlmh
ðλLlmÞ
μν þ

X
λLlm

a†λLlmðhðλLlmÞ
μν Þ�; ð53Þ

where aλLlm and ðaλLlmÞ† are the usual annihilation and

creation operators of the mode hðλLlmÞ
μν , respectively. Note

that this construction depends crucially on the choice made

for the hðλLlmÞ
μν or, more precisely, on the space Hþ they

span. To make sure this yields a physically acceptable
theory, one normally requires the following additional
properties of hμνðXÞ. First, hμνðXÞ needs to be causal;
actually, ½hμνðXÞ; hμ0ν0 ðX0Þ� is required to equal the com-

mutator function −i ~Gμνμ0ν0 ðX;X0Þ on MH to ensure that the
field satisfies the correct equal time commutation relations
with its conjugate momentum. Next, one wants all the
symmetries of the classical equation to survive in the
quantized theory. This means that one expects the Fock
space Hþ to carry a unitary representation U of the
isometry group of MH (and of all other symmetries of
the theory),6 and that one requires the field to transform
correctly and the vacuum to be invariant. In what follows, it
is of importance to recall that, in the above setting, it is
sufficient to require the invariance of the solution spaceHþ
under the natural representation of the isometry group
(which extends in the obvious way to the full Fock space) to
obtain the correct transformation properties of the field.

4There are ten possible polarizations. One may divide them
into nonzero divergent part (λ ¼ 1, 2, 3, 4), zero divergent and
zero norm part or gauge solutions (λ ¼ 5, 6, 7, 8) and zero
divergent and nonzero norm part or the central part solutions
(λ ¼ 9, 10). The latter contains two helicities of the physical
states. Here, in order to clarify the points, one may need to
reconsider the Gupta-Bleuler triplet introduced in the previous
section.

5The subscript “þ” implies the positivity requirement of the
inner product and will be clarified with more details soon.

6U is actually the extension of the natural representation of the
de Sitter group, U, to the Fock space.
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To see the point, it is convenient to define the vector-
valued distribution taking values in the space generated by
the modes hðλLlmÞ

μν for any real test function fμν ∈ DðMHÞ,7

X → pμνðfÞðXÞ ¼
X
λLlm

hðλLlmÞ
μν ðXÞhðλLlmÞðfÞ; ð54Þ

in which hðλLlmÞðfÞ is the smeared form of the modes,

hðλLlmÞðfÞ ¼
Z
MH

hðλLlmÞ
μν ðXÞfμνðXÞdμðXÞ

¼ hðλLlmÞ
μν ðXÞ; fμνðXÞÞ: ð55Þ

The space generated by the pðfÞ’s is equipped with the
positive invariant inner product

hpðfÞ; pðgÞi ¼
Z
MH

fμνðXÞgμνðXÞdμðXÞ

¼ fðXÞ; gðXÞÞ: ð56Þ
Now, as usual, the field can be written as the following
operator-valued distribution:

hðfÞ ¼ aðpðfÞÞ þ a†ðpðfÞÞ: ð57Þ

One can immediately conclude from (57) and the non-
degeneracy condition (52) that, ifHþ is invariant under the
action of the isometry group, then p commutes with the
action of the de Sitter group, and as a result, hμν also
transforms correctly.
Based on the above statements, now we are able to

explain how difficulties arise in quantizing the gravitons
field on MH. Considering the normalization constant AL,
one can easily see that it breaks down at L ¼ 0. This is
indeed the well-known “zero-mode” problem associated
with the dS massless minimally coupled scalar field [32]
that leaks to the gravitons field. As a matter of fact, the

space of solutions constructed by hðλLlmÞ
μν ðXÞ for L ≠ 0 [see

(48)] does not constitute a complete set of modes.
Moreover, applying the action of the dS group on these
modes reveals that this set is not dS invariant. To see the
point, one can consider the following case:

ðL03 þ iL04Þhðλ;1;0;0Þμν ¼ ððL03 þ iL04ÞΔλ
μνÞϕ1;0;0

þ Δλ
μνððM03 þ iM04Þϕ1;0;0Þ: ð58Þ

It is trivial that the first term for a given gauge-fixing
parameter (in our case, a ¼ 5=3) remains invariant under
the group action. Remember that it is invariant under an
indecomposable representation of the dS group. However,
the invariance is broken because of the last term in Eq. (58):

¼ …þ Δλ
μν

�
−i

4ffiffiffi
6

p ϕ2;1;0 þ ϕ2;0;0 þ
3H

4π
ffiffiffi
6

p
�
:

Obviously, the only way to prevent this symmetry breaking
through the gauge-fixing procedure is the situation for
which we have Δλ

μν ¼ 0. It is, of course, the trivial solution
of the field equation. Therefore, it seems that, in order to
cure this symmetry breaking, one should look for comple-
mentary modes to the set of solutions (48). In this regard,
we addΔλ

μνC (C is a constant function) to the set of solutions
and obtain the following dS-invariant space of solutions:

�
c0Δλ

μνC þ
X

λLlm;L>0

cLlmh
ðλLlmÞ
μν ; c0; cLlm ∈ C;

X
λLlm;L>0

jcLlmj2 < ∞
�
: ð59Þ

Here, a crucial point should be clarified. Including the new
mode Δλ

μνC is an inevitable requirement to preserve the
invariance of the theory; however, it yields a new difficulty.
More exactly, the introduced space of solutions in (59) as
an invariant inner-product space is a degenerate space,

hΔλ
μνC; h

ðλLlmÞ
μν i ¼ hΔλ

μνC;Δλ
μνCi ¼ 0: ð60Þ

Note that Δλ
μνC is indeed orthogonal to the whole space,

including itself. Therefore, due to this degeneracy, once
again, canonical quantization applied to the set of modes
(59) unavoidably leads to a noncovariant field.
To prevent this difficulty and obtain a thoroughly

covariant canonical quantization of the gravitons field,
by solving Eq. (46) directly (more exactly, Eq. (A6) for
L ¼ κ ¼ 0), we obtain two independent solutions including
the constant function mentioned above. These solutions
replace the divergent zero mode in (49), as follows:

ϕð1Þ
0;0;0 ¼

H
2π

and ϕð2Þ
0;0;0 ¼ −i

H
2π

�
ρþ 1

2
sin 2ρ

�
: ð61Þ

On this basis, we present the following definition for

hðλ;0;0;0Þμν :

hðλ;0;0;0Þμν ¼ Δλ
μνðρ;ΩÞϕ0;0;0;

ϕ0;0;0 ¼ ϕð1Þ
0;0;0 þ ϕð2Þ

0;0;0=2: ð62Þ

Note that the constants of normalization are chosen in

order to have hhðλ;0;0;0Þμν ; hðλ;0;0;0Þμν i ¼ 1. Considering this new
definition, interestingly, a complete set of positive norm

modes hðλLlmÞ
μν (L ≥ 0) is available. However, once again,

dS invariance breaks due to this mode. See, for instance,
7DðMHÞ is the space of functions C∞ with compact support in

MH.
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ðL03 þ iL04Þhðλ;0;0;0Þμν ¼ ððL03 þ iL04ÞΔλ
μνÞϕ0;0;0

þ Δλ
μνððM03 þ iM04Þϕ0;0;0Þ: ð63Þ

As mentioned before, the first term is trivially invariant
under the group action. The invariance, however, is broken
owing to the second term,

Δλ
μνððM03 þ iM04Þϕ0;0;0Þ
¼ Δλ

μνððM03 þ iM04Þϕð2Þ
0;0;0Þ

¼ Δλ
μν

�
−

ffiffiffi
6

p

4

�
ðiϕ1;0;0 þ iϕ�

1;0;0 þ ϕ1;1;0 þ ϕ�
1;1;0Þ

¼
�
−

ffiffiffi
6

p

4

�
ðihðλ;1;0;0Þμν þ iðhðλ;1;0;0Þμν Þ�

þ hðλ;1;1;0Þμν þ ðhðλ;1;1;0Þμν Þ�Þ: ð64Þ
It seems that if one requires a full dS-covariant quantiza-
tion, one has to give up the positivity requirement of the
inner product. Note that (L ≥ 0)

hhðλLlmÞ
μν ; hðλLlmÞ

μν i ¼ 1;

hðhðλLlmÞ
μν Þ�; ðhðλLlmÞ

μν Þ�i ¼ −1. ð65Þ
Following this path, applying the action of the dS group

on the set of solutions hðλLlmÞ
μν (L ≥ 0) frequently, one can

simply see that the smallest, complete, nondegenerate, and
invariant inner product space for the gravitons field would
be a Krein space:

H ¼ Hþ þH−; ð66Þ

in which Hþ is the Hilbert space constructed over the
modes (62) and (48),

Hþ ¼
� X

λLlm;L≥0
cLlmh

ðλLlmÞ
μν ;

X
λLlm;L≥0

jcLlmj2 < ∞
�
; ð67Þ

and H− is an anti-Hilbert space (a negative definite inner
product space). In other words, neitherHþ norH− carries a
representation of the dS group, so that, there is no covariant
decomposition Hþ þH−. However, the key point here is
that the SOð4Þ-covariant decomposition exists. Note that
only the four generators of Mαβ contracting to the space-
time translations, Eqs. (17)–(20), are responsible for de
Sitter symmetry breaking. The other six generators asso-
ciated with the compact SOð4Þ subgroup, contracting to the
Lorentz subalgebra, Eqs. (11)–(16), preserve de Sitter
invariance and allow an SOð4Þ-covariant construction.
Indeed, the set constituted of (48) and (62), i.e., (67), is
SOð4Þ invariant, and by utilizing this set of modes, the
SOð4Þ-covariant quantum field is quite available.

V. THE QUANTUM FIELD

As already mentioned, the fully de Sitter-covariant grav-
itons field is expected to be an operator-valued distribution
onMH acting onH [see (66)]. Let us recall that for any space
H, one defines the corresponding Fock space H by

H ¼ ⨁
n≥0

SnðHÞ;

where SnðHÞ is the nth symmetrical tensor product of H.
When H is realized as a space L2ðRd; dμÞ, one can realize
SnðHÞ as the space of square integrable symmetric functions
of n variables on Rd. The one-dimensional space S0ðHÞ is
written j0i and called thevacuum state. As is well known, the
creators a†λLlm and annihilators aλLlm create and annihilate,

respectively, the mode hðλLlmÞ
μν . They can be realized on the

Fock space in the following way:

ðaðhÞqÞðX1;…; Xn−1Þ ¼
ffiffiffi
n

p i
H2

Z
ρ¼0

�
h�ðρ;ΩÞ · ·∂ρqððρ;ΩÞ; X1;…; Xn−1Þ

− 2
a − 1

a
ðð∂ρxÞ · h�ðρ;ΩÞÞ · ð∂ · qÞððρ;ΩÞ; X1;…; Xn−1ÞÞ − ð1�⇋2Þ

�
dΩ; ð68Þ

for any square-integrable n-symmetric function q. The creator is defined as usual by

ða†ðhÞqÞðX1;…; Xnþ1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Xnþ1

i¼1

hðXiÞ · ·qðX1;…; ~Xi;…; Xnþ1Þ; ð69Þ

where ~Xi means that this term is omitted. One can easily see
that

½aðhÞ; a†ðqÞ� ¼ hh; qi; ð70Þ
which gives, of course, the usual commutation relations

when applied to the modes hðλLlmÞ
μν . One can also verify that

Uga†ðhÞU�
g ¼ a†ðUghÞ; and UgaðhÞU�

g ¼ aðUghÞ:
ð71Þ

We are now ready to define the (unsmeared) quantum
field hμνðXÞ on H by [note that, to respect the standard
notation, once again, we introduce the quantum field by
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hμνðXÞ, which is obviously different from the previous one
introduced in Sec. III]

hμνðXÞ ¼
X
λLlm

aλLlmh
ðλLlmÞ
μν −

X
λLlm

bλLlmðhðλLlmÞ
μν Þ�

þ
X
λLlm

ðaλLlmÞ†ðhðλLlmÞ
μν Þ� −

X
λLlm

ðbλLlmÞ†hðλLlmÞ
μν ;

ð72Þ

in which aλLlm and bλLlm are, respectively, the annihilators of

the modes hðλLlmÞ
μν and ðhðλLlmÞ

μν Þ�. The nonvanishing com-
mutation relations between these operators are

½aλLlm; ðaλLlmÞ†� ¼ 1; ½bλLlm; ðbλLlmÞ†� ¼ −1: ð73Þ

It is worth mentioning that the minus sign follows from
the formulas ½aðhÞ; a†ðqÞ� ¼ hh; qi and the fact that
hh�; h�i ¼ −1. Note also that this field is clearly real as
the sum of an operator and its conjugate,

hμνðXÞ ¼ hðþÞ
μν ðXÞ þ hð−Þμν ðXÞ; ð74Þ

where

hðþÞ
μν ðXÞ ¼

X
λLlm

aλLlmh
ðλLlmÞ
μν þ

X
λLlm

ðaλLlmÞ†ðhðλLlmÞ
μν Þ�; ð75Þ

and

hð−Þμν ðXÞ ¼ −
X
λLlm

bλLlmðhðλLlmÞ
μν Þ� −

X
λLlm

ðbλLlmÞ†hðλLlmÞ
μν : ð76Þ

We claim that this field is covariant and causal.
In order to prove these claims, we proceed as in Eq. (57)

to introduce the smeared field, which is easier to work with.
We consider the distribution p taking values in H, so that,
for any function f, pðfÞ is the unique element of H,

hpðfÞ; qi ¼ ðf; qÞ; ∀ q ∈ H: ð77Þ

The existence of pðfÞ is subject to a technical requirement
on H: the continuity for each f of the map q ↦ ðf; qÞ,
H ↦ C. pðfÞ ¼ R

pμνðXÞfμνðXÞdμðXÞ, therefore, leads to
hpðXÞ; qi ¼ qðXÞ. One can easily see that the kernel ~G of p
is given by

hpμνðXÞ; pμ0ν0 ðX0Þi ¼ −i ~Gμνμ0ν0 ðX;X0Þ;

and the field can be written in a coordinate-free definition
as follows:

hμνðXÞ ¼ aðpμνðXÞÞ þ a†ðpμνðXÞÞ: ð78Þ

The covariance of hμνðXÞ now can be easily checked
respecting (71) and the covariance of p.
The causality of this field now follows immediately from

this definition and from the formula (70):

½hμνðXÞ; hμ0ν0 ðX0Þ� ¼ 2hpμνðXÞ; pμ0ν0 ðX0Þi
¼ −2i ~Gμνμ0ν0 ðX;X0Þ: ð79Þ

The field is causal because ~Gμνμ0ν0 ðX;X0Þ vanishes when X
and X0 are spacelike separated.
At the end, considering the above construction, the

(Krein-Gupta-Bleuler) Fock vacuum is characterized by

aλLlmj0i ¼ bλLlmj0i ¼ 0; ∀ L ≥ 0 and λ ¼ 1;…; 10:

It is trivially invariant under the action of de Sitter
group SO0ð1; 4Þ.
Now, let us make our result explicit. Thus far, utilizing a

robust group-theoretical machinery, we have obtained a
fully dS-covariant and causal quantization of the gravitons
field on de Sitter background. The construction is, there-
fore, free of any infrared divergence. Our calculations
clearly reveal that the only way to preserve the full dS
covariance of the theory is to include illegitimate negative
norm states. In other words, there is no natural vacuum state
(the Euclidean state) for free gravitons in de Sitter space
that shares the background symmetries. To go around this
difficulty, it seems that a restrictive version of covariance, in
which Fock states include the Euclidian vacuum state as an
invariant vacuum (not under the full dS group), should be
considered. Insisting on the Euclidean vacuum stems from
the fact that the existence of an invariant Euclidean vacuum
as the natural dS vacuum state is essential to the notion of a
de Sitter temperature [33] and the associated entropy [34].
Therefore, we either have to redefine vacua invariant under
a subgroup of the de Sitter group only (spontaneous
symmetry breaking), or choose to restrict the field to a
subset of the de Sitter spacetime, or consider invariance
under the Lie algebra of the de Sitter group rather than
under the full group action.
With respect to the above reasoning, in Sec. III, at the

same time with the main stream of our calculations in order
to construct a fully dS-invariant set of modes, we have also
obtained the set Hþ [see (67)], which is thoroughly
invariant under a maximal subgroup of the dS group,
namely, SOð4Þ. Utilizing this family simply leads to the
Euclidean vacuum in the standard terminology; considering
this set of modes, the corresponding SOð4Þ-covariant
quantum field, characterized by hðþÞ

μν ðXÞ [see (75)], can
be constructed over the Hilbertian Fock space, while the
SOð4Þ-invariant Fock vacuum j~0i is given by
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aλLlmj~0i ¼ 0; ∀ L ≥ 0 and λ ¼ 1;…; 10:

Before ending our discussions in this section, let us make
an additional remark: a comment on the argument given by
Woodard et al. in [35] about the gauge-fixing procedure.
They believe that the unjustified use of average gauge
fixing is behind the mentioned dispute about the free
gravitons in dS background. More accurately, they have
reasoned that certain gauge-fixing functionals cannot be
added to the action on backgrounds such as de Sitter, in
which a linearization instability is present. In this regard,
we must declare that there is no contradiction between our
mathematical point of view in adding dS-invariant gauge-
fixing terms to the Lagrangian (22) and the Woodard
statement. In our investigations, indeed, by adding dS-
invariant gauge-fixing terms to the Lagrangian along with
the use of the concrete structure of the dS group theory, we
have presented a full dS-covariant quantization of the
gravitons field. Again, the formalism is free of any infrared
divergence, and obviously no linearization instability is
present. Therefore, with respect to the Woodard viewpoint,
there is no mathematical obstacle in our gauge-fixing
procedure. Of course, the price to pay in building the
covariant quantum field, which is the appearance of
unphysical negative norm states, forces us to give up dS
invariance and so forth.

VI. DISCUSSION

Here, we should comment on the apparent conflict of our
result with the argument given by the mathematical physics
community maintaining that there is no physical breaking
of de Sitter invariance. In this regard, let us focus on work
by Higuchi [36], which is a fundamental paper for this
claim. The idea is that dynamical gravitons on de Sitter
might be physically de Sitter invariant, even though no
manifestly de Sitter-invariant propagator can be found for
them [37,38]. This proposal entails making sense of the
Bunch-Davies vacuum, which is the unique possibility for a
de Sitter-invariant state for dynamical gravitons, and that
means somehow avoiding the infrared divergence. In this
paper, after a complete gauge-fixing procedure, it is shown
that the physical graviton modes can be chosen as hðλLlmÞ

μν

with L ≥ l ≥ 2 and λ ¼ � (which is different from our
notation and corresponds to the helicity). Under a de Sitter
boost, these modes transform into other modes as well, but
these other modes are of the form ∇μΞν þ∇νΞμ. This
means that, by defining the equivalence relation

h0μν ∼ hμν þ∇μΞν þ∇νΞμ; ð80Þ

and by regarding hðλLlmÞ
μν as the representative elements of

the equivalence classes, the modes hðλLlmÞ
μν , L ≥ l ≥ 2, −l ≤

m ≤ l form the unitary representation Πþ
2;2 ⊕ Π−

2;2. Note

that the de Sitter group is represented on the space of
solutions by satisfying the transverse-traceless-synchro-
nous conditions h0μ ¼ 0, hμμ ¼ 0, and ∇μhμν ¼ 0 in lin-
earized gravity. Because the change from h0μν to hμν was a
gauge transformation, Higuchi et al. concluded that no
observable quantity is affected. Because the Bunch-Davies
vacuum now exists, they conclude that the graviton vacuum
is dS invariant.
Regarding the above statement, some crucial points

should be clarified. On one hand, it must be emphasized
that the above argument by Higuchi suffers from funda-
mental defects coming from the gauge transformation (80).
The gauge transformation changes both the propagator
equation and the canonical commutation relations [39,40].
The problem is that it seems to alter things we have already
measured. The same procedure could be utilized to prevent
the conclusion that there is no dS-invariant state for the
massless minimally coupled scalar field. Moreover, con-
sidering the same sort of transformation for Minkowski
space QED seems to remove the infrared divergences of the
exclusive scattering amplitudes. These things have meas-
urable consequences and cannot be altered. One can get a
detailed discussion of these statements in [39,40].
On the other hand, if one respects the canonical

commutation relations, we should declare that any canoni-
cal quantization procedure in which one only considers the
invariant physical graviton modes does yield a noncovar-
iant quantization of linearized gravity, and therefore,
obtaining an infrared finite graviton two-point function
in this context is not surprising. We recall from the previous
sections that the quantization of gauge-invariant theories, as
is well known, usually requires quantization à la Gupta-
Bleuler, which is based on three invariant spaces of
solutions, Vg ⊂ V ⊂ Vc [26,27]; the physical states space,
the quotient space V=Vg of states up to a gauge trans-
formation for which, as already pointed out, the dS group
acts through the unitary representation Πþ

2;2 ⊕ Π−
2;2, is

invariant, but not invariantly complemented in Vc.
Indeed, an indecomposable group representation structure
appears unavoidable, where the physical states belong to a
subspace (characterized by the divergencelessness condi-
tion of the field operator) V of solutions but where the field
operator must be defined on a larger gauge-dependent
space Vc (which contains negative norm states).8 It has, in
fact, been proven that the use of an indefinite metric is an
unavoidable feature if one insists on preserving the cau-
sality (locality) and covariance in gauge quantum field
theories [42].

8Again, this is deeply analogous to the case of the electro-
magnetic field in Minkowski space for which the only way to
preserve (manifest) covariance and gauge invariance in canonical
quantization is to use the Gupta-Bleuler method [41].
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Frankly speaking, the correct procedure in all cases is to
allow free gravitons to resolve their infrared problem by
breaking de Sitter invariance.
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APPENDIX: MATHEMATICAL RELATIONS
UNDERLYING EQ. (49)

In this appendix, the solution to the field equation (46) is
given. In this regard, it is convenient to rewrite (46) in a
more general form as follows:

Q0ϕ ¼ κϕ; κ ¼ hQ0i ¼
�
mH

H

�
2

þ 12ξ; ðA1Þ

in which mH and ξ, respectively, refer to a “mass” and a
positive gravitational coupling with the dS background.
Note that the Laplace-Beltrami operator □ and the scalar
part of the Casimir operator, Q0, are proportional,

□ ¼ −H2Q0:

Therefore, Eq. (A1) simply leads to the wave equation for
scalar fields propagating on dS spacetime,

½□þ ðm2
H þ 12H2ξÞ�ϕ ¼ 0: ðA2Þ

The Laplace-Beltrami operator on dS spacetime is

□ ¼ H2cos4ρ
∂
∂ρ

�
cos−2ρ

∂
∂ρ

�
−H2cos2ρΔ3; ðA3Þ

where

Δ3 ¼
∂2

∂α2 þ 2 cot α
∂
∂αþ 1

sin2α
∂2

∂θ2
þ cot θ

1

sin2α
∂
∂θ þ

1

sin2αsin2θ
∂2

∂φ2
ðA4Þ

is the Laplace operator on the hyperbolic S3.
Considering ϕðXÞ ¼ UðρÞVðΩÞ;Ω ∈ S3 (separation of

variable), Eq. (A1) or equivalently Eq. (A2) can be divided
into two parts,

ðΔ3 þ CÞVðΩÞ ¼ 0; ðA5Þ
�
cos4ρ

d
dρ

cos−2ρ
d
dρ

þ Ccos2ρþ κ

�
UðρÞ ¼ 0: ðA6Þ

Concentrating on the angular part, for C ¼ LðLþ 2Þ
L ∈ N, we obtain V ¼ YLlm,

YLlmðΩÞ ¼
�ðLþ 1Þð2lþ 1ÞðL − 1Þ!

2π2ðLþ lþ 1Þ!
�1

2

× 2ll!ðsin αÞlClþ1
L−1ðcos αÞYlmðθ;φÞ; ðA7Þ

in which 0 ≤ l ≤ L; 0 ≤ jmj ≤ l, the Cλ
n are Gegenbauer

polynomials [43] and

Ylmðθ;φÞ ¼ ð−1Þm
�ðl −mÞ!
ðlþmÞ!

�1
2

Pm
l ðcos θÞeimφ: ðA8Þ

Here, Pm
l are the corresponding Legendre functions. YLlm’s

satisfy the orthogonality conditions

Z
S3
YLlmðΩÞYL0l0m0 ðΩÞdΩ ¼ δLL0δll0δmm0 ;

where dΩ ¼ sin2α sin θdαdθdϕ is the Oð4Þ-invariant mea-
sure on S3.
On the other hand, following [44], the radial part (A6)

would be

UλLðρÞ ¼ ALðcosρÞ32
�
Pλ
Lþ1

2

ðsinρÞ− 2i
π
Qλ

Lþ1
2

ðsinρÞ
�
; ðA9Þ

with

λ ¼
ffiffiffiffiffiffiffiffiffiffiffi
9

4
− κ

r
when

9

4
≥ κ ≥ 0;

λ ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
κ −

9

4

r
when

9

4
≤ κ: ðA10Þ

Note that Pλ
n and Qλ

n stand for Legendre functions on the
cut, and

AL ¼ H
ffiffiffi
π

p
2

�
ΓðL − λþ 3

2
Þ

ΓðLþ λþ 3
2
Þ
�1

2

: ðA11Þ

The complete set of modes for the field equation [(A1) or
equivalently (A2)] then would be

ϕλ
Llm ¼ UλLðρÞYLlmðΩÞ; X ¼ ðρ;ΩÞ ∈ MH: ðA12Þ

There exists an exception: the massless minimally coupled
scalar field κ ¼ 0, for which the above construction breaks
down (for L ¼ 0). However, giving up L ¼ 0, the above
formulas are still valid for κ ¼ 0, and one can simply obtain
the field solution to (46) as (49).
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