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We present the first exact calculations of the time dependence of causal correlations in driven
nonequilibrium states in (2þ 1)-dimensional systems using holography. Comparing exact results with
those obtained from simple prototype geometries that are parametrized only by a time-dependent
temperature, we find that the universal slowly varying features are controlled just by the pump duration
and the initial and final temperatures only. We provide numerical evidence that the locations of the event
and apparent horizons in the dual geometries can be deduced from the nonequilibrium causal correlations
without any prior knowledge of the dual gravity theory.
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I. INTRODUCTION

Hydrodynamics gives us a general understanding of how
expectation values of local operators, e.g., the energy-
momentum tensor and conserved currents in many-body
systems thermalize. A similar general understanding of
nonequilibrium time evolution of correlation functions is
still elusive. This is particularly hard for the case of the
unequal time correlation functions in which case non-
perturbative techniques are essential even at weak coupling
[1–3]. The chief objective of this work is to perform the
first exact calculations of the time dependence of the causal
(a.k.a. retarded) correlations in a (2þ 1)-dimensional
many-body system in states transitioning from an initial
thermal equilibrium to another driven by a homogeneous
energy injection from a source (a.k.a. pump). To that end
we apply the holographic correspondence [4] that maps
strongly interacting many-body systems to classical theo-
ries of gravity with a few dynamical fields in one higher
dimension [5]. Furthermore, since the time-dependent
causal correlation function can be known experimentally
via techniques such as solid-state pump-probe spectroscopy
[6], it is desirable to establish a general theory of its
thermalization.

Our computations reveal that at least in the regimes
where the time duration of energy injection tp is small
compared to the initial thermal scattering time T−1

in , the time
dependence of causal correlation functions in holographic
systems has well-defined universal features. Namely, these
features can be reproduced with better than OðtpT inÞ
accuracy by a simple prototype gravitational geometry that
can be constructed using only (i) the experimentally
controlled tp and (ii) the initial and final temperatures.
Thus, the universal features of thermalization can be
understood without detailed knowledge of microscopic
dynamics whose only role here is to determine the final
temperature of the system given the duration and amplitude
of the external source. This indicates that many features of
thermalization of the causal correlations are controlled via
simple parameters analogous to the Reynolds number for
hydrodynamic flows.
This result is tied to the second motivation of our work

which is to get a deeper understanding of the holographic
duality itself. One of the fundamental questions is, if a
large-N quantum system is holographic, can the dual
classical gravity theory be constructed directly from the
observables themselves? We can rephrase the question in
this form: having measured the time-dependent expectation
values of local operators and their correlation functions in a
given nonequilibrium state, can we construct the dual
gravitational geometry or at least know some of its defining
features without prior knowledge of the dual classical
gravity equations?
We will demonstrate here that the universal features of

the time-dependent causal correlations reveal the exact
location of the event horizon in the dual geometry.
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Furthermore, if we combine both universal and nonuni-
versal features of time-dependent causal correlations, we
can extract the exact location of the apparent horizon in an
appropriate bulk coordinate system. Thus without prior
knowledge of the dual classical gravity equations, we can
extract the locations of the event and apparent horizons of
the dual geometries from measurements of causal correla-
tions. Although knowing the location of the horizons in the
dual geometries will not be sufficient for deducing the dual
holographic classical gravity description, it will certainly be
able to constrain the possibilities. Furthermore, it will
constitute a significant step in understanding how the dual
classical gravity can be decoded from the observables.
We can find indications regarding how we can unravel

the enormous complexity of nonequilibrium states by
understanding first simple density matrix approximations
characterized only by an appropriately defined time-
dependent temperature TðtÞ in holographic theories.
These density matrices will be dual to anti–de Sitter–
Vaidya (AdSV) geometries with appropriately defined
mass functions MðvÞ where v is an affine parameter along
a null congruence. The dual density matrices/AdS-Vaidya
geometries are not to be understood as solutions of the
underlying microscopic dynamics/dual classical gravity
equations. The AdSV prototype geometries most of
which will be novel constructions do not approximate
the exact nonequilibrium geometry in our pumping
regimes. Nevertheless, we will learn a lot about the exact
geometry from these prototypes depending on which
(universal/specialized) aspects of the nonequilibrium
retarded correlator they can approximate.
One particular AdSV prototype will require only the

knowledge of the duration of the pump, and the initial and
the final temperatures for its construction, and will be able
to reproduce the features of the time-dependent retarded
correlation function when the probe time is not within the
pumping duration. Since the construction of this prototype
involves no detailed knowledge of the underlying micro-
scopic dynamics or the dual gravity theory, we claim that
these features of the nonequilibrium retarded correlation
function that are reproduced within OðtpT inÞ accuracy
by this prototype are universal and that they are only
controlled by the mentioned parameters. However, this
AdS-Vaidya geometry will not be able to reproduce any
one-point function (energy density/pressure) even close to
the same order of accuracy. Based on numerical results of
how event horizons respond to external driving forces at the
boundary, we will be able to intuitively explain in Secs. IV
and VI why the nonequilibrium retarded correlation func-
tion is such a special observable with features that can be
reproduced from very simplistic AdS-Vaidya prototypes.
By construction, our other AdSV prototype geometries

will reproduce the time dependence of at most one chosen
one-point function (energy-density/pressure) or the loca-
tion of either the event or the apparent horizon in the dual

geometry exactly, but will fail to do so for all the other ones
withinOðtpT inÞ accuracy. Since the AdS-Vaidya geometries
depend essentially on a function of one variable, namely
MðvÞ, it can at best reproduce one chosen time-dependent
function. However, we will provide numerical evidence that
these prototype geometries will be able to approximate the
universal or specialized features of the retarded correlation
function with even better than OðtpT inÞ accuracy. This is
nontrivial given that no AdS-Vaidya construction can be
designed to reproduce these features exactly unlike the time
dependence of a one-point function in the case of a typical
pumping protocol. Due to the lack of time-translation
invariance, the nonequilibrium correlator depends on the
probe time (t0) and the observation time (t) in a nontrivial
manner, and not simply on t − t0 as in equilibrium. It is
generically not possible to fit a function of two variables
accurately by choosing a function of one variable. Therefore,
it will be indeed a nontrivial result that the AdS-Vaidya
geometries will be able to approximate some features of the
retarded correlation function in the far-from-equilibrium
regime with better than OðtpT inÞ accuracy.
We will be able to provide numerical evidence that the

AdS-Vaidya geometries which give the best approxima-
tions to the exact retarded correlation function in specific
domains of the probe and observation times will be able to
reveal the locations of the event/apparent horizons as well.
Furthermore, we also find that these AdSV constructions
which reproduce the exact locations of the event and
apparent horizons approximate the exact time-dependent
pressure and energy density respectively to a remarkable
accuracy even within the pumping duration although they
are not designed (or expected) to perform such approx-
imations. However, since one can design AdSVs which
reproduce the energy density and the pressure exactly, the
approximation of the retarded correlation function will be
more crucial in deducing the mentioned AdSVs which
reveal the apparent and event horizon dynamics in the dual
classical gravity theory.
The plan of the paper is as follows. In Sec. II, we will

describe the numerical construction of the classical geom-
etries dual to the driven nonequilibrium state. In Sec. III, we
will review our previously developed method of calculating
the nonequilibrium retarded correlator and discuss the
implementation. In Sec. IV, we will present the exact
results, and divide the features into various categories, in
particular depending on whether they can be reproduced by
AdS-Vaidya prototypes within the desired accuracy and
whether they depend on the pumping protocol. In Sec. V,
we will discuss the construction of the various AdS-Vaidya
prototypes. In Sec. VI, we will use these prototypes to
establish the universality of some features of the non-
equilibrium retarded correlator, and show how from the
latter we can deduce the locations of the horizons. Finally,
in Sec. VII we will conclude with an outlook. The
Appendices will provide supplementary details.
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II. DRIVEN NONEQUILIBRIUM
HOLOGRAPHIC STATES

We consider a generic nonequilibrium state in a (2þ 1)-
dimensional large-N conformal field theory (CFT) driven
by the Hamiltonian HðtÞ ¼ HCFT þHpumpðtÞ from one
thermal equilibrium to another with initial and final
temperatures T in and Tf respectively. Here, HpumpðtÞ
represents energy injection from a pump—a homogeneous
external source fðtÞ coupling to a scalar operator O of
the CFT, i.e., HpumpðtÞ ¼

R
d2xfðtÞOðxÞ. For our specific

construction, O is assumed to have scaling dimension
Δ ¼ 2 (like the electronic density operator at weak cou-
pling). The external source fðtÞ (which has the dimension
of energy) is assumed to have a Gaussian profile:

fðtÞ ¼ Emaxe−t
2=2σ2 : ð1Þ

The effective duration of the pumping is thus jtj < tp=2
with tp ∼ 6σ. The final temperature Tf will be determined
by the microscopic dynamics as functions of T in, Emax and
tp. Since, the underlying microscopic theory is conformal,
we choose units of measurement where T in ¼ 1. We focus
on the case Emax ∼ T in and tpT in ≪ 1 arguing later why our
results will be independent of the specific choice of fðtÞ as
long as these conditions are satisfied.
Holographically, such a driven state is represented by a

(3þ 1)-dimensional asymptotically AdSmetricGMN, and a
scalar field Φ (dual to the operator O) with mass given by
m2 ¼ −2=l2 and minimally coupled to Einstein gravity
with cosmological constant Λ ¼ −3=l2 where l denotes the
radius of AdS space. It is convenient to choose coordinates
where GMN and Φ take the form

ds2 ¼ l2

r2
ð−2drdv − Aðr; vÞdv2Þ þ S2ðr; vÞðdx2 þ dy2Þ;

Φ ¼ Φðr; vÞ; ð2Þ

where we have imposed homogeneity in the field-theory
spatial coordinates x and y. At the boundary r ¼ 0, the
bulk coordinate v is identified with the field-theory time
coordinate t.
To achieve a unique gravitational solution, we need

to provide (i) initial conditions for SðrÞ, ΦðrÞ and
limr→0ð1=6Þ∂3

rAðrÞ ¼ a3 in at v ¼ vin in the far past,
and (ii) the boundary conditions limr→0Aðr; vÞ ¼ a0ðvÞ,
limr→0rSðr; vÞ ¼ s0ðvÞ and limr→0r−1Φðr; vÞ ¼ Φ0ðvÞ.
By the holographic dictionary a0ðvÞ ¼ s0ðvÞ ¼ 1, since
the dual system lives on flat Minkowski metric, and
Φ0ðvÞ is identified with the source of the dual operator
fðvÞ. Our initial state is thermal, and therefore the initial
conditions are set via a black hole geometry with mass
Min so that Sðr; vinÞ ¼ 1=r, a3 in ¼ −Min ¼ −ð4π=3Þl2T3

in
and Φðr;vinÞ¼0. The gravitational solution is obtained

numerically via the method of characteristics [7,8] as
described in Appendix A. From this solution, we can
extract the energy density ht00ðtÞi, the pressure htxxðtÞi ¼
htyyðtÞi and the expectation value hOðtÞi (see Appendix B
for more details) in the dual driven state via the holographic
renormalization procedure [9].

III. TIME-DEPENDENT CAUSAL
CORRELATIONS

Linear response theory tells us that if we perturb the time
evolution of the nonequilibrium state driven by the pump
via a probe perturbation ΔH ¼ γ

R
d2x ~fðt;xÞ ~OðxÞ, where

~O is an operator which is the same as or different fromO to
which the pump couples, then the time-dependent expect-
ation value of h ~OðkÞi is given by

δh ~OðkÞiðtÞ ¼ γ

Z
dt0G ~O~O

R ðt; t0;kÞ ~fðt0;kÞ þOðγ2Þ: ð3Þ

Above G ~O~O
R ðt; t0;kÞ is the causal correlation function (we

have used the spatial homogeneity of the pump to Fourier
transform the spatial x − x0 dependence). In the Heisenberg
picture GR takes the form

G ~O~O
R ðt; t0;kÞ ¼ −iθðt − t0ÞTrðρin½ ~Oðt;kÞ; ~Oðt0;kÞ�Þ ð4Þ

with ρin being the initial thermal density matrix at
temperature T in. Note that the time-evolution operator
Uðt; t0Þ ¼ T expf−i R dt00½HCFT þHpumpðt00Þ�g implicit in
the definition above includes the pump, and therefore
G ~O~O

R ðt; t0;kÞ is not simply a function of t − t0 except in
the far past and future when the pumping ceases and the
states thermalize. Here, we will consider all possible cases
in which the probe source ~fðtÞ is turned on before, during
or after the pump. For the sake of simplicity, we will
consider ~O to be an operator of scaling dimension
Δ ¼ 2 too.
In Ref. [10] (see Refs. [11,11–15] for earlier related

works), a holographic prescription has been developed for
obtaining G ~O~O

R ðt; t0;kÞ via a simple implementation of the
linear response protocol described above in which we need
to study the linearized fluctuation of the field δ ~Φðr; v;kÞ,
dual to ~Oðt;kÞ, about the gravitational solution (2) repre-
senting the dual nonequilibrium state. The initial condition
for δ ~ΦðrÞ at v ¼ vin is trivial by causality (since neither the
pump nor the probe has been switched on) and the
boundary condition is set by identifying the leading
asymptotic r → 0 mode with the probe source ~fðt;kÞ,
i.e., imposing limr→0δ ~Φðr;v;kÞ=r¼ ~fðv;kÞ for all times v.
The solution for δ ~Φðr; v;kÞ is unique and can be obtained
numerically via the method of characteristics [7,8]. Further,
we obtain the expectation value of the dual operator
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δh ~Oðt;kÞi from this solution via holographic renormaliza-
tion [9]. Finally G ~O~O

R ðt; t0;kÞ is extracted using the relation
(3) with ~fðv;kÞ chosen to be a narrow Gaussian profile
appropriately normalized so that it can be treated as
δðv − t0Þ up to any required order of numerical accuracy
[10]. The latter feature then implies that δh ~OðkÞiðtÞ ¼
G ~O~O

R ðt; t0;kÞ. More details are presented in Appendix C.
The above prescription reproduces the results obtained with
the well-known Son-Starinets prescription [16] for the
thermal retarded correlation [10].

IV. EXACT RESULTS

The exact results for G ~O~O
R ðt; t0;kÞ in the driven non-

equilibrium state are presented in Fig. 1. We have set k ¼ 0
for presentation since we find (as in Ref. [10]) that our
conclusions remain similar for jkj < T in. For better under-
standing, instead of using the probe time t0 and observation
time t for the plot, we have used the average time tav ¼
ðtþ t0Þ=2 and the relative time trel ¼ t − t0. We have
also subtracted a (state-independent) contact term from
G ~O~O

R ðtav; trelÞ which is localized at trel ¼ 0. For the
nonequilibrium geometry, we have chosen σ ¼ 0.03
and Emax ¼ T in ¼ 1 in Eq. (1), which leads to the final
temperature Tf ≈ 24=3. Clearly for large values of jtavj,
G ~O~O

R ðtav; trelÞ is independent of tav and reduces to the
initial/final thermal forms. Furthermore, since the under-
lying dynamics is conformal, at thermal equilibrium
G ~O~O

R ðtav; trelÞ ¼ T2geqR ðtrelTÞ (recall that Δ ¼ 2 for ~O).
This is reflected in Fig. 1 through the appropriate
tav evolution in the width, slope and height of the ringdown
pattern of G ~O~O

R ðtav; trelÞ from its initial to final thermal
forms.
Remarkably, this tav evolution of G ~O~O

R ðtav; trelÞ takes
place over −1.5 < tav < 1.5 if we impose a cutoff on the
maximum departures from the initial/final thermal forms by
10−4 times the respective maximal thermal values. This
overall time scale (≈3) is about 100 times larger than the

root-mean-square width σ ¼ 0.03 of the pump and the
time scale of evolution of one-point functions with the
same cutoff. It is however commensurate with the time
scale of the evolution of the location of the event horizon
as we will see later. The association of the time scale of the
departure from thermality of the retarded correlator to the
time scale of event horizon evolution is an expected
feature because the geodetic distance of the event horizon
from the boundary controls the rate of dissipation, i.e.,
the effective quasinormal mode pole. These time scales
can be made precise via wavelet analysis [17] but will not
be attempted here. It is worthwhile to note that since
the event horizon responds acausally to the pump,
G ~O~O

R ðtav; trelÞ starts evolving even when tav < −3σ, i.e.,
before the pumping is significant. However, the latter
behavior is not really acausal for G ~O~O

R ðtav; trelÞ is nonlocal
in time by definition and the causality merely implies it
vanishes for trel < 0.
We divide the tav − trel plane into a universal and a

nonuniversal region. The universal U region is defined as
the region where the probe time t0 ¼ tav − trel=2 is away
from the pumping duration, i.e., U≔ ftrel < 2ðtav−3σÞg∪
ftrel > 2ðtavþ3σÞg. The features of GRðtav; trelÞ in this
region can be attributed mostly to the change of the
location of the event horizon which will turn out to be
universal, i.e., independent of the details of the pumping
protocol, and determined largely by the initial and final
temperatures, and the pumping duration only as we will see
below. Therefore, these features are independent of the
details of the gravity theory and hence the microscopic
dynamics.
The nonuniversal region is further divided into two

subregions (see Fig. 1). The first is the probe-on-pump
(PP) region which is defined as where the probe time
t0 ¼ tav − trel=2 is within but the observation time t ¼
tav þ trel=2 is away from the pumping time, i.e., jt0j<3σ
and jtj > 3σ. The features of GRðtav; trelÞ in this region
(most prominently an extra bump on the ringdown
pattern) are not independent of the details of the micro-
scopic dynamics. We will see below that these can be
attributed nevertheless to the location of the apparent
horizon (which responds to the pump instantaneously)
and can be reproduced by a simple density matrix
approximation dual to a simple prototype geometry.
Conversely, the features of GRðtav; trelÞ in the U and
PP regions will allow us to locate the event and apparent
horizons, within the numerical accuracy, of the dual
geometry (2) respectively, thus, providing us with some
information of the dual gravity theory (i.e., the micro-
scopic dynamics) as described below. The second (very
tiny) subregion is the probe-and-observation-on-pump
(POP) region where both the probe and observer times
are within the pumping time (i.e., jtj; jt0j < 3σ). The
features here cannot be reproduced by our simple
approximations and hence will not be analyzed here.

FIG. 1. The numerical result for GR as a function of tav and trel.
Black curves indicate GRðtrelÞ for constant representative values
of tav ¼ −0.6, 0.2 and 0.8 which are displayed in more detail in
Fig. 2. The U, PP and POP regions (see text) are colored in blue,
orange and green respectively.
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V. SIMPLE DENSITY MATRICES AND DUAL
GEOMETRIC PROTOTYPES

The trial nonequilibrium geometries are AdSV geom-
etries defined only by a time-dependent black hole mass
functionMðvÞ such that the functions Aðr; vÞ and Sðr; vÞ in
Eq. (2) take the radically simple forms

Aðr; vÞ ¼ 1 −MðvÞr3; Sðr; vÞ ¼ 1=r; ð5Þ

while the scalar field Φ vanishes. These AdSV geometries
are not viewed here as solutions of the dual classical gravity
theory but rather as simple prototypes for the actual
numerical background. Using these simple geometric pro-
totypes is analogous to representing the exact density
matrices by instantaneously thermal density matrices

ρinst½TðtÞ� ≔ expð−HCFT=TðtÞÞ=Trðexpð−HCFT=TðtÞÞÞ
ð6Þ

which are not the solutions of the microscopic time-
evolution equations either. In fact this identification is
natural because neither in the density matrix nor in the
AdSV geometries, relaxation (quasinormal) modes are
excited. In the AdSV geometry the black hole changes
its Hawking temperature which therefore is identified with
the time-dependent temperature TðtÞ in the density matrix.
Thus TðtÞ can obtained from MðvÞ via

MðtÞ ¼ ð4π=3Þl2T3ðtÞ: ð7Þ

The term instantaneously thermal as a qualifier for the
density is understood in the above sense as being defined
by an instantaneous temperature. However, if TðtÞ changes
fast so that ðdTðtÞ=dtÞ × ðts=TðtÞÞ ≫ 1 with ts being the
average scattering time, a typical observable will not be
able to adjust itself to its instantaneous thermal value
although the density matrix can be described by an
instantaneous temperature.
The simplest choice of MðvÞ can be defined as a

monotonic interpolation between the initial and final
black hole masses (Min and Mf respectively) that is

readily provided by a tanh function whose time scale of
variation is the same as the root-mean-square width σ of the
pump, i.e.,

MðvÞ ¼ Min þ ððMf −MinÞ=2Þð1þ tanh ðv=σÞÞ: ð8Þ

The above choice defines the AdSVT prototype geometry
examined in Ref. [10]. Crucially this prototype geometric
approximation is parametrized just by the initial and final
temperatures and the pump duration, and thus can be
constructed without prior knowledge of the dual gravity
theory.
The other prototype geometries important for the present

discussion are AdSVA and AdSVE which can be con-
structed such that they reproduce the exact locations rEHðvÞ
and rAHðvÞ of the event and apparent horizons of the
numerical geometry respectively (see Appendix D for
details and an explanation why ambiguities arising from
diffeomorphism symmetries can be avoided). Finally, we
also consider AdSVp as suggested in Ref. [18] whereMðvÞ
is designed to reproduce a3ðvÞ ¼ limr→0ð1=6Þ∂3

rAðr; vÞ of
the numerical geometry exactly. Holographic renormaliza-
tion tells us that PðvÞ ¼ htxxðvÞi ¼ htyyðvÞi ¼ −a3ðvÞ is
the pressure, and therefore AdSVp reproduces the exact
time evolution of the pressure by construction.
For small amplitude pumps, the AdSV geometries can be

good approximations to the exact numerical geometry dual
to nonequilibrium states [18], whereas in the arbitrary and
large-amplitude regime (which produces a large difference
ΔT between final and initial temperatures compared to the
inverse of time period of energy injection), which we have
considered in this work, we find that none of the AdSV
approximations can reproduce both the time dependence of
the pressure and energy density accurately. We have
demonstrated this observation in Fig. 3. Note that the
prototype AdSVA geometry gives ht00ðtÞi very accurately.
Observe that the curves for ht00ðtÞi of AdSVE and AdSVp

geometries closely follow each other. For the AdSV
geometries, ht00ðtÞi ¼ 2htxxðtÞi. Since AdSVp reproduces
the numerical pressure htxxðtÞi exactly, □E provides a very
good approximation to the pressure. Therefore, the AdSV

FIG. 2. Comparison of the exact retarded correlation to that obtained from the different AdSV geometries for three values of tav; the
insets display zoom-ins on the PP region on a linear scale.
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prototype approximations demonstrate that the event and
apparent horizons of the dual geometry carry information
about the time evolution of the pressure and the energy-
density respectively.
The comparisons of the time-dependent retarded corre-

lation of the prototype geometries with that of the exact one
are presented in Fig. 2 where we have chosen three
representative values of tav which are −0.6, 0.2 and 0.8.
The insets for tav ¼ 0.2 and 0.8 show the PP regions on a
linear scale.

VI. UNIVERSAL FEATURES, EFFECTIVE
DESCRIPTION AND THE HORIZONS

We readily see from Fig. 2 that in the U region, all
AdSV geometries approximate the exact retarded propa-
gator within 1 percent relative accuracy which is much
better than a relative factor of Oð3σT inÞ, i.e., 10 percent
accuracy that can be taken as a benchmark [19]. A
detailed analysis of the standard deviation as shown in
Fig. 5 (for details see Appendix E) reveals that the best
approximation in the U region is provided by the AdSVE
prototype that reproduces the exact location of the event
horizon. Remarkably, the approximations of GRðtav; trelÞ
provided by the prototype geometries in the universal U
region can be intuitively explained by the fact that all
these prototype geometries including AdSVT , AdSVA
and AdSVp also reproduce the exact locations of the
time-dependent event horizon within 1 percent relative
accuracy for all times as shown in Fig. 4. In particular the
AdSVT geometry which can be constructed without any
detailed knowledge of the dual gravity theory reproduces
the features of GRðtav; trelÞ in the U region and also the
location of the event horizon with remarkably high
accuracy even within the pumping duration (see the inset
plot in Fig. 4). So we can lay claim to their universality
as mentioned before. The AdSVT geometries have the
feature that the location of the event horizon is deter-
mined mostly by the difference of the final and initial
temperatures ΔT and is independent of the pumping

duration (6σ) provided 3σΔT ≪ 1 [20]. This can be
arranged in the numerical geometry if Emax ≥ T in and
σT in ≪ 1, and therefore under these conditions the
features in the U region should also be universal.
Conversely, since AdSVE gives the best approximation

in the U region, we conjecture that the event horizon in the
geometry (2) dual to the driven nonequilibrium state can be
located by finding that prototype AdSV geometry fitting
the universal features of GRðtav; trelÞ best.
The inset plots in Fig. 2 clearly show that the prototype

AdSVA geometry which reproduces the exact location of
the apparent horizon in bulk coordinates (2) provides a
remarkably good approximation to GRðtav; trelÞ in the PP
region where the pump protocol plays a dominant role with
about 1 percent relative accuracy. It is remarkable that
AdSVT also provides a reasonably good accuracy in the PP
region while AdSVE and AdSVp results have large stan-
dard deviations from the exact results as clearly visible in
Fig. 5. We can also check that AdSVT provides a
reasonable approximation to the exact location of the
apparent horizon while AdSVE and AdSVp fail to do so.

FIG. 3. Plots comparing the exact ht00ðtÞi with those obtained
from the prototype AdSV geometries.

FIG. 4. The locations of the event horizon rEH in the different
AdSVs and the exact numerical value with the inset focusing on
their differences.

FIG. 5. Plot of standard deviations Σx (defined in (E1) of
various AdSVx approximations from calculated values of
GRðt; t0Þ obtained from the numerical geometry in three catego-
ries: (i) overall, i.e., including all values of t and t0, (ii) in the PP
(probe on pump) region and (iii) the universal U region.
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From these results it follows that an effective theory for
GRðtav; trelÞ including the U and PP regions (but excluding
a tiny POP region) can be obtained simply by knowing how
the pump protocol determines the apparent horizon in the
dual geometry and then using the simple prototype AdSVA
geometry to reproduce GRðtav; trelÞ. Our results also pro-
vide sufficient support for our conjecture that the location
of the apparent horizon in the bulk coordinates (2) can be
deciphered from GRðtav; trelÞ simply by finding which
prototype AdSV geometry provides the best approximation
in the PP region. We would like to point out that even
though the above conjecture has been put forth based on
the observation derived from a scalar field coupled to
Einstein gravity, we believe that our claim regarding the
reconstruction of the horizons should hold for general two-
derivative gravity theories (e.g., Einstein-Maxwell-dilaton-
type theories). We leave the numerical check of the same
for future works.
To be able to approximate the retarded correlator of an

exact numerical geometry with the retarded correlator
obtained from AdSV geometries is a highly nontrivial
result. For example, if we consider a one-point function
such as the time-dependent pressure PðtÞ in a homo-
geneous quench, we can always design an AdSV geometry
which has the right time-dependent massMðvÞ of the black
hole such that it reproduces PðtÞ exactly. However, the
nonequilibrium retarded correlator GRðt; t0Þ depends on
both t and t0, since the background is not time-translation
invariant. Therefore, it would be rather impossible to fit
GRðt; t0Þ, specially in the PP domain, just by choosing
MðvÞ which is a function of one (and not two) variables.
The claim we make becomes significant in this regard. It is
that the AdSV which gives the best approximation to the
GRðt; t0Þ in the PP ðUÞ domain should also reproduce the
location of the apparent (event) horizon, within numerical
precision, of the actual dual geometry. In fact, this allows us
to use the prototype AdSV approximations to learn some-
thing about dual bulk geometries without knowing the dual
theory of gravity.
Finally, as is clear from Fig. 2, the prototype AdSVT

geometry provides a reasonably good approximation for
GRðtav; trelÞ in the entire tav − trel plane (except for the tiny
POP region) and therefore, someone interested in finding
signatures of a large-N conformal strong coupling regime
in GRðtav; trelÞ can readily utilize this AdSVT geometry
constructed from simple measurable inputs.

VII. CONCLUDING REMARKS

Our results strongly indicate that the nonequilibrium
behavior of correlation functions should play a crucial role
in both applications and the fundamental understanding of
the holographic principle. From the perspective of appli-
cations, we have found remarkable universal features of the
time-dependent causal correlations that can be reproduced
from simple prototype geometric approximations without

the detailed knowledge of the dual gravity theory (i.e., the
microscopic dynamics). From the perspective of funda-
mental understanding, we obtained interesting pointers
regarding how we can construct the dual gravitational
theory directly from appropriate observables. It is to be
noted that some of our results parallel interesting universal
behavior of equal-time correlations and the entanglement
entropy during fast quenches [21,22].
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APPENDIX A: NUMERICAL CALCULATION OF
THE GEOMETRY DUAL TO THE DRIVEN
NONEQUILIBRIUM STATE USING THE

METHOD OF CHARACTERISTICS

The (3þ 1)-dimensional gravitational equations are

RMN þ 3

l2
GMN ¼ TMN ½Φ� − 1

2
GMNGPQTPQ½Φ�;

ð□ −m2ÞΦ ¼ 0;

where □ is the Laplacian operator constructed from the
metric GMN and

TMN½Φ� ¼ 1

2
∂MΦ∂NΦ −

1

4
GMNGPQ∂PΦ∂QΦ −

1

2
m2Φ2:

We choosem2 ¼ −2=l2 as described before. For the sake of
convenience, we can set l ¼ 1.
Denoting the derivative along the outgoing null direction

as dþ ¼ ∂v − A=2∂r, the equations of motion for the scalar
field and the metric [i.e., those of Aðr; vÞ, Sðr; vÞ and
Φðr; vÞ appearing in Eq. (2)] are as follows:

∂2
rSþ 2

r
∂rSþ ð∂rΦÞ2

4
S ¼ 0; ðA1aÞ

∂rdþSþ ∂rSdþS
S

þ S
4r2

�
6 −

m2

2
Φ2

�
¼ 0; ðA1bÞ

r∂2
r
A
r
þ 4∂rSdþS

S2
− ∂rΦdþΦ ¼ 0; ðA1cÞ

d2þSþ r2

2
∂r

A
r2

dþSþ SðdþΦÞ2
4

¼ 0; ðA1dÞ

∂rðdþΦÞ þ ∂rSdþΦ
S

þ ∂rΦdþS
S

þ m2

2r2
Φ ¼ 0: ðA1eÞ
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As described before, the above equations have unique
solutions with specified initial and boundary conditions
which have been chosen by (i) imposing that in the far past
vin ≪ −3σ the geometry is a static AdS black brane (planar
black hole) with a vanishingΦ field and (ii) the dual system
lives in flat Minkowski space and that the energy is pumped
through a source fðvÞ ¼ limr→0Φðr; vÞ=r coupling to the
operator O dual to the scalar field Φ. The numerical
protocol involves the following steps:
(1) At initial time v ¼ vin, we solve Eq. (A1a) by radial

integration to obtain Sðr; vinÞ uniquely using the
asymptotic expansion

Sðr; vÞ ¼ 1

r
−
f2ðvÞ
8

rþOðr2Þ ðA2Þ

(obtained from the radial expansion of the equations
of motion) which holds for all v and the initial
condition Φðr; vinÞ ¼ 0.

(2) Next we solve Eq. (A1b) to obtain dþSðr; vinÞ by
radial integration using the boundary condition
dþSðr ¼ 0; vÞ ≈ 1=ð2r2Þ (which holds for all v),
the initial condition Φðr; vinÞ ¼ 0 and the solution
for Sðr; vinÞ.

(3) With the knowledge of S; dþS and Φ, we solve
Eq. (A1e) to obtain dþΦðr; vinÞ using the boundary
condition dþΦðr ¼ 0; vÞ ¼ −fðvÞ=2 (which holds
for all v).

(4) A can then be found uniquely from Eq. (A1) at
v ¼ vin using the asymptotic expansion

Aðr; vÞ ¼ 1 −
f2ðvÞ
4

r2 þ a3ðvÞr3 þOðr4Þ ðA3Þ

(obtained from the radial expansion of the equations
of motion) which holds for all v. At v ¼ vin, we need
to input a3 ¼ −Min.

(5) From the definition of dþ it follows that ∂vΦ ¼
dþΦþ ðA=2Þ∂rΦ using which we find ∂vΦ at the
initial time vin since A and dþΦ have been obtained
in the previous steps. By using a time stepper
we then step up to the next time vin þ Δv to obtain
Φðvin þ ΔvÞ.

(vi) Equation (A1d) is actually a constraint, and therefore
if it is satisfied at r ¼ 0 then it should be satisfied for
all r. The leading nontrivial asymptotic term of this
equation yields the time evolution of a3ðvÞ which
takes the form

∂va3 ¼
1

2
fðvÞð∂2

vfðvÞ − ∂vf1ðvÞÞ; ðA4Þ

where f1ðvÞ ¼ limr→0ð1=2Þ∂2
rΦðr; vÞ. This equa-

tion reproduces the CFT Ward identity correspond-
ing to energy conservation (see below). We can use
this to update the value of a3 to obtain a3ðvin þ ΔvÞ.

(7) Having determined Φðr;vinþΔvÞ and a3ðvin þ ΔvÞ
at the next time step, we start again from step 1 to
solve for all the other functions at this time step. We
repeat time steps until we reach the final black brane
geometry with a vanishing (rather sufficiently small)
Φ field.

For the radial integration we have used a pseudospectral
method with 30 grid points and for stepping up in time we
have used the Adams-Bashforth fourth-order time stepper
with a time step of δv ¼ :0003 (which is 0.01σ). A suitable
numerical domain 0 < r < rc has been chosen so that the
apparent horizon and hence the event horizon of the
geometry lies within this domain.

APPENDIX B: DETAILS OF HOLOGRAPHIC
RENORMALIZATION

We follow the minimal subtraction scheme to obtain

ht00i ¼ ϵ ¼ Cð−2a3 þ fð∂vf − f1ÞÞ; ðB1aÞ

htxxi ¼ htyyi ¼ P ¼ −Ca3; ðB1bÞ

hOi ¼ Cðf1 − ∂vfÞ; ðB1cÞ

where a3 ¼ limr→0∂3
rAðr; vÞ=6, f1 ¼ limr→0∂2

rΦðr; vÞ=2
and C is an overall factor proportional to N2 of the dual
theory. We readily see that the above along with Eq. (A4)
imply the CFT Ward identities

∂tht00i ¼ −∂tϵ ¼ hOi∂tJ; ðB2aÞ

hTrti ¼ 2P − ϵ ¼ ðd − ΔÞJhOi ðB2bÞ

identifying v with the field-theory time coordinate t at the
boundary r ¼ 0 and J with f as mentioned before, and
using Δ ¼ 2 and d ¼ 3. In the AdSV geometries, there is
no scalar field and hence hOi ¼ 0, ht00i ¼ −2Ca3ðvÞ and
htxxi ¼ htyyi ¼ −Ca3ðvÞ. We normalize the definitions of
all one-point functions by dividing them by a suitable factor
proportional to N2 so that we can set C ¼ 1.
Note that for the probe scalar field ~Φ, the same

formula (B1c) applies to the dual h ~Oi operator both
in the numerical and the AdSV geometries with f
and f1 replaced by ~f ¼ limr→0

~Φðr; vÞ=r and ~f1 ¼
limr→0

~Φðr; vÞ=r2 respectively since h ~Oi has the same
scaling dimension Δ ¼ 2. It is easy to see that the contact
term −∂v

~f ¼ −∂t
~J in h ~Oi gives a −∂trelδðtrelÞ contribution

to GRðtav; trelÞ. After using the Wigner transform, i.e., the
Fourier transform of trel dependence (defined according to
our sign convention), we obtain

GRðtav;ωÞ ¼
Z

∞

−∞
e−iωtrelGRðtav; trelÞdtrel: ðB3Þ
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The contact term −∂trelδðtrelÞ then produces −iω term in
GRðtav;ωÞ. This implies that the spectral function

ρðtav;ωÞ ¼ −2ImGRðtav;ωÞ ðB4Þ

gets the state-independent contribution 2ω and we have
checked that this term ensures that ρðω; tavÞ > 0 for ω > 0
as should follow from the spectral representation in the dual
field theory.

APPENDIX C: NUMERICAL CALCULATION
OF THE NONEQUILIBRIUM RETARDED

CORRELATION FUNCTION

The Klein-Gordon equation for the scalar field ~Φðr; v;kÞ
dual to the operator ~O whose correlation function we are
calculating takes the same form as Eq. (A1e) for k ¼ 0
with Sðr; vÞ and Aðr; vÞ fixed by their forms in the
background geometry dual to the driven nonequilibrium
state. The method of characteristics can then be readily
implemented provided we specify ~Φðr; vÞ at an initial time
and the source ~fðvÞ ¼ limr→0

~Φðr; vÞ=r for all v as should
be clear from our prior discussion. In the AdSV back-
grounds, Sðr; vÞ ¼ 1=r and Aðr; vÞ ¼ 1 −MðvÞr3. In order
to obtain G ~O~O

R ðt; t0Þ, we need to set initial conditions
~Φðr; vinÞ ¼ 0 and ~fðvÞ ¼ δðv − t0Þ as discussed in the
main text. The choice ~fðvÞ ¼ δðv − t0Þ and Eq. (B1c)
simply imply that G ~O~O

R ðt; t0Þ ¼ ~f1ðtÞ − ∂tδðt − t0Þ.
We now show that numerically the delta function limit

for the source ~fðvÞ can be taken by assuming it to be a
normalized Gaussian function

~fðvÞ ¼ 1ffiffiffiffiffiffi
2π

p
~σ
e
ðv−t0Þ2
2~σ2 ; ðC1Þ

with a root-mean-square width ~σ [not to be confused with
the σ of the pump fðtÞ] and taking the limit ~σ → 0. We have

plotted j ~f1ðtÞj in Fig. 6 for various values of ~σ. We readily
see that the behavior of ~f1ðtÞ converges with decreasing ~σ
for all times t up to any desired order to numerical
accuracy. For practical purposes, we choose to work with
the width ~σ ¼ 0:01 which allows to take the Dirac delta
limit at the level of four-digit precision.

APPENDIX D: CONSTRUCTION OF
THE PROTOTYPE GEOMETRIES

AdSVA AND AdSVE

We first address the issue of how we can compare the
numerical geometry (2) representing the dual of the driven
nonequilibrium state with the prototype AdSV geometries
(5) representing simple density matrices given that they are
different spacetimes. First, of course for all these geom-
etries we are choosing the ingoing Eddington-Finkelstein
gauge where

Grr ¼ Grx ¼ Gry ¼ 0; Grv ¼ −l2=r2: ðD1Þ

Second, all of these geometries coincide at very early and
very late times corresponding to AdS black branes (planar
black holes) with masses Min and Mf respectively. This
however does not completely fix the choice of coordinates
in these geometries exactly because the gauge (D1) has
residual diffeomorphism symmetries corresponding to

r → rþ λðvÞ; v → vþ v0 ðD2Þ

with v0 being a constant. Note that actually if we replace
λðvÞ in the radial diffeomorphism above by λðv; x; yÞ, the
gauge (D1) is still preserved but the metric is no longer
manifestly homogeneous. Also note that under this (radial)
diffeomorphism, the functions A and S transform to ~A and ~S
respectively which have different asymptotic behaviors at
r ¼ 0. Therefore this diffeomorphism symmetry is simply
fixed by our boundary conditions limr→0A ¼ limr→0S ¼ 1.
The second residual diffeomorphism symmetry corre-
sponding to time translation is fixed in the numerical
geometry (2) by choosing the time in which the pump
fðtÞ peaks to be t ¼ 0 (recall that at r ¼ 0, the bulk time
coordinate v coincides with the field-theory time coordinate
t). In the prototype AdSV geometries, this time translation
freedom is fixed by a suitable form of matching with the
numerical geometry. In AdSVT whereMðvÞ is chosen to be
as shown in Eq. (6), the origin of time is chosen by
demanding that the midpoint of the tanh function coincides
with the time when the pumping is peaked at the boundary.
In AdSVp, this is fixed by construction via the exact
matching of a3ðvÞ [i.e., PðtÞ] with that obtained from the
numerical geometry. Similarly, it will be fixed in the
AdSVA and AdSVE by construction via the exact matching
of the location of the apparent and the event horizons as
described below.

FIG. 6. For the Gaussian source ~f centered at t0 ¼ −2, j ~f1j is
plotted on a log scale for various values of ~σ. The purple, black,
green, red and blue colours correspond to the widths ~σ ¼ 0.1,
0.05, 0.01, 0.005, and 0.001 respectively.
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The apparent horizon rexactAH ðvÞ of the numerical geometry
(2) can be found by solving

dþSðv; rexactAH ðvÞÞ ¼ 0 ðD3Þ

since r ¼ rexactAH ðvÞ is a surface of vanishing extrinsic
curvature. In the prototype AdSV geometries (5), this
equation simplifies because Sðr; vÞ ¼ 1 and Aðr; vÞ takes
a simple form determined by the choice of the mass
functionMðvÞ so that the location of the apparent horizons
are given simply by rAdSVAH

3ðvÞ ¼ MðvÞ. Therefore, in order
to construct a prototype AdSVA geometry which can
reproduce the location of the apparent horizon of the actual
numerical background rexactAH ðvÞ, we need to choose the
black hole mass function MðvÞ as

MðvÞ ¼ 1

rexactAH
3ðvÞ : ðD4Þ

This completes the construction of AdSVA.
The location of the event horizon rEHðvÞ is given by the

null geodesic which coincides with the location of the final
black hole horizon in the limit v → ∞, i.e., in the far future.
For the numerical geometry (2), the location of the event
horizon can be found by solving the differential equation

∂vrexactEH ðvÞ þ Aðv; rexactEH ðvÞÞ=2 ¼ 0 ðD5Þ

subject to the future boundary condition of the equilibrium
horizon, i.e., rexactEH ðv → ∞Þ ¼ M1=3

f . In the AdSV proto-
type geometries (5), the location of the event horizon
rAdSVEH ðvÞ is given by the same equation but with Aðr; vÞ
taking the simpler form determined by the choice of the
mass function MðvÞ. It follows that in order to construct a
prototype geometry AdSVE whose event horizon coincides
with that of the actual numerical geometry, the mass
function MðvÞ should be chosen to satisfy

MðvÞ ¼ 1

rexactEH
3ðvÞ ð1þ 2∂vrexactEH ðvÞÞ: ðD6Þ

This completes the construction of AdSVE .

APPENDIX E: QUANTITATIVE COMPARISON
OF GRðtav;trelÞ OBTAINED IN THE

PROTOTYPE GEOMETRIES

In order to quantify how well the prototype geometries
approximate the exact GRðtav; trelÞ we need to compute

Σx ¼
R
R dtavdtrel

jGRðtav;trelÞ−GAdSVx
R ðtav;trelÞj

jGRðtav;trelÞjR
R dtavdtrel

; ðE1Þ

where x is E,A, T or p, andR denotes either the universal
region U or the PP region. This we approximate by a
Riemann sum over the plaquettes ΔtavΔtrel. Furthermore,
we introduce a cutoff by demanding jGRðtav; trelÞj > 10−4

(in units T in ¼ 1) in both integrands of Eq. (22) in order to
tame numerical errors.
In the region U we find that all of the prototype

geometries deviate from the exact result by less than 1
percent on average. In particular AdSVE and AdSVT
perform equally well (according to our expectation because
AdSVT approximates the location of the event horizon very
well) although AdSVE gives a slightly better approxima-
tion. These are followed by AdSVA while AdSVp performs
the worst. In the PP region again AdSVp is the worst
approximation while the ranking of the others is exactly
reversed: both AdSVA followed by AdSVT are better than
1 percent while both AdSVE followed by AdSVp deviate
by a bit more than 1 percent on average. We have also
checked the POP region, where both the observation time
as well as the probe time reside within the pump duration.
However, none of the prototype geometries give reasonable
results there (with the same ranking as in the PP region but
deviations are up to 50 percent on average).
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