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We reexamine the relationship between the path integral and canonical formulation of quantum general
relativity. In particular, we present a formal derivation of the Wheeler-DeWitt equation from the path
integral for quantum general relativity by way of boundary variations. One feature of this approach is that it
does not require an explicit 3þ 1 splitting of spacetime in the bulk. For spacetimes with a spatial boundary,
we show that the dependence of the transition amplitudes on spatial boundary conditions is determined by a
Wheeler-DeWitt equation for the spatial boundary surface. We find that variations in the induced metric at
the spatial boundary can be used to describe time evolution—time evolution in quantum general relativity is
therefore governed by boundary conditions on the gravitational field at the spatial boundary. We then
briefly describe a formalism for computing the dependence of transition amplitudes on spatial boundary
conditions. Finally, we argue that for nonsmooth boundaries meaningful transition amplitudes must depend
on boundary conditions at the joint surfaces.
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I. INTRODUCTION

In this paper, we present a formal derivation of the
Wheeler-DeWitt equation from the path integral for quan-
tum general relativity and extend our formalism to describe
the dependence of path integral transition amplitudes on
spatial boundary conditions. The reader may be aware of
existing derivations of the Wheeler-DeWitt equation in the
literature that use the path integral as a starting point [1–4]
(there is also an old paper [5] that argues that the path
integral for quantum general relativity satisfies the
Wheeler-DeWitt equation). We also note that the matter
of spatial boundary conditions has been addressed before
[6] in the form of a boundary Schrödinger equation.
The formalism we present in this paper, however, has a
feature that is not present in the existing derivations; in
particular, it does not require a 3þ 1 splitting of spacetime
in the bulk.1 The absence of this requirement is particularly
useful for studying spacetimes with spatial boundaries and
allows us to establish the dependence of transition ampli-
tudes on spatial boundary conditions. In particular, we
find that time evolution for such transition amplitudes
corresponds to variations of the induced 3-metric at
the timelike spatial boundary. While the general idea
that spatial boundary conditions establish time evolution
in quantum gravity may be found in the existing

literature,2 the results we present formalize this idea and
elucidate the relationship between time evolution and
spatial boundaries. Furthermore, our results demonstrate
that the boundary Schrödinger equation in Ref. [6] is in fact
kinematical; the dependence of the transition amplitudes on
spatial boundary conditions is determined by a boundary
Hamiltonian constraint on the path integral transition
amplitudes—the “Wheeler-DeWitt” equation for timelike
spatial boundaries.
The derivation we present in this paper is based on the

Weiss variational principle [12,13]. In the Weiss varia-
tion, the boundaries of the action integral are not held
fixed—we include displacements of the boundaries/end
points. Though the Weiss variation is rarely referred to as
such in the literature, the Weiss variation itself is a well-
known result and should be recognizable to readers
familiar with the derivation of Noether currents from
the action. This paper is organized as follows. We begin
by briefly describing the Weiss variation in mechanics
and its application to the gravitational action; a more
detailed discussion may be found in Ref. [14]. We also
review the concept of superspace, which will be used
to motivate an operator-path integral correspondence.
We then review the derivation of the Schrödinger

1Our formalism is conceptually similar to that of the general
boundary formulation of quantum field theory [7,8] in that we
construct transition amplitudes for compact regions of spacetime
with a connected boundary.

2See, for instance, the following papers on the general
boundary formalism: Refs. [8,9]. This idea is discussed in
Ref. [10] and worked out for loop quantum gravity (our
approach differs in that we work exclusively in the 3-metric
representation and that our starting point is the path integral
formalism, rather than the canonical formalism). Also, Smolin
[11] points out that the problem of time is avoided in
asymptotically flat spacetimes.
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equation from the quantum mechanical path integral and
discuss correspondence rules between path integrals and
operators. Afterward, we present our derivation of the
Wheeler-DeWitt equation for spacetimes without a spatial
boundary. Finally, we extend our derivation to include
transition amplitudes for spacetimes with a spatial boun-
dary and discuss the matter of time evolution for such
transition amplitudes.

II. WEISS VARIATION

We summarize the Weiss variational principle in
mechanics [12,13,15] and briefly discuss its application
to the gravitational action. A detailed discussion of the
Weiss variation and its application to the gravitational
action may be found in Ref. [14] (also see references
contained therein).

A. Mechanics

Consider a mechanical system with N degrees of free-
dom qi ∈ Q, with Q being a manifold called the configu-
ration space manifold. The system is described by the
action

S½q� ≔
Z

t2

t1

Lðq; _q; tÞdt; ð2:1Þ

where the degree of freedom index i is suppressed in the
argument of the Lagrangian, which is assumed to be
nondegenerate in _qi. In the Weiss variation, we include
temporal displacements of the end points of the form

t01 ¼ t1 þ λτ1

t02 ¼ t2 þ λτ2; ð2:2Þ
where λ is an infinitesimal parameter. We perform varia-
tions for qiðtÞ,

q0iðtÞ ¼ qiðtÞ þ ληiðtÞ; ð2:3Þ

where ηiðtÞ are functions of t that define the variations. The
first-order (in λ) variation of (2.1) takes the form

δS ≔ S½q0� − S½q� ¼ ε

Z
t2

t1

�∂L
∂qi −

d
dt

�∂L
∂ _qi

��
ηiðtÞdt

þ
�∂L
∂ _qi λη

iðtÞ þ LΔt
�����

t2

t1

; ð2:4Þ

where Δtjt1 ≔ λτ1 and Δtjt2 ≔ λτ2. It is convenient to
define the total change in the end point values for qi,

Δqi1 ≔ q0iðt01Þ − qiðt1Þ ¼ λðηiðt1Þ þ τ1 _qiðt1ÞÞ þOðλ2Þ
Δqi2 ≔ q0iðt02Þ − qiðt2Þ ¼ λðηiðt2Þ þ τ2 _qiðt2ÞÞ þOðλ2Þ;

ð2:5Þ

and also the quantities

pi ≔
∂L
∂ _qi ð2:6Þ

H ≔ pi _qi − L; ð2:7Þ

which the reader may recognize as the conjugate momen-
tum and Hamiltonian. From the above definitions, it is not
difficult to rewrite (2.4) in the following form:

δS¼ λ

Z
t2

t1

�∂L
∂qi −

d
dt

�∂L
∂ _qi

��
ηiðtÞdtþ ðpiΔqi −HΔtÞ

����
t2

t1

:

ð2:8Þ

The above expression for δS is theWeiss variation of the
action. The Weiss variational principle demands that
physical paths be described by functions qiðtÞ for which
δS consists exclusively of end point/boundary terms, which
is equivalent to the statement that the integral over t in (2.8)
vanishes; it follows that the Weiss variational principle
implies the Euler-Lagrange equations.

B. Gravitational action without spatial boundary

We assume a four-dimensional spacetime manifold M
and use the Misner-Thorne-Wheeler [16] signature
ð−;þ;þ;þÞ for the metric tensor gμν. Greek indices refer
to coordinates on the spacetime manifold M and its
subsets, which we denote as U or W; U will be used to
indicate a spacetime region without a spatial boundary, and
later on,W will be used to denote a spacetime region with a
spatial boundary. Coordinates on M, U, and W will be
denoted xμ, with x0 ¼ t being the time coordinate.
Lowercase latin indices refer to either mechanical degrees
of freedom or coordinates on hypersurfaces—the distinc-
tion should be apparent from the context. Capital latin
indices from the beginning of the alphabet will refer to two-
dimensional surfaces in M.
For simplicity, we first consider a globally hyperbolic

spacetime without a spatial boundary; in particular, we
require M to be a Lorentzian manifold with the topology
R × Σ, where t ∈ R is a time coordinate and Σ is a three-
dimensional manifold without a boundary. We then con-
sider a subset U ⊂ M with boundary surfaces ΣI and ΣF,
which need not be surfaces of constant t. We require the
surfaces ΣI and ΣF to be spacelike, with a positive-definite
induced metric γij. The gravitational action over U may
then be written as

SGR½gμν� ¼
1

2κ

Z
U
R

ffiffiffiffiffi
jgj

p
d4xþ 1

κ

Z
∂U

Kε
ffiffiffiffiffi
jγj

p
d3y; ð2:9Þ

where xμ denote coordinates on the spacetime manifoldM,
R is the Ricci curvature scalar ofU,K is the mean curvature
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of the boundary surface ∂U ¼ ΣI ∪ ΣF, and we have
defined γ ≔ detðγijÞ (with γij) and ε ≔ nμnμ ¼ �1, where
nμ is the unit normal vector to ∂U (here, ε ¼ −1). The
quantity κ ¼ 8πG, where G is Newton’s gravitational
constant.
The Weiss variation includes boundary displacements.

To characterize boundary displacements, we begin by
placing coordinates yi on the boundary ∂U. The boundary
may be parametrically defined by functions xμðyÞ, which
specify the position of the boundary ∂U inM. The induced
metric γij on the boundary may then be written as

γij ¼
∂xμ
∂yi

∂xν
∂yj gμν; ð2:10Þ

and it is well known that the induced metric takes the
form γμν ¼ gμν − εnμnν in the bulk coordinate basis.
Displacements of the boundary in the manifold M may
be characterized by adding to xμðyÞ a function δxμðyÞ so
that the displaced boundary may be parametrically defined
by the functions:

x0μðyÞ ¼ xμðyÞ þ δxμðyÞ: ð2:11Þ

The presence of the boundary term (called the Gibbons-
Hawking-York boundary term) in the gravitational action
SGR½gμν� complicates the derivation of the Weiss variation
of SGR½gμν�. One may obtain the variation of the boundary
term by recognizing that the boundary term is the first
variation of the area formula; the variation of the boundary
term is then given by the second variation of the area
formula. We shall not reproduce the derivation here; we
refer the reader to Ref. [14] for the full details of the
derivation [a partial justification for (2.12) is given in the
Appendix]. The Weiss variation of the gravitational action
takes the form

δSGR ¼ 1

2κ

Z
U
Gμνδgμν

ffiffiffiffiffi
jgj

p
d4x

þ ε

2κ

Z
∂U
ðpijΔγij þ ½nμð3R − εðK2 − KijKijÞÞ

− 2Dαpαβγμβ�δxμÞ
ffiffiffiffiffi
jγj

p
d3y; ð2:12Þ

whereGμν ≔ Rμν − 1
2
Rgμν is the Einstein tensor, 3R and Kij

are the respective Ricci scalar and extrinsic curvature
tensor for the boundary ∂U, and Dμ denotes the covariant
derivative on a hypersurface—in this case, Dμ is the
covariant derivative on ∂U. We define the following
quantity in the basis of the bulk coordinates xμ and the
basis of the boundary coordinates yi:

pμν ≔ Kμν − Kγμν

pij ≔
∂xμ
∂yi

∂xν
∂yj ðKμν − KγμνÞ; ð2:13Þ

where Kμν is the extrinsic curvature tensor in the bulk
coordinate basis (for Kμν and K ¼ gμνKμν, we use the
sign convention found in Refs. [17,18]). These two
expressions for the tensor pμν are equivalent because the
tensor pμν is tangent to the boundary surfaces, meaning that
pμνnμ ¼ pνμnμ ¼ 0. For later use, we define the quantity:

Pμν ≔
ε

2κ
pμν

ffiffiffiffiffi
jγj

p

Pij ≔
ε

2κ
pij

ffiffiffiffiffi
jγj

p
: ð2:14Þ

The quantity Δγij is the total change in the induced
metric at the boundary surface, in the same way that Δqi is
the total change in the variable qi at the end points
[cf. Eq. (2.5)].
We stress that, despite the appearance of a hypersur-

face Ricci scalar 3R and the extrinsic curvature tensor Kij,
the Weiss variation of the gravitational action (2.12)
makes no reference to a 3þ 1 split in the bulk manifold
U; in another paper [14], we show that Eq. (2.12) may
indeed be derived without performing a 3þ 1 split in the
bulk manifold U. As stated before, the hypersurfaces ΣI
and ΣF that form the boundary ∂U need not be surfaces
of constant t. As a result, the Ricci scalar 3R and the
extrinsic curvature tensor Kij are properties of the
boundary surfaces ΣI and ΣF and do not necessarily
correspond to the surfaces of constant time coordinate t
in the bulk manifold U.
We note that if the vacuum Einstein field equations

Gμν ¼ 0 are satisfied then the vacuum Hamiltonian and
momentum constraints take the form

2Gμνnμnν ¼ −εð3R − εðK2 − KijKijÞÞ ¼ 0 ð2:15Þ

γμβGμνnν ¼ Dαpαβ ¼ 0 ⇒ γikDkpij ¼ 0. ð2:16Þ

The above constraints in turn suggest that the term
proportional to δxμ in the variation δSGR (2.12) vanishes.
This result suggests that the Hamiltonian and the
canonical energy-momentum “tensor” for general rela-
tivity vanish on vacuum solutions of the Einstein field
equations [14].
Without loss of generality, we may choose the boundary

displacement δxμðyÞ to be proportional to the unit normal
vector nμ:

δxμðyÞ ¼ nμΔτðyÞ: ð2:17Þ

This is because the portion of δxμðyÞ tangent to the
hypersurface corresponds to infinitesimal diffeomorphisms
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on the boundary surface ∂U. We interpret the quantity
ΔτðyÞ as the amount (measured in proper time) by which
the boundary ∂U is displaced in the normal direction. The
variation (2.12) simplifies to

δSGR ¼ 1

2κ

Z
U

�
Rμν −

1

2
Rgμν

�
δgμν

ffiffiffiffiffi
jgj

p
d4x

þ
Z
∂U

�
PijΔγij −HgfΔτ

�
d3y; ð2:18Þ

where we make use of the expression γμβnμ ¼ 0, and we
define the “gauge-fixed” Hamiltonian density

HgfðPij; γijÞ ≔ −
1

2κ
½3R − εðK2 − KijKijÞ�

ffiffiffiffiffi
jγj

p
; ð2:19Þ

where Kij and K depend on Pij via the expressions

Kij ¼
2κεffiffiffi
γ

p
�
Pij −

1

2
γijγ

klPkl

�
K ¼ −

κεffiffiffi
γ

p Pijγ
ij;

ð2:20Þ

which can be easily obtained from (2.14). Finally, we
integrate (2.19) to obtain the gravitational Hamiltonian:

HGR½Pij; γij� ¼
Z
U
HgfðPij; γijÞd3y

¼ −
1

2κ

Z
U
½3R − εðK2 − KijKijÞ�

ffiffiffiffiffi
jγj

p
d3y:

ð2:21Þ

C. Superspace: Rewriting the
gravitational Hamiltonian

We now take the opportunity to briefly motivate and
review the concept of superspace,3 the space of Riemannian
3-geometries [19–22] (also see Ref. [23] and references
therein). The concept of superspace will be useful for us
because it provides a formalism for general relativity that
resembles particle mechanics. We begin by using (2.20) to
rewrite (2.19) as

HgfðPij; γijÞ ¼ −
ε

2κ
PijGijklPkl −

1

2κ
3R

ffiffiffiffiffi
jγj

p
; ð2:22Þ

where we define the following:

Gijkl ≔
2κ2ffiffiffiffiffijγjp ðγikγjl þ γilγjk − γijγklÞ

Gijkl ≔
ffiffiffiffiffijγjp

8κ2
ðγikγjl þ γilγjk − 2γijγklÞ: ð2:23Þ

The tensor Gijkl is constructed to satisfy the following
property:

GijabGabkl ¼ 1

2
ðδki δlj þ δliδ

k
jÞ: ð2:24Þ

We may then construct a “supermetric” from the
expression Gijkl

4:

Gij∶klðy; y0Þ ≔
1

2
ðGijklðyÞδ3ðy0 − yÞ þGijklðy0Þδ3ðy − y0ÞÞ:

ð2:25Þ

The supermetric Gij∶klðy; y0Þ may be regarded as a
metric on the space of Riemannian inverse 3-metric fields
γijðyÞ and γij0ðyÞ, which we call iRiemðΣÞ. In particular,
Gij∶klðy; y0Þ defines an inner product for tangent vectors
_γijðyÞ of iRiemðΣÞ. Now, consider two inverse 3-metrics
γijðyÞ and ~γijðyÞ that are related by coordinate trans-
formations; we observe γijðyÞ and ~γijðyÞ correspond to
distinct points in iRiemðΣÞ. A more physically relevant
concept is that of superspace, which is the space of
coordinate-independent Riemannian 3-geometries (as
opposed to coordinate-dependent inverse 3-metrics).
Given a manifold Σ, one may define superspace SðΣÞ
by the formal construction

SðΣÞ ¼ iRiemðΣÞ
DiffðΣÞ ; ð2:26Þ

in which we mod out iRiemðΣÞ by the space of diffeo-
morphisms [denoted DiffðΣÞ] on Σ.
While superspace SðΣÞ is a more physically relevant

concept than iRiemðΣÞ, the difficulty with using SðΣÞ
rather than iRiemðΣÞ lies in the fact that SðΣÞ is not a
manifold. In particular, it has been pointed out that the
dimensionality of SðΣÞ can change at points corresponding
to geometries that possess a high degree of symmetry
[21,22]. It was (nonrigorously) argued in Ref. [22] that one
may nevertheless extend SðΣÞ to obtain a manifold, which
is referred to as extended superspace SexðΣÞ. It is beyond
the scope of this article to review this matter any further (we

3Not to be confused with the coordinate space of a super-
manifold (usually discussed in the context of supersymmetry),
which is also called “superspace.” Recall that supermanifolds
possess both commuting (bosonic) and anticommuting (fer-
mionic/Grassmann-valued) coordinates. To avoid confusion,
we propose referring to the coordinate space of a supermanifold
as Grassmann superspace and SðΣÞ as Riemannian superspace
when a distinction is needed (we shall not do this outside this
footnote).

4The supermetric defined above differs from the DeWitt
supermetric [19,22] by a factor of jγj=4; this is due to our
convention that we used the inverse 3-metric γij, rather than
the metric γij, as coordinates on superspace [we interpret
γij ¼ γijðy; γklðyÞÞ.].
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refer the reader to Refs. [21–24] for further discussion); for
our purposes, it suffices to assume that there exists a
manifold SexðΣÞ that contains SðΣÞ as a subset and admits
a surjection (a map that is onto) from SexðΣÞ to SðΣÞ.
Since Σ is assumed to be compact, we may require

SexðΣÞ to have countable (though infinite) dimension. This
requirement is motivated by the observation that functions
defined on certain compact manifolds, the n-torus Tn and
the n-sphere Sn for instance, admit a complete countable
basis for functions defined on them (the respective discrete
Fourier basis and n-spherical harmonic basis) so that the
function spaces on Tn and Sn have countable dimension. If
the manifold Σ has a boundary, we impose the appropriate
boundary conditions to ensure that the function spaces
have countable dimension. If SexðΣÞ has countable dimen-
sion, then given coordinates ξa on SexðΣÞ and a map
γijðy; ξÞ∶SexðΣÞ → iRiemðΣÞ, we may formally write the
supermetric Gij∶klðy; y0Þ in the coordinate basis on SexðΣÞ
in the following manner:

Gab ≔
Z
Σ

�Z
Σ

∂γijðy; ξÞ
∂ξa

∂γklðy0; ξÞ
∂ξb Gij∶klðy; y0Þd3y

�
d3y0:

ð2:27Þ

Note that, since SexðΣÞ is infinite dimensional (again, we
assume that the dimension is countably infinite), there is no
upper bound on the values of the indices a; b ∈ N (N being
the set of natural numbers).
Given the superspace metric Gab, we may regard SexðΣÞ

as an infinite-dimensional pseudo-Riemannian manifold,5

and since SexðΣÞ is of countable dimension, the standard
formulas of Riemannian geometry apply to quantities
defined on SexðΣÞ. We may, for instance, define an inverse
superspace metric Gab that satisfies the condition

X∞
t¼1

GatGtb ¼ δab ð2:28Þ

and the connection coefficients

Γc
ab ≔

1

2

X∞
t¼1

Gct

�∂Gtb

∂ξa þ ∂Gat

∂ξb −
∂Gab

∂ξt
�
; ð2:29Þ

from which we may construct covariant derivatives
on SexðΣÞ.
These definitions, combined with (2.22), permit a

rewriting of the gravitational Hamiltonian HGR in the form

HGRðPa; ξaÞ ¼ −
ε

2κ

�X∞
a¼1

X∞
b¼1

GabPaPb

�
þΦðξÞ; ð2:30Þ

where

ΦðξÞ ≔ −
1

2κ

Z
Σ

3R
ffiffiffiffiffi
jγj

p
d3y; ð2:31Þ

with γij ¼ γijðy; ξÞ and 3R ¼ 3Rðy; ξÞ. The integral over yi
in the second term ensures thatΦðξÞ is strictly a function of
the superspace coordinate ξa.
We note that the Hamiltonian HGR (2.30) resembles the

Hamiltonian of particle mechanics on a Riemannian mani-
fold. A typical Hamiltonian for such a system takes the
form

Hðp; qÞ ¼ 1

2m
gijpipj þ VðqÞ; ð2:32Þ

where gij is a Riemannian metric on the configuration space
Q and VðqÞ is the potential. A comparison of the
Hamiltonian HGR (2.30) with the particle Hamiltonian
(2.32) suggests that the first term containing the conjugate
momenta is a kinetic term,

1

2m
gijpipj ↔

1

2κ

�X∞
a¼1

X∞
b¼1

GabPaPb

�
; ð2:33Þ

and that the functionΦðξÞ is a potential. Of course, the idea
that general relativity can be recast as a problem of particle
motion in an infinite-dimensional manifold is not new
[22,25].6 However, the formalism developed in this section
will be useful for motivating a correspondence between
path integral and operator expressions in quantum general
relativity, which we will present in later sections.

D. Gravitational action with spatial boundary

We now consider the case in which we consider
spacetime regionsW with a spatial boundary; in particular,
we require W to have a boundary ∂W as described in
Fig. 1. The boundary ∂W consists of three regions, ΣI , B,
and ΣF, and is nonsmooth on the two-dimensional surfaces
SI and SF. We require the surfaces ΣI and ΣF to be
spacelike, meaning that they admit a positive-definite
induced metric γij with signature ðþ;þ;þÞ. On the other
hand, we require the surface B to be timelike, meaning that
the induced metric qab on B has a signature ð−;þ;þÞ.

5That SexðΣÞ is a pseudo-Riemannian manifold can be seen by
noting that for the special case γij ¼ δij the independent
components of Gijkl have five positive roots and one negative
root [19].

6In fact, Ref. [22] goes further; the Hamiltonian constraint was
used to show that solutions of Einstein’s field equations can (with
appropriate gauge conditions) be interpreted as geodesics in
superspace.

FROM PATH INTEGRALS TO THE WHEELER-DEWITT … PHYSICAL REVIEW D 96, 106005 (2017)

106005-5



This time, the gravitational action takes the form

SGR;B½gμν� ¼
1

2κ

Z
W
R

ffiffiffiffiffi
jgj

p
d4x −

1

κ

Z
ΣF

K
ffiffiffiffiffiffi
jhj

p
d3y

þ 1

κ

Z
B
K

ffiffiffiffiffiffi
jqj

p
d3y −

1

κ

Z
ΣI

K
ffiffiffiffiffiffi
jhj

p
d3yþ SC;

ð2:34Þ

where underlined quantities are defined on the boundary
surface B. For nonsmooth boundaries with spacelike
junction surfaces SI and SF, we must include the term
SC, which is often referred to as the corner term [26–29]
(also see Refs. [30–34]),

SC ≔
1

κ

Z
SI

ηI
ffiffiffiffiffiffi
jσj

p
d2zþ 1

κ

Z
SF

ηF
ffiffiffiffiffiffi
jσj

p
d2z; ð2:35Þ

where the rapidity angles ηI and ηF are formed from the
inner product between the unit normal vectors at the
junction surfaces SI and SF:

ηI ≔ arcsinhðhnI; nBijSIÞ
ηF ≔ arcsinhðhnF; nBijSFÞ: ð2:36Þ

We may ignore this term if the inverse metric tensor gμν

is held fixed at the junction surfaces SI and SF, and the
boundary displacements δxμðyÞ vanish in a neighborhood
of the junction surfaces SI and SF. In other words, we
require hnI; nBijSI and hnF; nBijSF to be held fixed and that
δxμjSI ¼ 0, δxμjSF ¼ 0, δgμνjSI ¼ 0, and δgμνjSF ¼ 0.

Without loss of generality, we may choose the boundary
displacement δxμ to take the following form:

δxμjΣI
¼ nμΔτiðyÞ for y ∈ ΣI

δxμjB ¼ nμΔrðyÞ for y ∈ B

δxμjΣF
¼ nμΔτfðyÞ for y ∈ ΣF: ð2:37Þ

The Weiss variation of the action is (we stress that I and
F are labels—they are not indices to be summed over)

δSGR;B ¼ 1

2κ

Z
W
Gμνδgμν

ffiffiffiffiffi
jgj

p
d4x

þ
Z
ΣI

ðPI
ijΔh

ij
I −HIΔτIÞd3y

þ
Z
B
ðPabΔqab −HBΔsÞd3y;

þ
Z
ΣF

ðPF
ijΔh

ij
F −HFΔτFÞd3y ð2:38Þ

where we define the momentum densities

PI
ij ≔ −

1

2κ
ðKij − KhIijÞ

ffiffiffiffiffiffiffi
jhIj

p

Pab ≔
1

2κ
ðKab − KqabÞ

ffiffiffiffiffiffi
jqj

p

PF
ij ≔ −

1

2κ
ðKij − KhFijÞ

ffiffiffiffiffiffiffiffi
jhFj

p
ð2:39Þ

and the Hamiltonian densities

HI ≔
1

2κ
PI
ijG

ijklPI
kl −

1

2κ
3R

ffiffiffiffiffiffiffi
jhIj

p

HB ≔ −
1

2κ
PabGabcdPcd −

1

2κ
3R

ffiffiffiffiffiffi
jqj

p

HF ≔
1

2κ
PI
ijG

ijklPI
kl −

1

2κ
3R

ffiffiffiffiffiffiffiffi
jhFj

p
; ð2:40Þ

whereHI is defined over ΣI andHF is defined over ΣF and
the quantities Gijkl and Gabcd are given by

Gijkl ≔
2κ2ffiffiffi
h

p ðhikhjl þ hilhjk − hijhklÞ

Gabcd ≔
2κ2ffiffiffi
q

p ðqacqbd þ qadqbc − qabqcdÞ: ð2:41Þ

Note that for vacuum solutions of the Einstein field
equations, the right-hand sides of all three equations in
(2.40) vanish. We also note that the inverse 3-metric qab

defines an extended superspace that is different than
SexðΣÞ defined earlier, since qab defines a pseudo-
Riemannian 3-geometry, rather than a Riemannian
3-geometry. We shall denote the extended superspace

FIG. 1. An illustration of a cylindrical boundary for a spacetime
region W, with boundary ∂W ¼ ΣI ∪ B ∪ ΣF. The vertical
direction is timelike, so ΣI and ΣF are spacelike surfaces of
codimension 1, andB is a timelike surface of codimension 1. The
surfaces SI and SF are surfaces of codimension 2 (assumed to
have exclusively spacelike tangent vectors) that form boundaries
between ΣI , B, and ΣF. The unit normal vectors (shown in red)
are defined to be outward pointing; nI ¼ ½nμI � is the unit normal to
ΣI , nB ¼ ½nμB� is the unit normal to B, and nF ¼ ½nμF� is the unit
normal to ΣF. See Sec. II D.
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for pseudo-Riemannian 3-geometries on a 3-manifold Σ
by SexðΣÞ. Underlined quantities will either refer to
quantities defined on SexðΣÞ or quantities defined on a
pseudo-Riemannian 3-manifold.

III. FROM THE PATH INTEGRAL TO THE
SCHRÖDINGER EQUATION

A. Variation of the transition amplitude

We now show that wave functions constructed from
Feynman path integrals formally satisfy the Schrödinger
equation [35].7 We begin by considering the position-basis
transition amplitude

hqi2; t2jqi1; t1i ¼ Kðqi2; t2; qi1; t1Þ; ð3:1Þ

where jqi; ti is the position-basis state vector and the
function Kðqi2; t2; qi1; t1Þ is given by the path integral
expression [we shall henceforth refer to the function
Kðqi2; t2; qi1; t1Þ as the transition amplitude]

Kðqi2; t2; qi1; t1Þ ¼
Z

Dqeði=ℏÞS½q�; ð3:2Þ

where the action functional S½q� (2.1) is implicitly a
function of the end point values qi1, t1, q

i
2, and t2 andR

Dq represents a measure8 on the space of functions qiðtÞ
subject to the Dirichlet boundary conditions qiðt1Þ ¼ qi1
and qiðt2Þ ¼ qi2; in particular, we hold the function qiðtÞ
fixed to the values qi1 and qi2 at the respective times t1 and
t2. We do not provide a rigorous definition9 for the
measure; to proceed, we only need the property that
the measure is invariant under shifts in the function qiðtÞ
of the form qi0ðtÞ ¼ qiðtÞ þ δqiðtÞ. Under this shift, we
require the measure to satisfy

Z
Dq0F½q0� ¼

Z
DqF½qþ δq� ð3:3Þ

for some functional F½q�. The property (3.3) is motivated
by the analogous property for the usual single-variable
integral for shifts x0 ¼ xþ δx in the integration variable x:

Z
∞

−∞
fðx0Þdx0 ¼

Z
∞

−∞
fðxþ δxÞdx: ð3:4Þ

We now consider what happens when we vary
the function qiðtÞ while holding the end point values

qi1, t1, q
i
2, and t2 fixed. We may use (3.3) to write the

following:
Z

Dq0eði=ℏÞS½q0� ¼
Z

Dqeði=ℏÞS½qþδq�: ð3:5Þ

We may perform a relabeling of the integration variable
qi0 → qi to write

Z
Dq0eði=ℏÞS½q0� ¼

Z
Dqeði=ℏÞS½q�: ð3:6Þ

Equations (3.5) and (3.6) may be used to obtain
Z

Dqeði=ℏÞS½qþδq� ¼
Z

Dqieði=ℏÞS½q�

⇒
i
ℏ

Z
Dqδ0Seði=ℏÞS½q� ¼ 0; ð3:7Þ

where the subscript 0 in the variation of the action δ0S
indicates that the end point values qi1, t1, q

i
2, and t2 are held

fixed. Note that, since δqiðtÞ is independent of qiðtÞ, we
may pull it out of the path integral. The demand that
Eq. (3.7) must hold for all δqiðtÞ implies

Z
Dq

�∂L
∂qi −

d
dt

�∂L
∂ _qi

��
eði=ℏÞS½q� ¼ 0: ð3:8Þ

We now consider what happens when the end points are
displaced; in particular, we change the values of qi1, t1, q

i
2,

and t2. Equation (3.6) is no longer valid, since the
displacement of the end points prevents us from performing
a change in the integration variable. The change in the
transition amplitude is given by the following difference in
path integrals:

δK ¼
Z

Dqeði=ℏÞS0½qþδq� −
Z

Dqeði=ℏÞS½q�: ð3:9Þ

Since the measure itself is invariant under displacements
of the end points (the displacements in t1 and t2 may be
absorbed into a redefinition of t), the change in the
amplitude is given by the change in the integrand. In
particular, the change in the amplitude is given by the
change in the action:

δK ¼ i
ℏ

Z
DqδSeði=ℏÞS½q�: ð3:10Þ

Recalling the Weiss variational principle, we begin by
performing the following infinitesimal transformation on
the paths [recall (2.3) and (2.2)],

qi0ðtÞ ¼ qiðtÞ þ δqiðtÞ
t01 ¼ t1 þ Δt1
t02 ¼ t2 þ Δt2; ð3:11Þ

7Our derivation at first follows closely the one found in the
lecture notes [36], but we extend it to include a discussion of the
operator-path integral correspondence.

8We absorb normalization factors into the definition of the
measure.

9For a rigorous treatment of path integrals, we refer the reader
to the formalism of Cartier and DeWitt-Morette: Refs. [37,38].
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where δqiðtÞ ¼ εηiðtÞ and we assume Δt1 ∝ ε and Δt2 ∝ ε.
If the action contains no more than first-order time
derivatives in qi (and a Legendre transformation can be
performed), then to first order in ε, the change in the action
is given by the Weiss variation of the action (2.8),

δS ¼
Z

t2

t1

�∂L
∂qi −

d
dt

�∂L
∂ _qi

��
δqidtþ ðpiΔqi −HΔtÞ

����
t2

t1

;

ð3:12Þ

where pi ¼ ∂L=∂ _qi, H is the Hamiltonian, and

Δqi1 ≔ qi0ðt01Þ − qiðt1Þ ¼ εðηiðt1Þ þ _qiðt1ÞÞ þOðε2Þ
Δqi2 ≔ qi0ðt02Þ − qiðt2Þ ¼ εðηiðt2Þ þ _qiðt2ÞÞ þOðε2Þ:

ð3:13Þ

Using (3.8), the change in the amplitude is given by

δK ¼ i
ℏ

Z
DqiðpiΔqi −HΔtÞjt2t1eði=ℏÞS½q�: ð3:14Þ

Now, consider what happens when we hold qi1 and t1
fixed so that ΔqA1 ¼ 0 and Δt1 ¼ 0. We may write the
above (3.14) as

δKjðqi
1
;t1Þ→fixed ¼

i
ℏ

�Z
Dqpi;2eði=ℏÞS½q�

�
Δqi2

−
i
ℏ

�Z
DqHjt2eði=ℏÞS½q�

�
Δt2; ð3:15Þ

where we introduce the notation pi;1 ¼ pijt1 and
pi;2 ¼ pijt2 . Given an initial state function ψðqi1Þ (equiv-
alent to the state vector jqi; t1i), where ψð·Þ is some
normalizable complex function, we may define the wave
functionΨðqi2; t2Þ in terms of the transition amplitude in the
following way:

Ψðqi2; t2Þ ≔
Z

Kðqi2; t2; qi1; t1Þψðqi1Þdqi1: ð3:16Þ

To simplify the analysis, we consider the case in which
the initial state ψðqi1Þ is sharply peaked around some value
for qi; we may recover the general results by integrating the
results over all values of qi [in particular, for some path
integral expression PI ¼ PIðqi2; t2; qi1; t1Þ, we perform the
integral

R
PIψðqi1Þdqi1].

One may infer from Eq. (3.15) the expression for the
differential of Ψðqi2; t2Þ,

dΨ ¼ i
ℏ

�Z
Dqpi;2eði=ℏÞS½q�

�
dqi2

−
i
ℏ

�Z
DqHjt2eði=ℏÞS½q�

�
dt2; ð3:17Þ

which in turn yields the following expressions for the
derivatives of the wave function:

i
ℏ

Z
DqHjt2eði=ℏÞS½q� ¼ −

∂Ψ
∂t2 ð3:18Þ

i
ℏ

Z
Dqpi;2eði=ℏÞS½q� ¼

∂Ψ
∂qA2 : ð3:19Þ

Equation (3.19) motivates the following definition for
the momentum operator for wave functions Ψðq2; t2Þ
written in the position basis:

p̂i;2 ≔ −iℏ
∂
∂qi2 : ð3:20Þ

We may motivate the Schrödinger equation from
(3.18), but to obtain an unambiguous expression for the
Schrödinger equation, we must first establish an operator-
path integral correspondence. In particular, we must con-
struct an operator corresponding to the path integral:

Z
Dqðpi1…pinq

j1…qjmÞjt2eði=ℏÞS½q�: ð3:21Þ

This is often referred to as the problem of operator
ordering. In the next section, we shall explore this further. If
the Hamiltonian Hjt2 can be expressed as a polynomial
function of pi;2 and qi2, the path integral (3.18) consists
of terms of the form (3.21). If one can establish a
correspondence rule for operators and path integrals of
the form (3.21), one may construct a Hamiltonian operator
Ĥjt2 ¼ Ĥðp̂i; q̂iÞjt2 ; Eq. (3.18) may be rewritten as

iℏ
∂Ψ
∂t2 ¼ Ĥðp̂i; q̂iÞjt2Ψ; ð3:22Þ

which is, of course, the time-dependent Schrödinger
equation.

B. Path integral-operator correspondence rule

We now motivate a correspondence rule for path integral
expressions and their operator counterparts. We begin by
establishing an operator expression for factors of qi that
appear in the path integral. Since qi2 is evaluated at the end
point, we may trivially write

Z
Dqqi2e

ði=ℏÞS½q� ¼ qi2

Z
Dqeði=ℏÞS½q� ¼ qi2ΨZ

Dqqi12 …qin2 e
ði=ℏÞS½q� ¼ ðqi12 …qin2 Þ

Z
Dqeði=ℏÞS½q�

¼ ðqi12 …qin2 ÞΨ; ð3:23Þ

which motivates the following definition for the
operator q̂i2:
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q̂i2Ψ ¼ qi2Ψ

q̂i12 …q̂in2 Ψ ¼ ðqi12 …qin2 ÞΨ: ð3:24Þ

The definition (3.24) for the operator q̂i2 may be used to
establish an operator expression for the following path
integral:

Z
DqðpiqjÞjt2eði=ℏÞS½q�: ð3:25Þ

Naively, the above expression may be identified with
the operation ðp̂iq̂jÞjt2Ψ or ðq̂jp̂iÞjt2Ψ. The reader familiar
with quantum mechanics will be fully aware of the fact that
these two operations are inequivalent, since the operators
p̂ijt2 and q̂i2 do not commute. Indeed, we obtain the explicit

expressions (δji being the Kronecker delta)

ðp̂iq̂jÞjt2Ψ ¼ −iℏ
∂
∂qi2 ðq

j
2ΨÞ ¼ −iℏ

�
δjiΨþ qj2

∂Ψ
∂qi2

�

ðq̂jp̂iÞjt2Ψ ¼ −iℏqi2
∂Ψ
∂qi2 ; ð3:26Þ

which yield the commutation relation when combined:

ð½p̂i; q̂j�Þjt2 ¼ ðp̂iq̂j − q̂jp̂iÞjt2 ¼ −iℏδji : ð3:27Þ

We now establish the operator expression corresponding
to (3.25). To do this, we expand the second line of (3.26) in
the manner

ðq̂jp̂iÞjt2Ψ ¼ −iℏqj2
∂Ψ
∂qi2 ¼ qj2

Z
Dqpi;2eði=ℏÞS½q�

¼
Z

Dqqj2pi;2eði=ℏÞS½q�

¼
Z

DqðqjpiÞjt2eði=ℏÞS½q�

¼
Z

DqðpiqjÞjt2eði=ℏÞS½q�; ð3:28Þ

where the last equality follows from the expression10

qjpi ¼ piqj. The computation (3.28) demonstrates that
the path integral expression in (3.25) corresponds to the
operator ordering ðq̂Bp̂iÞjt2Ψ, in which the momentum
operator p̂i;2 appears to the right11 of the position operator.
The correspondence suggested by (3.28) applies only to
wave functions Ψðq2; t2Þ in the position basis; the corre-
spondence rule for path integrals of the form (3.25) is basis
dependent.

One may expect that, given the definition (3.20) for the
momentum operator p̂i, one has the following correspon-
dence rule:

ði=ℏÞn
Z

Dqðpi1…pinÞjt2eði=ℏÞS½q� ≈ ði=ℏÞnðp̂i1…p̂inÞjt2Ψ

¼ ∂nΨ
∂qi12 …∂qin2

: ð3:29Þ

The difficulty with this correspondence rule (3.29) is that
it is not compatible with coordinate transformations on the
configuration space Q. In particular, we expect Ψ and the
Schrödinger equation to transform as scalars under coor-
dinate transformations on Q, but this is not in general true
for a Schrödinger equation constructed using the corre-
spondence rule (3.29). To see this, consider the expression

ði=ℏÞn
Z

DqðTi1…inpi1…pinÞjt2eði=ℏÞS½q�

≈ ðTi1…in jt2Þ
∂nΨ

∂qi12 …∂qin2
; ð3:30Þ

where Ti1…in ¼ Ti1…inðqÞ is a tensor on the configuration
space manifold Q. Since the conjugate momenta pi trans-
form as cotangent vectors, the integrand on the left-hand
side of (3.30) transforms as a scalar (the action S½q� is
assumed to be invariant under coordinate transformations).
For n > 1, the right-hand side of (3.29) does not transform
as a scalar under coordinate transformations on Q.
The problems with establishing a correspondence rule

may be attributed to ambiguities in the definition of the
measure. Suppose that, for a given definition of the measureR
Dq, one obtains the correspondence rule (3.29). Since the

integrand of (3.29) transforms as a scalar, any nonscalar
transformation law must come from the transformation of
the measure

R
Dq. Thus, any nontensorial transformation

law for the left-hand side of (3.29) must come from the
measure. Though we do not propose a definition for the
measure, we require the measure to satisfy the property that
the left-hand side of (3.30) transforms as a scalar. This
suggests that the measure yields the correspondence ruleZ

Dqðpi1…pinÞjt2eði=ℏÞS½q�

¼ ð−iℏÞnð∇i1…∇inÞjt2ΨZ
Dqðpi1…pinq

j1…qjmÞjt2eði=ℏÞS½q�

¼ ðq̂j1…q̂jm∇i1…∇inÞjt2Ψ; ð3:31Þ
where ∇ijt2 is a connection (covariant derivative) on the
configuration space manifold Q, constructed from the
partial derivatives ∂=∂qi2 (with qi2 ∈ Q) and connection
coefficients Γi

jk; for a second rank tensor Ti
j, it takes the

form

10We assume that qi and pi are c-number valued; the present
analysis excludes Grassmann-valued degrees of freedom.

11By this, we mean that the momentum operator p̂i;2 is applied
to Ψ first.
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∇iT
j
kjt2 ¼

∂Ti
j

∂qi2 þ Γj
ilT

l
k − Γl

ikT
j
l : ð3:32Þ

The connection coefficients Γi
jk are assumed to be

functions of qi2 and are defined to satisfy the following
transformation rule:

Γ0i
jk ¼

�∂q0i
∂qa

∂qb
∂q0j

∂qc
∂q0k

�
Γa
bc −

∂qb
∂q0j

∂qa
∂q0k

� ∂2q0i

∂qb∂qa
�
:

ð3:33Þ

For a particle on a Riemannian manifold, it is natural to
choose Γi

jk to be the Christoffel symbols.
We stress that the correspondence rule (3.31) for factors

of the momenta is a property that we require of the
measure, rather than a derived result. An important
question that should be addressed is whether one can
explicitly construct a time-sliced path integral that yields
the correspondence rule (3.31). For our purposes, the full
correspondence rule (3.31) is not necessary, as we only
need a correspondence rule for the following expression:

Z
DqðgijpipjÞjt2e

i
ℏS½q� ¼ −ℏ2gij∇i∇jΨ

¼ −ℏ2
1ffiffiffi
g

p ∂
∂qi2

� ffiffiffi
g

p
gij

∂Ψ
∂qj2

�
:

ð3:34Þ

This is, of course, the well-known Laplace-Beltrami
ordering rule [19,39,40]. From the coordinate-invariant
time-sliced definitions of the path integral presented in
Ref. [41] (also see Ref. [39]), one may infer that the time-
sliced measure yields the Laplace-Beltrami correspondence

Z
Dqð·Þ ≔ lim

n→∞

Yn−1
k¼2

Z
Q
dNqτk

ffiffiffiffiffiffiffi
jMj

p
exp

�
iℏ
6

Z
Rdt

�
ð·Þ;

ð3:35Þ

where we use the replacement _qiτk → ðqiτk − qiτk−1Þ=Δt in the
argument of the right-hand side. Though we note that the
Laplace-Beltrami ordering (3.34) follows from our corre-
spondence rule (3.31), it is not yet clear to us that the time-
sliced measure (3.35) yields the correspondence rule (3.31).
We will not investigate the compatibility of the measure
(3.35) and the correspondence rule (3.31) and leave it for
future work—this question is beyond the scope of this
article, as the Laplace-Beltrami ordering is sufficient for
our purposes. In the next section, we use a Laplace-
Beltrami-type ordering for the Wheeler-DeWitt equation
by demanding that transition amplitudes be invariant under
coordinate transformations on superspace.

IV. WHEELER-DEWITT EQUATION

Again, we consider a spacetime M that has no spatial
boundary so that it has the topology R × Σ3, where Σ3 is a
three-dimensional manifold without a boundary. We begin
with the gravitational action SGR, (2.9), which we rewrite
here,

SGR½gμν� ≔ SEH½gμν� þ SGHY ¼ 1

2κ

Z
U
R

ffiffiffiffiffi
jgj

p
d4x

þ 1

κ

Z
∂U

Kε
ffiffiffiffiffi
jγj

p
d3y; ð4:1Þ

where U has no spatial boundary (or where ∂U ¼ ΣI ∪ ΣF,
where ΣI and ΣF are spacelike hypersurfaces without a
boundary). The most straightforward approach to the
quantization of the gravitational field is to simply write
down the path integral12 (first written down in Ref. [44])

K⟦γijF ; γ
ij
I ⟧ ¼

Z
D½gαβ�ei

ℏSGR½gαβ �; ð4:2Þ

where the brackets ⟦⟧ indicate a functional of functions
defined over the boundary surface ∂U and

R
D½gαβ� denotes

a functional integral over all functions gαβðxÞ up to those
that differ by a diffeomorphism. We require the integration
measure

R
D½gαβ� to be invariant under the shift (field

redefinition) gμν → gμν þ δgμν,13 and we also require the
measure to be defined so that the resulting amplitude
K⟦γijF ; γ

ij
I ⟧ is independent of coordinate transformations

on ΣI and ΣF. The path integral (4.2) formally defines an
unnormalized transition amplitude between a spacetime
with an initial inverse 3-metric γijI ≔ γijjΣI

for the initial

hypersurface ΣI and a final inverse 3-metric γijF ≔ γijjΣF
for

the hypersurface ΣF.
In this section, we attempt to derive a Schrödinger

equation from the transition amplitude (4.2), but we instead
find that the transition amplitude must lie in the kernel of
the formal Hamiltonian operator; the transition amplitude is
independent of the time parameters tI and tF. This is known
as the problem of time, and though it is primarily discussed
in the context of the canonical formulation of quantum

12It is well known that quantum general relativity [as given by
functional integrals of the form (4.2)] is perturbatively non-
renormalizable (see Refs. [42,43] for an overview). The analysis
we present is formally nonperturbative, so the question of
perturbative renormalizability will not enter into our analysis
[one might imagine that in writing down the path integral (4.2) we
are studying the low-energy limit of some effective field theory
for gravity].

13For the present analysis, we ignore the details of gauge fixing
for the measure

R
D½gαβ� or any other procedure for modding

out diffeomorphisms; we only assume that the shift δgμν is
compatible with the procedure for gauge fixing or modding out
diffeomorphisms.
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general relativity, we shall show in the next section that it is
also present in the path integral formulation.

A. Variation of the path integral

We now perform the variation of the path integral (4.2),
assuming that the measure

R
D½gαβ� is invariant under the

shift gμν → gμν þ δgμν. The variation of the path integral
may then be written in terms of the variation of the action:

δK ¼ i
ℏ

Z
D½gαβ�δSGRei

ℏSGR½gαβ �: ð4:3Þ

Earlier, we presented the Weiss variation of the gravi-
tational action (2.12),

δSGR ¼ 1

2κ

Z
U

�
Rμν −

1

2
Rgμν

�
δgμν

ffiffiffiffiffi
jgj

p
d4x

þ ε

2κ

Z
∂U
ðpμνΔγμν þ ½2Dαpαβγμβ

þ nμð3R − εðK2 − KijKijÞÞ�δxμÞ
ffiffiffiffiffi
jγj

p
d3y; ð4:4Þ

where the boundary of U is given by the expression
∂U ¼ ΣI ∪ ΣF, and [cf. Eq. (2.13)]:

pμν ≔ ðKμν − KγμνÞ: ð4:5Þ

Note that the indices of pμν are tangent to the boundary
∂U. From the invariance of the path integral (4.3) under a
change in integration variable [recall equation (3.5)] and the
invariance of the measure

R
D½gαβ� under shifts of the form

gμν → gμν þ δgμν, one may show the following:

Z
D½gαβ�

Z
U

�
Rμν −

1

2
Rgμν

�
δgμν

ffiffiffiffiffi
jgj

p
d4xe

i
ℏSGR½gαβ � ¼ 0

⇒
Z
U

�Z
D½gαβ�

�
Rμν −

1

2
Rgμν

� ffiffiffiffiffi
jgj

p
e

i
ℏSGR½gαβ �

�
δgμνd4x

¼ 0

⇒
Z

D½gαβ�
�
Rμν −

1

2
Rgμν

� ffiffiffiffiffi
jgj

p
e

i
ℏSGR½gαβ � ¼ 0. ð4:6Þ

The second line comes from the fact that the shift
function δgμν can be chosen independently of the integra-
tion variable gμν, and the last line can be inferred from the
second line by requiring the second line to hold for all
choices of δgμν. The last line is the statement that in the
absence of matter the vacuum Einstein field equations are
satisfied within the path integral. The variation of the path
integral thus becomes

δK¼ i
ℏ

Z
D½gαβ�

�Z
∂U
ðPμνΔγμν−Hν

μnνδxμÞd3y
�
e

i
ℏSGR½gαβ �;

ð4:7Þ

where we have defined the following:

Pμν ≔
ε

2κ
pμν

ffiffiffiffiffi
jγj

p
¼ ε

2κ
ðKμν − KγμνÞ

ffiffiffiffiffi
jγj

p
ð4:8Þ

Hν
μ ≔ −

ε

2κ
½2εDαpαβγμβnν þ δνμð3R − εðK2 − KijKijÞÞ�

×
ffiffiffiffiffi
jγj

p
: ð4:9Þ

We choose δxμ to take the form

δxμ ¼ nμΔt; ð4:10Þ

where Δt is a constant. We then make use of the
expressions pμνΔγμν ¼ pijΔγij and γμβnμ ¼ 0 to obtain
the variation of the gravitational path integral,

δK ¼ i
ℏ

Z
D½gαβ�

�Z
∂U
ðPijΔγij −HgfΔtÞd3y

�
e

i
ℏSGR½gαβ �;

ð4:11Þ

where Hgf is given by (2.19), which we rewrite here:

Hgf ¼ −
1

2κ
½3Rþ K2 − KijKij�

ffiffiffiffiffi
jγj

p
: ð4:12Þ

In the above expression, we have set ε ¼ −1, appropriate
for the case of spacelike boundary surfaces in general
relativity.

B. Wave functional, operators, and commutators

We begin defining an initial state ψ⟦γijI ⟧ for some value
of tI . The wave functional may be formally14 defined as

Ψ ¼ Ψ⟦γij⟧ðtÞ ≔
Z

D½γklI �K⟦γij; γklI ⟧ψ⟦γ
kl
I ⟧; ð4:13Þ

where we substitute t in place of tF (the surface ΣF will be
denoted Σt) and

R
D½γklI � denotes a functional integral over

the inverse 3-metric γijI on the surface ΣI (up to coordinate
transformations on ΣI).

15 As before (in the derivation of the
quantum mechanical Schrödinger equation), we consider
an initial state Ψ⟦γijI ⟧ that is sharply peaked around some
particular function γijI to eliminate the functional integral

14Since it depends on the formally defined measure
R
D½γklI �,

the right-hand side of (4.13) is only defined in a formal sense.
This is essentially the problem of defining the inner product
(see Sec. 5.2.2 of Ref. [43], and also see Ref. [45] for a
gauge-fixed definition of the inner product measure). If super-
space has countable dimension, it may be possible in the
superspace representation to define an inner product in the usual
manner—this will be left for future investigation.

15Since we have required K⟦γijF ; γ
ij
I ⟧ to be independent of

coordinate transformations on ΣI and ΣF, the wave functional
Ψ⟦γij⟧must be independent of coordinate transformations on ΣF.
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R
D½γklI � (to recover the general result, reintroduce the

functional integral
R
D½γklI �). To first order, infinitesimal

changes in the wave functional Ψ will take the form

δΨ ¼
Z
Σt

δΨ
δΣt

γij
Δγijd3yþ ∂Ψ

∂t Δt; ð4:14Þ

where we use the notation δ=δΣφ to denote the functional
derivative with respect to a function φðxÞ restricted to
a hypersurface Σ; for a hypersurface with the parametriza-
tion xμðyÞ and the function φ̄ðyÞ ≔ φjΣ ¼ φðxðyÞÞ, this
means

δ

δΣφ
≔

δ

δφ̄
: ð4:15Þ

Upon comparing (4.15) with (4.11), we identify the
following expressions:

δΨ
δΣt

γij
¼ i

ℏ

Z
D½gαβ�PijjΣt

e
i
ℏSGR½gαβ � ð4:16Þ

∂Ψ
∂t ¼ −

i
ℏ

Z
D½gαβ�

�Z
Σt

Hgfd3y

�
e

i
ℏSGR½gαβ�: ð4:17Þ

Equation (4.16) suggests that the momentum operator
P̂ij satisfies

P̂ijΨ ≔ −iℏ
δΨ
δΣt

γij
: ð4:18Þ

On the other hand, Eq. (4.17) suggests that we may
formally define the quantum theory by constructing a
Hamiltonian operator ĤGR such that its action on Ψ is
formally equivalent to the following path integral:

ĤGRΨ ¼
Z

D½gαβ�
�Z

Σt

Hgfd3y

�
e

i
ℏSGR½gαβ �: ð4:19Þ

Since the wave functional Ψ is a functional of quantities
defined on Σt only, a valid Hamiltonian operator must be
defined in terms of operators at the surface Σt. Otherwise,
the time evolution may become nonlinear in the time
derivatives, and one is no longer doing quantum physics.
To construct a Hamiltonian operator, we must first identify
the operators that can be defined for the wave functional Ψ.
In general, an operator Ô acting on Ψ must have a path
integral expression of the form

ÔΨ ¼
Z

D½gαβ�OjΣt
eiSPal=ℏ; ð4:20Þ

where OjΣtF
is some quantity defined on ΣtF . We have

already identified the momentum operator P̂ij in Eq. (4.18).

We may define the inverse metric operator as follows (we
explicitly write the arguments of Ψ for clarity16):

γ̂ijΨ⟦γij⟧ðtÞ ≔ γijjtΨ⟦γij⟧ðtÞ ¼
Z

D½gαβ�γijjtei
ℏSGR½gαβ �:

ð4:21Þ
The second equality is justified by the fact that, since γij

is held fixed at Σt in the path integral, we can pull factors of
γijjt into the path integral, since γijjt is effectively constant
with respect to the functional integral

R
D½gαβ�.

Since the 3-metric γij and the volume element17
ffiffiffi
γ

p
can

in principle be obtained algebraically from γij, then we can
define a metric operator γ̂ij from γ̂ij, as well as the operators
ˆffiffiffiγp

and ð1= ˆffiffiffiγp Þ in the following manner (we explicitly
write the arguments of Ψ for clarity):

γ̂ijΨ⟦γij⟧ðtÞ ≔ γijjtΨ⟦γij⟧ðtÞ
ˆffiffiffiγp
Ψ⟦γij⟧ðtÞ ≔ ffiffiffi

γ
p jtΨ⟦γij⟧ðtÞ

ð1= ˆffiffiffiγp ÞΨ⟦γij⟧ðtÞ ≔ ð1= ffiffiffi
γ

p ÞjtΨ⟦γij⟧ðtÞ: ð4:22Þ

Since the three-dimensional Ricci scalar ð3ÞR depends
only on the values of the metric at the surface ΣF, we may
construct the following operator for the Ricci scalar (we
explicitly write the arguments of Ψ for clarity):

ð3ÞR̂Ψ⟦γij⟧ðtÞ ≔ ð3ÞRjγijðtÞ;tΨ⟦γij⟧ðtÞ: ð4:23Þ

To obtain commutation relations for the operators γ̂ij and
P̂ij, we first examine the expressions [cf. Eq. (3.26)]

ðP̂klγ̂
ijÞjtΨ ¼ −iℏ

δ

δΣt
γkl

ðγijFΨÞ

¼ −iℏ
�
δikδ

j
lδðy − y0ÞΨþ γij

δΨ
δΣt

γkl

�

ðγ̂ijP̂klÞjtΨ ¼ −iℏγij
δΨ

δΣt
γkl

; ð4:24Þ

where we have made use of the expression in the first line,

δγijðyÞ
δΣt

γklðy0Þ ¼ δikδ
j
lδ

3ðy − y0Þ; ð4:25Þ

with δðy − y0Þ being the Dirac delta function. We now write
down the formal commutation relations:

½γ̂ijðyÞ; P̂klðy0Þ� ¼ iℏδikδ
j
lδ

3ðy − y0ÞÎ: ð4:26Þ

16This is to indicate that the nonoperator quantities that appear
outside of the wave functional depend on the values of the
quantities that appear in the arguments of the wave functional.

17We drop the absolute value symbols since we now assume
ε ¼ −1.
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C. Hamiltonian operator and the
Wheeler-DeWitt equation

We begin by generalizing the computation (3.28) to
quantum general relativity:

ðγ̂ijP̂klÞjtΨ ¼ −iℏγij
δΨ

δΣt
γkl

¼ γijjΣt

Z
D½gαβ�PkljΣt

e
i
ℏSGR½gαβ �

¼
Z

D½gαβ�ðγijPklÞjΣt
e

i
ℏSGR½gαβ �: ð4:27Þ

The above expression demonstrates that quantities of the
form ðγijPklÞjΣt

¼ ðPklγ
ijÞjΣt

that appear in the integrand of
path integrals will yield the operator ordering ðγ̂ijP̂klÞjt.
For path integrals containing higher factors of the

momenta Pij, it is instructive to recall our earlier discussion
of superspace SðΣÞ and its manifold extension SexðΣÞ.
Recall that in terms of the coordinates ξa on extended
superspace SexðΣÞ (which we assume to be of countable
dimension) the gravitational Hamiltonian HGR is the
Hamiltonian for a particle on an infinite-dimensional
pseudo-Riemannian manifold. In the superspace represen-
tation, we demand that the wave function ΨðξÞ is invariant
under coordinate transformations on SexðΣÞ, which sug-
gests the following correspondence [cf. Eq. (3.34)]:

Z
DξðGabPaPbÞjt2eði=ℏÞS½q� ¼ ð−iℏÞ2ðĜab∇a∇bÞjt2Ψ:

ð4:28Þ

This is the Laplace-Beltrami operator on the extended
superspace SexðΣÞ.18 In the superspace representation, the
Hamiltonian operator HGR takes the form [cf. Eq. (2.30)]

ĤGR ¼ εℏ2

2κ

�X∞
a¼1

X∞
b¼1

Ĝab∇a∇b

�
þ Φ̂; ð4:29Þ

where Φ̂ is the operator counterpart to the potential ΦðξÞ
in (2.31).
To obtain the standard representation, we construct a

map19 ξa⟦γij⟧∶iRiemðΣÞ → SexðΣÞ and an inverse map20

γijðy; ξÞ∶SexðΣÞ → iRiemðΣÞ. We then make use of the
chain rule

δ

δγij
¼

X∞
c¼1

δξc

δγij
∂
∂ξc

∂
∂ξc ¼

Z
Σ
d3y

∂γijðy; ξÞ
∂ξc

δ

δγij
ð4:30Þ

to obtain the expression for the action of ĤGR on the wave
functional Ψ ¼ Ψ⟦γij⟧,

ĤGRΨ ¼ 1

2κ

Z
Σt

�
εℏ2Gijkl δ

δγij
δΨ
δγkl

þ εℏ2Cmnðy; ξ⟦γij⟧Þ δΨ
δγmn −

3R̂
ffîffiffiffiffi
jγj

p
Ψ
�
d3y;

ð4:31Þ
where any “unhatted” factors are multiplicative operators,
and we define

Cmnðy; ξ⟦γij⟧Þ

≔
X∞
a¼1

X∞
b¼1

X∞
c¼1

Gab

�Z
Σt

�∂γpqðz; ξÞ
∂ξa

δξc

δγpq
∂2γmnðy; ξÞ
∂ξc∂ξb

�
d3z

− Γc
ab
∂γmn

∂ξc
�
; ð4:32Þ

where Γc
ab is given by (2.29). The meaning of the second

functional derivative (4.31) will be discussed in an upcom-
ing paper.
We now return to Eq. (4.17), which becomes [using

(4.12)]

ĤGRΨ ¼ 1

2κ

Z
D½gαβ�

�Z
Σt

½KijKij − K2 − 3R� ffiffiffi
γ

p
d3y

�

× e
i
ℏSGR½gαβ�: ð4:33Þ

The Hamiltonian constraint forms part of the Einstein
field equations, and with the choice α ¼ 1 and βi ¼ 0 (valid
on the boundary ∂U), we may write

2R00 − Rg00 ¼ KijKij − K2 − 3R: ð4:34Þ
If we recall the earlier result (4.6), namely, that the

vacuum Einstein field equations are satisfied within the
path integral,

Z
D½gαβ�

�
Rμν −

1

2
Rgμν

� ffiffiffiffiffi
jgj

p
e

i
ℏSGR½gαβ � ¼ 0; ð4:35Þ

we find that (4.34) and (4.35) imply that the right-hand side
of (4.33) must vanish, so

ĤGRΨ ¼ 0 ⇒
1

2κ

Z
Σt

�
εℏ2Gijkl δ

δγij
δΨ
δγkl

þ εℏ2Cmnðy; ξ⟦γij⟧Þ δΨ
δγmn −

3R̂
ffîffiffiffiffi
jγj

p
Ψ
�
d3y ¼ 0:

ð4:36Þ

18It should be mentioned that our approach differs from
that suggested by DeWitt in Ref. [19], who proposed using a
Laplace-Beltrami operator on the six-dimensional manifold
coordinatized by the 3-metric components γij (as opposed to
the inverse 3-metric functions γijðyÞ). Our approach instead uses
the Laplace-Beltrami operator on the infinite-dimensional
extended superspace manifold SexðΣÞ.

19We will later provide an example of how one might construct
such a map.

20A coordinate condition on γijðyÞ is needed in order to map an
element of SexðΣÞ uniquely to an element of iRiemðΣÞ.
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Since the Hamiltonian operator determines the time
evolution [recall (4.17)], this suggests that the wave func-
tional Ψ must be independent of the time parameter t:

∂Ψ
∂t ¼ 0: ð4:37Þ

The time independence of the wave functional presents
both conceptual and technical difficulties. This is known as
the “problem of time” in the canonical formulation of
quantum general relativity. A full discussion of the con-
ceptual and technical aspects of the problem of time in the
canonical theory (in particular, for spacetimes without
spatial boundary) is beyond the scope of this paper—we
refer the reader to the review articles [46] and also Ref. [43]
for a brief overview. Our results explicitly demonstrate that
the problem of time also persists in the path integral
approach to quantum general relativity in the case of
spacetimes without a spatial boundary. Other derivations
of the Wheeler-DeWitt equation, for instance, the deriva-
tion in Ref. [1], might also lead one to infer that the
problem of time persists in the path integral formulation,
but we believe that our derivation is more explicit. In path
integral approaches to quantum gravity, the problem of time
may actually be more severe, at least in the case of
spacetimes without a spatial boundary; it has been pointed
out [43,47] that the gravitational path integral effectively
contains an integral over the time parameter via the func-
tional integral over the lapse function of the metric (or in
our case, the functional integral over g00). We will later
demonstrate that one can gain some degree of control over
this issue in the case of spacetimes with a spatial boundary.
We stress that (4.36) is not what is usually referred to as

the Wheeler-DeWitt equation; the Wheeler-DeWitt equa-
tion [19,20] is the local counterpart to (4.36), which one
may infer from the 00 component of (4.35),

2κĤgfΨ ¼ εℏ2Gijkl δ

δγij
δΨ
δγkl

þ εℏ2Cmnðy; ξ⟦γij⟧Þ δΨ
δγmn

− 3R̂
ffîffiffiffiffi
jγj

p
Ψ ¼ 0; ð4:38Þ

where Cmnðy; ξ⟦γij⟧Þ is defined in Eq. (4.32). Again, the
meaning of the second functional derivative in (4.38) will
be discussed in an upcoming paper. Note that this equation
is local in yi, rather than a global one over the whole of Σt.
This form of the Wheeler-DeWitt equation differs from the
form presented by DeWitt in Ref. [19]; in particular,
DeWitt argues that one can ignore operator ordering issues
by requiring that multiple functional derivatives δ=δγij

vanish when acting on the same spacetime point. It was
later argued by Tsamis and Woodard that one can indeed
ignore operator ordering issues when employing dimen-
sional regularization—see Ref. [48]. In such cases, we may
drop the term containing Cmnðy; ξ⟦γij⟧Þ.
Before proceeding, we note that the 0i component of

(4.35) leads to the momentum constraint

γikDk

�
2κffiffiffiffiffijγjp δΨ

δγij

�
¼ 0; ð4:39Þ

which follows from (2.16). One may infer from the general
Weiss variation (2.12) that this constraint corresponds to
the invariance of the wave functional Ψ⟦γij⟧ under coor-
dinate transformations on Σt; in other words, the functional
Ψ⟦γij⟧ must be covariant. Earlier, we required the measure
D½gαβ� to be defined so that the wave function has this
property, but if one were to seek functionals Ψ⟦γij⟧ that
solve the Wheeler-DeWitt equation (4.38) in the absence of
a path integral definition, one should check that the
solutions Ψ⟦γij⟧ also satisfy the constraint (4.39).

V. QUANTUM GENERAL RELATIVITY FOR
SPACETIMES WITH SPATIAL BOUNDARY

A. Functional integral and its variation

We now consider what happens when we consider
path integrals for regions of spacetime W with a spatial
boundary, as described by Fig. 1. In particular, we begin
with a functional integral of the form [with SGR;B defined
in (2.34)],

K⟦hijI ; h
ij
F ; q

ab⟧ ¼
Z

D½gαβ�ei
ℏSGR;B½gαβ �; ð5:1Þ

where hijI is the induced metric on ΣI, h
ij
F is the induced

metric on ΣF, and qab is the induced metric on B. Here, we
view the path integral K⟦hijI ; h

ij
F ; q

ab⟧ as a transition
amplitude for the gravitational field, subject to the spatial
boundary condition that the induced metric on B is given
by qab. This viewpoint is essentially the same as that of the
general boundary formulation of quantum field theory
[7,49], in which the state of a quantum field is specified
on the (connected) boundary of a compact region of
spacetime—as pointed out in Refs. [8,9], this approach
avoids the problem of time, since time evolution is
specified by the boundary conditions. In the remainder
of this section, we will demonstrate how the boundary
conditions specify time evolution.
For any functional of the form K⟦hijI ; h

ij
F ; q

ab⟧, one may
write

δK ¼
Z
ΣI

δK

δhijI
ΔhijI d3yþ

Z
B

δK
δqab

Δqabd3y

þ
Z
ΣF

δK

δhijF
ΔhijFd3y; ð5:2Þ

where ΔhijI , Δqab, and ΔhijF are variations of the res-
pective functions hijI , q

ab, and hijF . The methods outlined
in the preceding section may be used to obtain path
integral expressions for the functional derivatives. To do
so, we consider boundary conditions fhijI ; hijF ; qabg that
admit solutions of the vacuum Einstein field equations.
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The variation of the path integral K⟦hijI ; h
ij
F ; q

ab⟧ takes the
form

δK ¼ i
ℏ

Z
D½gαβ�ðδSGR;BÞei

ℏSGR;B½gαβ �: ð5:3Þ

As before, we require the variations to satisfy δxμjSI ¼ 0,
δxμjSF ¼ 0, δgμνjSI ¼ 0, and δgμνjSF ¼ 0, and again, we
also require hnI; nBijSI and hnF; nBijSF to be held fixed
under the variations so that the variation of the Hayward
term vanishes. From the arguments in the preceding
section, we may infer that the Einstein field equations

(rescaled by a factor of the volume element
ffiffiffiffiffijgjp

) are
satisfied inside the path integral so that

Z
D½gαβ�

�
Rμν −

1

2
Rgμν

� ffiffiffiffiffi
jgj

p
e

i
ℏSGR;B½gαβ � ¼ 0. ð5:4Þ

It follows that the Hamiltonian and momentum con-
straints (which are formed from the Einstein field equa-
tions) are satisfied inside the path integral. Particularly
important are the Hamiltonian constraints, which take the
form (again, recall that an underline denotes quantities
defined on B)

Z
D½gαβ�HIe

i
ℏSGR;B½gαβ � ¼ −

1

2κ

Z
D½gαβ�½ð3Rþ ðK2 − KijKijÞÞ

ffiffiffi
h

p
�ΣI

e
i
ℏSGR;B½gαβ � ¼ 0

Z
D½gαβ�HBe

i
ℏSGR;B½gαβ � ¼ −

1

2κ

Z
D½gαβ�½ð3R − ðK2 − KabKabÞÞ ffiffiffi

q
p �Bei

ℏSGR;B½gαβ � ¼ 0

Z
D½gαβ�HFe

i
ℏSGR;B½gαβ � ¼ −

1

2κ

Z
D½gαβ�½ð3Rþ ðK2 − KijKijÞÞ

ffiffiffi
h

p
�ΣF

e
i
ℏSGR;B½gαβ � ¼ 0; ð5:5Þ

where the Hamiltonian densitiesHI ,HB, andHF are given
in Eq. (2.40). Using (2.38) and the above constraints, we
find that the variation of the transition amplitude K takes
the form (again, we stress that I and F are labels, not
indices to be summed over)

δK ¼ i
ℏ

Z
D½gαβ�

�Z
ΣI

PI
ijΔh

ij
I d

3yþ
Z
B
PabΔqabd3y

þ
Z
ΣF

PF
ijΔh

ij
Fd

3y

�
e

i
ℏSGR;B½gαβ �; ð5:6Þ

where [cf. Eq. (2.39)]

PI
ij ≔ −

1

2κ
ðKij − KhIijÞ

ffiffiffiffiffi
hI

p

Pab ≔
1

2κ
ðKab − KqabÞ

ffiffiffiffiffiffi
jqj

p

PF
ij ≔ −

1

2κ
ðKij − KhFijÞ

ffiffiffiffiffiffi
hF

p
: ð5:7Þ

We now compare (5.6) with the general expression (5.2)
for the variation δK to establish a relationship between the
following operators and their corresponding path integral
expressions:

P̂I
ijK⟦hijI ; h

ij
F ; q

ab⟧ ¼ −iℏ
δK

δhijI
¼

Z
D½gαβ�PI

ije
i
ℏSGR;B½gαβ �

P̂B
abK⟦hijI ; h

ij
F ; q

ab⟧ ¼ −iℏ
δK
δqab

¼
Z

D½gαβ�Pabe
i
ℏSGR;B½gαβ �

P̂F
ijK⟦hijI ; h

ij
F ; q

ab⟧ ¼ −iℏ
δK

δhijF
¼

Z
D½gαβ�PF

ije
i
ℏSGR;B½gαβ �:

ð5:8Þ
We may define the following operators:

ĥijI K⟦hijI ; h
ij
F ; q

ab⟧ ¼ hijI K⟦hijI ; h
ij
F ; q

ab⟧

q̂ijK⟦hijI ; h
ij
F ; q

ab⟧ ¼ qijK⟦hijI ; h
ij
F ; q

ab⟧

ĥijFK⟦hijI ; h
ij
F ; q

ab⟧ ¼ hijFK⟦hijI ; h
ij
F ; q

ab⟧: ð5:9Þ

Equations (5.5) then demand that the functional
K⟦hijI ; h

ij
F ; q

ab⟧ must satisfy the following functional dif-
ferential equations, which we collectively call the extended
Wheeler-DeWitt equations, since we extend the formalism
to spatial boundaries (for simplicity, we suppress the
argument of K⟦hijI ; h

ij
F ; q

ab⟧),

2κĤIK ¼ −ℏ2Gijkl
I

δ

δhijI

δK
δhklI

− ℏ2Cmnðy; ξ⟦hijI ⟧Þ
δK
δhmn

I
− 3R̂I

ffîffiffiffiffi
hI

p
K ¼ 0

2κĤBK ¼ ℏ2Gabcd δ

δqab
δK
δqcd

þ ℏ2Cabðy; ξ⟦qcd⟧Þ δK
δqab

− 3R̂B

ffîffiffiffiffiffi
jqj

p
K ¼ 0

2κĤFK ¼ −ℏ2Gijkl
F

δ

δhijF

δK
δhklF

− ℏ2Cmnðy; ξ⟦hijF⟧Þ
δK
δhmn

F
− 3R̂F

ffîffiffiffiffiffi
hF

p
K ¼ 0; ð5:10Þ
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where Cabðy; ξ⟦qcd⟧Þ is given by the formula (4.32) with all
quantities replaced by underlined quantities and γij re-
placed with qab. Equations (5.10) form the extended
Wheeler-DeWitt equations for spacetimes with a spatial
boundary. To ensure that K ¼ K⟦hijI ; h

ij
F ; q

ab⟧ is invariant
under coordinate transformations on the surfaces ΣI , ΣF,
and B, the extended Wheeler-DeWitt equations must be
supplemented by the momentum constraints:

hikI Dk

�
2κffiffiffiffiffi
hI

p δK

δhijI

�
¼ 0 qacDc

�
2κffiffiffiffiffiffijqjp δK

δqab

�
¼ 0

hikFDk

�
2κffiffiffiffiffiffi
hF

p δK

δhijF

�
¼ 0. ð5:11Þ

The problem of finding the dependence of the transition
amplitude K on hijI , h

ij
F , and qab amounts to solving these

functional differential equations.
It should be cautioned that Eqs. (5.10) and (5.11) may

not be sufficient to fully determine the transition amplitude
K. So far, we have ignored the dependence of the transition
amplitude on the 2-surfaces SI and SF, in particular, the
role of the rapidity angles ηI and ηF [defined in (2.36)].
A simple example suggests that meaningful transition
amplitudes must also depend on the rapidity angles ηI
and ηF. Consider the Schwarzschild solution in Painlevé-
Gullstrand coordinates [17,50,51]:

ds2 ¼ −
�
1 −

2GM
r

�
dT2 þ 2

ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
dTdrþ dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð5:12Þ
One may construct a boundary in the manner of Fig. 1

from cylindrical hypersurfaces of constant r and (flat)
hypersurfaces of constant T that is isometrically embeddable
in Minkowski spacetime; the induced metrics hijI , h

ij
F , and

qab will be identical for Schwarzschild spacetime and
Minkowski spacetime. Meaningful transition amplitudes
therefore cannot be solely dependent on hijI , h

ij
F , and qab.

On the other hand, note that due to the cross-terms in (5.12),
the rapidity angles ηI and ηF (2.36) at the corners of the
cylinder (the 2-surfaces SI and SF) differ between
Schwarzschild spacetime and Minkowski spacetime. This
suggests that meaningful transition amplitudes must depend
on the rapidity angles ηI and ηF at the 2-surfaces SI and SF
(in addition to the induced metric on SI and SF).

21 To obtain

the dependence of the transition amplitudeK on the rapidity
angles, one must also consider variations of the corner terms
SC in the gravitational action and the variations due to
displacements of the 2-surfaces SI and SF. This will be left
for future work.

B. Spatial boundaries and time evolution

One obstacle to addressing the question of time in the
case of spacetimes without spatial boundaries is the fact
that the path integral involves summing over all functional
forms (up to diffeomorphisms) for the spacetime metric gμν.
Consider a timelike geodesic in U, defined by initial
conditions (the initial position and 4-velocity) at a point
on ΣI . The proper time along the geodesic segment between
the hypersurfaces ΣI and ΣF depends on the spacetime
metric gμν. The path integral over gμν therefore prevents one
from unambiguously establishing a notion for the time
elapsed between ΣI and ΣF.
In spacetimes with spatial boundary, the aforementioned

obstacle may be used to provide a resolution for the
problem of time. Recall that the spatial boundary con-
ditions for the metric tensor gμν are provided by the induced
metric qab, which in turn specifies the geometry of the
boundary surface B. Now, consider a timelike geodesic on
B (a geodesic with respect to the boundary metric qab),
defined by an initial 3-velocity and an initial starting point
on SI. The induced metric qab determines the elapsed
proper time along the geodesic segment between the
surfaces SI to SF. The boundary metric qab therefore
provides a measure of time elapsed between the hyper-
surfaces ΣI and ΣF. This suggests the following view: time
should not be treated as a local parameter but as a property
of the geometry of the spatial boundary B.22

More explicitly, one may imagine describing time
evolution as a displacement of the surface ΣF in the future
time direction, with a corresponding “stretch” of the
boundary B [53].23 One may note, however, that the
displacement of the surface ΣF by way of δxμ is a
diffeomorphism and is mathematically indistinguishable
from an infinitesimal coordinate transformation. On the
other hand, a stretch of the boundary B in the timelike
direction that corresponds to an increase in the proper time
of timelike geodesics cannot be represented as a change in

21Upon closer analysis, one may note that, while the surfaces
of constant T are flat, they each contain the point r ¼ 0, which
corresponds to the location of the Schwarzschild singularity. The
questions of whether a cylindrical boundary constructed from a
surface of constant T is admissible, and whether one must include
an additional boundary surface formed from excising curvature
singularities from the manifold (which may require prior as-
sumptions about the structure of singularities and topology of the
manifold), are left for future analysis.

22One might recognize the relationship between this viewpoint
and Mach’s principle (see Ref. [52] for a modern discussion of
Mach’s principle in general relativity), noting that the geometry
of the spatial boundary B is determined by the spacetime
geometry outside of the region W, which in turn depends on
the matter configuration outside ofW. The definition of time as a
property of the boundary geometry for B suggests that time is
fundamentally nonlocal quantity that depends on the spacetime
geometry and matter configurations in distant regions.

23The results and arguments presented in this section are
equivalent to those of Brown and York in Ref. [53].
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coordinates.24 In fact, we may ignore boundary dis-
placements altogether and characterize the stretch in the
boundary by changing the components of the boundary
metric qab.
To illustrate how the components of the boundary metric

qab may be used to stretch the boundary in the timelike
direction, we consider a boundary B with coordinates
ðt; θ;ϕÞ, with the domain

t1 < t < t2

0 < θ < π

0 < ϕ < 2π: ð5:13Þ
We place a metric qab on B, which admits the following

line element:

ds2 ¼ qabdyadyb ¼ −α2dt2 þ r2ðdθ2 þ sin2 θdϕ2Þ:
ð5:14Þ

The boundary metric qab corresponds to a particular set
of boundary conditions on B. If α and r are constants, then
the proper time along a timelike geodesic on B defined by
θ ¼ constant and ϕ ¼ constant is given by the expression
T ¼ αðt2 − t1Þ. The physical stretching of the boundary B
in the timelike direction corresponds to an increase in the
value of α. Now, one might note that changes in the value of
α may also be interpreted as a rescaling of the time
coordinate t, which in turn may be interpreted as a
coordinate transformation. However, what distinguishes
our construction from a coordinate transformation is that
the domain (5.13) of the coordinates on the manifold B is
held fixed—in particular, the coordinate values t1 < t < t2
that define the boundary B are held fixed. The only thing
we change is the component of the metric q00 ¼ −α2.
To see how such a stretch in the boundary affects the

action (and by extension the path integral K⟦hijI ;h
ij
F ; q

ab⟧),
consider the 3-volume for B, which may be written as

VðBÞ ¼ 4π

Z
t2

t1

αr2dt ¼ 4πr2T; ð5:15Þ

where, again, T ¼ αðt2 − t1Þ is the proper time of a
geodesic defined by defined by θ ¼ constant and
ϕ ¼ constant. For the boundary metric in (5.14), the
formula above establishes a relationship between the proper
time of certain observers on the boundary and the 3-volume
VðBÞ. Note that the presence of the Gibbons-Hawking-
York boundary term in the gravitational action SGR;B
ensures that, even for vacuum solutions of the Einstein
field equations, the gravitational action SGR;B has a non-
vanishing value. The Gibbons-Hawking-York boundary
term for a spacetime with the spatial boundary B with
line element (5.14) will ultimately depend on α, since the
3-volume (in particular, the volume element forB) depends
on α. The path integral K⟦hijI ; h

ij
F ; q

ab⟧ for the same spatial
boundaryBwill in turn depend on α as well; time evolution
for spacetimes with spatial boundaries admitting a line
element of the form (5.14) corresponds to an increase in α.
For more general boundary geometries, we may consider

a boundary metric qab written in a form adapted to the
foliation induced by the coordinate t. In particular, we
construct the line element on B

ds2 ¼ qabdyadyb ¼ −ðα2 þ σABβ
AβBÞdt2 þ σABβ

AdzBdt

þ σABdzAdzB; ð5:16Þ

where z1 ¼ θ, z2 ¼ ϕ, σAB is the induced metric on (two-
dimensional) surfaces of constant t, and the quantities α and
βA are in general functions of t and zA. A reader familiar
with the Arnowitt-Deser-Misner(ADM) formalism [16,54]
will recognize the above as the ADM decomposition for the
boundary line element ds2 ¼ qabdyadyb. As before, a
stretch in the boundary corresponds to an increase in the
value of boundary “lapse” function α. That an increase in α
corresponds to a stretch in the boundary can be seen in the
expression for the 3-volume of B

VðBÞ ¼
Z
B

ffiffiffiffiffiffi
jqj

p
d3y

¼
Z

t2

t1

Z
2π

0

Z
π

0

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðσABÞj

p
dθdϕdt; ð5:17Þ

where we have made use of the expression
ffiffiffiffiffiffijqjp ¼

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðσABÞj

p
. From the above expression for the

3-volume VðBÞ, it is clear that an overall increase in the
value of α will increase the 3-volume of the boundary B.
The notion that the lapse function α governs time

evolution has been explored before in Ref. [53]; variations
of the action with respect to α were used to obtain
the Brown-York quasilocal energy. We may obtain the
Brown-York quasilocal energy (up to a reference term)
from the expression (2.38) for δSGR;B by first noting that
the components qab depend on α in the following way:

24To better see that displacements of the boundary are not
sufficient to describe physical time evolution, consider the action
SGR;B½gμν� evaluated on a vacuum solution (in which the Ricci
scalar takes the value R ¼ 0) with a cylindrical boundary as
described in Fig. 1. Displace a portion of the boundary ΣF in the
normal direction by a function δxμðyÞ that vanishes on SF. At the
same time, perform an infinitesimal variation of the bulk metric
tensor gμν under the condition that the boundary metric γij is held
fixed when the boundary is displaced; in other words, we perform
a variation such that δxμ ≠ 0 and Δγij ¼ 0. Equation (2.38)
suggests that the variation δSGR;B½gμν� vanishes by virtue of the
Hamiltonian constraintHI ¼ 0 [whereHI is defined in (2.40)] on
the boundary. Displacements of the boundary surface (in par-
ticular the tF surface ΣF) have no effect on the value of the action
SGR;B½gμν� (but stretching of the boundary surface B does).
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q00 ¼ −α−2

q0A ¼ α−2βA

qAB ¼ −α−2βAβB þ σAB: ð5:18Þ

The Brown-York quasilocal energy25 1=κ
R
S n̄an̄bðKab −

KqabÞ
ffiffiffiffiffiffiffiffiffiffijσABj

p
d2z is given by the integral (over a spacelike

2-surface S ⊂ B) of the functional derivative

αffiffiffiffiffiffijqjp δSGR;B
δα

¼ 2
1

α2
ffiffiffiffiffiffijqjp

�
δSGR;B
δq00

− 2
δSGR;B
δq0A

βA

þ δSGR;B
δqAB

βAβB
�

¼ 1

κ
n̄an̄bðKab − KqabÞ;

ð5:19Þ

where ½n̄a� ≔ ð1=α;−βA=αÞ are vectors tangent to B that
have unit norm and are normal to surfaces of constant t.
Following Ref. [53], one may obtain similar expressions for
momentumlike and stresslike quantities by performing
variations with respect to βA and σAB.
Finally, the above expression for the variation may be

used to obtain the change in the transition amplitude with
respect to changes in α,

α̂3
δK
δα

¼ −ðP̂B
00 − β̂AP̂B

0A þ β̂Aβ̂BP̂B
abÞK⟦hijI ; h

ij
F ;q

ab⟧;

ð5:20Þ

where the operators α̂ and β̂A pick out the value of the

quantities α ¼ −jq00j−1=2 and β̂A ¼ −q0A=q00 from the
inverse boundary metric qab:

α̂K⟦hijI ;h
ij
F ; q

ab⟧ ¼ −jq00j−1=2K⟦hijI ; h
ij
F ;q

ab⟧

β̂AK⟦hijI ;h
ij
F ; q

ab⟧ ¼ −q0A=q00K⟦hijI ; h
ij
F ; q

ab⟧: ð5:21Þ

Equation (5.20) is a form26 of the boundary “Schrödinger
equation” in Ref. [6]. Though it is tempting to regard (5.20)
as the Schrödinger equation for the transition amplitude
K⟦hijI ; h

ij
F ; q

ab⟧, it is in fact a kinematical expression
as it merely expresses one functional derivative of
K⟦hijI ; h

ij
F ; q

ab⟧ in terms of other functional derivatives
[more pointedly, (5.20) is simply a statement of the chain
rule for functional derivatives]. Equation (5.20) therefore
does not determine the dynamics for the theory. The
dependence of the transition amplitude on spatial boundary
conditions comes from the requirement that the transition
amplitude K⟦hijI ; h

ij
F ; q

ab⟧ satisfies the extended Wheeler-

DeWitt equations (5.10) and the momentum constraints
(5.11). The Wheeler-DeWitt equations (5.10) and the
momentum constraints (5.11) determine the functional
dependence of the transition amplitudes K⟦hijI ; h

ij
F ; q

ab⟧

on hijI , h
ij
F , and q

ab. Once the solutions to (5.10) and (5.11)
are found, Eq. (5.20) may then be used to extract the
explicit time dependence for the transition ampli-
tude K⟦hijI ; h

ij
F ; q

ab⟧.

C. Dependence of transition amplitude
on spatial boundary conditions

We briefly describe how the formalism presented in this
paper might be used to compute the dependence of
transition amplitudes on spatial boundary conditions. If
the spatial boundary B has the cylindrical topology R̄ × S2

(recall that R̄ is a compact subset of the real line R) and the
appropriate boundary conditions are imposed on SI and SF,
one may decompose the induced metric in the manner

qabðt; θ;ϕÞ ¼ qab0 ðt; θ;ϕÞ þ
X
lmn

ðAm
ln sinðπnt=TÞ

þ Bm
ln sinðπnt=TÞÞYm

l ðθϕÞ; ð5:22Þ

where Am
ln and Bm

ln are constant coefficients, T is the length
of the real line segment R̄, and qab0 ðt; θ;ϕÞ are the
components of inverse metric for the cylindrical line
element:

ds2 ¼ −dt2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð5:23Þ

Since (5.22) is formed from a complete, orthogonal basis
for functions on R̄ × S2, the coefficients Am

ln and Bm
ln may

be used to coordinatize27 the manifold SexðBÞ. This may be
used to convert the spatial boundary Wheeler-DeWitt
equation (5.10) from a functional differential equation to
an infinite number of Partial Differential Equations (PDEs)
on an infinite-dimensional manifold (note that the spatial
boundary Wheeler-DeWitt equation is a local equation in
the metric basis—it is a function of y ∈ B). One may
truncate the series (5.22) to obtain a finite number of PDEs
on a finite-dimensional manifold; if these can be solved,28

one can obtain the dependence of the transition amplitudes
on spatial boundary conditions up to truncation errors. The
remaining Wheeler-DeWitt equations (5.10) may be solved
in a similar manner to obtain the dependence of the
transition amplitude on hijI and hijF .

25We use the definition given in Eq. (4.3) of Ref. [53].
26Our result (5.21) uses a slightly more general form of the

Brown-York quasilocal energy than that of the boundary Schrö-
dinger equation in Ref. [6].

27One should be aware that two sets of values for the
coefficients may correspond to the same point in SexðBÞ, as
they may describe equivalent 3-geometries that differ by a
coordinate transformation.

28Since the transition amplitude satisfies more than one
equation, the system is overdetermined, and there is a danger
that truncation may lead to an inconsistent set of equations.
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A potentially tricky aspect of this procedure is to obtain
the functional ξc⟦qab⟧, which is a map from the space of
3-metrics qabðyÞ to the coordinates ξc on SexðBÞ. The
orthogonality of the basis functions, which we write as
ecðyÞ, may be exploited to obtain the functionals ξc⟦qab⟧
from the functions qabðyÞ. Using the shorthand q̄ðyÞ to
represent qabðyÞ (we suppress indices for simplicity), we
may write q̄ðyÞ ¼ ξcecðyÞ. The functional ξc⟦q̄⟧ may then
be written as (no sum over c)

ξc⟦q̄⟧ ¼
R
B q̄ðyÞecðyÞd3yR
B ecðyÞecðyÞd3y

: ð5:24Þ

This may be varied in order to obtain an expression for
δξc=δqab in the chain rule formula (4.30). In turn, one may
use the chain rule (4.30) to rewrite the Wheeler-DeWitt
equation on B (5.10) in terms of coordinates on super-
space SexðBÞ.29

VI. SUMMARY AND FUTURE WORK

We claim that when spatial boundaries are included
transition amplitudes in quantum general relativity satisfy
the extended Wheeler-DeWitt equation (5.10) and the
momentum constraint (5.11), which in turn determine
the dependence of the transition amplitude on the compo-
nents of the boundary metric qab, which constitute boun-
dary conditions for the metric tensor gμν at the spatial
boundary B. We have argued that time evolution for
transition amplitudes corresponds to a stretching of the
spatial boundary B in the timelike direction, which in turn
may be described by changes to the components of the
boundary metric qab. In short, we find that spatial
boundary conditions determine time evolution in quantum
general relativity; our results formalize, validate, and
sharpen the general idea [8,9] that time evolution is
determined by boundary conditions for a connected boun-
dary of a compact spacetime.
As argued at the end of Sec. VA, the formalism

presented in this paper is not sufficient, even at a formal
level, to fully determine the transition amplitude K; further
development of the formalism is needed. Critically impor-
tant is the dependence ofK on the rapidity angles ηI and ηF
and the induced metric at the 2-surfaces SI and SF. To do
this, one must obtain the variation of SGR;B when variations
in the rapidity angles ηI and ηF, variations in the induced
metric on SI and SF, and the displacement of the surfaces
SI and SF are included.

We have briefly described a way to convert the functional
Wheeler-DeWitt equation to a set of PDEs on an infinite-
dimensional manifold; one may truncate the function space
in order to obtain PDEs on a finite-dimensional manifold.
The next step is to write down the explicit expressions for
the resulting PDEs and to study their general properties.
This may be attempted for both the case of spatially
compact 3-geometries without a boundary and compact
regions of spacetime with a spatial boundary.
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APPENDIX: THE WEISS VARIATION OF THE
GRAVITATIONAL ACTION

As stated earlier, the full justification for Eq. (2.12) is
given in Ref. [14]. However, for the benefit of the reader,
we present a partial justification for (2.12) in this Appendix,
valid for spacelike boundary surfaces (ε ¼ −1). In particu-
lar, we discuss here how one might infer Eq. (2.12) from
results in the literature (excluding Ref. [14]) and the Weiss
variation formula (2.8) for mechanical systems, which we
rewrite here [setting δqiðtÞ ¼ ληiðtÞ]:

δS ¼
Z

t2

t1

�∂L
∂qi −

d
dt

�∂L
∂ _qi

��
δqiðtÞdtþ ðpiΔqi −HΔtÞ

����
t2

t1

:

ðA1Þ

We begin by recalling that for the gravitational action
in (2.9) the quantity to be held fixed on the boundary
∂U in Hamilton’s principle is the induced metric γij [55].
Equivalently, we may instead require the inverse metric γij

to be held fixed on the boundary in Hamilton’s principle.
This suggests that a natural choice for the configuration
variables in gravity is the inverse induced metric γijðxÞ.
From Ref. [55], the variation of the gravitational action
(2.9) is (excluding boundary displacements)

δSGR ¼ 1

2κ

Z
U
Gμνδgμν

ffiffiffiffiffi
jgj

p
d4x

þ ε

2κ

Z
∂U
ðKij − KγijÞδγij

ffiffiffiffiffi
jγj

p
d3y: ðA2Þ

The reader should be aware that the definitions for Kij
and K in Ref. [55] differ from the ones here by a sign. Also,

29It may be necessary to multiply the Wheeler-DeWitt equation
by a factor of the inverse metric qijðyÞ; the dependence on the
coordinate y acts as part of a “free index,” and the factor of the
inverse metric qijðyÞ allows one to convert the Wheeler-DeWitt
equation to a set of PDEs indexed by the superspace coordinate
index c.
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the boundary variation in Ref. [55] is expressed in terms of
δγij; we use the first-order expression δγij ¼ −γiaγjbδγij to
obtain (A2). Equation (A2) suggests the definition for the
conjugate field momentum tensor

pij ≔ Kij − Kγij; ðA3Þ

which is equivalent to the definition in (2.13).
It is well known (see Refs. [17,51]) that for spacetimes

without a spatial boundary the Hamiltonian density
for the gravitational field may be written in the form
H ¼ αHgf þ βiCi, where α and βi are the respective
lapse function and shift vector of the ADM formalism
[54],Hgf is gauge-fixed Hamiltonian density of (2.19), and
Ci is

Ci ≔ −
1

κ
Djpij

ffiffiffiffiffi
jγj

p
: ðA4Þ

Explicitly, the gravitational Hamiltonian on a boundary-
less spacelike hypersurface Σt is [17,51]

Ht ¼
1

2κ

Z
Σt

½αðKijKij − K2 − 3RÞ

− 2βiDjðKij − KγijÞ�
ffiffiffiffiffi
jγj

p
d3y: ðA5Þ

The basis vector ∂=∂t has components tμ ¼ δμ0 and may
be decomposed in the manner

tμ ¼ εαnμ þ βμ; ðA6Þ
where α satisfies α ¼ tμnμ and βμ ¼ γμνtν are the compo-
nents of the shift vector in the bulk coordinate basis.30 Since
βi ¼ γijβ

j, its bulk-basis counterpart is γμνβν ¼ γμνtν. We

may therefore rewrite the Hamiltonian (A5) in the bulk
basis

Ht ¼
1

2κ

Z
Σt

½nμtμðKijKij − K2 − 3RÞ

− 2γμνtμDρðKνρ − KγνρÞ�
ffiffiffiffiffi
jγj

p
d3y; ðA7Þ

which we rewrite as

Ht¼
1

2κ

Z
Σt

½nμðKijKij−K2− 3RÞ−2γμβDαpαβ�tμ
ffiffiffiffiffi
jγj

p
d3y:

ðA8Þ
Given formulas (A1), (A2), and (A8), one may infer that

for ∂U ¼ Σt1 ∪ Σt2 (with Σt1 and Σt2 spacelike and boun-
daryless) the Weiss variation takes the form

δSGR ¼ 1

2κ

Z
U
Gμνδgμν

ffiffiffiffiffi
jgj

p
d4x −

1

2κ

Z
∂U

pijΔγij
ffiffiffiffiffi
jγj

p
d3y

þ ðHtΔtÞjt2t1 ; ðA9Þ
whereΔt (assumed to be infinitesimal and constant over the
boundary) is the amount by which the boundary surface is
displaced in the coordinate t. We identify the displacement
vector δxμ ¼ tμΔt and write

δSGR ¼ 1

2κ

Z
U
Gμνδgμν

ffiffiffiffiffi
jgj

p
d4x −

1

2κ

Z
∂U
ðpijΔγij

þ ½nμðKijKij − K2 − 3RÞ − 2γμβDαpαβ�δxμÞ
×

ffiffiffiffiffi
jγj

p
d3y: ðA10Þ

Since (A10) applies for any choice of time coordinate t
with spacelike hypersurfaces, it can be used to describe
general boundary displacements, provided that the boun-
dary surfaces are spacelike. Equation (A10) is therefore
equivalent to (2.12) for spacelike boundary surfaces
(ε ¼ −1). For timelike boundary surfaces, we refer the
reader to Ref. [14].
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