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We calculate the holographic entanglement entropy for the holographic QCD phase diagram considered
in [J. Knaute, R. Yaresko, and B. Kämpfer, arXiv:1702.06731] and explore the resulting qualitative
behavior over the temperature-chemical potential plane. In agreement with the thermodynamic result, the
phase diagram exhibits the same critical point as the onset of a first-order phase transition curve. We
compare the phase diagram of the entanglement entropy to that of the thermodynamic entropy density and
find a striking agreement in the vicinity of the critical point. Thus, the holographic entanglement entropy
qualifies us to characterize different phase structures. The scaling behavior near the critical point is
analyzed through the calculation of critical exponents.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] or more general
gauge/gravity duality provides a helpful tool to explore
properties of strong-coupling systems and in particular the
QCD phase diagram. In [4] a holographic QCD phase
diagram was presented, which is adjusted to 2þ 1 flavor
lattice QCD with physical quark masses [5–7] and results in
a critical endpoint (CEP) at a temperature TCEP ≈ 112 MeV
and a baryo-chemical potential μCEP ≈ 612 MeV as the
starting point of a first-order phase transition (FOPT) curve
towards larger chemical potential. The setup for this bottom-
up approach was originally formulated in [8,9] and further
investigated, e.g., in [10–12].
Beyond thermodynamic quantities also nonlocal observ-

ables such as entanglement entropy play an important role.
Entanglement entropy is used extensively to characterize
phases, as an order parameter for phase transitions and as a
measure of degrees of freedom or quantum information in
physical systems. (See e.g. [13–19] and references therein
for a small but interesting selection of different topics.)
A holographic formula for this quantity was proposed in
[20,21] as the minimal surface in the bulk for a given
boundary. (See [22,23] for reviews on that topic.) This
concept has attracted enormous attention to study thevan der
Waals-like phase transition in charged Reissner-Nordström-
anti–de Sitter (AdS) black holes [24–26] and massive [27]
orWeyl [28] gravity.Moreover, it was analyzed to character-
ize thermalization processes [29,30], and in the context
of the gravity/condensed matter correspondence [31]—
particularly in studies of holographic superconductors
[32–37] and metal-insulator transitions [38–40]. Very
recently, an experimental attempt to measure holographic

entanglement entropy (HEE) on a quantum simulator in the
context of tensor networks was presented [41]. Holographic
entanglement entropy might thus provide a promising
approach to study and verify quantum gravity effects in
realistic systems and experiments.
In [42] it was first discussed that HEE can serve as a

probe of confinement in gravity duals of large-Nc gauge
theories: The change between connected and disconnected
surfaces in dependence of the length of the boundary area
was interpreted as a signature of confinement. (Further
investigations on that topic can be found, e.g., in [43–47].)
This confinement-deconfinement transition of entangle-
ment entropy in non-Abelian gauge theories was also
studied on the lattice [48–50]. Recently, a discussion on
entanglement entropy in strongly coupled systems was
presented [51]: It was discussed that the behavior of
entanglement entropy can characterize different phase
structures in a holographic model proposed in [52,53].
The main difference to the previous analyses mentioned
above is the discussion in dependence on the temperature
for a fixed boundary configuration. Here, we extend
these studies for the holographic QCD model in [4] in
dependence on the temperature and chemical potential.
(See also [54] for some aspects on the behavior of HEE
in Reissner-Nordström geometries at finite chemical
potential.)

II. REVIEW OF THE HOLOGRAPHIC
EMD MODEL

The holographicQCDphase diagram at finite temperature
and chemical potential in [4] is based on an Einstein-
Maxwell-dilaton (EMd) model which was initially formu-
lated in [8]. We refer to these references for details and
present here just a very brief summary of the setup.*j.knaute@hzdr.de
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The defining action is

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕ − VðϕÞ − fðϕÞ

4
F2
μν

�
;

ð1Þ

where Fμν¼∂μAν−∂νAμ with Aμdxμ ¼ Φdt is the Abelian
gauge field, VðϕÞ stands for the potential describing the
self-interaction of the dilaton ϕ, fðϕÞ is a dynamical
strength function that couples the dilaton and gauge field,
and κ5 is the 5-dimensional gravitational constant. The
metric Ansatz

ds2 ¼ e2AðrÞð−hðrÞdt2 þ dx⃗2Þ þ dr2

hðrÞ ð2Þ

represents an asymptotically AdS5 spacetime with boun-
dary at r → ∞ and defines a black hole horizon by
hðrHÞ≡ 0. The field equations following from (1), (2)
are solved numerically (cf. [4,8] for technical aspects) for
the metric coefficients hðrÞ and AðrÞ as well as the profiles
ΦðrÞ and ϕðrÞ with ϕ0 ≡ ϕðrHÞ and Φ1 ≡ ∂Φ

∂r jrH as the
only remaining independent parameters, which serve as
initial conditions. The thermodynamic quantities temper-
ature T, entropy density s, baryo-chemical potential μ and
baryon density n are then calculated using the boundary
expansions of the such obtained functions hðrÞ, AðrÞ, ΦðrÞ
and ϕðrÞ. In [4], multiparameter Ansätze for the potential
VðϕÞ and gauge kinetic function fðϕÞ were elaborated that
mimic the QCD equation of state (EOS) and second-order
quark number susceptibility of the 2þ 1 flavor lattice
QCD data with physical quark masses [5–7] at μ ¼ 0 very
precisely.1 The explicit forms of these functions as well
as further details of the EMd model are discussed in the
Appendix. The T-μ plane is then uncovered within the
framework of this EMd model by properly chosen initial
conditions ðϕ0;Φ1Þ.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY

Consider a quantum mechanical system which is
(i) described by the density operator ρtot and (ii) divided
into a subsystem A and its complement B. The entangle-
ment entropy of A is defined as the von Neumann entropy

SEE ≔ −TrAρA ln ρA ð3Þ

with respect to the reduced density matrix ρA ¼ TrBρtot.
According to [20,21], the holographic dual of this quantity
for a CFTd on R1;d−1 is given as

SHEE ¼ AreaðγAÞ
4Gðdþ1Þ

N

; ð4Þ

where γA is the static minimal surface in AdSdþ1 with

boundary ∂γA ¼ ∂A and Gðdþ1Þ
N is the dþ 1 dimensional

Newton constant. In the present work, we analyze the
behavior of entanglement entropy in the holographic QCD
phase diagram [4] near the critical point. Similar to [51],
we assume a fixed strip shape on the boundary for the
entanglement region

A∶ x1 ∈ ½−l=2; l=2�; x2; x3 ∈ ½−L=2; L=2� ð5Þ
with L ≫ l such that translation invariance is preserved
and the minimal surface can be parametrized by the single
function r ¼ rðx1Þ. The induced metric on the static
minimal surface is

ds2γA ¼
�
e2A þ r02

h

�
dx21 þ e2Aðdx22 þ dx23Þ; ð6Þ

where a prime denotes a derivative with respect to x1.
The HEE (4) then follows as

SHEE ¼ 1

4

Z
dx1dx2dx3

ffiffiffi
γ

p ð7Þ

¼ V2

2

Z
l=2

0

dx1e2AðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r02

hðrÞ

s
ð8Þ

with γ as the determinant of the induced metric on γA and
V2 ≡ R

dx2dx3. Extremizing SHEE by taking into account
conserved quantities, one finds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r02

hðrÞ

s
¼ e4AðrÞ

e3Aðr�Þ
ð9Þ

⇔r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞðe8AðrÞ−6Aðr�Þ − e2AðrÞÞ

q
; ð10Þ

where r� is the closest position of the minimal surface to the
horizon. Integrating Eq. (10) with respect to the boundary
condition

l
2
¼

Z
∞

r�
dr½hðrÞðe8AðrÞ−6Aðr�Þ − e2AðrÞÞ�−1=2; ð11Þ

one can solve Eq. (11) for r� for a given l. Then, SHEE
follows by plugging (9) and (10) into (8) as

SHEE ¼ V2

2

Z
l=2

0

dx1
e6AðrÞ

e3Aðr�Þ
ð12Þ

¼ V2

2

Z
∞

r�
dr

e6AðrÞ−3Aðr�Þ

eAðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞðe6AðrÞ−6Aðr�Þ − 1Þ

q : ð13Þ
1In [55], results for 3þ 1 flavor lattice QCD have been

presented. Since charm quarks impact to the EOS only for
temperatures above 250 MeV, our holographic model still allows
a good description in the relevant temperature region of the CEP.
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This quantity is divergent. Desirable would be a systematic
regularization and renormalization, e.g. by suitable coun-
terterms, similarly to [56,57]. We postpone such an intricate
investigation in its own right to followup work and explore
instead an ad hoc regularized HEE density as

SregHEE ≔
1

2

Z
rm

r�
dr

e6AðrÞ−3Aðr�Þ

eAðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞðe6AðrÞ−6Aðr�Þ − 1Þ

q ; ð14Þ

where rm is a sufficiently large cutoff, similarly to be
employed in Eq. (11).
In addition, we consider also a renormalized HEE

density by the following construction: Denote the integrand
in Eq. (13) asHðrÞ and define ~HðrÞ by setting Aðr�Þ≡ 0 in
HðrÞ. As shown in [8], h goes as hðrÞ ¼ h∞0 þ � � � like
a constant for r → ∞ at the boundary and AðrÞ ¼
1ffiffiffiffiffi
h∞
0

p rþ A∞
0 þ � � � is linear. The integrand HðrÞ thus

behaves like exp f2r= ffiffiffiffiffiffi
h∞0

p g for large r. Since the metric
functions converge quickly to their asymptotic values,
HðrÞ diverges generically like 1=

ffiffiffi
r

p
for small r, i.e. near

the horizon. The function ~HðrÞ has the same boundary
asymptotics but deviates near r� and we want to consider
the finite renormalized integrand HðrÞ − ~HðrÞ. Since the
numerical values in this difference become very large, we
turn to the logarithm and define a renormalized HEE
density as2

SrenHEE ≔
1

2

Z
rm

r�
dr ln

HðrÞ
~HðrÞ : ð15Þ

In general, there is also the possibility of a disconnected
entangling surface which reaches from the boundary at
r ¼ ∞ up to the horizon at r� ¼ rH ¼ 0. We postpone the
consideration of such a surface class to separate inves-
tigations which require the extension of the present
numerical apparatus. The latter one is here optimized for
numerical solutions of the metric functions from (slightly)
outside the horizon towards the boundary and does not
include them.

IV. PHASE DIAGRAM

We calculated the HEE density (14) as outlined in the
previous paragraph for numerically generated charged
black hole solutions with initial conditions ϕ0∈½0.35;4.5�
and Φ1=Φmax

1 ðϕ0Þ ∈ ½0; 0.755� as in [4] and set the width
of the entanglement strip to l ¼ 0.04. For the following
qualitative study we choose rm ¼ 2.0 and checked that the
behavior is similar also for larger cutoff values.

Figure 1 shows SregHEE in dependence on the temperature
for different values of the chemical potential. For μ ¼ 0,
SregHEE is monotonically decreasing in the characteristic
crossover region T ¼ Oð150 MeVÞ. The entanglement
entropy is pushed towards smaller values with increasing
chemical potential. A first-order phase transition at large
values of μ is signaled by the appearance of a multivalued
branch. SrenHEE from (15) displays the same feature. This
provides some confidence that both definitions—even
being rather ad hoc—yield robust results. Since (15) is
numerically more demanding we continue to use (14).
The asymptotically constant value of SregHEE at large T is
nearly independent of μ. Since entanglement entropy can
be interpreted as a measure for the quantumness of a
physical system, large values of SregHEE at small temperatures
indicate the quantum region of the holographic QCD phase
diagram, whereas the thermodynamic region at large T
and/or μ is characterized through a nearly constant entan-
glement entropy.
Inspired by standard thermodynamic relations, we define

a pseudopressure pHEE through the integration dpHEE ¼
lnðSregHEEÞdT for μ≡ const, which exhibits an analogous
pressure loop as in case of a FOPTand allows the definition
of a transition temperature Tc.
Figure 2 shows the resulting phase diagram of the

regularized HEE density over the T-μ plane (left panel).
The CEP is located at TCEP ¼ ð111.5� 0.5Þ MeV and
μCEP ¼ ð611.5� 0.5Þ MeV in agreement with the thermo-
dynamic result of [4]. The stable phases of the HEE are
discontinuous across the FOPT and jump towards smaller
values with increasing temperature or chemical potential.
The right panel of Fig. 2 shows the scaled standard

thermodynamic-statistical entropy density s=T3 over the
T-μ plane for a comparison. The behavior of the thermo-
dynamic entropy is opposite to the HEE, i.e. the entropy is

FIG. 1. Regularized holographic entanglement entropy density
ln SregHEE as a function of the temperature T for different values of
the chemical potential μ.

2Note that contrary to [51] we do not introduce a renormalized
density with respect to some reference point, since this procedure
yields negative values, which we do not interpret as physical,
because they are not possible in the original definition (3).
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increasing for larger values of T or μ and jumps towards
higher values across the FOPT, as typical for a gas-liquid
transition. Despite these differences, the patterns of the
scaled isentropes exhibit a remarkable similarity in both
phase diagrams.3

The exact locations of the FOPT curves TcðμcÞ are
explicitly compared in Fig. 3 based on the HEE pseudo-
pressure definition and the true thermodynamic stability
criterion. The two curves agree very well in the vicinity of

the critical point up to μc=μCEP ≈ 1.2 but deviate from each
other approximately 5% for μc=μCEP ≈ 1.6.

V. CRITICAL BEHAVIOR

Critical exponents describe the universal behavior of
physical quantities near the critical point. Specifically,
they quantify the divergence of derivatives of the free
energy as power laws. Here, we are interested in the power
law dependence of the specific heat at constant chemical
potential:

Cμ ≡ T
∂s
∂T

����
μ

¼ −T
∂2f
∂T2

����
μ

∼ jT − TCEPj−α; ð16Þ

where μ ¼ μCEP and T < TCEP are assumed. A similar
definition holds for α0, where the critical point is approached
for T > TCEP.

4 To determine α, we consider the dependence
jT − TCEPj ∼ js − sCEPjβ and calculate β through the linear
fit function lnjT−TCEPj¼β lnjs−sCEPjþconst. The critical
exponent then follows as α ¼ 1 − 1=β. This procedure
yields the following results for the thermodynamic entropy:

α ≈ 0.66; α0 ≈ 0.64: ð17Þ
For the HEE, we employ the logarithmic values ln SregHEE and
find

αHEE ≈ 0.65; α0HEE ≈ 0.66: ð18Þ
Both results for the critical exponents yield nearly the same
values for the second-order phase transition and agree well
with the van der Waals criticality in AdS black holes
[58] α ¼ α0 ¼ 2=3.

FIG. 2. Contour plots of the regularized holographic entanglement entropy density ln SregHEE (left) and scaled entropy density s=T3

(right) over the T-μ plane. The position of the CEPs is marked by a white dot and the FOPT curves are displayed as grey lines.

FIG. 3. Comparison of FOPT curves over the T-μ plane based
on the left panel of Fig. 2 (grey curve) and the result exhibited in
the right panel of Fig. 2 (blue dashed curve). The position of the
CEP is marked by a red dot.

3In fact, the shape of the renormalized HEE density SrenHEE in
(15) resembles much better s=T3, as pointed out in [51] for
vanishing μ. Thus, SrenHEE exhibits an opposite qualitative behavior,
i.e. the decreasing behavior of SregHEE corresponds to an increasing
behavior of SrenHEE etc. The mutual consistency of SregHEE and SrenHEE
with respect to the phase structure has been stressed already
above.

4Note that the critical exponent α for Cn, i.e. the heat capacity
at constant baryon density along the FOPT curve, has the mean
field result α ¼ α0 ¼ 0.
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VI. DISCUSSION AND SUMMARY

In the present note we study the qualitative behavior
of the HEE in the holographic QCD phase diagram of [4].
The setup rests on a Einstein-Maxwell-dilaton model [8,9]
which was adjusted in [4] to 2þ 1 flavor lattice QCD data
with physical quark masses [5–7] to reproduce the QCD
equation of state and quark number susceptibility.
Here we explore the phase structure of the HEE over

the temperature-chemical potential plane by introducing a
cutoff to regularize the divergent entropy integral. A FOPT
is setting in at a CEP consistent with the result in [4]. This is
supported quantitatively also by another ad hoc definition
of a renormalized HEE. The precise course of the FOPT
curve is determined by the definition of a pseudopressure as
an integral over the HEE density. The resulting HEE FOPT
curve agrees astonishing well with the FOPT curve based
on the thermodynamic stability criterion in the vicinity of
the CEP.
The behavior of the regularized HEE density is opposite

to the thermodynamic entropy: In the crossover region of
the phase diagram, the HEE drops rapidly as a function
of the temperature and jumps towards smaller values across
the FOPT curve. This behavior separates the quantum
region of the phase diagram from the region of dominating
thermal fluctuations.
The logarithmic values of the regularized HEE density

show a similar scaling behavior near the critical point as the
thermodynamic entropy density. The critical exponents of
the heat capacity at constant chemical potential agree well
with the van der Waals criticality.

These results indicate that HEE is capable of character-
izing the different phases in the holographic QCD phase
diagram, in particular in the vicinity of the CEP and the
confinement-deconfinement transition. However, the HEE
alone does not provide enough information to calculate
the exact thermodynamic FOPT curve and the qualitative
behavior depends on whether a regularization or renorm-
alization scheme is applied.
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APPENDIX: DETAILS OF THE HOLOGRAPHIC
EMD MODEL

The explicit forms of the dilaton potential and dynamical
strength function in [4] are

L2VðϕÞ ¼ NðϕÞ exp
�X4

i¼1

aiϕi þ a5 tanh ½a6ðϕ − ϕaÞ�
�
;

ðA1Þ

NðϕÞ ¼ b0 þ b1coshb3 ½b2ðϕ − ϕbÞ�; ðA2Þ

fðϕÞ ¼ c0 þ c1 tanh½c2ðϕ − ϕcÞ� þ c3 exp½−c4ϕ�
ðA3Þ

with coefficients

a1 a2 a3 a4 a5 a6 b0 b1 b2 b3
ϕ<ϕm 0 0.1420 0 −0.0022 0 0 −12 0 0 0

ϕ≥ϕm −0.0113 0 0 0 −0.2195 2.1420 0 −10.0138 0.4951 1.4270

ðA4Þ

and

ϕm ϕa ϕb ϕc

1.7058 4.3150 0.1761 2.1820
;

c0 c1 c2 c3 c4
0.1892 −0.1659 1.5497 0.6219 112.7136

: ðA5Þ

These values generate the match of lattice QCD data [5–7]
as documented in Figs. 1 and 2 of [4] for thermodynamics
and susceptibilities.
The thermodynamic quantities are calculated as

T ¼ λT
1

4πϕ1=ð4−ΔÞ
A

ffiffiffiffiffiffi
h∞0

p ; s ¼ λs
2π

ϕ3=ð4−ΔÞ
A

; ðA6Þ

μ ¼ λμ
Φ∞

0

ϕ1=ð4−ΔÞ
A

ffiffiffiffiffiffi
h∞0

p ; n ¼ λn
fðϕ0ÞΦ1

2fð0Þϕ3=ð4−ΔÞ
A

; ðA7Þ

where the coefficients are extracted from a fit of the
numerical solutions of hðrÞ; AðrÞ;ΦðrÞ and ϕðrÞ to the
ultraviolet boundary expansions [8]: hðrÞ ¼ h∞0 þ � � �,
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AðrÞ¼αðrÞþ���, ΦðrÞ¼Φ∞
0 þΦ∞

2 e
−2αðrÞþ���, and ϕðrÞ ¼

ϕAe−ð4−ΔÞαðrÞ þ ϕBe−ΔαðrÞ þ � � �. Here, αðrÞ≡ r
L

ffiffiffiffiffi
h∞
0

p þ A∞
0

and the scaling dimension of the field theory operator
dual to ϕ follows from the horizon expansion of the
potential L2VðϕÞ¼−12þ1

2
½ΔðΔ−4Þ�ϕ2þ��� for ϕ → 0,

implying Δ ¼ 2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3a1

p Þ. The dimensional scaling

factors λT;s;μ;n restore physical units after setting κ5¼L¼1

and satisfy λT¼λμ≔1=L¼1148.07MeV and λs¼λn≔
1=κ25¼ð513.01MeVÞ3.
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