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We analyze light vector and scalar meson mass spectra using a novel approach where a modified soft wall
model with a UV cutoff is considered. Including this cutoff introduces an extra energy scale. For this model,
we found that the masses for the scalar and vector spectra arewell fitted within a very small root mean square
(RMS) error for 14 of these states,with nonlinear trajectories given by two common parameters, theUV locus
z0, and the quadratic dilaton profile slope κ. We concluded that in this model the f0ð500Þ scalar resonance
cannot be fitted holographically as a qq̄ state since we could not find a trajectory that included this
pole. This result is in agreement with the most recent phenomenological and theoretical methods.
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I. INTRODUCTION

The idea of using the AdS=CFT correspondence [1,2]
to describe nonperturbative QCD-like phenomena has
provided insight into exploring the strong interactions at
strong coupling, unreachable by regular quantum field
theory (QFT) methods. One possibility is considering
gravity models in a given space that holographically
generate low-energy QCD theories living on the conformal
flat boundary. This proposal is called top-down. The
second scenario considers the opposite: starting from
well-known properties derived from a four-dimensional
QCD, one tries to look out for a five-dimensional theory
living on the AdS space, which is a holographic dual
model; this is the so-called bottom-up approach. Both cases
provide valuable effective models since they permit us to
create a bigger landscape for a fundamental nonperturba-
tive theory that is unknown at present.
One example of those nonperturbative phenomena is

related to the dynamics of the lightest pseudoscalar mesons.
A very useful effective field theory approach that describes
it is given by the momentum-expansion formalism of
chiral perturbation theory (ChPT), where a SUðNfÞL ⊗
SUðNfÞR → SUðNfÞV-symmetric nonlinear sigma model
(where Nf ¼ 2, 3) written in terms of a meson multiplet is
expanded up to a certain perturbative order; this procedure
introduces a diagrammatic way to study scattering events
between these particles in a particular range of energy
[3–6]. A phenomenological description is attained after
fitting the parameters of the model [masses, decay con-
stants, and low-energy constants (LECs)] to an adequate set
of experimental data, e.g., phase shifts, scattering lengths,
or imaginary parts of the associated amplitudes.
The energy range mentioned above can be extended after

unitarizing the partial waves of the scattering channels

involved, thus including the respective resonances as poles
in the complex plane [7]. This method checks elastic
unitarity in an approximate way (order by order in the
expansion), although other approaches in the momentum
expansion allow us to check exactly this feature, as happens
with the inverse amplitude method (IAM) [8,9], in which
pole positions are quite well described, especially those
respecting pion-pion scalar and vector channels.
Some of these resonances are properly analyzed as

vector and tensor mesons since their structure is easily
fitted as a Breit-Wigner distribution due to its qq̄-like
compositeness. However, quite the opposite happens with
light scalar resonances (I ¼ 0, JPC ¼ 0þþ) produced
below an energy close to 2 GeV since they are not easily
characterized as qq̄mesons due to the large decay widths of
some of these particles, as happens with the f0 multiplet
[10]. This lies in the model-dependent descriptions of
the nature of these particles, along with the inappropriate
values for their masses and widths, as happens with the
f0ð500Þ when considering it as a qq̄ meson in a Nf ¼ 2

linear sigma model [11]; nevertheless, recent approaches
provide strong insight into the most likely nontrivial quark
composition of this particle [12].
Regarding pole positions, a proper model-independent

description of the f0ð500Þ and f0ð980Þ resonance param-
eters is achieved by using an adequate set of dispersion
relationswithminimal uncertainty [13,14], thus theoretically
minimizing the errors both in their masses and decay widths.
Pole positions for the f0ð500Þ, f0ð980Þ, and f0ð1400=1370Þ
can also be obtained through scattering matrix approaches,
with the results depending on theway the couplings between
scattering channels are taken into account [15].
Quark composition of resonances like f0ð980Þ,

f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ can be studied via
analysis of decay widths of B mesons; in order to achieve
this, these resonances have to be parametrized as super-
positions of u, d, s quarkonium states and a scalar glueball
so that a perturbative QCD-effective Hamiltonian is to be
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built up, using their masses as the input parameters of the
model [in this case, f0ð980Þ, f0ð1370Þ, and f0ð1710Þ are
predominantly quarkonia] [16]. The f0ð1500Þ is usually
described as a glueball state since it does not decay into
two photons [unlike what happens with the f0ð1370Þ] [17]
and its mass coincides with lattice simulations [18].
Chiral effective models with a scalar glueball state are

also used to study both compositeness and masses of scalar
resonances where m > 1.2 GeV by considering experi-
mental inputs such as the masses and composition of the
scalar and pseudoscalar meson multiplets [19,20], with the
results for quarkonia-glueball compositeness mixing for
f0ð1500Þ and f0ð1710Þ depending on whether a glueball
decay is or is not considered. In both cases, the theoretical
masses of the resonances are quite close to the experimental
values. Similar results for this mixing are obtained when
considering lattice masses for quarkonia and glueball as
input parameters [21].
Mass generation for scalar resonances can be analyzed

using a linear sigma model with two quark flavors,
including axial-vector mesons, a glueball degree of free-
dom, and two parameters that explicitly break chiral
and dilation symmetries, associated respectively to the
f0ð1370Þ and the f0ð1500Þ (referred to as a scalar field
that is related with the trace anomaly) [22]. The results
obtained after taking experimental inputs for quarkonia and
glueball masses and widths come along with the compos-
iteness mixing for these particles, hence giving that the
f0ð1500Þ is mostly a glueball state. For this case, the
f0ð1370Þ has a theoretical mass less than the lower
experimental bound. A better result is obtained if the
f0ð1710Þ is considered as a glueball; however, this is
discarded since the predicted value for its four-pion decay
width is large (something that has not been observed). If
three quark flavors are to be taken [23], then the f0ð1500Þ
is considered as a heavy strange quarkonium, whereas the
f0ð1710Þ is largely composed of a glueball state. In this
case, the glueball is coupled to meson states and mixed with
two quarkonia states. After taking proper experimental
inputs, the masses and widths of these three scalar particles
are predicted within less than 10% and 5% of uncertainty,
respectively. These results, along with the quarkonia-
glueball mixing, are independent of the fit considered.
In the case of bottom-up approaches, the most successful

ones describing nonperturbative phenomena are the so-called
AdS/QCDmodels, such as the hardwall (HW) [24] or the soft
wall (SW) models [25] that are able to describe mass spectra,
electromagnetic form factors, some decay constants, and
other mesonic properties. Themain idea behind thesemodels
is to break the conformal invariance in AdS by placing a
cutoff, thus introducing an energy scale. When the cutoff is a
D-brane, themodel is called a hardwall, andwhen a quadratic
dilaton is used instead, a soft wall model is obtained.
Results in the soft wall model show that masses grow

linearly with the excitation number, which gives a Regge

trajectory. This mass spectrum appears due to the confining
potential created by the quadratic dilaton profile [26].
When dealing with the hard wall model, the masses are
given by the zeroes of Bessel functions generated by the
Dirichlet boundary conditions imposed at the wall/brane,
yielding nonlinear trajectories [27]. Light vector meson
masses are described in [25] and scalar light mesons were
described in [28] in the soft wall model framework. These
descriptions are not so good since they do not fit the particle
mass spectra well, although mesons are organized in Regge
trajectories [25,28].
Other soft wall approaches that consider scalar fields with

variable masses (along with chiral symmetry effects) repro-
duce remarkable theoretical predictions for the light scalar
sector when parameters such as quark masses and chiral
condensates are introduced; however, in order to obtain these
results, nonphysical values have to be taken into account for
these sets of parameters [29]. This issue is properly solved
when a scalar potential is introduced [30]. Both of these
results, besides reproducing quitewell the light vector sector,
consider the f0 multiplet belonging to a Regge trajectory.
A previous development [31] takes into account a constant
scalar mass in the action, although in order to reproduce
correctly the scalar sector, one of the first two resonances
[either the f0ð500Þ or the f0ð980Þ] has to be removed.
Recently, a new approach was developed in [32], where

the usual soft wall model is upgraded by including an extra
UV cutoff given by a D-brane. This extra brane will work
as the boundary where the particles live and also will fix,
together with the dilatonic energy scale, the mass and decay
constant spectra of the particles. The application of this idea
gives good results describing the first four vector states of
charmonium and also the first four of bottomonium with a
total error close to 30% for fitting eight quarkonium states
with three parameters [32]. The extension to finite temper-
ature of this model gives a complete holographic view of the
melting processes of these heavy quarkonium states, with
results in agreementwith the observed phenomenology [33].
This paper is organized as follows. We introduce the

holographic bottom-up model in Sec. II to describe the light
scalar and vector meson resonances as poles of a two-point
function. We show the main results of the model in Sec. III,
regarding scalar and vector mass spectra, along with their
respective error percentages when compared with exper-
imental data. Finally, we present our conclusions in Sec. IV.

II. HOLOGRAPHIC MODEL FOR LIGHT MESONS

In order to describe light mesons, we will consider the
usual SW model action [25,28]

I ¼ −
1

2g2S

Z
d5x

ffiffiffiffiffiffi
−g

p
exp½−ΦðzÞ�½∂nS∂nSþm2

5S
2�

−
1

4g2V

Z
d5x

ffiffiffiffiffiffi
−g

p
exp½−ΦðzÞ�FmnFmn; ð1Þ
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where Sðz; xμÞ is a massive scalar field dual to the scalar
mesons and Fmn ¼ ∂mAn − ∂nAm is given in terms of the
massless Abelian gauge field Amðz; xμÞ.
The bulk mass fixes the conformal dimension Δ of

the p-form QCD operator Os dual to the S field as
m2

5R
2 ¼ ðΔ − pÞðΔþ p − 4Þ. In the simplest case, the

scalar operator has the form Os ¼ q̄ðxÞqðxÞ with dimen-
sion 3, where q is any light quark. Thus, we can fix Δ ¼ 3

and p ¼ 0 such that m2
5R

2 ¼ −3 [28].
The geometric background is given by the sliced AdS

Poincaré patch [32,33]

dS2 ¼ Θðz − z0Þ
R2

z2
½dz2 þ ημνdxμdxν�; ð2Þ

with ΘðzÞ the Heaviside step function that gives the
UV D-brane (D-wall) locus. The Minkowski metric has
the signature ð−;þ;þ;þÞ.
This particular choice of boundary for AdS breaks

explicitly the conformal invariance by introducing an
energy scale z0, which can be associated to the nature of
the strong interaction inside the meson [32]. Such behavior
is expected since when we recover the conformal boundary
by setting z0 → 0, the mass spectrum is given by a usual
Regge trajectory defined by the form of the dilaton profile,
i.e., M2

n ¼ cðnþ sþ 1Þ [34]. In this case, such a profile
corresponds toΦðzÞ ¼ κ2z2, which is static as in the regular
soft wall model.
The constants gS and gV fix the units of the action in

terms of the number of colors Nc as usual. Since we are not
interested in the calculation of the decay constants or any
form factor, these constants do not interest us. The proper
value for these couplings is read from the large four-
momentum expansion of the two-point function in the
QCD side compared to the same kind of expansion in the
gravity side [25,28].
Following the ideas expressed in [32], we will define

the mass spectrum of light scalar and vector mesons as
functions of two energy scales, namely, the D-wall locus z0
and the dilaton constant κ.

A. Light vector mesons

We begin our analysis with the light vector meson action
given by

IV ¼ −
1

4g2V

Z
d5x

ffiffiffiffiffiffi
−g

p
exp½−ΦðzÞ�FmnFmn; ð3Þ

according to (1). After considering small variations in the
Aμ field and imposing the gauge condition Az ¼ 0, we
obtain the equation of motion for the space-time compo-
nents as

∂z

�
expð−κ2z2Þ

z
∂zAμ

�
þ expð−κ2z2Þ

z
ηρσ∂ρ∂σAμ ¼ 0: ð4Þ

Equation (4) allows us to obtain a boundary action from
(3) for the vector fields that reads

IVOn-Shell¼−
R
2g2V

Z
d5x

�
∂z

�
expð−κ2z2Þ

z
An∂zAn

��
: ð5Þ

In the latter equation, we have used again the gauge
condition Az ¼ 0. According to the Minkowskian prescrip-
tion, this boundary action (5) gives the two-point function,
and its poles define the mass spectrum. From this same
equation, we infer that the boundary term (i.e., taking
z ¼ z0) is such that

IBoundaryVOn-Shell ¼ −
R
2g2V

Z
d4x

expð−κ2z2Þ
z

Aμ∂zAμ

����
z0

: ð6Þ

Two-point functions are easily obtained after solving the
equation of motion (4) by introducing Fourier transform
vector fields

Aμðz; xμÞ ¼ 1

ð2πÞ4
Z

d4q expð−iqμxμÞvμðz; qÞ; ð7Þ

where we write vμðz; qÞ as a function of the source
term v0μðqÞ and the bulk-to-boundary propagator VðzÞ as
follows:

vμðz; qÞ ¼ v0μðqÞVðzÞ: ð8Þ

Therefore, recalling that ηρσ∂σ∂ρ ¼ −□ ¼ q2, we obtain
that VðzÞ holds with the following:

∂z

�
expð−κ2z2Þ

z
∂zVðzÞ

�
þ q2

z
expð−κ2z2ÞVðzÞ ¼ 0: ð9Þ

The regular solution of (9) reads

VðzÞ ¼ c1κ2z21F1

�
1 −

q2

4κ2
; 2; κ2z2

	
; ð10Þ

where 1F1ð1 − q2=4κ2; 2; κ2z2Þ is the Kummer confluent
hypergeometric function and c1 is a normalization constant.
Hence, we deduce from the on-shell boundary action

IBoundaryVOn-Shell

¼ −
R
2g2V

Z
d4q
ð2πÞ4 v

0
μðqÞvμ0ð−qÞ

expð−κ2z2Þ
z

Vz∂zVz

����
z0

ð11Þ

the following vector two-point function Gμνðq2Þ:

Gμνðq2Þ ¼ ημνΠðq2Þ; ð12Þ
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Πðq2Þ ¼ −
R
g2V

�
expð−κ2z2Þ

z
VðzÞ∂zVðzÞ

�����
z0

: ð13Þ

After normalizing (10) such that Vðz0Þ ¼ 1, we finally
obtain that Πðq2Þ reads

Πðq2Þ ¼ −
R expð−κ2z20Þ

g2Vz
2
0

×

�
2

z0
þ κ2z0

�
1 −

q2

4κ2

	
1F1ð2 − q2

4κ2
; 3; κ2z20Þ

1F1ð1 − q2

4κ2
; 2; κ2z20Þ

�
:

ð14Þ

The poles of the two-point function (14) can be read
from the roots of the hypergeometric confluent function in
the denominator

1F1ð1 − χn; 2; κ2z20Þ ¼ 0; ð15Þ

with χn ¼ q2n=4κ2 the root spectrum and q2n ¼ M2
n the

physical masses. Thus, the mass spectrum for the light
vector mesons is given by

M2
n;V ¼ 4κ2χnðz0; κÞ: ð16Þ

The result above assures us that the mass spectrum (16)
is given by a nonlinear Regge trajectory defined by the
parameters z0 and κ. In general, the roots of the hyper-
geometric confluent function increase with n [[35]
Sec. 13.9], so the masses increase with the excitation
number, as we expected. The results for the light vector
masses are shown in Table I.

B. Light scalar mesons

We see that the scalar case follows a procedure similar
to that of the vector fields shown in Sec. II A. Thus, we
define from (1) the scalar action as

IS ¼ −
1

2g2S

Z
d5x

ffiffiffiffiffiffi
−g

p
exp½−ΦðzÞ�½∂nS∂nSþm2

5S
2�;

ð17Þ

whose associated equation of motion, after taking small
variations in S, taking the gauge condition Az ¼ 0, and
replacing the definition of the conformal dimension in
terms of mS, is given by

∂z

�
expð−κ2z2Þ

z
∂zS

�
−
expð−κ2z2Þ

z3
□Sþ 3 expð−κ2z2Þ

z5
S

¼ 0; ð18Þ

where □ ¼ −ημν∂μ∂ν. We obtain the solution of (18) by
considering the Fourier transform of the scalar field as

Sðxμ; zÞ ¼
1

ð2πÞ4
Z

expð−ixμqμÞSðz; qÞ; ð19Þ

Sðz; qÞ ¼ S0ðqÞv̄ðzÞ: ð20Þ

In this case, the, bulk-to-Boundary propagator is labeled
as v̄ðzÞ, while the scalar source term is given by S0ðqÞ.
Hence, (18) changes into

∂z

�
expð−κ2z2Þ

z3
∂zv̄ðzÞ

�
þ expð−κ2z2Þ

z3
q2v̄ðzÞ

þ 3 expð−κ2z2Þ
z5

v̄ðzÞ ¼ 0; ð21Þ

whose regular solution is given in terms of the Kummer
confluent hypergeometric function as follows:

v̄ðzÞ ¼ c̄1κ3z31F1

�
3

2
−

q2

4κ2
; 2; κ2z2

	
: ð22Þ

As expected, our solution depends on a normalization
constant c̄1. Before showing the normalized solution of the
bulk-to-Boundary propagator, we deduce from (17) that the
on-Shell Boundary action reads

IBoundarySOn-Shell¼
R3

g2S

Z
d4q

expð−κ2z2Þ
z3

S0ðqÞS0ð−qÞv̄ðzÞ∂zv̄ðzÞ
����
z0

:

ð23Þ

Hence, the scalar two-point function ΠSðq2Þ is such that

ΠSðq2Þ ¼ −
R3

g2S

expð−κ2z2Þ
z3

v̄ðzÞ∂zv̄ðzÞ
����
z0

: ð24Þ

Our solution for (24), written in terms of a normalized
v̄ðzÞ function, is given by

TABLE I. Mass spectrum for ρ vector mesons with κ ¼
0.45 GeV and z0 ¼ 5 GeV−1. Experimental values are obtained
from [10].

ρ Mth (GeV) Mexp (GeV) %M

ρð775Þ 0.975 0.775 20.53
ρð1450Þ 1.455 1.465 0.66
ρð1570Þ 1.652 1.570 4.96
ρð1700Þ 1.829 1.720 5.97
ρð1900Þ 1.992 1.909 4.15
ρð2150Þ 2.142 2.153 0.50
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ΠSðq2Þ ¼ −
R3

g2S

expð−κ2z20Þ
z30

×

�
3

z0
þ κ2z0

�
3

2
−

q2

4κ2

	
1F1ð52 − q2

4κ2
; 3; κ2z20Þ

1F1ð32 − q2

4κ2
; 2; κ2z20Þ

�
:

ð25Þ

As in the vector case, we obtain the pole expansion from
the roots of the denominator in (25),

1F1

�
3

2
− χ̄n; 2; κ2z20

	
¼ 0; ð26Þ

with χ̄n ¼ q2n=4κ. Therefore, the mass spectrum is given by

M2
n;S ¼ 4κ2χ̄nðz0; κÞ: ð27Þ

Notice that (27) is also nonlinear and defined by the
increasing χ̄n and the parameters κ and z0. The results for
these mesons are shown in Table II.

III. RESULTS

The respective spectra for vector and scalar resonances is
generated after finding the associated poles of the two-point
functions (14) and (25). In order to obtain them, we only
need to fix two parameters: the boundary radius z0 and the
dilaton slope κ. Following [32], we will fix κ as flavor
independent, so we will use the same κ for scalar and vector
mesons since they are made of up and down quarks, which
in the chiral limit have the same mass. The z0 parameter is
defined as a quantity related to the nature of the strong
interactions inside the mesons. Thus, we could use the same
value reported in [32], but due to the color screening it is
expected that the z0 parameter would be different for light
and heavy quarks.
In this case, we have that the best values that fit the

experimental masses [10] correspond to

z0 ¼ 5 GeV−1; ð28Þ

κ ¼ 0.45 GeV: ð29Þ

In Table I, we present the theoretical values calculated
with the model proposed in [32], along with the exper-
imental masses and the corresponding uncertainties for the
ρ vector meson trajectory. It is interesting to notice that the
spectrum is not linear, as in the case of the regular soft wall
model [25].
We show in Table II the results for the f0 trajectory.

Again, the spectrum is nonlinear. Notice that the n ¼ 1
state is not associated to the f0ð500Þ state. In this model, it
is not possible to fit this resonance into the trajectory (27)
with any parameter choice. Thus, since we have related
κ and z0 with the color structure inside mesons, we can
conclude that, holographically, the f0ð500Þ resonance is
not a qq̄ state. This is in agreement with theoretical
phenomenology [12].
Following [32], we can test the predictability of the

model developed here with the RMS error for estimating N
parameters using Np parameters as

δRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − Np

XN
i

�
δOi

Oi

	
2

vuut ; ð30Þ

where Oi is the experimental mean value of a given
observable and δOi is the absolute uncertainty given by
the model. In our case, we fit up to 14 resonant states with
two parameters, thus obtaining an RMS error δRMS

δRMS ¼ 7.64%: ð31Þ

As it can be seen from Tables I and II, the resonances
we obtain are not degenerate, as expected from the usual
Regge theory. We attain this after carefully choosing the
pole positions of the two-point functions (14) and (25)
according to their q2 dependence.
We also want to point out that the approach considered

here minimizes the number of parameters to be taken into
account since the model (both in the scalar and vector
sector) does not deal directly with a certain meson internal
structure, as shown in [29,30] [all this information is
summarized in the choosing of the ðκ; z0Þ parameter space].
Pions and axial states are not reproduced since we do not
take into account chiral symmetry breaking effects.

IV. CONCLUSIONS

The model we considered does not deal directly with the
composition of the scalar mesons, as in the case of the
f0ð1500Þ and f0ð1710Þ, which are glueball candidates.
This was not necessary since the poles only depend on the
model parameters κ and z0. Also, the errors we obtained
are within the phenomenological bounds given in [23].
We also obtained a remarkable result for the f0ð980Þ mass,

TABLE II. Mass spectrum for f0 scalar resonances with κ ¼
0.45 GeV and z0 ¼ 5.0 GeV−1. Experimental values for the
masses are read from [10].

f0 Mth (GeV) Mexp (GeV) %M

f0ð980Þ 1.070 0.99 7.46
f0ð1370Þ 1.284 1.370 5.11
f0ð1500Þ 1.487 1.504 1.13
f0ð1710Þ 1.674 1.723 2.93
f0ð2020Þ 1.846 1.992 7.94
f0ð2100Þ 2.153 2.101 2.39
f0ð2200Þ 2.292 2.189 4.49
f0ð2330Þ 2.424 2.314 4.52
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a possible non-qq̄ state. However, it was not possible to fit
the f0ð500Þ since our model only considered ordinary light
qq̄ mesons (both scalar and vector). This means that the
model needs to be extended somehow to describe these
sorts of scalar particles; a proper description of exotic states
such as scalar glueballs can be found in [36]. On the other
hand, light vector mesons were well fitted, with the ρð770Þ
state having the biggest error. As a matter of fact, unlike
what happened with the scalar multiplet, the ground state
could be determined up to the higher error bound allowed
by these sorts of nonconformal models. We also note that
all of our results did not need to consider either exper-
imental or lattice input parameters.
We showed here that these AdS/QCD approaches could

reproduce light meson spectra after minimizing the amount
of holographic and physical parameters; we attained this by
analyzing the respective poles of the scalar and vector
propagators in such a way that only the dilaton profile κ and
the D-wall locus z0 are needed, thus avoiding the intro-
duction of nonphysical quark masses and condensates, as in
[29]. Furthermore, internal properties of mesons were also
avoided here since quark masses and condensate-dependent
confining potentials [30] were not directly treated. These
parameters are, by some unknown form, related with the

constituent quark mass and to the naturalness of the strong
interaction.
Despite having different values for κ and z0 for heavy

[32] and light mesons, a universality class can be estab-
lished for these sort of models. In fact, there is a huge
phenomenological difference between heavy and light
quarks due to the heavy quark symmetry: heavy quark
systems are considered nonrelativistic, e.g., Schrödinger-
like heavy quarkonium potentials. Also, color screening
effects in both systems are different since they strongly
depend on the quark masses [37].
In a future work, we want to study finite-temperature

chiral symmetry restoration effects in these sorts of
models [33] after properly introducing pseudoscalar and
axial particles. Our objective is to check if these
holographic approaches properly describe phase transi-
tions, as happens with large-N nonlinear sigma models
[38,39].
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CORTéS, CONTRERAS, and ROLDÁN PHYSICAL REVIEW D 96, 106002 (2017)

106002-6

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1007/978-3-319-12238-0
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/S0550-3213(01)00147-X
https://doi.org/10.1016/S0550-3213(01)00147-X
https://doi.org/10.1016/0370-2693(90)90109-J
https://doi.org/10.1016/0370-2693(90)90109-J
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.60.099906
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1103/PhysRevLett.107.072001
https://doi.org/10.1103/PhysRevD.83.074004
https://doi.org/10.1103/PhysRevD.83.074004
https://doi.org/10.1007/s100530050414
https://doi.org/10.1007/s100530050414
https://doi.org/10.1103/PhysRevD.74.114010
https://doi.org/10.1103/PhysRevD.74.114010
https://doi.org/10.1103/PhysRevD.81.054037
https://doi.org/10.1103/PhysRevD.81.054037
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.72.094006
https://doi.org/10.1016/j.physletb.2005.07.016
https://doi.org/10.1103/PhysRevD.74.094005
https://doi.org/10.1103/PhysRevD.74.094005
https://doi.org/10.1103/PhysRevD.84.054007
https://doi.org/10.1103/PhysRevD.90.114005
https://doi.org/10.1103/PhysRevD.90.114005
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1016/j.physletb.2013.01.055
https://doi.org/10.1140/epja/i2007-10540-1
https://doi.org/10.1140/epja/i2007-10540-1


[28] P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, and S.
Nicotri, Phys. Rev. D 78, 055009 (2008).

[29] A. Vega and I. Schmidt, Phys. Rev. D 82, 115023 (2010).
[30] A. Vega and I. Schmidt, Phys. Rev. D 84, 017701 (2011).
[31] T. Gherghetta, J. I. Kapusta, and T. M. Kelley, Phys. Rev. D

79, 076003 (2009).
[32] N. R. F. Braga, M. A. Martin Contreras, and S. Diles, Phys.

Lett. B 763, 203 (2016).
[33] N. R. F. Braga, M. A. Martin Contreras, and S. Diles, Eur.

Phys. J. C 76, 598 (2016).
[34] A. Vega and I. Schmidt, Phys. Rev. D 79, 055003 (2009).

[35] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and
B. V. Saunders, eds., NIST Digital Library of Mathematical
Functions, http://dlmf.nist.gov/.

[36] H. Boschi-Filho, N. R. F. Braga, F. Jugeau, and M. A. C.
Torres, Eur. Phys. J. C 73, 2540 (2013).

[37] E. V. Shuryak, World Sci. Lect. Notes Phys. 71, 1 (2014).
[38] S. Cortes, A. Gomez Nicola, and J. Morales, Phys. Rev. D

93, 036001 (2016).
[39] S. Cortes, A. Gomez Nicola, and J. Morales, Phys. Rev. D

94, 116008 (2016).

LIGHT MESON MASSES USING ADS/QCD MODIFIED … PHYSICAL REVIEW D 96, 106002 (2017)

106002-7

https://doi.org/10.1103/PhysRevD.78.055009
https://doi.org/10.1103/PhysRevD.82.115023
https://doi.org/10.1103/PhysRevD.84.017701
https://doi.org/10.1103/PhysRevD.79.076003
https://doi.org/10.1103/PhysRevD.79.076003
https://doi.org/10.1016/j.physletb.2016.10.046
https://doi.org/10.1016/j.physletb.2016.10.046
https://doi.org/10.1140/epjc/s10052-016-4447-4
https://doi.org/10.1140/epjc/s10052-016-4447-4
https://doi.org/10.1103/PhysRevD.79.055003
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1140/epjc/s10052-013-2540-5
https://doi.org/10.1103/PhysRevD.93.036001
https://doi.org/10.1103/PhysRevD.93.036001
https://doi.org/10.1103/PhysRevD.94.116008
https://doi.org/10.1103/PhysRevD.94.116008

